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ABSTRACT

The costs of the truck-shovel system in open-pit mining operation increases when the distances
between mining faces and the dumping locations increase. In-pit crushing and conveying (IPCC)
system is an option to decrease the enormous operating costs that a truck-shovel (TS) system can
introduce in an open-pit mine. In-pit crusher, if installed in an optimum spot, would reduce the
haulage distance and subsequently decrease the haulage operating costs. Finding the best
locations for the IPCC over the mine life will impose a new set of requirements for the mine
planning problem. Furthermore, it can lead to a new set of calculations for the mine's extraction
sequence and estimating the number of trucks. This research finds the optimal in-pit crusher
locations over the mine life and calculates the relocation time. A new truck fleet sizing is also
established following in the decrements in haulage distances. To achieve the research objectives a
two-step mathematical programming model is developed that determines the optimal long-term
scheduling of the mine at the first stage, and then determines the optimal locations and relocation
times for IPCC alongside the mine road network. The proposed model is implemented in a real
mine case with a conventional TS system to decide whether it could be improved by IPCC. The
results show that the truck number could be reduced by five times for the two benches of a real
mine while achieving mine schedules with the proper targets.

1. Introduction

In a typical open pit mine operation, the trucks carry the material extracted by shovel to their final
destinations, which could vary based on material types, rock types, grades, etc. There has always
been a triumph in reducing truck use due to notable reasons such as substantial maintenance costs,
fuel costs, costs of roads and ramps construction and maintenance, safety issues regarding the
truck's incidents, and so on. The related costs of the TS system would become more intense as the
depth of mines increases. Among different efforts and various options for cost reduction such as
automated or ultra-class trucks, bringing the crusher inside the pit and taking the material out via a
conveyor network has attained more attention by mine designers over the recent years.

A noticeable cost is associated with purchasing, preparing, and installing the In-Pit Crushing and
Conveying System. Additionally, the extraction sequence cannot remain the same where the
crusher will be installed and kept in the spot for some time. On the other hand, as soon as an IPCC
is installed and ready for utilization, it adds another destination to the list of potential destinations,
meaning that some of the trucks will be commuting to this spot to discharge their loads. Therefore,
finding the proper spot for the in-pit crusher is vital. Figure 1 shows the schematic view of a
mining operation with IPCC for ore where the waste is moved out of the pit with the conventional
truck-shovel system via pit road and ramps.
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Figure 1. A schematic view of IPCC in a mining operation.

Many researchers tried to address the efficient use of IPCC; Lonergan & Barua (1985) investigated
slope reduction costs to minimize the haulage cost by minimizing the conveyor slope. Dos Santos
& Stanisic (1986) reintroduced and explored the option of hiring high slope conveyors. Sturgul
(1987), Rahmanpour et al. (2014), and Konak et al. (2007) tried to find the best location for an
in-pit crusher. Another solution Roumpos et al. (2014) mentioned is finding the best place of
distribution points for belt conveyors.

In an effort to unite the long-term planning and crusher optimization, Londoño et al., (2013)
modeled the alternatives of IPCC engaging with the dragline and hopper for coal digging in a coal
mine. The authors use simulation with “3D-Dig” package software to analyze three options for the
IPCC location, and the in-pit option is identified as the most cost-effective one. Roumpos et al.,
(2014) provide an optimal location among the various nominated points for the belt conveyor
system in a continuous surface mining operation. The study is more of a search algorithm with a
heuristic approach within the limited number of nominees for a belt conveyor. Paricheh & Osanloo,
(2016) introduced a robust (scenario-based) approach that can use three methods for incorporating
scenarios into the model: 1- expected performance optimization within all scenarios. 2- worst case
performance optimization and 3- expected loss or regret minimization within all scenarios. They
also created a cost equation that gives the haulage cost in different periods of the mine life. The
facility location problem, solved in their paper, is designed for two or more facilities; otherwise, the
model’s scope will turn into a deterministic problem, not an uncertain one.

