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ABSTRACT 

A theoretical framework based on a detailed analysis of mine operations data from an oil sands 
mine in northern Alberta and the static simulation of truck cycle times is developed, verified and 
validated in this paper. Implementation of this framework provides better results than existing in-
house tools, which rely solely on manufacturer data, and thus aids in efficient equipment planning 
for life of mine plans. The use of this framework to modify existing productivity curve estimation 
methods currently in use at the mine site is also proposed. This method replaces “loaded flat haul” 
with “effective loaded flat haul” in the estimation of productivity. Validation of the model presents 
an over estimation of productivity by 4% against an underestimation of over 10% by the existing 
in-house method. 

1. Introduction

One area that differentiates oil sands mines in northern Alberta fromconventional hard-rock mining 
is the environment in which they operate. Due to characteristics of the ground, producers in the 
region experience very high rolling resistance (RR) that, in turn, negatively affect haul truck 
performance and greatly increase fuel consumption and emissions. Oil sands mining companies 
employ some of the largest haul trucks in the world. In addition, typically oil sands mines are much 
more extensive in area than hard rock pits, resulting in longer haul distances on roads of 
comparatively more viscous material. 

The research presented in this paper has direct application in the areas of predicting truck 
requirements for budgeting and life of mine (LOM) planning. There have been insufficient 
advances in the research of shovel-truck simulation or estimation methods that produce reliable 
results for LOM planning. Whereas there are various software packages dedicated to this purpose, 
they are limited in their level of detail, as they solely rely on equipment manufacturers’ 
performance data that are usually not representative of the complex nature of large-scale, real-
world mining operations. These limitations hinder reliable predictions as these software packages 
fail to capture varying site specific characteristics. Talpac (RungePincockMinarco, 2015), which is 
one of the most widely used fleet performance software packages, possess a comprehensive library 
of equipment and their characteristics as provided by the manufacturers. It captures the variability 
in truck speeds based on gradients, rolling resistance and adjustment factors based on the haulage 
path between a source and a destination. However, the amount of site specific details that is 
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incorporated is limited. Chanda and Gardiner ((2010)) claim that Talpac (RungePincockMinarco, 
2015) underestimates and overestimates short and long haul times, respectively. Manyele (2017) 
claims that loaded haul times are usually longer than empty haul times because of the difference in 
the weights resulting in slower speeds of loaded trucks, and that empty haul times are usually more 
variable due to the dispatching logic. 

Production rates in an open pit mine operation are affected by the project complexity, traffic flow, 
accessibility, road condition, gradient, rolling resistance, size of equipment, match factor, operator 
competency, weather and disruptions, as noted by Kuo (2004). Burt and Caccetta (2014) consider 
appropriate representation of the associated variability in truck cycle times extremely important as 
it affects the feasibility of the fleet and the match factor in addition to predicting productivity. 
Moreover, as noted by Burt (2008), the number of trucks can also affect the truck cycle times due 
to bunching and excessive queuing. A detailed simulation modeling of the production operations 
(S. P. Upadhyay, et al., 2013; Shiv Prakash Upadhyay & Askari-Nasab, 2018) bears the capability 
to account for all the factors and provide more precise results. However, building and running 
detailed simulation models for site specific operations are time consuming and undesired unless a 
detailed scenario analysis of the production operations is required.  

Bozorgebrahimi, Hall, and Blackwell (2003) emphasize the importance of the haul road network 
and its characteristics, which have a direct bearing on the truck performance. Rolling resistance of 
haul roads is an important characteristic affecting cycle times and haulage costs, as observed by 
Dotto (2014), Thompson and Visser (1997; 2003) and Joseph and Szymanski (2013). 

Effective flat haul (EFH) is another metric often used to measure haulage distances and predict 
haul times (Curi, et al., 2014; Sheremeta, 2015). Curi et al. (2014) define EFH as a "calculated 
parameter that accounts for both the distance from the source to the destination, and the elevation 
change from the source to the destination". Campbell and Hagan (2012) used ranges of EFH values 
for different gradient ranges as modifying factors to develop an equipment selection model. 
Similarly, Hargroves, Gockowiak, McKeague, and Desha (2014) used EFH to normalize elevation 
changes. Newmont mining has implemented EFH as one of their key performance indicators 
(KPIs) in order to better categorize and account for production and equipment usage figures 
(Newmont, 2014).  

