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ABSTRACT

The open-pit production system is a highly dynamic and uncertain environment with complex
interactions between haulage and loading equipment on a shared road network. One of the key
decisions in open-pit short-term planning is the allocation sequence of shovels to mining faces to
meet the production targets established by the long-term strategic plan. Deep Reinforcement
Learning (DRL) techniques have been widely applied to dynamic production environments where
an agent is trained on a simulation of the production system to learn the best decisions to take
given the system's state at any given time. This paper proposes a DRL approach based on the Deep
Q-Learning algorithm to obtain a robust shovel allocation plan for open-pit short-term planning. A
discrete-event simulation of the mining production system incorporating trucks, shovels, crushers,
dumps and the road network is developed, where each component of the equipment operating
cycles is subject to uncertainties modelled based on historical activity records to serve as the
environment to train the DRL agent. The goal is to learn a robust shovel allocation strategy for the
next 3-months to meet the tonnes per hour (TPH) production target to be delivered to the crusher
feeds by interacting multiple times with the production simulator. As a result, the agent successfully
learns a shovel allocation plan that achieves the goal considering all the operating uncertainties
for the case study.

1. Introduction and Background

The open-pit mining production system is a highly dynamic environment that comprises the
operation and coordination of multiple pieces of equipment of different types and capacities to
achieve a production goal, usually delivering a certain amount of ore within a certain quality range
to processing facilities to comply with the long-term plan (Newman et al. (2010) [9]). A major
challenge in open-pit short-term planning is the high uncertainty arising from the dynamic
interaction of different machines, operating cycle times and failures, and geological uncertainties in
the quality of the material being mined. This often leads to hard-to-reach plans at the operational
stage due to mismatches in productivity and geological forecasts, which then require frequent
efforts to update plans and resolve issues as they appear.

Commercial tools and academic research in open-pit short-term planning focus on developing
mathematical programming frameworks, usually linear optimization models or similar heuristics,
which require the formulation of large and complex models to capture the highly dynamic open-pit
production environment (Blom et al. (2018) [1]). However, a major drawback of these approaches
is the complexity in including operational uncertainties, which make an already intractable
mathematical problem substantially more complex, with limited capabilities to consider a
significant number of production scenarios (Both and Dimitrakopoulos (2018) [2]).
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Simulation models have been used extensively in mining to estimate the productivity of mining
systems by using historical data to reproduce equipment behaviour and interactions to forecast
future performance (Raj et al. (2009) [12]). In addition, simulation models provide an efficient
approach to quantifying the different operational uncertainties and particularities of the day-to-day
operations in open-pit mines. Therefore, researchers have proposed using simulation models to
serve as a platform for an optimization engine that provides robust and optimal short-term mine
planning decisions (Upadhyay and Askari Nasab (2018) [17]; Shishvan and Benndorf (2019) [14]).
However, current simulation-optimization efforts still use linear optimization techniques to find the
planning decisions, which struggle to efficiently model the dynamic environment of day-to-day
mining operations leading to suboptimal decisions, inability to account for a wide range of
production scenarios and large computation times which could render real-world use unfeasible.

This research proposes a Deep Reinforcement Learning (DRL) approach for robust and adaptive
open-pit short-term planning, specifically for dynamic shovel allocation and mining sequencing
decisions. Reinforcement Learning (RL) is a branch of Machine Learning (ML) that involves a
computational approach to learning from interactions with an environment to maximize a goal
(Sutton and Barton (2018) [16]). DRL has seen an increased application for optimizing different
engineering systems, such as in the transportation, manufacturing and heavy industries, providing a
highly flexible data-driven production control framework (Panzer and Bender (2021) [11]).

In an RL framework, an agent, an abstraction for the decision-maker, interacts with an environment
at different time steps. At any time step where the agent must act, it observes the current state of𝑡
the system, , and makes an action based on it. The environment then responds to this action by𝑠

𝑡
transitioning into a new state in the next time step , and providing a reward for the agent.𝑠

𝑡+1
𝑅

𝑡+1
This sequential decision-making behavior (Figure 3) repeats itself until the environment transitions
into a final state, and the interaction ends; alternatively, the agent could interact with the
environment indefinitely, depending on the application.