Yarmuch et al., (2017) is another study that tries to find the best location for adding one crusher in
the Chuquicamata mine by simulating the probability and failure costs possibilities and installation
costs with the Markov chain algorithm. Paricheh et al. (2017) modeled the IPCC location problem
with the linear programming method as a dynamic problem using the haulage cost for truck and
conveyor systems functions. Paricheh et al. (2018) hire the mentioned two cost functions one more
time to present a heuristic approach for finding the optimum time and location. The heuristic
approach solves the model iteratively based on which, when the haulage system is changed, the
cost of the transportation method will change so as the block value. Thus, the IPCC will reduce the
costs causing the pit size to expand through the proposed iterative process. Abbaspour et al. (2018)
provided a Simple transportation model to solve an optimum location and time problem. Using this
model, they solved a 2D hypothetical mining section. Nehring et al. (2018) offered a strategic mine
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planning comparison between IPCC and TS systems with several hypothetical 2D sections of the
block model searching the possible extraction sequence, hoping to catch the higher NPV and cash
flow.

So far, there is not any mathematical optimization introduced or proposed so that it could optimize
the IPCC location and relocation time while optimizing the long-term planning of the mine.
However, Paricheh & Osanloo (2020) tried to optimize the production schedule with the presence
of the IPCC through a MILP model concurrently with the NPV maximization as the objective
function. The mentioned model is solved in CPLEX, assuming two hypothetical copper deposits
for 15 years of the mining operation. Nevertheless, this model is solved for the limited number of
blocks, which do not represent a complete mine operation without designing the road network and
ramps, so it cannot be considered a practical model. (Samavati et al., 2020) proposed a model to
schedule the blocks based on the position of different parts of the conveyor for a fully mobile IPCC
system. The proposed MILP model uses 18 equations plus one objective function in which 16 of
those equations define the block precedence honoring the conveyors’ spots for each bench. The
largest solvable block model with such a formulation has 40,000 blocks, suggesting that the amount
of decision variables is limited due to the considerable number of precedence constrain.

The literature shows that among the few mathematical models incorporating the IPCC optimization
and long-term planning, the decision variable of optimization is at the block level. That is why the
case studies for Paricheh & Osanloo (2020)and Samavati et al. (2020)are either hypothetical or
small mining operations. Keeping the model’s decision variable at the block level creates an
optimization model with many decision variables and constraints. Therefore, the practicality of the
model for the actual mine operation will be questionable. On the other hand, none of the studies
considered the road network resulting in an IPCC optimization model which cannot be compared
with the TS system because the roads and ramp distances are unknown. In this proposed method,
the decision variables are assumed the mining cuts and the actual road network of the mine with
specific roads and ramps will be used to not only does optimize the IPCC location and mine
schedule but makes it practical for a real mine size to be calculated and compared.

2. Methodology

Finding the optimal location and relocation time for the crusher could be considered as part of an
iterative process. For instance, when it is set to relocate the crusher every two periods, the different
optimum locations in each timespan are the decision variables. Now, suppose the goal was to
optimize the timespan. In that case, the required truck number for various relocation timespans or a
comparison of NPVs for the scheduled blocks after finding the optimum locations for various
relocation timespans can satisfy this goal. The essential assumption is that the relocation times
should be taken as equal timespans. In this study, we propose a two-step formulation in which the
first step accounts for finding the best locations of the crusher using the road network and then
scheduling blocks one step after another.

First, this section explains the two-step clustering method hired to determine the nominated crusher
spots and will be used in the next tread to solve the modified facility location mathematical
formulation. Next, the MILP formulation proposed by (Mohammad Tabesh et al. (2014) will be
presented and modified to be applicable in solving the block scheduling in the presence of the
in-crusher. Figure 2 shows a diagram elaborating on the main steps to solve the problem. The input
of this model is the block model, whose pit limit and pushbacks being decided prior in addition to
the road network requires a design over the pit limit with the roads, ramps, and access points. In the
first step of the following three steps, the crusher panel will be generated then the blocks will be
aggregated using a two-step clustering method. Following the clustering, the facility location
optimization will optimize the crusher spot among the crusher panels, which are the crusher
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candidate locations. Finally, the mining cuts will be scheduled to be extracted sequentially,
ensuring the crusher panel will be extracted at the latest stage.