Although it has been established that truck cycle time is one of the most important parameters in 
measuring LOM productivity, efficient prediction tools for estimating this parameter do not exist. 
A review of existing research shows the need to solve the problem of inaccurate cycle time 
estimations in open pit mining systems. Poor cycle time estimations may lead to poor LOM 
planning and, in-turn, deviations from planned production targets. Overestimation of truck 
requirements may lead to increased costs. On the other hand, underestimation may lead to a 
shortfall in production. It is thus considered important in this research to develop a tool that can 
provide cycle time estimations and truck requirements as accurately as possible. 

Cycle time is the single most important parameter of a mining operation, as it is a key parameter in 
estimating maximum achievable production rate between a source and destination. In addition to 
being dependent on the type and capability of equipment used, cycle time is also impacted by other 
controllable and external factors. Relevant controllable factors include the mining sequence 
(schedule), road design, road construction, safety guidelines, maintenance of roads and equipment, 
as well as operator proficiency and behavior. External factors include unexpected equipment 
downtime and weather events that affect the characteristics of the road and performance of the 
equipment. Weather events such as large amounts of rainfall or thawing snow make the material on 
oil sands haul roads even softer, and can create ruts on the surface that increase rolling resistance 
and therefore cycle times. 

Many companies have ceased using standard software programs, and, in place, have developed 
site-specific in-house methods for predicting productivity through cycle times, often with 
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unreliable results due to the low-detail and fast-paced nature of their development. The in-house 
method evaluated in this paper involves relating the historical loaded haul distances to a 
productivity performance indicator: tonnes per gross operating hour (TPGOH) through a line of 
best fit. This line of best fit is then used to predict LOM productivity based on distance between 
scheduled mining locations and respective dump destinations. TPGOH for each truck cycle is 
calculated as the ratio of truck payload and the cycle time plus any related delays. The activities 
that make up the cycle time are: idling at dump, dumping, loading, time in queue, spotting, waiting 
to spot, loaded hauling and empty hauling. A plot of normalized TPGOH versus loaded haul 
distance, as shown in Fig. 1 for the mine site evaluated, reveals how inadequate the line of best fit 
method can be due to high variability in TPGOH. A detailed study of the data revealed that one of 
the reasons for this variability is the assumption that same distance over different haulage paths 
shall yield the same haul time, which is not the case. Two paths with same distance but different 
haul road profiles and surface characteristics cannot be assumed equivalent. Fig. 2 shows how 
much variability there is in terms of haul time for specific loaded haul distances. 

 
Fig. 1. Tonnes per gross operating hour (TPGOH) vs full haul distance variability (normalized) - company 

database 

 
Fig. 2. Full haul time vs. full haul distance variability (normalized) - company database 

This paper focuses on generating accurate and reliable estimates of loaded truck travel times 
through simulation so that productivity figures, such as TPGOH, can be accurately estimated. A 
comparison of predictions over short, medium and long hauls is presented to show the strength of 
proposed method (Method 2 in this paper) in comparison to the rimpull method (Method 1 in this 
paper) which strictly follows the manufacturers’ truck performance data. This paper also aims to 
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improve the company’s in-house method of deriving productivity curves by replacing the relation 
of TPGOH to loaded haul with a relationship of TPGOH to loaded EFH (estimated by proposed 
Method 2 in this paper) in order to reduce the variability in TPGOH, as shown in Fig. 1. To 
validate this proposition, a comparison of the output of the current in-house method with that of the 
proposed framework is also presented.  

2. Theoretical framework 

The framework/tool proposed in this paper assumes the travel component of trucks as the only 
component contributing to changes in truck cycle times and productivity over the LOM. Other 
components of cycle time, such as loading time, dumping time, queuing time and spotting time 
remain independent of the schedule and should follow a fixed distribution over the LOM. For this 
study, historical data recorded by the company dispatch system are used to fit distributions on each 
component of cycle time except loaded haul time. It is important here that the distributions are 
representative of the system for a true representation of the environment. This framework features 
full integration with the company’s SQL database to access historical dispatch records. Other 
potentially useful information recorded by the company includes operator ID, equipment ID (both 
for excavators and trucks) and a timestamp (or shift number), which could be used for further 
classification at higher resolutions. 

A digital model of the mine’s haul road network is also required. The accuracy of the outputs 
produced by this program is, to a large extent, dependent on the accuracy and precision of the road 
network model. A proper characterization of distances within segments is important, but properly 
capturing changes in elevation is essential, since these directly affect the speed of the truck. The 
framework/tool reads in the drawing exchange format (dxf) input of the haul road network from 
any modeling software to characterize the paths and gradient of segments. 