Figure 1. Reinforcement Learning conceptual framework [16].

RL aims to enable the agent to learn an optimal decision-making policy that maximizes the
cumulative reward received throughout its interaction. The objective function that RL algorithms
optimize is the total discounted reward accumulated by the agent by interacting with the
environment. Therefore, the rewards returned by the environment are designed to reflect the desired
goals achieved in each application. In the context of open-pit short-term planning, this could profit
from ore deliveries to the crusher and penalties from deviations in production targets. The
decision-making policy is expressed as mapping, or function, from states of the system to actions to
make, and it can be implemented as a hardcoded table of state variables or a complex function
approximator as an Artificial Neural Network (ANN). The development of this mapping from
states to actions is achieved by a learn by doing approach, where the agent interacts with the
environment, exploring it, discovering the impact of unknown actions, and exploiting well-proven
high reward decisions. Due to a large number of environment interactions needed to converge to an
optimal policy, the agent and environments are commonly implemented as computer simulations
before moving to real-world trials and applications (Naeem et al. (2020) [8]).
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A practical in the heavy industries for production planning in a chemical plant, more akin to the
environment of the extractive industries, is presented by Hubbs et al. [5]. The authors proposed an
actor-critic algorithm, policy-based RL, for optimal and robust chemical production scheduling
under uncertain demand and equipment operating cycles. The DRL approach was built using
historical records and was exhaustively benchmarked against current practices and MIP-based
scheduling algorithms, reporting that the DRL scheduling led to increased profitability and better
response to unforeseen situations. Another major advantage of DRL scheduling is the
fast-computing times in deployment after training since it only requires a forward pass through
Deep Neural Network (DNN). This was demonstrated by Wu et al. [19] where a DRL framework
was developed to tackle the production planning of medical masks during the COVID-19
emergency, which caused the arrival of a large number of unexpected orders to manufacturing
facilities. The DRL was trained to minimize total tardiness in order completion and was tested with
data from a medical mask manufacturer, showing that the DRL system could generate production
plans and efficiently handle real-time rescheduling of orders significantly better than existing
heuristics during the peak of the emergency period.

The literature on DRL applications to production systems across different industries is vast. The
readers are directed to Panzer and Bender [11] for a comprehensive review. The authors found that
89% of the benchmarked DRL implementations resulted in improved scheduling performance
achieving lower total tardiness, higher profits, or other specific objectives, compared to current
practice and other heuristics.

2. Methodology

2.1. Problem Description

Once the strategic plan for a mine is established, the operational and short-term plan requires
determining an optimal and feasible sequence of mining areas to be prepared and extracted along
with allocating equipment resources for these activities over shorter periods. Commonly
operational plans are defined quarterly or month to month for activities such as mining sequences,
mine access development and shovel allocations. At this stage, one of the critical decisions is to
define a shovel allocation policy that assigns shovels to mining faces to meet ore production and
quality targets. This decision is subject to high operational uncertainties in the estimated production
outputs due to the stochastic nature of shovel loading and truck haulage operations, and geological
and other uncertainties in estimating the rock properties.

For this purpose, many algorithms have been proposed in the literature to solve the short-term
planning problem considering different decisions and constraints. Most commonly, Mixed-Integer
Linear Programming (MILP) models have been developed to solve the operational short-term
planning problem. However, deterministic MILP models do not allow to account for any source of
uncertainty which can render their solutions unfeasible, requiring effort in the field to
accommodate changes over the initial plan. Moreover, they require describing the model as a set of
linear equations however the production environment of open-pit mining is a highly dynamic,
uncertain environment which greatly complicates solving MILP models.

