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ABSTRACT

In the optimization of open pit production scheduling, the major challenge found in literature is
finding the balance between optimality and computational time. Mathematical programming
models such as Mixed Integer Linear Programming (MILP) are capable of attaining optimal
solutions. However, this comes at the expense of computational time for tractable optimization
problems. Evolutionary algorithms such as Genetic Algorithm (GA) are able to generate good
solutions at shorter computational time. In this research, we present an evolutionary algorithm
framework based on GA to solve the stochastic open pit production scheduling problem in the
presence of grade uncertainty. For implementation, a set of equally probable simulated orebodies
generated through Sequential Gaussian Simulation are used as input to the stochastic optimization
model. Two case studies are presented which compares results from a stochastic GA with a
stochastic MILP model. For Case study 2, while the SMILP model was at a gap of 101% after 28
days, the SGA model generated NPV of $10,045M at 10.6% gap after 1.5 hours

1. Introduction

Genetic algorithm is a metaheuristic evolutionary algorithm that has widely been studied and
applied in combinatorial optimization problems in the areas of Finance, Supply Chain
Management, and Information Technology. Some researchers have investigated its application to
mining-related optimization spanning across different aspects of mine planning optimization.
Denby and Schofield [26]; Myburgh and Deb [77]; Alipour et al. [4]; Paithankar and Chatterjee
[81]; Alipour et al. [5] used genetic algorithm for open pit production scheduling optimization.
Ahmadi and Shahabi [2] also used genetic algorithm for cut-off grade optimization while Ruiseco
et al. [83] used genetic algorithm in ore-waste pit limit optimization. Similarly, Franco-Sepúlveda
et al. [37] used genetic algorithm for the optimization of open-pit mining operations with
geological and market uncertainty.

Mine planning optimization is a complex yet necessary combinatorial optimization problem.
Combinatorial optimization problems are problems whose optimal solution must be obtained from
a finite number of possibilities [7]. Mine planning optimization specifies the source, destination,
time, and extraction sequence of mineral resources that maximizes the net present value (NPV) of a
mining operation. A resultant activity of mine planning is the production scheduling of the mineral
resource from the mine. Production scheduling can be carried out on either an open pit or an
underground mine with various physical and technical constraints. Production scheduling can also
be classified into short term, medium term or long term. Caccetta and Hill [18] described the time
and sequence of extracting blocks from an open pit mine in order to maximize the NPV of the
A modified version of this paper has been submitted to the International Journal of Mining, Reclamation and
Environment
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mining project as open pit production scheduling (OPPS) optimization. Alipour et al. [4] referred to
the OPPS problem as a combinatorial optimization problem in the class of Non-deterministic
polynomial-time (NP) hardness. An optimization problem is said to be NP-hard if the algorithm for
solving it can be converted to one for solving any NP problem. NP-hard therefore means "at least
as hard as any NP-problem," although it might, in fact, be harder [97]. As the OPPS optimization
problem gets larger and the number of integer variables increase, finding an optimal solution to the
problem in some instances becomes intractable or uses too much computing resources when an
exact solution methodology is implemented. An optimization problem is tractable if a solution is
obtained in polynomial time. This solution may or may not be optimal. Setting an optimality gap
for the optimization problem can ensure tractability for exact algorithms. An optimality gap,
therefore, refers to the difference between the best known solution (best integer) and the value that
bounds the best possible solution [55]. An optimal solution in the case of exact algorithms is a
solution with a 0% optimality gap. This demonstrates that the solution is the best that exists
because the difference between the best integer and the best bound is 0%.

This research focuses on using a metaheuristic optimization approach in the field of evolutionary
algorithms to tackle the NP-hard large scale OPPS problem. Bianchi et al. [16] define
metaheuristics as algorithms that incorporate or develop heuristics (heuristics are simple
approximate algorithms that look for good solutions in a solution space) to solve an optimization
problem in a generic framework. Metaheuristics are thus higher level than heuristics, as the term
"meta" in metaheuristics implies. The concept of metaheuristics is mostly inspired by natural
biology.

The conventional approach to orebody modelling based on Ordinary Kriging [62] generates a
single interpolated block model for pit limit and production scheduling optimization. In using this
single interpolated block model for production scheduling, geological uncertainties which are
inevitable in a typical mining project are not taken into consideration. This may result in schedules
that either 1) overestimate or 2) underestimate the true representation of the optimal solution.
Researchers such as Dimitrakopoulos and Ramazan [30]; Sabour and Dimitrakopoulos [84] and
more recently Mbadozie [70] have investigated the incorporation of grade uncertainty in the OPPS
problem formulation using simulation and mathematical programming. Multiple realizations of the
block model are generated with Sequential Gaussian Simulation (SGS) and used as input to the
mathematical programming model. The primary limitation of their implementation relate to
generating tractable solutions for large scale optimization problems in a reasonable run time. The
optimization solution run time is directly related to the problem size which is also a function of the
size of the deposit, the number of simulation realizations, and the life-of-mine.

In this research, a metaheuristic optimization framework based on genetic algorithm has been
designed and implemented for a large scale OPPS problem. A real number chromosome encoding
technique is used in the genetic algorithm initial population to make possible partial block
processing. Two variations of the GA framework referred to as Deterministic Genetic Algorithm
(DGA) and Stochastic Genetic Algorithm (SGA) were implemented. DGA basically refers to the
application of the GA framework in a conventional approach to production scheduling using an OK
block model, while SGA refers to the application of the GA framework in a stochastic approach to
production scheduling using SGS block model realizations. The conventional approach to the
OPPS problem which does not consider grade uncertainty is investigated with a Mixed Integer
Linear Programming (MILP) model with CPLEX and the DGA framework. The stochastic
formulation of the OPPS problem that incorporates grade uncertainty is also considered and the
resulting problem is optimized with a Stochastic Mixed Integer Linear Programming (SMILP)
model with CPLEX and the SGA framework. The NPV and solution time for the conventional and
stochastic frameworks are compared.
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2. Summary of Literature Review

Open pit production scheduling (OPPS) problems can be defined as specifying the time and
sequence in which blocks should be extracted from the mine in order to maximize the NPV subject
to a variety of physical, environmental, operational and economic constraints [18]. Production
scheduling of an open pit mine is a major concern in mine planning and a complex optimization
problem. Usually, the planning of an open pit mine starts with finding the ultimate digging or pit
limit. This pit limit provides the list of blocks to be considered for production scheduling. The main
algorithm used in the literature to find the ultimate pit limit is the Lerch Grossman (LG) algorithm
[66]. Once the final pit is determined, the production scheduling process can commence.
Researchers in their bid to solve the OPPS problem have formulated mathematical models with
different optimization techniques [9; 18; 61]. These models take the form of an objective function
for maximizing the NPV subject to the set constraints. There are two major research areas in the
development of production scheduling algorithms: (1) Deterministic algorithms and (2) Heuristics
and Metaheuristic optimization algorithms.

Johnson [57] introduced Linear Programming (LP) for OPPS problems. The author did not obtain
an optimal schedule for the problem due to the computational intractability. LP however proved to
be a capable option for modelling the OPPS problem. Gershon [43]; Dagdelen [21] presented a
MILP model which was an improvement of the LP model by Johnson. Formulating the model with
MILP allowed for some of the decision variables to be presented as continuous variables to prevent
infeasibility and allow for partial block processing. The model however could not obtain an
optimum schedule for a real-size large scale OPPS problem. Caccetta and Hill [18] proposed a
MILP model solved with branch and cut algorithm for the OPPS problem. The authors used a
cutting plane algorithm and a search strategy involving best first and depth first search to achieve a
‘‘good spread’’ of possible pit schedules. Their approach was capable of solving the OPPS problem
on a small and medium scale optimization problem with 6,720 to 209,664 blocks. However, the
optimization was computationally expensive. Due to commercialization and confidentiality
agreements, the authors did not provide detailed information about their work. Dimitrakopoulos
and Ramazan [29] also proposed a MILP model for solving the OPPS problem. In their approach,
they presented waste blocks as continuous variables in order to reduce the number of integer
variables and improve the solution time.