Figure 2. The methodology flow diagram.

2.1. Clustering

A Block model with its rectangular shape represents an orebody that is divided into sets of
uniformed-sized shapes called blocks (Espinoza et al., 2013). While the block model is a way to
facilitate both the mine planning and mine extraction, it could increase the size of the problem and
makes it intractable for large deposits with millions of blocks, especially when a planner wants to
optimize the extraction schedule over a large number of time periods. Aggregation techniques are
used here to reduce the problem size. For that purpose, block aggregation using a clustering
algorithm is suggested by Tabesh & Askari-Nasab (2011). Using their method, blocks aggregate to
mining cuts based on their similarity in rock type, ore grade, and distance.

Clustering is an unsupervised machine learning algorithm meant to discriminate between data
based on similarities or dissimilarities. From a broad perspective, hierarchical and partitioning are
two ways of dealing with data clustering. The clustering algorithms will be used, in this study, to
propose a new way of choosing candidate locations for the crusher and creating crusher panels
inside each mining phase on every bench. Block aggregation has a long history in the long-term
open pit mine planning to reduce the problem size and computational time of such an optimization
problem. The methods of block aggregation in their early use were based on the technical features
of the blocks (Busnach et al., 1985; Gershon, 1983; Gershon & Murphy, 1989; Klingman &
Phillips, 1988). However, more complicated clustering methods have been developed to comply
with mine planning requirements which requires solving a linear programming mathematical
optimization (Ramazan, 2007; Ramazan et al., 2005). However, the most common procedure is
applying either hierarchical or partitioning clustering (Ben-Awuah & Askari-Nasab, 2012;
Goodfellow & Dimitrakopoulos, 2016; Koushavand et al., 2014; Lotfian et al., 2021; Tabesh &
Askari-Nasab, 2011).

The clustering algorithm proposed in this paper is developed to create crusher panels using the
k-medoid algorithm and then the hierarchical clustering is used within the crusher panels, similar to
what proposed by (Tabesh & Askari-Nasab, 2011) in that they applied the idea of distance
hierarchy to calculate the similarities between the categorical variables. For calibrating the function
in the distance hierarchy method, they developed a function called penalty function. The similarity
value between blocks i and j is estimated in Equation 1.
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The k-medoid algorithm is a type of partitioning clustering and is similar to the k-means algorithm
in terms of performance function and the iterative process. The general procedure of k-medoid
clustering can be summarized as follows (Kaufman & Rousseeuw, 2009):

● Start by assuming K arbitrary clusters where there are S1, S2,…Sk representatives as
medoids for each cluster c1 to ck.

● Given S1 to Sk medoids, update cluster ck with the minimum distance rule applied to the
performance function, and call it ck’.

● Given cluster ck, update the medoid Sk and check the stop condition.

● Stop if the new ck’= ck, then make Sk = S’; otherwise, repeat steps 2 and 3.

Using the k-medoid and categorizing each bench within its pushback would be the first step of this
framework in which the blocks are clustered as crusher panels. The next step is to implement the
blocks’ cluster within the boundary of the crusher panel and generate the precedence within each
cluster. The crusher location optimization process uses the medoids of each panel as one scenario to
calculate the facility location problem formula modified for the crusher location problem.

2.2. Facility location problem

The facility location problem is a well-known formulation that can be applied to many optimization
problems, including transportation costs minimization or geometry computation. The objective
function could be minimizing the cost, optimizing the location of one or multiple facilities with
different costs, or including the capacity optimization problem in the capacitated version of the
problem. Geometry-wise, it can be a solution to different discrete or continuous space distance
problems, which is referred to as a single facility location problem. The general formulation for this
problem is reviewed and modified as follows (Goemans & Skutella, 2004).
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Where

● is the crusher nominated location or crusher panel.𝑖∈𝐹 
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● is the mining cuts which eventually goes to crusher panel i in N.𝑗∈𝑁

● F is the crusher panels within the assumed bench/period interval.

● N is the mining cuts within the assumed bench/period interval.