In this paper, an Artificial Intelligence (AI) agent is developed to learn a shovel-allocation policy to
maintain the production targets at crusher feeds during a production quarter. The AI agent is a
Neural Network that given the available mining areas to mine at any point and the shovel that
requires an allocation, will suggest a matching that will meet the required production targets. For
this purpose, the AI agent is trained in a simulation model of the mine production environment, that
is built using historical equipment records to mimic the real mine performance, under Deep
Q-Learning, a RL framework. As a result, the mine production environment reflects all the
operational uncertainties, and the AI agent learns a shovel allocation policy that directly accounts
for them.
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2.2. Deep Q-Learning

Q-Learning is one of the most widely used RL based algorithms and has seen success in industrial
production scheduling applications (Panzer and Bender (2021) [11]). Q-Learning is based on
learning from a trial-and-error approach where an agent interacts with an environment over time
steps until a terminal time step is reached. At every time step, the agent observes𝑡 = 1,  2, …,  𝑇 𝑇
the environment state and takes an action , from a set of available actions at that time, after𝑠

𝑡
𝑎

𝑡
which the environment responds to this action by transitioning to a new state and providing the𝑠

𝑡+1
agent a reward . The goal of the agent is to find an optimal policy, action selection strategy, that𝑟

𝑡+1
maximizes the total return at any time step , , defined as the discounted cumulative reward𝑡 𝐺

𝑡

obtained from that time step until the end of the interaction ,𝐺
𝑡

= 𝑅
𝑡+1

+ γ𝑅
𝑡+2

+ … + γ𝑇−1𝑅
𝑇

where the discount factor determines how much the agent cares about long-term rewards relativeγ
to immediate gains.

During the training process of a Q-learning agent, it tries to build an estimate of the expected return
obtained from taking action from a given state, defined as the action-value function

. For this, the agent explores and exploits its current environment𝑄 𝑠, 𝑎( ) = 𝐸[𝐺
𝑡
|𝑆

𝑡
= 𝑠,  𝐴

𝑡
= 𝑎]

knowledge at every iteration. Exploration refers to selecting an action at random, and exploitation
to selecting the action that maximizes the returns given the current knowledge of the environment.
The most common strategy to balance the exploration versus exploitation problem is the
epsilon-greedy exploration strategy, where at every time step with probability the agent explores,ε
and is decreased over time.ε

Once the Q-value function is estimated, the optimal policy is that which maximizes
at every time step. This would require visiting every state-action pair for a𝑎𝑟𝑔𝑚𝑎𝑥

𝑎
𝑡

𝑄(𝑠
𝑡
, 𝑎

𝑡
)

given environment multiple times, which would be impossible for any real-world application. To
address this issue, the action-value function is parametrized as a function with some parameters ,θ

, that given a state and action vectors predicts the return from the environment. A Neural𝑄 𝑠, 𝑎; θ( )
Network (NN) can be used as the function approximator and is trained to predict the action-value
function for any state and action pair from interaction with the environment. The𝑄 𝑠, 𝑎; θ( )
implementation details for the use of a NN within a Q-learning framework, Deep Q-Learning
(DQL), are fully described in Mnih et. al. (2015) [7].

The training process in DQL relies on the agent interacting with the environment storing
experience vectors, that represent each transition observed in a memory replay𝑒

𝑡
= (𝑠

𝑡
, 𝑎

𝑡
, 𝑟

𝑡
, 𝑠

𝑡+1
)

buffer which serves as the training dataset for every training update of the NN. At every NN
training step, a batch of experiences are drawn from the replay buffer, and the NN weights are
trained to minimize the prediction loss defined as the mean square error (MSE) between the𝐿

𝑖
(θ

𝑖
)

observed return (target) and the predicted return from the network at training step :𝑖

𝐿
𝑖

θ
𝑖( ) = (𝑟 + γ𝑚𝑎𝑥

𝑎
𝑡+1

𝑄 𝑠
𝑡+1

, 𝑎
𝑡+1

; θ
𝑖
𝑡𝑔𝑡( ) − 𝑄(𝑠

𝑡
, 𝑎

𝑡
; θ

𝑖
))

2

Where refers to a NN used to evaluate target returns not trained at every step but synced withθ
𝑖
𝑡𝑔𝑡

the online network defined by every steps, which helps stabilize the training process.θ
𝑖

𝐶

The general algorithm for the original Deep Q-Learning is described below.
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Algorithm General DQL framework

Initialize replay memory to an initial capacity . Initialize action-value function with𝐷 𝑁 𝑄
weights and target action-value function with weights .θ 𝑄𝑡𝑔𝑡 θ𝑡𝑔𝑡 = θ