Integer programming has also been studied and applied to the OPPS problem. Dagdelen and
Johnson [22] formulated the OPPS problem with integer programming and solved it using the
Lagrangian relaxation method. Lagrangian relaxation is a method used to reduce the complexity of
the optimization problem by relaxing one or more constraints. A penalty term and a multiplier
known as a Lagrangian multiplier used in the relaxed constraint is then added to the objective
function. This is done to avoid violations of the relaxed constraint [11]. In Dagdelen and Johnson
[22] formulation, the mining and processing constraints were relaxed and adjusted with Lagrangian
multipliers to find the optimal solution. The authors decomposed the problem into smaller
problems to allow for tractability of the solution. Ben-Awuah et al. [15] implemented a MILP
model that incorporates goal programming; a reward and penalty based approach to maximize the
NPV. The authors used the clustering algorithm developed by Tabesh and Askari-Nasab [92] to
reduce the size of the optimization problem to ensure computational tractability. Their case study
involved 16,985 blocks, and their model was able to find the optimal solution at 0% optimality gap.

Heuristics are basic approximation algorithms that search the solution space to find a good
solution and metaheuristics are algorithms that combine heuristics (that are usually very
problem-specific) in a more general framework [16]. Metaheuristics are able to solve large
optimization problems at a reasonable computational time. The difficulties associated with NP-hard
class of problems and the general large instances of the problems make exact approaches that often
generate optimal solution not ideal to solve such problems; taking into account, the resources and
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computational time required. Researchers have investigated the trade-off between finding a good
solution at smaller computational time and finding an optimal solution, which at times is intractable
or resource intensive. The uncertainties associated with stochastic OPPS optimization problems
make the application of metaheuristics more ideal in applying it to large problem instances, since it
is capable of finding a good solution in a much smaller computation time. Popular metaheuristic
algorithms for large scale optimization includes: tabu search, genetic algorithm, simulated
annealing, ant colony optimization, and particle swarm optimization.

Tabu search (TS) is a metaheuristic algorithm used to solve large combinatorial optimization
problems. The process of TS was designed by Glover [44]. It optimizes or improves a solution by
searching through a neighbourhood of solutions and selecting the best ones. TS classifies certain
solutions as forbidden (taboo; where the name ‘tabu’ is derived from) to prevent the algorithm from
selecting those solutions which is a strategy to avoid cycling of the algorithm. There are three TS
specific concepts that improves it solution approach over other combinatorial optimization
algorithms according to Bianchi et al.[16]. These concepts are: best improvement, tabu lists, and
aspiration criteria. Best improvement is an approach in TS algorithm in which each existing
solution is replaced with its best neighbouring solution. This is a method for avoiding local optima,
however it may result in cycling when each current solution is replaced. TS counteracts this
problem by creating a tabu list. Tabu list is a list that stores attributes of recently visited solutions.
The type of attribute saved is the 'move' made by the algorithm in arriving at a result. The
algorithm is then restricted from selecting from this set of solutions with attributes on the tabu list.
The aspiration criterion is a criterion check in the TS algorithm that, if met, permits a 'move' to a
banned solution to be chosen. Such criterion, according to Glover [45], can be set as follows: if the
existing solution is worse than the newer one, then the tabu can be overridden. TS has been
explored by researchers to solve the OPPS problem. Lamghari and Dimitrakopoulos [65] used TS
and Variable Neighborhood Descent (VND) algorithms for solving the OPPS problem. In their
implementation, a definite number of neighborhood was set and the algorithm was made to search
the neighborhood until the optimal solution was found. The authors implemented their model on a
copper and gold dataset to validate the effectiveness of the proposed model. In their conclusion, the
authors stated that a near optimal solution was found at a reasonable computational time. Senécal
and Dimitrakopoulos [86] presented a TS that uses multi-neighborhood to solve the long term
OPPS problem. In their approach, the authors considered multiple processing streams under
mineral uncertainty. The objective function from their model maximizes the discounted cash flow
and penalizes deviations from production targets.

Alipour et al. [4] presented a Genetic Algorithm (GA) approach for the OPPS problem. The
researchers used an initial population of 20 with each population consisting of a 10 x 20 matrix in
the GA model which represents the total blocks in the copper orebody. The initial population was
then normalized to cater for the various constraints associated with the OPPS problem, namely; the
mining capacity, processing capacity and block precedence constraints. A fitness function to
evaluate the population was also formulated. The OPPS problem was solved with the GA and the
results were compared to solution from IBM CPLEX solver. The authors indicated that, the
computation time needed to solve the optimization problem with GA was significantly lower than
that of the IBM CPLEX solver. However, the optimal solution from the GA was 5% lesser than that
from the IBM CPLEX solver. The researchers further emphasized GA as computationally efficient
but does not always give the optimal solution compared to LP and MILP with IBM CPLEX solver.

Another application of GA to the OPPS problem was presented by Alipour et al. [5]. In this
application, the authors built on their earlier research in 2017. A 3D orebody model consisting of
10,529 blocks was used for a case study. The authors compared the GA solution to the solution
from SimSched DBS software [80] developed based on surface constrained stochastic life-of-mine
production scheduling by Marinho de Almeida [68]. From the analysis by the authors, GA proved
capable of solving not just a 2D OPPS problem but also a 3D OPPS problem. SimSched DBS
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obtained its solution in a shorter computation time than the GA. This was because SimSched DBS
software mined blocks accumulated as surfaces which reduces the number of decision variables
and level of selectivity for processing. The optimal solution from the GA was 4% better than that
from the SimSched DBS software. The authors concluded at the time that, due to the size of the
problem, any comparison to an exact optimization methodology was not possible. This further
emphasizes the use of metaheuristics in attempting the OPPS problem. Grade uncertainties were
not considered in their research. The researchers through the case study demonstrated the viability
of using a GA model to solve OPPS optimization problems.

Amponsah et al. [6] also presented a GA model to solve a small-scale 3D OPPS problem. The
researchers used a literal permutation encoding scheme from Gen et al. [41] for chromosomes
encoding. They compared their results to a MILP solution from CPLEX. In the authors’ findings,
the GA model’s solution was within 10% of the MILP solution with CPLEX. This was partly
because the MILP allowed for fractional block processing across multiple periods, which the GA
did not. In extending Amponsah et al. [6] research, a GA framework that allows for fractional
block processing across multiple periods is presented in this research. The extended GA model,
also considers grade uncertainties in its formulation and optimization.

Kirkpatrick et al. [60] proposed simulated annealing (SA) as a combinatorial optimization
algorithm. SA optimization algorithm in principle is based on local search heuristics, and uses a
pre-defined neighborhood structure on the search space. In the OPPS problem, Kumral and Dowd
[63] proposed a SA algorithm approach to solve the problem. The authors simulated the mineral
deposit with Sequential Gaussian Simulation and created the block model. The ultimate pit limit
was then determined from the block model by pit-blend using LP and the LG algorithm. Their
model contained a total of 2,773 blocks, SA was able to provide a suitable and uniform mine
schedule in a relatively short computational time. The authors however; used lagrangian
parameterization to incorporate the constraints of the optimization into the objective function which
created sub-pits within the ultimate pit to allow for the satisfaction of the tonnage capacity
constraints. Goodfellow and Dimitrakopoulos [50] also presented a SA optimization approach to
the OPPS problem. Their model used a stochastic push-back design to adjust and minimize the
deviation of materials sent to the waste and processing destinations. A copper deposit was used as
the case study by the researchers and found that SA to be capable of handling real world
application since the algorithm efficiently handled the multiple metals, slope zones and the multiple
destinations.