● is the cost associated with installing the crusher in the ith crusher panel. It could be𝑓
𝑖

different for the crusher panels if they were not chosen within the same phase.
Additionally, the cost of conveying material to the specific mill differs in each crusher
panel i.

● is a binary decision variable meaning to install the crusher in the ith crusher panel or not.𝑦
𝑖
 

● is the transportation cost from the jth mining cut to the ith crusher panel.𝑐
𝑖𝑗

● is a binary decision variable deciding if mining cut j is connected to crusher i or not.𝑥
𝑖𝑗

In the mentioned revised facility location formulation, Equation 2 minimizes the crusher
installation and material transportation cost. Equation 3 ensures that every mining cut is connected
to precisely one optimized crusher panel. Equation 4 constraining the number of facility locations
to one among all the crusher panels for every bench/period interval. Equation 5 makes sure that the
mining cuts can only be sent to the selected crusher locations. Equation 6 defines x and y decision
variables.

2.3. MILP formulation

This part of the proposed algorithm uses the MILP formulation developed by Tabesh et al. (2014)
to schedule the extraction of blocks while the crusher occupies multiple blocks hindering that
specific crusher panel from being extracted for some determined periods. However, some
modifications in the formulation are required for the crusher problem. According to Equation 7, the
objective function maximizes the NPV by taking different extraction periods (T) for the extraction
of the portion of the mining cut ( ) to send it to the mill, and the extraction of the portion of the𝑥

𝑘
𝑡

panel to send it to the waste dump. In this equation, is a continuous variable between 0 to1𝑦
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● is a continuous variable, representing the portion of mining-cut k to be𝑥
𝑘
𝑡  ∈ [0, 1]

extracted as ore and processed in period t.

● is a continuous variable, representing the portion of the crusher panel p to be𝑑
𝑝
𝑡  ∈ [0, 1]

mined in period t, fraction of y characterizes both ore and waste included in the panel.

● is a binary integer variable controlling the precedence of extraction of panels.𝑏
𝑝
𝑡 ∈ 0, 1{ }

is equal to one if extraction of panel p has started by or in period t, otherwise it is zero.𝑏
𝑝
𝑡

● is the set of the panels that have to be extracted prior to panel p.𝐶
𝑝

● is the set of the mining-cuts within panel p.𝐾
𝑝

● is the ore tonnage in mining-cut k.𝑜
𝑘

● is the waste tonnage in the crusher panel p𝑤
𝑝

● is the average grade of element e in ore portion of mining-cut k𝑔
𝑘
𝑒

● and are the upper bound and lower bound on acceptable average head𝑔𝑙𝑡,𝑒 𝑔𝑢𝑡,𝑒

grade of element e in period t in percent.

● and are the upper and lower bounds on ore processing capacity in period t𝑝𝑙𝑡 𝑝𝑢𝑡

in tonnes.

● and are the upper and the lower bounds on mining capacity in period t𝑚𝑙𝑡 𝑚𝑢𝑡

in tonnes.
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In the proposed model, Equations 8 and 9 are the mining and processing capacity constraints.
Equation 10 modifies the relation between the extracted ore tonnage and the total extracted tonnage
from the corresponding cuts and panels respectively. Equation 11 and 12 control the maximum and
minimum grade of the material sent to the mill or waste dump. Equation 13 ensures that all the
panels will be extracted during the mine life. Equation 14-16 are constraining the extraction with
the determined slope. we need to constrain the mining cut chosen for the crusher placement for that
specific period. The crusher replacement time follows a predetermined equal timing, i.e. in every

period, the crusher will move down to the current extracting bench. Depending on the number𝑃𝑇
of mining periods T, the variable n that is the number of crusher movements, is: . Knowing𝑛 = 𝑇

𝑃𝑇
that there are , we need to add n series of constraints to the MILP model to𝑆

1
,  𝑆

2
,  …,  𝑆

𝑛
=  𝑃𝑇

avoid the optimum mining cut for crusher spot from being extracted in the timespan (Equation𝑆
𝑛

17). Because of the nature of this MILP model, not only that specific mining cut but part of the
panel in that bench must be kept unextracted (Equation 18). Additionally, after the crusher moves
to a new location, the model ensures that the mining cut that was hosting the crusher, and its
successor mining cuts will be extracted (Equation 19).