For each episode:

For :𝑡 = 1, …, 𝑇

Observe environment state 𝑠
𝑡

With probability select a random action otherwiseε 𝑎
𝑡

𝑎
𝑡

= 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎
𝑄(𝑠, 𝑎)

Execute action in environment. Observe reward and next state . Store transition𝑎
𝑡

𝑟 𝑠
𝑡+1

in memory replay buffer(𝑠
𝑡
, 𝑎

𝑡
, 𝑟

𝑡+1
, 𝑠

𝑡+1
) 𝐷

Sample a random batch of transitions from the replay buffer .𝐷

For every transition in the batch, calculate target if episode ended at this step or𝑦 = 𝑟
otherwise𝑦 = 𝑟 + γ𝑚𝑎𝑥

𝑎
𝑡

𝑄𝑡𝑔𝑡(𝑠
𝑡+1

, 𝑎
𝑡+1

)

For every transition calculate loss 𝐿 = (𝑦 − 𝑄(𝑠
𝑡
, 𝑎

𝑡
))2

Update to minimize loss with respect to model parametersθ 

Every steps set𝐶 𝑄𝑡𝑔𝑡 = 𝑄

2.2.1. DQL Implementation

Since the publication of the original DQN method [7], many improvements have been proposed to
enhance learning efficiency, significantly improving convergence, training stability and sample
efficiency. Google DeepMind collected some of the most important improvements to the original
DQN and combined them into the Rainbow DQN agent, showing a significant increase in overall
performance (Hessel et al. (2018) [4]).

The DQN implementation in this paper includes the following additional components of the
Rainbow DQN agent. Note that the general training framework follows the same algorithm
described in Section 2.2.

● n-Step DQN

Improves convergence speed and stability by unrolling the action-value function . The𝑄 𝑠, 𝑎( )
original DQN accumulates single-step rewards at each transition; however, using forward-view
multi-step rewards as targets often leads to faster learning, as described by Sutton (1988) [15]. The
implementation is straightforward: once an action has been taken from a given state, the return
(discounted cumulative reward) observed after steps from that action is used as the target for the𝑛
action-value prediction. Values of to usually yield good learning behavior. In this𝑛 = 2 𝑛 = 5
research was used.𝑛 = 4
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● Double DQN

The original DQN tends to overestimate action values, leading to training instabilities and
convergence problems. This is due to the maximization step in estimating the returns that serves as
the target for training. Double Q-Learning was proposed by van Hasselt et al. (2016) [18] as a
solution to the maximization bias, where at every time step choosing actions is done from the
Q-network , but the target network is used to evaluate the target for the updates.𝑄(𝑠, 𝑎) 𝑄𝑡𝑔𝑡

● Noisy networks for exploration

The epsilon-greedy strategy for exploration can be limiting in complex environments. Fortunato et
al. (2017) [3] proposed a simple but improved exploration strategy by adding noise to the weights
of the NN agent rather than relying on the epsilon-greedy strategy. The noise in the NN model
leads to some randomness in the agent's action selection but is adjusted automatically as an
additional parameter by backpropagation during training. As training progresses, the NN can learn
to ignore the noisy paths through the network at different rates in different parts of the state space,
allowing for a form of state-conditional exploration.

● Prioritized experience replay buffer

The original DQN samples experiences from the replay buffer uniformly for every training step;
every transition has the same probability of being used in a training step. Schaul et al. (2016) [13]
argued that it would be ideal to sample transitions from which there is more to learn more
frequently and proposed a prioritized replay buffer mechanism. Transitions are sampled with a
probability proportional to that transition's last observed training loss. Therefore, the agent trains
more often on transitions from which it had trouble predicting their outcome.

● Dueling DQN

Wang et al. (2016) developed a novel NN architecture suited for value-based RL methods that
features two streams of computation, based on the observation that the action-value function

can be decomposed as the sum between the value of the state , , and the advantage of𝑄(𝑠, 𝑎) 𝑠 𝑉(𝑠)
taking action from state , . The advantage of action can be interpreted as how much extra𝑎 𝑠 𝐴(𝑠,  𝑎)
reward some particular action from a given state yields. The dueling DQN architecture takes the
feature vector and processes it through two independent paths: one for predicting the state's value
and another for predicting each action's advantage. After that, the values can be summed to obtain
the Q-function. This architecture resulted in better training stability and faster convergence.