Ant colony optimization (ACO) is a population based metaheuristic algorithm. The concept that
inspired ACO is based on the behavior ants display when plying a route in search of food [32].
Ants on their quest for food scan their nest in a random manner, and when a food source is found,
the ant releases a chemical called pheromone on its way to the nest. This chemical serves as a way
of communicating to other ants to ply the same route in search of food [27]. The route with the
highest pheromone concentration tends to be the preferred route or the shortest. Subsequently, the
pheromone evaporates as time goes on. In combinatorial optimization problems, Dorigo et al. [32]
presented the ACO as an optimization algorithm for the Travelling Salesman Problem (TSP). An
application of the ACO algorithm was proposed by Shishvan and Sattarvand [88] for the OPPS
problem. In their implementation, the authors used the Max-Min ant colony system and tested the
model on a copper-gold deposit. The deposit consisted of 350,000 blocks. The ACO algorithm
generated a 12% improvement in the initial mining schedule. The authors carried out a sensitivity
analysis on the ACO parameters consisting of initial pheromone values, pheromone evaporation
rate, and perturbation distance. In the author’s findings, they stated that a higher initial pheromone
value reduced the algorithms chances of exploring better solutions thereby generating poor results.
In the analysis of the evaporation rate, the authors concluded that lower evaporation rate increases
the time spent by the algorithm on poor solutions.
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Particle swam optimization (PSO) is a nature inspired metaheuristic optimization which was first
proposed by Kennedy and Eberhart [58]. PSO is based on the social interaction of individuals
living together in groups. PSO algorithm performs the search process by using a population of
individuals living in groups [59]. Khan and Niemann-Delius [59] implemented the PSO on a OPPS
problem, the authors used a continuous version of the PSO and a guaranteed convergence PSO
algorithm. The authors’ inspiration for this approach was the number of blocks available in the
ultimate pit limit of an open pit mine which may contain hundreds of thousands of blocks therefore
according to the authors using a continuous PSO reduced the computational time. The precedence
constraints in the OPPS problem was handled by normalization in the model, the model checks and
repair each solution to ensure solution feasibility at all times. The other constraints were handled by
the application of a penalty method. The proposed model was implemented on two copper
orebodies with 10,120 and 7,863 blocks respectively. The model was successful in solving the
OPPS problem with an optimality gap of 12.61% for the first case study and 4.80% for the second
case study.

2.1. Stochastic open pit optimization in the presence of grade uncertainty

The conventional OPPS problem is optimized with a single interpolated orebody block model
which does not account for grade uncertainties. As the conventional OPPS approach does not
consider grade uncertainties, a true representation of the optimal NPV is rarely achieved. As
reported by Sabour and Dimitrakopoulos [84], due to uncertainties associated with mining projects,
the mining industry in Canada lost in excess of 1.4 billion dollars in 1991. In the incorporation of
uncertainties in the OPPS problem, the stochastic model takes several simulated orebody
realizations as input with each orebody model having varying grades. The stochastic model then
seeks to optimize for the maximum NPV and minimum waste management cost, while providing
risk-based solution that tends to minimize deviations from operational targets.

Dimitrakopoulos and Ramazan [30] introduced a stochastic integer programming (SIP) formulation
that considered grade uncertainty. The authors elaborated that the SIP model considers multiple
scenarios and generate a desirable outcome for a set of specified objectives which made its
application to the OPPS problem preferable. The authors implemented their SIP model on two case
studies: a gold deposit and a copper deposit. The case study with the gold deposit had 22,296
blocks. In the analysis of the results by the authors, the gold deposit case study was optimized in
two stages with both optimizations totaling 42 hours in computational time with 14 simulated
orebody realizations. The authors indicated that the SIP model with the simulated orebody
realizations had a 9.7% increase in NPV over the traditional (conventional) mixed integer
programming (MIP) model with a single interpolated orebody block model. There was a similar
outcome from the copper case study. The number of simulated orebody realizations for this case
study was 20 and the authors recorded an increase in NPV of ~ 25% over the traditional MIP
model’s NPV. Mbadozie et al. [71] {Mbadozie, 2020 #214}also presented a stochastic mixed
integer linear programming (SMILP) formulation for oil sands production scheduling and waste
management that considers grade uncertainty. The author used 20 orebody realizations to represent
grade variability in the deposit. The results from the oil sands case study demonstrated that the
SMILP schedule generated 16.85% improvements in NPV over the conventional schedule. These
promising gains in NPV from stochastic production schedules form the basis of this research.

3. Genetic Algorithm

Genetic algorithm (GA) is an evolutionary algorithm that follows biological processes as proposed
by Darwin [48; 52]. GA, therefore, generates its solution to the optimization problem by strictly
following the biological evolution process; such as inheritance, crossover, mutation, and selection.
The inherent theory in this process is the survival of the fittest where organisms with good or fitter
genes survive and transfer their genes to the next generation. Consequently, only organisms with
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the best gene will exist over time. GA follows the same approach when formulating problems. In
summary, the GA workflow includes the following: 1) An initial population of individuals is
created; the fitness functions of the created individuals are evaluated. 2) A set of genes and
chromosomes are selected based on the fittest individuals; the selected genes will then crossover
and mutate. 3) Elitism is then applied on the best individuals in the population to keep them for the
next generation. 4) This process is repeated until a population of the best genes are obtained or a set
of maximum generations are reached. Fig. 1 shows a flow chart of the genetic algorithm process.

Figure 1. Flow chart of genetic algorithm process.

3.1. Initial population

This is the starting point of the GA where the population is initialized. According to Gen et al. [40],
there are two methods for generating initial population; the heuristic method and the random
number generation method. In the random number generation method, GA randomly generates a
solution space based on the problem size and this is referred to as the initial population. This initial
population can be generated from a Gaussian distribution to increase diversity. The population
includes multiple solutions, which represents chromosomes and genes of individuals. Each
chromosome has a set of variables which simulates the genes [75]. In the heuristic approach, a
problem specific encoding algorithm is used to generate the initial population. Gen et al. [40]
however illustrated that this approach sometimes explore only a smaller portion of the solution
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space in a large scale combinatorial optimization problem. This then leads to a local optimum in the
GA. In this research, the random number generation method was used. Fig. 2 shows a sample initial
population (Chromosomes 1, 2 and 3) obtained by the random number generation method. This
figure shows the flexibility in setting up GA optimization problems as the initial population can be
represented in different ways and with different characters.

Figure 2. Sample initial population showing genes and chromosomes.

3.2. Chromosome encoding

Chromosome encoding is an essential process in GA. It specifies the nature of the genotype in a
population. The encoding scheme is mostly problem dependent and thus relies on the structure of
the problem being optimized. Binary encoding, real number encoding, literal permutation encoding
(LPE), and general data structure encoding are the various classifications of chromosome encoding
according to Gen et al. [40]. In binary encoding, the genes in the population are represented by
either 0 or 1. The encoded genes are then decoded to decimals when evaluating for their fitness.
This process is done for every gene in the chromosome and may pose performance issues for large
number of genes. This encoding forms the genotype of a feasible solution to the problem. An
example of a problem that benefits from the binary encoding scheme is the general knapsack
problem. In the knapsack problem, the objective is to find the sum of weights producing the
maximum profit or minimum cost to a problem while respecting the stipulated capacity of the

knapsack. Given a set of n items each having a weight of wi and a value of vi with a
maximum capacity of C, the knapsack problem can be modelled as in Eqs.  and [36].

Subject to

Where xi is the decision variable to this problem which can be encoded as 1 (if selected) or 0
(otherwise). When binary encoding is employed, it indicates that the problem assumes only discrete
values, which is not always the case for many optimization problems.

Real number encoding or continuous variable encoding is the representation of the decision
variables in the genotype with real numbers as opposed to binary encoding. In this process, there is
no binary to decimal decoding and this improves the efficiency of the approach. According to Gen
et al. [40], real number encoding is suitable for functional and constrained optimization problems.
The genotypic representation in real number encoding is close to the phenotypic space of the
problem since there is no conversion between both spaces. To represent genes with this encoding
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scheme, genes have to be between a lower and upper bound of the decision variable. This is
represented in Eq. .

Where is the n-th gene; is the upper bound; is the lower bound; and r is a random number
between [0, 1].

LPE or order encoding is the representation of the gene by the permutation of the decision
variables. Since LPE is represented as the permutation of the decision variables, it is mostly
suitable for optimization problems that involve permutation. An example is the travelling salesman
problem. In the travelling salesman problem, a salesman has to visit n number of cities and every
city can be visited only once. In such a problem, the genotype can be encoded as the order or
sequence in which the cities are visited which is the permutation of the n cities. Fig. 3 shows a
sample LPE. Chromosome A and B in Fig. 3 shows the sequence in which the cities can be visited
by the travelling salesman as represented by the GA.

Figure 3. Literal permutation encoding representation.