Historical truck speed records on haul roads are also required to model flat haul speed distributions. 
Usually such data are recorded periodically as velocity maps from the global positioning systems 
within the trucks. For this study, this information was provided, which included coordinates of 
trucks with time stamp, velocity, and corresponding shovel and dump names. However, these 
records were not explicitly segregated, so further manipulation using timestamps and shift 
identifiers was performed to characterize loaded and empty speed records. A long flat haul section 
of the road network was chosen to filter out loaded and empty flat haul speeds. A distribution was 
then derived for flat haul speeds while empty and loaded. This ensures that the variability and 
characteristics of the truck/network interactions are captured. Moreover, while calculating these 
data points, an effort was made to exclude areas where the trucks may be accelerating or 
decelerating. This was accomplished by selecting coordinates of flat haul roads well within the flat 
section of the road, choosing limits that are not close to where the flat road starts or ends.  

To mimic the changes in truck speed with varying resistance values (gradient plus rolling 
resistance), the rimpull curves for each specific truck type is used in this framework. Rimpull 
curves are not used to assign speeds as in Talpac (RungePincockMinarco, 2015), but rather to 
examine the relative changes in velocity based on varying payload and total resistance of segments 
of haulage paths. It is also essential to properly characterize the rolling resistance of the haul roads, 
the data for which usually remain unavailable. Joseph, Curley and Anand (2017) provide excellent 
guidelines and insights into rolling resistance measurements and typical values within oil sands 
mining operations, stressing that seasonal weather changes affect RR significantly.  

The framework/tool presented in this paper is written in MATLAB. This framework presents two 
distinct methods of calculating haul times. Method 1,based entirely on performance data provided 
by the truck manufacturer (similar to Talpac and CAT FPC), serves as a benchmark for comparison 
with proposed Method 2. Method 2 is a data-driven simulation of haul times that incorporates data 
from the mine site and dispatch, yielding much more accurate and realistic outputs. These two 
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methods are described in more detail below. The remaining parameters of the complete cycle time 
are calculated in the same manner, regardless of the method. In addition, there is another important 
distinction in the algorithm. This code was developed with high integration capability to a company 
database through direct querying, operating under the assumption that the intended application of 
this framework is for existing operations with a significant amount of dispatch data recorded and 
available within the database. Fig. 3 provides an overview of the framework, showing the various 
steps required to complete the analysis. Step 1provides the assumed rolling resistance of the haul 
network, truck types and corresponding rimpull curve characteristics and the number of 
replications required for the desired confidence interval. In Step 2, the framework reads in the road 
network of the mine and checks for errors. This stage also refines the road network from native 
resolution to a desired resolution, i.e. it manipulates the segments to have desired lengths to 
minimize computational burden. Moreover, it eliminates high fluctuations in gradients that may be 
observed due to the close proximity of two points showing aberrations on haul road characteristics.  

 
Fig. 3. High level flow chart of the framework 

Step 3 provides the dig location and corresponding dump location names. If the tool is used for 
prediction, this input corresponds to the schedule; otherwise, a SQL query is used to retrieve 
historical data from a company database for validation and calibration purposes. As the dig and 
dump locations do not correspond to a single point but an area, Step 4 estimates the centroids for 
each dig location and dump location and determines the closest point on the haul road network 
from these centroids. Based on the shortest path algorithm, a path following the haul road network 
is established in Step 5, constituting segment lengths, gradients and rolling resistance in the 
direction from dig location to dump location for the loaded haul. Step 6 is a parallel step which 
provides flat haul velocity distributions for each truck type as well as payload distributions and 
other cycle time components. Finally the simulation replications are executed in Step 7, using the 
paths and distributions generated by two methods (Method 1 - benchmark and Method 2 - 
simulation). The simulation output includes cycle times, payload, EFH and TPGOH. The derived 
EFH values are proposed to replace corresponding full haul values in company’s in-house method 
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to derive productivity curves. The two methods used in this framework to estimate loaded haul 
times comprise the following. 

2.1. Method 1 –benchmark 

This method evaluates the total resistance of each segment, by adding the previously defined 
rolling resistance to the gradient of the segment. Then, a random sample is generated from the 
payload tonnage distribution and the rimpull force is calculated, based on the weight of the empty 
truck plus the payload tonnage. Having calculated a rimpull value for each segment, the algorithm 
then performs an interpolation of the manufacturer’s rimpull characteristic data to assign a speed to 
each segment which is the maximum possible speed at the given conditions. The segment length is 
then divided by its corresponding speed to determine the time the truck takes to travel through said 
segment. The sum of all segment travel times results in the loaded haul time between source and 
destination. The method then calculates the time it takes for the loaded truck to travel the path 
assuming it is flat. The EFH factor is found by dividing the rimpull based estimate by the flat haul 
estimate.  