The integrated agent for shovel allocations to meet production targets in open-pit mining developed
in this paper follows the basic DQN algorithm incorporating all the improvements discussed above.
The loss function to train the NN used is the MSE, as described in Section 2.2 and the optimizer
used in training is ADAM, which has become a reliable NN optimizer that typically requires little
tuning [6]. This loss function and optimizer combination has shown to perform well for
Rainbow-based DQN agents in small and complex environments (Obando-Ceron and Castro
(2021) [10]). The entire framework is implemented in Python’s Pytorch deep learning package.

2.3. The Agent

The agent is a fully connected NN with three layers and 128 neurons each. Each layer has a
Rectified Linear Unit (ReLU) activation function, which helps to speed up gradient calculation
times and control vanishing/exploding gradient problems. Moreover, at every step, the gradient
norms are clipped to a norm within 10 to stabilize training further, a common practice described in
Zhang et al. (2020) [20]; this means that rare extreme experiences will not cause extreme shifts in
the NN parameters.

Since the Dueling DQN architecture is used, there will be two network paths: one for predicting
state values and one for predicting the advantage of taking each action from a given state𝑉(𝑠)
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as described in Section 2.3. The NN agent architecture is depicted in Figure 2. The agent𝐴(𝑠, 𝑎)
was implemented using the Python’s Pytorch package.

Figure 2. Shovel allocating NN agent architecture.

2.4. The Environment

A discrete-event simulation (DES) model of the operational open-pit truck and shovel environment
is developed in Python using the SimPy general-purpose simulation package. The DES models the
interaction between loading and hauling equipment, mining faces, crushers, and waste dumps
within the mine haul road network and keeps track of different production Key Performance
Indicators (KPI) of the system, such as tonnage delivered at crushers, the average grade of ore
delivered to crushers amongst other commonly tracked KPIs in mining.

The DES model simulates the extraction of mining faces, aggregation of mineral blocks to be
mined by a single shovel, commonly referred to as mining cuts or polygons, and the haulage of
material to destination points such as crushers and waste dumps, with the potential to account for
stochasticity in every component of the equipment cycles.

The DES starts with an assignment of shovels to their initial mining face and simulates the
movement of trucks along the road network to get loaded by the shovels and dump their payload at
the set destinations for each mining face. When a mining face is depleted, the shovel needs to be
relocated to a new mining face to keep production going; at this point, the AI agent is called to
decide which of the available mining faces at that time the shovel will be assigned. Then, the
shovel takes some time to move to the new mining area and resumes its operation after arriving.
Figure 3 illustrates the general logic.

Figure 3. General logic of the open-pit DES model and interaction with the AI agent for shovel allocation
decisions.

Truck haulage is modelled by calculating the travel time through the different segments in the road
network that form a path between a destination and a shovel, a haul route. The velocities assigned
at each individual segment depend on the rimpull curve of the truck and the rolling and grade
resistance of the road segment. When a truck arrives at the shovel, it queues and waits for the
shovel to be available, then seizes it and receives multiple bucket-loads of material from the mining
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face until full. Afterwards, it moves through the haul road network until reaching the destination set
for the material coming from the mining face it received its load from, a crusher or a waste dump.
If necessary, it queues, dumps its payload, and then travels back to the shovel. Each shovel can
break down, which will be unavailable until it is repaired. Figure 4 illustrates the truck haulage
logic.

Figure 4. Truck Haulage simulation logic.

Other assumptions made in the current version of the DES model are:

● Each mining face has an average mineral grade and total tonnage. Therefore, each truck
payload from a mining face will have the same average grade.

● Destinations for each face's material are fixed; each mining face has a set destination: a
given crusher or a given dump. No decisions on destination policies are made at this point
but will be considered in future research.

● No truck dispatching logic is considered at this point; each shovel has a fixed truck fleet
assigned to it. Future research will consider truck fleet sizes and allow for incorporating a
truck dispatching logic.