Every combinatorial optimization problem that is optimized with GA requires its own chromosome
encoding technique that represents the problem in great detail. There are no one size fits all
chromosome encoding although certain type of combinatorial optimization problems do benefit
from specific encoding schemes. Once a suitable encoding scheme is modeled for the problem, the
various genetic operators can then be formulated around the specific chromosome encoded. The
phenotype of the population is then derived from the genotype representation in the encoded
chromosomes. In this research, multiple chromosome encoding was used to represent the genes in
the population. A real number encoding or continuous encoding technique was used to represent
the genotype of each block in the population. This allowed for fractions of blocks in the population
to be processed. In addition, the LPE technique was also used as part of the encoding scheme to
provide the order or sequence in which blocks could be mined. More on the problem specific
chromosome encoding techniques used in this research are discussed in Section 4.

3.3. Fitness function

In GA, the fitness function is the function used to determine the viability of a gene in a population.
The objective function in an optimization problem in GA is referred to as the fitness function. This
function tests the population at every generation and becomes the means of determining fitter genes
that survives to the next generation. The fitness function also aides in the selection of parents from
the population as selection algorithms in GA ranks population based on their fitness value. When
evaluating the fitness function, the genotype from the population is converted or decoded into
phenotype. This phenotype is evaluated and assigned a value which becomes the fitness of that
solution. The decoding of the gene is dependent on the chromosome encoding scheme used during
the initialization of the problem. At the end of every generation, the fitness value of each member
of the population is assessed and ranked based on the objective of the optimization problem. If the
objective of the optimization is to minimize cost, then the member solution with the least minimum
fitness value is chosen as the best solution from that generation. If the objective of the optimization
is to maximize profit, then the member solution with the maximum fitness value is selected. The
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fitness function and its evaluation ensures that the GA does not violate the general objective of the
problem.

3.4. Selection

GA uses different selection algorithms with the inspiration of attaining the fittest individual from
the initial population. Sharma and Gargi [87]; Sivanandam and Deepa [88] defined selection in GA
as a method that randomly picks chromosomes out of the population according to their fitness
function value. The higher the fitness function value, the better chance that an individual will be
selected. There are several popular selection algorithms but there is no one preferred selection
algorithm for GA. Each selection algorithm may have advantage over the other based on the
specific problem being optimized. Various selection algorithms found in the literature are:
Boltzmann selection [46], Roulette wheel selection also known as the Fitness proportionate
selection algorithm [19; 47], Tournament selection [17; 47], Random selection, Rank selection, and
Stochastic universal sampling [89]. Roulette wheel selection and Tournament selection are
explored for this research as they are the two well studied selection algorithms in GA [64].

3.5. Crossover

Crossover is the method of selecting two parents at random and recombining their chromosomes at
a point with the intent of making offspring with better genes [90]. Single point crossover and
double point crossover are the two main approaches to crossover. Fig. 4 shows a single and Fig. 5
shows a double point crossover. However there are several other crossover approaches used in the
literature: uniform crossover [85], three parents’ crossover [94], half uniform crossover [54],
partially matched crossover [49], position-based crossover [91], order crossover [24], cycle
crossover [79], multi-point crossover [34], masked crossover [67], and heuristic crossover [51]. In
this research, the double point crossover was implemented. Double point crossover was used since
it has a high capacity to transmit useful genetic information from parent to offspring based on the
study by [35].

Figure 4. Single point crossover.

Figure . Double point crossover.

3.6. Mutation

Mutation is the next stage after crossover in the GA algorithm process. When offspring from two
parents are generated through crossover, it may occur that these offspring do not possess good
enough genes to generate a good solution. Therefore, the GA process introduces mutation to alter
or change the genes. Mutation is the other way to get new genomes. Mutation results in changing
the value of genes [90]. These changes occur randomly with a probability of mutation parameter set
between [0, 1]. A random number in the same interval is generated for each gene in the new child.
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If this random number is less than the probability of mutation, the gene is assigned with a random
number within the lower and upper bounds of the decision variable [76]. In Fig. 6 is an illustration
of before and after a mutation process where a new gene is introduced.

Figure 6. Sample mutation.

3.7. Elitism

Elitism is a genetic operator applied to the chromosomes obtained after selection, crossover and
mutation in some cases to preserve or copy the traits of the best chromosomes to the next
generation [3; 33]. This helps to keep a fit chromosome in each generation at all times by ensuring
that these fit chromosomes are not lost during the iteration process. Elitism as a genetic operator
was not part of the initial operators during the theoretical formulation of GA but has through the
years proven to be efficient when applied as a genetic operator [76; 3].

3.8. Constraint handling

Evolution algorithms have different methods for handling constraints. These methods are generally
problem dependent although some may be applied across different optimization problems. In the
literature, the methods for handling constraints can be grouped into four different categories; the
repair method, rejection method, penalty method and modification of genetic parameters [40; 72].
Each method has merits that may suit a particular combinatorial optimization problem over the
other.

In the repair method, population with infeasible chromosome is neither discarded nor penalized but
rather a deterministic method for normalizing the infeasible chromosome is applied. This converts
the infeasible chromosome to a feasible one [73]. The method for normalizing or repairing the
chromosome must consider the bounds of the constraints and create a chromosome that lies in the
feasible region. This method is problem dependent and cannot be applied to any problem without
first re-writing the repairing algorithm to suit the said problem. Two approaches of this method
exists: (1) Always replacing the infeasible chromosome in the population with the repaired
chromosome, and (2) using the repaired chromosome only for evaluation purposes without feeding
it into the evolution. Both approaches are used in the literature. Nakano and Yamada [78] used the
always replacing approach and termed it as “forcing” where a feasible chromosome g’ repaired
from an infeasible chromosome g is forced to replace the chromosome g in the population.

The rejection method also termed as “death penalty” by Michalewicz [73] works by completely
removing any infeasible chromosome from the population. In this approach, any infeasible
chromosome in the population is discarded as opposed to being repaired. This approach has
limitations. The initial population generated for a problem may have several infeasible solutions
and per this method all these infeasible solutions need to be discarded which may lead the GA into
premature convergence. Michalewicz [72] tested this method on five different cases and stated that
it performed worse than the other constraints handling approaches. Outright rejection of infeasible
solutions go against the nature of evolution algorithms [82].
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The penalty method is widely used and by far the easiest to implement. Constrained optimization
problems are converted to unconstrained problems by applying a penalty function to the objective
function of the problem. According to Dasgupta and Michalewicz [23], the basic approach is to
extend the objective function which in GA is represented as the fitness function of a Chromosome i
in the following Equation;

Where represents the penalty for an infeasible Chromosome i, and represents the
objective function of the problem. For a maximization problem, the penalty function is expressed

as where i is infeasible and where i is feasible; whereas where i is

infeasible and where i is feasible for a minimization problem. The general challenge with
penalty functions as stated by Michalewicz [72]; Richardson et al. [82] is knowing exactly what
degree of penalty to apply to an infeasible chromosome or solution since all infeasible solutions are
not alike. Fig. 7 illustrates feasible and infeasible solution regions in a solution space. Assuming
Solution x is the optimal solution without any prior knowledge, Solution c is closer to the optimal
solution than Solution b and Solution a, although these solutions are in the infeasible region.
Solution c may contain certain genes that may be relevant to attaining the optimal solution as
opposed to Solution b and Solution a. Therefore, applying the same penalty value in this instance
may not be ideal. Secondly, Solution y is farther than Solution c relative to the optimal Solution x
although Solution y is in the feasible region. These complexities make finding the appropriate
penalty value challenging.

Figure 7. Feasible and infeasible solution space modified after Michalewicz [73].

The modification of genetic parameters approach works by creating problem specific methods that
(1) represent the problem, and (2) modifies the conventional GA parameters such as crossover and
mutation to keep the optimization problem in the feasible domain [40]. The approach always
ensure the GA is kept only in the feasible search space at all times. Although this is desirable, it
also limits the search space for the GA. In this research, both the repair and penalty methods were
implemented in handling constraints.
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3.9. Termination

Generally, GA terminates when the maximum number of generations are reached. GA can also be
terminated when a desired fitness value is met or when subsequent iterations does not improve the
solution quality.