Adding three Equations 7,8 and 9 to the MILP model presented by Tabesh et al. (2014) will result
in optimizing the extraction plan in the presence of an in-pit crusher with the explained method.

3. Case Study

For the purpose of evaluating the proposed method, a dataset from a real iron ore mine is selected.
The case study includes two consecutive benches from a mine with 21 benches in total, with which
the primary mineral is magnetite but has phosphorus (P) and sulfur (S). The selected part has 2184
blocks of 25m×25m×15m in total. The mill and the waste dump are two destinations fed by seven
different rock types, only three of which would be processed. The case study is tested on a machine
with Intel® CPU with seven cores with 1.8 GHz speed and 16 GB of RAM. Figure 3 shows a plan
view of the selected part of the mine, which is supposed to accommodate a crusher inside.

Figure 3. Plan view of the iron ore mine.

In the first step, eight different crusher panels are selected for each of the benches using the
k-medoid clustering method. Through the medoids, one block represents the whole panel forming
the candidate locations for the crusher in each selected panel. Then, the blocks are aggregated
within the crusher panels by applying the hierarchical clustering algorithm developed by Tabesh &
Askari-Nasab, (2011) to obey the mining phase boundaries. It is important to note that since the
mining extraction follows the phases in each bench, the extraction of the next bench starts just after
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the current phase is fully extracted. However, the next phase might start within the current bench
but will be left for the next stage. Therefore, the mining phases must cover the mining cuts. The
mining phases will create the panels that intersect between designed pushbacks and the benches
and will be used as mining units in the MILP mine planning formulation. Table 1 shows the
clustering parameters for both methods used to create the crusher panels and mining cuts.

Figure 4 and Figure 5 shows a plan view of the first and second benches with two features of a)
clustering blocks to create the crusher panels, and b) mining panels or phases, respectively.

Table 1. Clustering Parameters.

Block Clustering Method Hierarchical

Distance Weight 0.8

Grade Weight 0.2

Cluster Penalty 0.2

Rock Penalty 0.8

Approximate Block per Cut 30

Max Cluster Size 35

Crusher Panel Clustering Method k-medoids

Algorithm to find medoids Partitioning Around Medoids

Distance Minimization Method Euclidean

Number of Replications 10

Number of Crusher Panels per Bench 8

The next stage is calculating the distance from each selected block or medoid to all the mining cuts
and estimating the cost of transporting materials there. The distances are based on the shortest paths
between two nodes along the road network, meaning that the existing mine roads will be employed
to commute to different spots. The conveyor length, however, has the most expenses where it could
be determined from the Euclidean distance between each medoid and the mill. The wastes will be
carried out of the mine using the trucks and the designed ramps. It is assumed that the conveyor
costs $0.3 for transferring one tonne to the next level, and the cost of hauling by truck is $0.2 for
hauling one tonne in one kilometer. The model is solved using the CPLEX solver, and the solution
indicates the seventh crusher panel of the lower bench as the optimum spot to place the crusher.
The average travel distance between the ore mining cuts to the crusher spot is around 0.8 km. In
contrast, the average travel distances for waste transportation to the waste dump or carrying ore to
the mill is more than 4 km, assuming no in-pit crusher in place. Figure 6 shows the road network
used for this case study.
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Figure 4. Plan view of the first bench a) clustering blocks to create the crusher panels, b) mining panels or
phases.

Figure 5. Plan view of the second bench a) clustering blocks to create the crusher panels, b) mining panels or
phases.

After applying the clustering algorithms and finding the optimum spot for the crusher, mine
scheduling with the proposed MILP formulation is the final step in the proposed method. Table 2
shows the input parameters of the mine scheduling. The MILP was formulated in MATLAB and
solved with the CPLEX IBM solver. The model has two possible destinations; the in-pit crusher
and the waste dump. The mill is no longer a destination in such models, but the capacity-related
variable is still referred to as the processing capacity since it is the bottleneck variable in this
formulation.
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Figure 6. Schematic view of the road network of the case study.