● No truck bunching through the haul network is considered.

2.5. State and Action Representations

During the training phase, the RL agent learns how to correlate the system state description and the
actions taken with the cumulative reward obtained to identify high-value actions. The actions taken
by the agent are defined as shovel allocations and happen when a mining face is depleted, and its
assigned shovel requires a new mining face allocation to keep production going.

The state of the system at a given time when an action is required must encode all features needed𝑡
for the agent to learn its relationship with the desired objective to be maximized. For this purpose,
the state of the system is encoded as a vector with the following components:

𝑠
𝑡

= [𝑀𝐹
𝑖
,  𝑆𝐻,  𝑡]
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Where encodes information about every mining face in the system for the time period to be𝑀𝐹
𝑖

analyzed and is defined as:

𝑀𝐹
𝑖

= [𝑡𝑜𝑛
𝑖
,  𝑔𝑟𝑎𝑑𝑒

𝑖
,  𝑑𝑖𝑠𝑡

𝑖
,  𝑎𝑐𝑡𝑖𝑣𝑒

𝑖
, 𝑎𝑣𝑙𝑏

𝑖
]

Where:

:𝑡𝑜𝑛
𝑖 Tonnage remaining in mining face , expressed relative to its total tonnage𝑖

𝑔𝑟𝑎𝑑𝑒
𝑖

:
Average mineral grade in mining face 𝑖

:𝑑𝑖𝑠𝑡
𝑖

Distance from mining face to its given destination through the road network,𝑖
normalized between [0, 1] based on the maximum distance across all mining faces

𝑎𝑐𝑡𝑖𝑣𝑒
𝑖

:
Binary flag: 1 if the mining face is currently being mined by a shovel, 0 otherwise

:𝑎𝑣𝑙𝑏
𝑖 Binary flag: 1 if the mining face is available for mining, 0 otherwise

is one hot encoded vector that indicates which shovel needs to be assigned at this time, and is𝑆𝐻 𝑡
the current simulation time, expressed as a fraction of the total episode length.

By interacting with the environment, selecting actions using this state representation and observing
the total returns (cumulative rewards), the agent learns to predict the value of each action and,
based on this prediction, to select an optimal shovel allocation with respect to the reward function.

2.6. Reward to be Optimized

The reward defines the objectives to be maximized. The objective considered here is to minimize
the shortage of material delivered to the crusher feed relative to the desired production target 𝑃𝑟𝑜𝑑

𝑡
. Therefore, a penalty for production target shortages at the crushers is given to the agent for each
step as:

𝑃𝑟𝑜𝑑
𝑡

=−
ℎ∈𝐻
∑ 1 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑝ℎ

𝑡𝑎𝑟𝑔𝑒𝑡 𝑡𝑝ℎ ,  1( ) 

Where indicates tonnes per hour delivered to the crusher feed, and indicates the number of𝑡𝑝ℎ 𝐻
hours between the transition. Therefore, the agent is penalized for every hour it fails to meet the
target tph between each step, by a value equal to the sum of the relative gaps between the actual tph
delivered and the specified target. However, going over the tph target is not penalized, for which
the minimum function is used if the actual tph is greater than the target tph.

3. Case Study

The shovel allocation AI agent proposed in this paper was tested on a case study based on an iron
ore mining operation. The mining operation uses a total of 5 shovels to load material from mining
faces: 2 Hitachi 2500 shovels, with a bucket payload of 12 tonnes, for ore production and 3 Hitachi
5500 Ex shovels, with a bucket payload of 22 tonnes, for waste production. A fleet of 33 trucks is
employed to haul the material from the pit to their destination, either one of two crushers or a waste
dump. The mine uses 15 CAT785C, with a payload of 140 tonnes, to work with the ore shovels and
18 CAT793C, with a payload of 218 tonnes, to work with the waste shovels. The mine ore
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production targets for the crusher feed are 1300 tonnes-per-hour (tph). The mine operates one
12-hour shift per day, seven days a week.