4. Open Pit Production Scheduling (OPPS) Optimization Framework

4.1. Model formulation for open pit production scheduling
The NPV of OPPS is based on the economic block value (EBV) of individual blocks in the orebody block
model. The EBV of a block depends on its value and the costs incurred in mining and processing the block.
The cost of mining a block is a function of the block’s location in relation to how deep the block is from the
surface and how far it is to its final destination. To calculate the NPV, the EBV is discounted since OPPS is
undertaken over multiple periods. The discounted profit from block n is therefore given as the discounted
revenue generated from mining block n minus the discounted cost for extracting and processing block n. This
is presented in Eq..

4.1.1. Indices and set

index for realizations

index for blocks

index for scheduling periods

set of all blocks in the model

set of all equally probable orebody realizations

For each block, there is a set defining the immediate
predecessor blocks that must be extracted prior to extracting block n with

safe slopes; where D is the total number of blocks in

4.1.2. Parameters

discount rate

ore tonnage in block n

ore tonnage in block n of realization s

waste tonnage in block n
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waste tonnage in block n of realization s

geological discount rate

revenue obtained by selling the final product within block n in period t, minus
the extra discounted cost of mining all the material in block n as ore

revenue obtained by selling the final product within block n of realization s in
period t, minus the extra discounted cost of mining all the material in block n
as ore

cost of mining all the materials in block n in period t as waste

cost of mining all the materials in block n of realization s in period t as waste

lower bound of the mining capacity in period t

upper bound of the mining capacity in period t

lower bound of the processing capacity in period t

upper bound of the processing capacity in period t

average grade in ore portion of block n

average grade in ore portion of block n for realization s

lower bound of the required average head grade in period t

upper bound of the required average head grade in period t

penalty cost for lower ore tonnage target deviation in period t

penalty cost for upper ore tonnage target deviation in period t

penalty cost for lower grade target deviation in period t
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penalty cost for upper grade target deviation in period t

4.1.3. Decision variables

continuous variable representing the portion of block n to be extracted as ore
and processed in period t

continuous variable representing the portion of the block n to be mined in
period t; fraction of y characterizes both ore and waste in the block

binary integer variable controlling the precedence of extraction of mining

block n; equal to one if extraction has started in period t, otherwise it is
zero

continuous variable representing the excess from the ore tonnage upper bound
in period t for realization s

continuous variable representing the shortage to the ore tonnage
lower bound in period t for realization s

continuous variable representing the excess from the grade upper bound in
period t for realization s

continuous variable representing the shortage to the grade lower bound in
period t for realization s

4.2. Deterministic MILP formulation

In the conventional formulation of the OPPS, grade uncertainties are not considered and the main
objective is to maximize the NPV of the mining operation subject to a set of constraints. The
objective function and constraints are outlined in Eqs. to . This MILP formulation is consistent
with the research undertaken by Askari-Nasab et al. [10].

4.2.1. Objective function

The objective function of the MILP model (Eq. ) is formulated to maximize the NPV of the mining
operation. The objective function consists of two continuous decision variables for block n. The

first decision variable represents the portion of block n to be processed in period t if it is ore.

The decision variable represents the portion of block n to be extracted in period t; fraction of y
characterizes both ore and waste in the block. Using continuous decision variables allows for the
fractional extraction of blocks in different periods.

Subject to:
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4.2.2. Mining capacity constraints

Eqs. and define the mining capacity constraints for each period. Eq. defines maximum capacity
for mining. This ensures that the total amount of material mined is less or equal to the stipulated
capacity of mining equipment while Eq. defines the minimum capacity and controls the minimum
amount of materials mined. These constraints are controlled by the continuous decision variable

and allows the mine planner to use different mining capacities in each period throughout the
life-of-mine.

4.2.3. Processing capacity constraints

The processing capacity constraints aids the mine planner in ensuring a consistent feed throughout
the mine life, resulting in a mine-to-mill operation that is well integrated. This is a soft constraint
and depends on the availability of ore blocks. The processing objective may not be met in some
periods depending on the orebody's ore grade distribution. In such circumstances, pre-stripping
might be considered to ensure a consistent mill feed. This effectively forces the optimizer to mine
waste in the early stages so that when ore production begins, the plant feed supply will be
consistent and uniform. Eqs. and define the processing capacity of the mining operation. Eq. sets
the upper bound and Eq. sets the lower bound for the amount of ore processed. These constraints

are controlled by the continuous decision variable and allows the mine planner to provide a
uniform mill feed throughout the life-of-mine. In practice, the processing targets must be set with
minimal periodic deviations to ensure maximum utilization of the mill.

4.2.4. Grade blending constraints

The goal of blending in production scheduling is to mine in such a way that the ore materials fulfil
the processing plant's quality and quantity specifications. The grade blending constraints are
essential constraints during production scheduling. These constraints ensure that an acceptable
range of ore is sent to the mill at all times. Therefore, this grade range should be set between a
lower and upper limit to facilitate blending of mill feed material. Eq. defines the upper limit of the
ore grade and Eq. defines the lower limit of the ore grade to be sent to the mill. These constraints

are controlled by the continuous decision variable .
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4.2.5. Block precedence constraints

Eqs. to enforce the block extraction precedence constraints. Binary integer decision variable, ,

is used to control the precedence of block extraction. is equal to one if the extraction of mining
blocks has started by or in period t; otherwise, it is zero. For each mining block n, Eq. checks the

set of immediate predecessor blocks in that must be mined prior to mining block n. Eq.
checks that extraction of mining block n can start only when the mining block has not been
previously extracted. Eq. ensures that once extraction of block n starts, this block is available for
extraction in subsequent periods.

4.2.6. Variable control constraints

Eq. ensures that the total ore material mined in any given scheduling period is less or equal to the
sum of the ore, and waste materials mined in that period. Eqs. and ensures that the sum of the
partials of block n extracted is at most one over all periods at the end of the mine life.

4.2.7. Non-negativity constraints

Non-negativity constraints monitor the decision variables to ensure they do not take negative
values. Eq.  defines the non-negativity of decision variables.
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4.3. Stochastic MILP formulation in the presence of grade uncertainty

The stochastic formulation for the OPPS problem considered in this research is modified after the
formulation by Vallejo and Dimitrakopoulos [96]; Mbadozie [71]. The approach for including
grade uncertainty in the mining project stems from having multiple simulated orebody realizations
generated through SGS which are equally probable and serve as input to the stochastic model.
Equally probable orebody realizations mean each simulated realization can be a valid
representation of the actual orebody. The simulated orebody realizations capture the varying grade
distribution that would not have been realized with a single interpolated block model based on a
method like Kriging. Previous research from Albor and Dimitrakopoulos [1]; Vallejo and
Dimitrakopoulos [96] have identified that, 20 simulated orebody realizations are adequate to
capture the uncertainty in grade distributions.

4.3.1. Multi-objective function

The objective function for the stochastic model is derived from the average of all the simulated
orebody realizations. Since these realizations are equally probable, each realization depicts varying
grades for the orebody model. This can be assumed as having S number of schedules at the end of
the optimization with each s schedule representing a probable solution. To simultaneously optimize
with all the equally probable orebody realizations, an average of the revenue and cost from the
realizations are taken into account in the objective function (Eq. ).

The multi-objective function has two components: 1) Maximize the NPV of the mining operation
(Eq. ); and 2) Minimize the cost of uncertainty associated with deviating from the operating targets,
including ore tonnage and ore grade (Eq. ). This is achieved by applying penalty costs and a
geological risk discount rate to the ore tonnage and ore grade targets. Continuous deviation

decision variables , , and as well as their respective penalty parameters

, , and are used for minimizing deviations from ore tonnage and ore grade
production targets defined by Eqs. to . These are introduced in the second component of the
objective function (Eq. to enable the optimizer to select realization blocks with ore tonnage and
ore grade that minimizes deviations from the corresponding production targets simultaneously
through a balancing act. For example, if the optimizer selects realization blocks with high grade, it
will lead to a large ore tonnage deviation resulting from reduced ore reserve which is undesirable
and vice versa.

Additionally, a geological risk discount rate (dr) is applied to the cost of deviation to defer the risk
of not meeting production targets to later periods. From Eq. , by applying the dr parameter as a
denominator tied to periods, early periods have larger impact on the minimization objective
function value than later periods. This means the overall penalty value is higher in the earlier
periods than in latter periods ensuring that early-year deviations from stated targets are lower than
later-year deviations. Conceptually, the higher penalty in earlier periods drive the optimizer to limit
deviations from the ore tonnage and ore grade targets early in the mine life and postpone extraction
of areas with larger deviations until later periods when more geological understanding of the
deposit becomes available.