Table 2. Mine scheduling inputs.

Total Ore
Tonnage (MT)

Total Waste
Tonnage (MT)

Total Minable
Material (MT)

Yearly Mining
Production (MT)

Yearly Processing
Capacity (MT)

16.1 37.34 53.33 13.35 4

Num. of Mining
Cuts per Bench

Num. of Mining
Panels per Bench

Num. of
Blocks Num. of Periods

48 2 2,184 4

Figure 7, Figure 8, and Figure 9 show that the model solved the mine scheduling with the defined
capacities, and the mine has a positive cash flow from extracting the mining cuts. During these four
years of mining, where the crusher will be on the second bench and the seventh crusher panel, the
cut-off grades change 28%, the destination revenues change 21%, and the discounted cashflows
change 47%. The crusher spot remains untouched until the end of the 3rd period and will be
extracted after that, implying that moving the crusher to the lower benches must be started in the 4th

year.
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Figure 7. Mine production schedule during four periods.

Figure 8. Revenues and discounted cashflows over four periods.
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Figure 9. Cut-off grade variations during four periods.

4. Discussion of Results

In order to verify that the MILP model with crusher panel acts differently from the MILP with the
mining panel, a schematic view of the extraction sequence for both of the benches employed in this
study is shown in Figure 10 and Figure 11. Figure 10 shows the extraction sequence for the usual
MILP model and four different periods with mining panels or phases where there is no crusher
constraints or assumption for the in-pit crusher, while Figure 11 shows the exact same model with
all the capacity and grade assumption for when there is a crusher inside. In Figure 11 model, the
crusher panels were used to be save the spot till period 4, for the crusher. As it can be seen from
these two figures, the scheduling follows either the mining panels or crusher panels to some extent.
The order of the benches are from bottom to top meaning that in order to reach to the first bench,
some precedence in the block level, cut level and mining/crusher panel level of the second bench
must be honored.

Assuming that the waiting times in loading and dumping for two cases of with and without in-pit
crusher are proportionate based on the fact that some components such as queuing are close to zero
when the required number of trucks is less, we can calculate the average number of trucks based on
the average travel time. In this case study, the average travel distance for the in-pit crusher option is
837 m, while it is almost 4039m when trucks travel directly to the mill. Knowing that the safe
travel speed for the loaded and empty truck is 30 km/h and 60 km/h respectively, we have around
2.5 minutes of travel time for traveling to in-pit crusher versus 12.1 minutes travel time for
traveling to the mill. Therefore, installing a crusher in an optimum spot reduces the travel time 4.8
times. As a real example, implementing IPCC in a case with a complete mining operation that
includes ten ore trucks, and ten waste trucks could decrease the fleet to three ore trucks and ten
waste trucks. Having fewer trucks not only benefits financially but could also improve safety by
reducing incidents and traffic and easing the dispatching operation.
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Figure 10. The extraction sequence for the usual MILP model without in-pit crusher and with mining panels.
a) plan view of the first bench, and b) plan view of the second bench.

Figure 11. The extraction sequence for the MILP model with in-pit crusher and with crusher panels.
a) plan view of the first bench, and b) plan view of the second bench.

5. Conclusions

In this study, we tried to optimize the location of the crusher and then model the mine schedule
considering the crusher spots. For that, we used the idea of using crusher panels instead of mining
panels to model the crusher spots practically. Additionally, the shortest path method with the mine
road network is hired to find the best crusher spots among the crusher panels. In the proposed
two-step model, the relocation time is an assumption that is presumed every two benches or four
periods for the case study. The proposed model uses two-step clustering to create the crusher panels
and then make the mining cuts inside the crusher panels. It is also important to create the crusher
panels to honor the mining phases and the precedence. The model is implemented in two benches
of an iron ore mine to test and validate the results. The model results show that using the crusher
panels, the mine schedule follows the production target while extracting in the mining phases and
crusher panels direction to keep the crusher spot untouched from being extracted till the last period.
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It also shows a considerable deduction in the truck requirement, which eventually accounts for the
mine operating cost reduction.
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