The agent's goal is to define a shovel allocation plan to meet the crusher feed production target for
the next quarter (3 months), given the mine layout, equipment performance and available mining
faces. The set of mining faces to extract is based on the long-term strategic plan of the mine, where
the ones expected to be mined in the next three months are used. Each of these faces has a set of
physical precedences that represent the physical space required to start extraction, which is
enforced by presenting to the agent only the available faces at each step when an action is required.
Figure 5 shows a plan view of the mine layout; in which, in addition to the crusher and waste dump
locations, the access to the mining faces areas. From the mining faces access, it is assumed that the
distance to each mining face is the linear distance between its digging coordinate and the closest
access point in the road network.

Figure 5. Mine layout for the case study.

To model the equipment production behavior, statistical distributions were fitted to recorded
historical data from an available equipment dispatch database to the different activities that
comprise the equipment's load and haul operating cycle in the case study. Table 1 shows the
equipment distributions. Truck spotting times at the dumping sites were not retrievable, so a
practical mean value was used.

Table 1. Distributions fitted to different activities in the productivity cycle of the load and haul equipment.

Activity Distribution

Shovel bucket cycle time Hit 2500 Triangular(15, 26, 50)  [seconds]

Hit 5500Ex Triangular(15, 29, 50) [seconds]

Shovel up-time Hit 2500 116 * Weibull(34) [hours]

Hit 5500Ex 116 * Weibull(32) [hours]

Shovel down-time Hit 2500 Gamma(1.4, 1.5) [hours]

Hit 5500Ex Gamma(1.4, 1.5) [hours]

Truck spot time at shovel CAT 785C Gamma(22.54, 1.39) [seconds]

CAT 793C Gamma(26.91, 1.36) [seconds]

Truck spot time at crusher CAT 785C 30 [seconds]
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CAT 793C 30 [seconds]

Truck dump time CAT 785C Normal(52, 6) [seconds]

CAT 793C Normal(55, 8) [seconds]

The truck haulage time throughout the network was determined based on the truck's rimpull
characteristics and the road's total resistance. The shortest path between the truck location and its
destination is determined, and the travel time is calculated based on the road segments that
compose the path by using the maximum speed the truck can achieve on each road segment based
on its rimpull curve from the manufacturer specifications and the road total resistance. The mining
operation was simulated as described in Section 2.4.

The shovel allocation agent was trained following the DQN algorithm described in Section 2.2,
with the hyperparameters shown in Table 2. Future research will investigate each hyperparameter's
impact on the agent's training to identify the critical ones and provide some guidelines in selection
and tuning.

Table 2. Hyperparameters selected for the training of the AI shovel allocation agent.

Replay buffer size 8000

Initial samples in replay buffer 2000

Batch size for training updates 32

Discount factor 0.99

Learning rate 0.001

Iteration update frequency of target network 1000

for multi-step returns𝑛 4

The training was performed in the Google Colab service, which provides a virtual machine with
powerful GPUs to train DL models. The GPU used in the instance where the trained agent was a
Tesla P100.

The agent trained for 6 hours until convergence was observed in the reward obtained on each
episode, where an episode corresponds to a shovel allocation plan for 3 months (quarter). This
indicates that the agent has learned a policy, a decision-making strategy, that achieves the desired
goal over multiple potential outcomes based on the stochasticity of the equipment operating cycles
and failures, rather than finding a solution to one potential outcome or a completely deterministic
scenario based on the average performance. Figure 6 presents the training curves for both the
reward achieved by the agent decision-making and the loss from the agent’s NN prediction of
shovel allocation action values. Both curves in Figure 6 show a moving average over 25 episodes.
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(a) (b)

Figure 6. (a) Reward obtained at each episode during training. (b) Training loss of the agent NN for each
training step.

Figure 6 (a) shows how at the start of training, where the agent initializes its NN with random
weights, it performs poorly at each episode. The shovel allocation plans at early training stages fail
to meet the production targets at the crusher feeds by a large margin, incurring a large negative
cumulative reward for the production quarter. However, as training progresses and the agent
becomes better at predicting the value of each shovel movement, the performance increases until
converging at around -80, with some oscillations due to the stochastic nature of the system.
Convergence at this reward level indicates that the agent cannot fully meet the hourly production
targets at the crusher feeds due to failure in shovels, which are part of the system and can
significantly halt production until repaired.