Where S is set of all equally probable realizations.
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Eqs.  and  can be combined together as a single objective function as shown in Eq. .

Subject to:

4.3.2. Mining capacity constraints

Eqs. and defines the mining capacity constraint for each period. Eq. ensures that the total blocks
tonnage mined is equal to or less than the stipulated capacity of mining equipment while Eq.
controls the minimum amount of materials mined. The tonnage of materials mined is the sum of the

ore tonnage and waste tonnage represented as and respectively. The continuous decision

variable controls this extraction process in each period.

4.3.3. Processing capacity constraints

Eqs. and define the processing capacity of the mining operation for each period. Eq. sets the
upper bound and Eq. sets the lower bound for the amount of ore processed. The deviation decision

variables and are introduced to serve as buffers to the ore tonnage targets. These
decision variables are penalized in the objective function (Eq.) to ensure that the ore tonnage
targets are achieved with minimum deviation. These constraints are controlled by the continuous

decision variables , and in each period.
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4.3.4. Grade blending constraints

Eq. defines the upper limit of the ore grade and Eq. defines the lower limit of the ore grade to be

sent to the mill in each period. The deviation decision variables and are introduced
to serve as buffers to the ore grade targets. These decision variables are penalized in the objective
function (Eq. ) to ensure that the ore grade targets are achieved with minimum deviation. These

constraints are controlled by the continuous decision variables , and in each
period.

4.3.5. Block precedence constraints

Eqs. to enforce the block extraction precedence constraints. Binary integer decision variable, ,

is used to control the precedence of block extraction. is equal to one if the extraction of mining
blocks has started by or in period t; otherwise, it is zero. For each mining block n, Eq. check the

set of immediate predecessor blocks in that must be mined prior to mining block n. Eq.
checks that extraction of mining block n can start only when the mining block has not been
previously extracted. Eq. ensures that once extraction of block n starts, this block is available for
extraction in subsequent periods.

4.3.6. Variable control constraints

Eq. ensures that the total ore material mined in any given scheduling period is less or equal to the
sum of the ore, and waste materials mined for all realizations in that period. Eqs. and ensure that
the sum of the partials of block n extracted is at most one over all periods at the end of the mine
life.
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4.3.7. Non-negativity constraints

Eq. defines the non-negativity constraints for the decision variables for mining, processing,
extraction precedence, and ore tonnage and ore grade target deviations. These constraints enforce
that none of these variables can take on negative values during the optimization process.

4.4. Genetic algorithm problem representation

The starting point of the optimization problem in GA is the problem initialization which consists of
the chromosome encoding phase. A multi-layer chromosome encoding technique was used in this
research: (1) a literal permutation encoding scheme, and (2) a real number or continuous variable
encoding scheme. Fig. 8 shows a sample of the chromosome encoding represented in the GA. The
literal permutation encoding was employed for the genes representing the period and realization
where real number encoding was used for the genes representing the fractions blocks extracted.

Figure 8. Sample chromosome encoding.

In this research, every block is assumed to be mined over at most two periods. Therefore, the
chromosomes were encoded in two halves as shown in Fig. 9. The first and second halves represent
the fractions of each block mined at different periods respectively. The constraints in Eqs. and are
therefore satisfied in the chromosome encoding when these two halves are reconciled at the end of
the optimization. Every block in the model is mined at most once during the mine life.

Figure 9. Sample chromosome encoded in two halves.

Eq. was used in generating the genes in the chromosome representing the block fractions since this
requires a continuous variable encoding. The other genes were generated using a Gaussian random
distribution. The GA was implemented to optimize either a deterministic or stochastic production
schedule based on input from the user. The objective function of the optimization was represented
as a fitness function to test each solution in the population. The fitter population survives the
current generation and proceeds in the iteration process.
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4.4.1. Constraints handling and representation

The major constraint in the OPPS problem that presents great levels of complexities is the
precedence constraint. The precedence constraint determines the sequence of block extraction and
ensures that blocks on the surface are extracted in the same or an earlier period to blocks directly
beneath them. As shown in Fig. 10, Blocks 1, 2 and 3 must be extracted prior to extraction of Block
10 or in the same period as Block 10. In three-dimensional (3D) block representation, every block
has at least nine different blocks forming its precedence.

Figure 10. Block extraction precedence modified after Ben-Awuah and Askari-Nasab [12].

In order to ensure that the precedence constraints are enforced as defined, a check-and-repair
method is implemented in the GA. In each population, if a block cannot be mined in period t due to
precedence constraints, it is moved to the next period or a period where the requirements of

immediate predecessor blocks in are not in violation. The entire population is then
normalized to accept the current gene as a feasible solution for evaluation. For every violation of
the normalized precedence constraints, the fitness function is penalized to ensure that the optimizer
finds a feasible solution in each generation.

Capacity constraints are treated as knapsack problems. Knapsack problems are primarily resource
allocation problems. The maximum allowable capacity is derived from the optimization problem
since the scheduling is performed annually (periods). All the extracted blocks for that period should
be less or equal to the maximum capacity for that period. Using sliding window technique [8; 20],
an array containing the tonnage of every block scheduled in each period is created. The total
tonnage of every period is checked against the maximum capacity from the optimization problem.
When the maximum capacity for a period is reached, all subsequent blocks or block fractions that
were originally in that period are moved to the next period. The population is then normalized
afterwards so that the current population contains the right blocks that satisfy the capacity
constraint for that period. The window is then slid to the next period and the steps above are
repeated until the last period is reached.

4.4.2. Normalization

Due to the randomness associated with GA at every stage of the optimization process, the genes in
each population tend to violate constraints when mutation or crossover occurs. There is therefore
the need to normalize the population after each mutation and crossover to ensure that the
constraints are satisfied [26]. This process is termed as normalization or regularization. Fig. 11
shows an example of a double point crossover that violates the precedence constraints. As
illustrated in Fig. 11(A), before crossover occurs, both Parents 1 and 2 are feasible solutions
satisfying the precedence constraints. That is, all blocks on the lower level are extracted in periods
later than or equal to extraction periods of blocks above them. During crossover, the genes in
Parents 1 and 2 representing Blocks 10, 11, 12 and 13 within the crossover point are swapped.
Child 1 receives genes from Parent 2 whiles Child 2 receives genes from Parent 1. As highlighted
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in Fig. 11(B), after the crossover, both Child 1 and Child 2 violate the precedence constraint
because Block 10 in Child 1 and Block 18 in Child 2 are extracted in periods earlier than the blocks
above them and therefore require normalization. This process ensures that a population with a
feasible solution is kept at all times throughout the GA optimization process.

Figure 11. Sample crossover showing precedence constraint violation. (A) Illustrates a feasible solution
before crossover. (B) Demonstrates a solution that violates the precedence constraint after crossover.

4.4.3. Mutation and crossover strategy

Genetic operators such as crossover and mutation are key to the success of any genetic algorithm
optimization process and as such finding the best strategy for them is always paramount. In this
research, a ‘smart’ mutation was implemented to curtail the complexities in handling the partial
extraction of blocks in the population. Fig. 12 shows a sample chromosome with twenty genes. To
represent a chromosome with n number of blocks or genes; the corresponding length of that
chromosome is 2n. This method is used to implement the assumption that each block can be
extracted in at most two periods. The first part of the chromosome represented as Chromosome A
in Fig. 12 shows portions of the blocks and corresponding periods the extraction occurs in; same
for Chromosome B.

Figure 12. Sample chromosome representing the multi-part chromosome encoding.

During the mutation process, a probability of mutation is applied to determine the gene that must
mutate. In Fig. 13, genes at block index 6, 7, 8 and 9 of Chromosome A will mutate per the
probability of mutation applied. This however needs to occur in tandem with the corresponding
genes in Chromosome B. The mutation algorithm keeps the index of the genes in Chromosome A
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and determines the corresponding position of the other genes in Chromosome B. When the
mutation occurs in Chromosome A, a subsequent mutation and normalization takes place in
Chromosome B. The genes representing the periods are mutated at random from a feasible set of
periods that the block can be extracted in. Based on the precedence constraints. Given a feasible set
of period (3, 2, and 4) for Block 6, a period is chosen at random and assigned to the block during
the mutation for the period of that block. The mutation for the fractions of blocks that should be
extracted is determined by Eq. . The mutation algorithm again keeps the index of the gene
representing the fraction of the block to be extracted in Chromosome A and determines the
corresponding position of the other gene in Chromosome B. The double point crossover used in
this research also employs the same chromosome representation and index retention approach. Fig.
14 shows a sample chromosome after mutation showing the result of mutation for Chromosome A
and Chromosome B. Table 1 shows the pseudo code for the proposed mutation strategy used to
handle the block extraction by the GA.

Fig. 15 shows the flow chart for the GA optimization process and sub processes. A two-step GA
framework was implemented; where based on the data provided and the input from the user, the
framework will decide whether the problem is stochastic or conventional before proceeding to
evaluate the fitness function for each population.

Figure 13. Sample chromosome before mutation showing the mutation point of Chromosome A and
Chromosome B.
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Figure 14. Sample chromosome after mutation showing the result of mutation for Chromosome A and
Chromosome B.

Table 1. Pseudo code for the proposed mutation strategy.
Pseudo Code for proposed mutation strategy

Start
get chromosomeLength;
get popabilityOfMutation;
get numberOfBlocks
Select number of individual to be mutated based on the propablilityOfMutation.
split the chromosome into two halves A and B based on numberOfBlocks
While n = Number of individuals to be mutated
Get the index a of the individual in chromosome A and corresponding index b in chromosome B
Perform mutation on gene n at a in chromosome A and gene n at b in chromosome B
EndWhile

Combine chromosome A and B after mutation and return to the main generation

End
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Figure 15. Proposed GA optimizations and sub process.
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5. Computational Experiments

The GA model was implemented for two different oil sands datasets obtained from Ben-Awuah and
Askari-Nasab [12] and Mbadozie [70]; the first case study with 4476 blocks and the second with
1569 blocks. Two scenarios were implemented for the first case study as proof of concept: (1) A
deterministic model with GA (DGA); and (2) A stochastic model with GA (SGA). Subsequently,
the SGA model was implemented for the second case study. The orebody model for the DGA was
based on Ordinary Kriging which did not consider grade uncertainty. The SGA scenario considered
grade uncertainty through equally probable orebody realizations generated using sequential
Gaussian simulation. Table 2 shows the block model data and Table 3 outlines the economic
parameters for both case studies. Table 4 highlights the mining and processing requirements for
both case studies. In Table 5, the risk parameters for the stochastic scenario are outlined. The DGA
results were compared with a similar implementation using MILP model with CPLEX formulated
by Mbadozie (2022). The SGA results were also compared with a similar implementation using a
Stochastic MILP (SMILP) model with CPLEX formulated by Mbadozie (2022). These
comparisons were done to assess the practicality of the generated schedules as well as the NPV and
computational efficiency. The production schedule for Case study 1 was optimized over ten periods
whereas Case study 2 was scheduled over twenty periods. The primary focus for the GA
framework was to generate a uniform and practical schedule while respecting the constraints for all
periods in the schedule. The DGA and SGA were implemented in a MATLAB environment
(MathWorks Inc., 2020) on a Lenovo ThinkPad computer with Intel(R) Core(TM) i7-8565U CPU
@ 1.80GHz and 16 GB of RAM. Table 6 outlines the GA parameters used in both case studies.

Table 2. Oil sands block model data for case studies.

Block model data (Units) Case study 1 Case study 2
Total block tonnage (Mt) 318 3539
Total ore tonnages (Mt) 145 1141

Block dimensions (m x m x m) 50 x 50 x 15 300 x 300 x 15
Mine life (Years) 10 20
Number of blocks 4476 1569

Table 3. Economic parameters for case studies.

Parameter (Units) Value
Mining cost ($/tonne) 4.60

Processing cost ($/tonne) 5.03
Selling price ($/bitumen %mass) 4.50

Economic discount rate (%) 10

Table 4. Mining and processing requirements for case studies.

Case study 1 Case study 2
Parameters (Units) Min value Max value Min value Max value

Mining capacity (Mt/year) 25 32 100 150
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Processing capacity (Mt/year) 10 14 25 50
Ore bitumen grade (%m) 7 16 7 16

Table 5. Risk parameters for stochastic scenario.

Parameters (Units) value

Number of realizations 20

Cost of shortage in ore production ($/tonne) 5

Cost of excess in ore production ($/tonne) 10

Cost of shortage in ore bitumen grade ($/%m) 2.5

Cost of excess in ore bitumen grade ($/%m) 1.5

Table 6. GA parameters used for both case studies.
GA parameter Description
Population size 20
Selection type Roulette wheel
Crossover type Double point

Probability of mutation 0.2
Probability of crossover 0.85

Probability of elitism 0.2
Maximum generations 1000

Figure 16. Case study 1 scenario comparisons.

Fig. 16 presents a summary of the experimental methodology and comparisons made between the DGA and
MILP model, and SGA and SMILP model for Case study 1. For Case study 2, the SMILP integer solution
was terminated after 28 days. Therefore, CPLEX was used to solve the relaxed LP problem to estimate the
optimality gap for the GA results. Eq. by IBM ILOG CPLEX Inc [55] was used to ascertain the optimal
difference between the GA solution and the relaxed LP solution by CPLEX.

The bestbound in Eq. for an optimization problem refers to the objective function value at which a
feasible optimal solution could potentially exist [55]. In the case of an intractable integer problem,
the bestbound is the only solution. This is the case because the relaxed problem does not have a
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bestinteger solution. Therefore, in determining the gap for the GA solution using Eq. , the relaxed
objective function value is represented as the bestbound and the solution for the GA as the
bestinteger to compute the optimality gap.

5.1. Results and discussion

5.1.1. Case study 1 comparative analysis: MILP model with CPLEX and DGA results

The results from the DGA for Scenario 1 was compared with a similar implementation from the
MILP model with CPLEX at 0% optimality gap. The NPV generated from the proposed DGA and
MILP model with CPLEX were $1,830 M and $1,929 M respectively. The total time taken for the
MILP to generate its results was 4.1 hours whereas the DGA generated its results in 1.9 hours. The
NPV of the DGA solution was 5.1% less than that of the MILP solution. The DGA was able to
generate a uniform schedule over the mine life. The production schedule results generated by the
DGA are shown in Table 7. Fig. 17 and Fig. 18 shows the cross-sectional view and the plan view of
the extraction sequence generated by the DGA for the production schedule respectively. It can be
seen from Fig. 17 that, the DGA model enforced the precedence constraints set in the optimization
problem; blocks were mined according to their precedence and scheduled appropriately. Blocks on
the lower levels were mined in later periods as opposed to blocks on the surface The total tonnage
and ore tonnage generated by the DGA are shown in Table 8. Table 8 also shows the duration and
NPV comparison of the MILP with the DGA results. It can be seen from Fig. 19A that the DGA
respected the maximum annual mining capacity constraint which was set at 32 Mt across all the
scheduling periods. Although less material was extracted in the first period, the extraction
gradually ramped up and was uniform for the subsequent periods until declining in the last period.
The maximum annual processing capacity of 14 Mt was respected by the DGA as seen in Fig. 19A.
Fig. 20 shows the graph of the average ore bitumen grade for the DGA and the MILP with CPLEX
production schedules. It can be seen from Fig. 20 that there is a gradual decline of the ore bitumen
grade as the mine life progresses, which ultimately influences the NPV.

Table 7. Scheduling results for the DGA.

Period Total tonnage (Mt) Ore tonnage (Mt)
Average ore

bitumen grade
(%m)

1 24.41 8.51 12.87
2 31.93 13.32 12.32
3 31.94 13.54 12.00
4 31.90 13.96 11.31
5 31.93 13.91 11.33
6 30.91 13.91 10.54
7 31.93 13.90 10.81
8 31.90 13.94 9.92
9 31.27 13.93 8.76
10 9.13 6.70 7.92
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Figure 17. Cross sectional view of the block extraction sequence by the DGA.

Figure 18. Plan view of the block extraction sequence by the DGA on Bench 3.
Table 8. Solution comparison between the MILP model with CPLEX and the DGA.