Figure 6 (b) shows the average loss for the agent’s NN prediction at each step during training,
where a step means a shovel allocation action and every episode is composed of multiple of these.
In the early stages, the NN performs poorly but improves its performance rapidly, providing better
predictions of the value of each shovel allocation. Significant oscillations are observed in the loss
curve, which are common in DRL applications. Since the NN training data is generated from a
decision-making policy that is also changing through the training phase as the agent improves its
performance, this means that the distribution of the training examples is changing continually, and
the NN is effectively chasing a moving target. The implementation of the target network for
evaluation of value functions rather than using the same network that is constantly changing
alleviates this issue in practice. The stagnation in the loss curve performance could suggest that the
model system state representation maybe insufficient to fully predict the value of each shovel
movement, giving the agent additional information such as past shovel allocations, productivity
rates, or cycle times could help the agent make better predictions.

To obtain a shovel allocation plan to use in practice, the simulation can be run with a fully trained
agent, and the movements can be recorded. Figure 7 shows a Gantt chart feasible shovel allocation
plan obtained by the agent for the production quarter. Each horizontal bar represents the allocation
of a shovel to a given mining face, based on its ID, for each day. The plan proposed by the agent is
robust as after training, the agent found a shove allocation strategy to meet the desired goals over
many potential productivity outcomes. Moreover, the agent can be updated with the real-world
progress of the operational plan and queried at any time in production that a decision is needed to
obtain a suggested shovel allocation action.
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Figure 7. Shovel allocation plan for a production quarter of the case study.

The shovel allocation plan was evaluated by observing the crushers' feed to ensure it meets the
desired target. Figure 8 and Figure 9 show the average daily and weekly TPH delivered at the plant
crusher 1 feed and plant crusher 2 feed, respectively for the production quarter.

(a)

(b)

Figure 8. TPH delivered to plant 1 crusher feed from the shovel allocation plan. (a) Daily average and (b)
weekly average
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Figure 9.  TPH delivered to plant 2 crusher feed from the shovel allocation plan. (a) Daily average and (b)
weekly average.

Overall, the agent meets the production goals as closely as possible; the large drops in TPH are due
to shovel failures since there are only two ore shovels; the agent cannot feed the crusher they were
working on until repaired.

4. Conclusions and Future Research

A simulation-optimization approach for open-pit short-term planning is proposed in this research to
obtain a robust shovel allocation plan that meets specified production targets under operational
uncertainties of equipment performance. A RL framework is used where a NN based agent
allocates shovels throughout the production simulation by observing the state of the mine and the
available mining faces. The agent receives a penalty for every hour it fails to meet a specified
production target, defined as tonnes per hour (TPH) delivered to crusher feeds, equal to the relative
gap from the actual TPH observed in response to the shovel allocation actions. A Deep Q-learning
RL framework is used to train the agent to learn an optimal allocation policy to minimize this
production shortage over multiple interactions with the mine production simulator. During training,
the agent’s NN gets better at predicting the return of shovel allocation actions given the state of the
mine and available mining faces, where the return is defined as the long-term cumulative reward
obtained which gives the agent some insight into the long-term impact of each action, and it’s
guided towards high-value actions to define an optimal plan.

A case study is presented for an iron ore mine where a shovel allocation plan is required for the
next production quarter (3 months). The agent was trained for 6 hours, and its performance
converged to a shovel allocation policy that met the specified TPH target delivered at two plant
crusher feeds. This plan is robust as the agent has interacted with the environment multiple times,
and the strategy learned produces a similar total return over many production simulations.

Future research will be directed into different state representations and NN architectures that can
enhance learning efficiency. Currently, a simple approach of representing the system's state as a
long vector serving as input to a basic fully connected NN is proposed, which can be improved by
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investigating NN architectures more suitable for learning long-term dependencies or
graph-structured problems. Moreover, additional feature engineering can also improve the learning
efficiency of the agent, by improving the information used in the state representation. More
complex rewards will be investigated too, including operating costs and blending to learn a
minimum cost feasible short-term plan.
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