Parameter (Units) MILP model with CPLEX DGA

Number of blocks 4476 4476
Tonnage mined (Mt) 287 285
Ore processed (Mt) 121 124

NPV ($M) 1929 1830
Time (hours) 4.1 1.9

Optimality gap (%) 0 -
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Figure 19. Total tonnages mined. (A) Illustrates the total tonnage mined by the DGA and (B) illustrates the

total tonnage mined from the MILP with CPLEX [71].

Figure 20. Average ore bitumen grade from the DGA illustrated in (A) and average ore bitumen grade from
the MILP model with CPLEX illustrated in (B).

For Scenario 2, the motivation for the SGA was to ascertain the impact of grade uncertainty on the
production schedule. To achieve this, multiple simulated orebody realizations generated through
SGS were used as input to the optimization problem. The NPV generated from the SGA and
SMILP model with CPLEX were $2,128 M and $2,248 M respectively. The NPV for the SGA was
5.3% less than that for the SMILP model with CPLEX. The optimality gap for the SMILP model
with CPLEX was set at 5%. The total time taken for the SMILP to generate its results was 11.70
hours whereas the SGA generated its results in 2.9 hours. Table 9 shows the scheduling results. Fig.
21 and Fig. 22 show the extraction sequence of the SGA. Table 10 shows the solution comparison
between the SMILP model with CPLEX and the SGA. The impact of grade uncertainty is evident
in the NPV generated by the stochastic schedule. The NPV generated by the SGA schedule was
16.3% better than the NPV from the DGA schedule. In Fig. 23, a comparison between the SGA and
the SMILP model with CPLEX is shown. The capacity constraints were respected by the SGA as
seen in Fig. 23A. Fig. 24 shows the average ore bitumen grade comparison between the SGA and
SMILP model as well as comparison with individual orebody realizations. From Fig. 25, it can be
observed that, the stochastic model maintained a balanced average grade throughout the mine life,
which accounted for the improvement in NPV compared to the DGA’s average grade, which
declined gradually as the mine life progressed.
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Table 9. Scheduling results for the SGA.

Period Total tonnage (Mt) Ore tonnage (Mt) Average ore
bitumen grade

(%m)
1 24.44 9.71 11.67
2 31.92 13.30 11.80
3 31.91 13.51 11.61
4 31.93 13.53 11.72
5 31.91 13.84 11.67
6 30.90 13.90 11.70
7 31.93 13.93 11.52
8 31.94 13.98 11.65
9 31.22 12.9 11.41
10 9.10 5.70 11.73

Figure 21. Cross sectional view of the block extraction sequence by the SGA.
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Figure 22. Plan view of the block extraction sequence by the SGA on Bench 3.
Table 10. Solution comparison between the SMILP model with CPLEX and the SGA.

Parameter (Units) SMILP model with CPLEX SGA

Number of blocks 4476 4476

Tonnage mined (Mt) 290 287

Ore processed (Mt) 124 125

NPV ($M) 2248 2128
Time (hours) 11.70 2.9

Optimality gap (%) 5 -
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Figure 23. Total tonnages mined. (A) Illustrates the total tonnage mined by the SGA and (B) illustrates the
total tonnage mined from the SMILP with CPLEX [71].

Figure 24. Average ore bitumen grade from the SGA illustrated in (A) with 20 realizations and the average
ore bitumen grade from the SMILP model with CPLEX illustrated in (B) with 20 realizations.
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Figure 25. Average ore bitumen grade comparison for the DGA, SGA and 20 realizations.

5.1.2. Case study 2 comparative analysis: SMILP model with CPLEX and SGA results

The solution for Case study 2 while the SMILP model was at a gap of 101% after 28 days, the SGA
generated a solution in 1.5 hours. This further emphasizes the application of metaheuristics to
NP-hard combinatorial optimization problems. In the bid to verify and compare the results
generated by the SGA, a relaxed LP form of the problem was solved and Eq. was used to compute
the optimality gap. Based on Eq. , the objective function value generated by the relaxed LP was
12,810 and that for the SGA was 11,629. Using Eq. gives us a gap of 10.16%. This therefore
means the SGA solution is in the worst case scenario at 10.16% of the optimal solution to the
SMILP model if it exists since the relaxed LP solution is the upper bound to it. The NPV generated
from the SGA was $10,045 M. Table 11 shows the total tonnage, ore tonnage and average ore
bitumen grade for the GA scheduling results. The solution comparison for NPV, runtime, and
optimality gap are summarized in Table 12. The SGA results respected the maximum annual
mining capacity constraint set at 150 Mt and maximum annual processing capacity constraint set at
50 Mt as seen in Fig. 26. Fig. 27 shows the average ore bitumen grade per period for the SGA
schedule.

Table 11. Scheduling results for the SGA.

Period Total tonnage (Mt) Ore tonnage (Mt) Average ore
bitumen grade

(%m)
1 149.91 29.98 9.80
2 149.84 33.96 10.14
3 149.94 37.92 9.79
4 149.62 39.98 9.53
5 149.72 49.95 9.94
6 149.87 49.93 10.04
7 149.82 49.82 9.56
8 149.11 49.91 10.16
9 149.32 49.92 9.93
10 149.33 49.90 9.82
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11 149.28 49.96 9.79
12 149.33 49.89 9.39
13 149.36 49.90 9.81
14 149.41 49.93 10.22
15 149.28 47.92 10.05
16 149.46 44.86 9.78
17 149.64 44.94 10.30
18 149.25 44.86 9.84
19 149.55 44.92 9.62
20 149.30 28.64 9.17

Table 12. Solution comparison between the SMILP model with CPLEX and the SGA.

Parameter SMILP model with CPLEX SGA
Number of blocks 1569 1569

Tonnage mined (Mt) - 2990
Ore processed (Mt) - 897

NPV ($M) - 10054
Runtime (hours) *Terminated after 28 days 1.5

Optimality gap from
relaxed LP (%) 101 10.6

Figure 26. Total tonnage mined for the SGA.
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Figure 27. Average ore bitumen grade for the SGA.

6. Conclusions and Future Work

In this research, the authors presented a GA framework for solving the OPPS problem and
evaluated it with two case studies. A multiple chromosome-encoding scheme was proposed and
implemented to represent the blocks and periods of extractions. Deterministic and stochastic
production scheduling scenarios were investigated in this research; the deterministic production
schedule with a block model based on ordinary kriging, and the stochastic production schedule
based on SGS orebody realizations. The equally probable simulated orebody realizations capture
the varying grade distribution in the mineralization of the deposit to allow for consideration of
grade uncertainty. Due to the multiple chromosome encoding scheme, the GA was capable of
fractional block processing. In the implementation of the GA, the relaxed LP solution was used as
the upper bound to estimate the optimality gap for the GA solution. The solutions from the GA
were compared with that from mathematical programming models with CPLEX solver to assess the
practicality of the generated schedules as well as the NPV and computational efficiency.

For deterministic production scheduling in Case study 1 Scenario 1, the NPV of the DGA schedule
was 5.1% less than that of the MILP model with CPLEX schedule while there was a 53.7%
improvement in computational time comparing the DGA solution runtime to that of the MILP
model with CPLEX solution runtime. For the second scenario based on stochastic production
scheduling, while the NPV of the SGA schedule was 5.3% less than that of the SMILP model with
CPLEX schedule, there was 75.2% improvement in computational efficiency comparing the SGA
solution runtime to that of the SMILP model with CPLEX solution runtime. It is also important to
note that the NPV generated by the SGA schedule was 16.3% better than the NPV from the DGA
schedule. For Case Study 2, the solution from the SMILP model with CPLEX was terminated after
28 days at 101% gap while the SGA generated solution in 1.5 hours at 10.6% optimality gap. In
both case studies, the GA models produced uniform schedules over the life of mine, although the
NPVs were lower than that from the MILP and SMILP models with CPLEX solver.

In summary, the results generated by the GA were encouraging in the area of computational
efficiency. In cases where the mathematical programming model solution runtime is lengthy or
intractable, GA proves to be capable of generating a ‘good’ solution at a reasonable runtime. The
authors’ ongoing research aims at extending the GA model to include stockpiling and investigating
the best combination of genetic parameters to improve the GA computational time and solution
quality.
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