2.2. Method 2 –simulation 

This method is similar to Method 1 with the exception that rimpull characteristics are used to 
estimate only the relative changes in velocity instead of velocity itself. Instead of directly finding 
the speed corresponding to a rimpull value, for each road segment, this method generates a factor 
which equals the ratio of the rimpull velocity estimate for a given segment to the rimpull velocity 
estimate for an equivalent flat haul segment. This factor works as an adjustment factor to the flat 
haul velocity of the truck. Velocity is then sampled from the flat haul velocity distribution for the 
truck type and multiplied by the rimpull factor to estimate the velocity corresponding to each 
segment. The remaining estimation of loaded haul time and EFH remains same as in Method 1.  

3. Implementation and results 

The framework is implemented using data from a large scale oil sands open pit mine in Northern 
Alberta. At these operations an in-house method is used to derive a productivity curve, i.e. the 
relationship between TPGOH and loaded haul distance. This, in-turn, is used to predict truck 
requirements over the LOM for budgeting purposes. The operation employs Cat 797F trucks to 
haul material from the mine with large haul distances. Although the rolling resistance varies in 
different areas of the mine and varies based on changing conditions, seasons etc., it is hard to find. 
For simplicity and in accordance with the literature, a representative equivalent rolling resistance 
value of 5.5% is used in this implementation for the entire mine haulage road network. This value 
is determined during calibration of the model, which provided reasonable results. The segment 
lengths in the road network are defined as 35 m. The road network consists of 47 separate roads 
between intersections and the end nodes, representing more than 35 km in total length. Due to 
confidentiality requirements, most of the data presented in this paper are normalized. 

A literature review identified that one of the shortcomings of available commercial programs is that 
cycle time estimates are not accurate for either short hauls or long hauls. Thus, the verification and 
validation of the model was performed by examining haul time estimates produced by this 
framework over several haul routes of varying distances. The outputs from both Methods 1 and 2 
are compared against records in the company database for four cases consisting of a short haul of 
1.3 km (Fig. 4 and 5), a short/medium haul of 2.6 km (Fig. 6 and 7), a medium haul of 4 km (Fig. 8 
and 9) and a long haul of 8 km (Fig. 10 and 11). Corresponding statistics and percentage difference 
from historical data is presented in Table 1, 2, 3 and 4, respectively.  

It is important to note that the minimum haul time value on the histogram generated by Method 2 is 
equal to the unique estimated haul time generated by Method 1, which is the best-case scenario 
using the maximum velocity possible at the given total resistance. It should also be noted that, 

147



Cervantes E. et. al.  MOL Report Nine © 2018 202-7 
 
 
although the histograms generated from the company database records show values smaller than 
this theoretical value, this can be attributed to recording errors within the dispatch system. A total 
of 500 replications were performed with less than 20 seconds of run time for each case. 

Table 1. Short haul output summary 

Short haul 
(1.3 km average) 

Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 5.58 5.52 –1 
 

4.19 –24.9 

95% confidence interval 0.11 0.12 

Upper bound 5.69 5.64 

Lower bound 5.48 5.40 

Median 5.27 5.16 –2.1 

Standard deviation 1.67 1.35 –19.2 

Variance 2.80 1.82 –35.0 

 
Fig. 4. Short haul histogram, company database 

 
Fig. 5. Short haul simulation output histogram, Methods 1 and 2 
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Table 2. Short/medium haul output summary 

Short/medium haul 
(2.6 km average) 

Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 8.96 9.08 1.3 

 
6.86 –23.4 

95% confidence interval 0.14 0.21 

Upper bound 8.99 9.29 

Lower bound 8.92 8.87 

Median 8.83 8.50 –3.7 

Standard deviation 2.10 2.40 14.3 

Variance 4.42 5.61 26.9 

 
Fig. 6. Short/medium histogram, company database 

 
Fig. 7. Short/medium simulation output histogram, Methods 1 and 2 

Table 3. Medium haul output summary 

Medium haul 
(4 km average) 

Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 15.62 15.60 –0.12 
 

11.59 –25.8 

95% confidence interval 0.09 0.37 

Upper bound 15.71 15.97 

Lower bound 15.52 15.23 

Median 15.58 14.38 –7.7 

Standard deviation 3.24 4.20 29.6 

Variance 10.21 18.01 71.0 
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Fig. 8. Medium Haul histogram, company database 

 
Fig. 9. Medium haul simulation output histogram, Methods 1 and 2 

Table 4. Long haul output summary 

Long haul 
(8 km average) 

Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 23.20 23.09 –0.5 
 

17.2 –25.9 

95% confidence interval 0.22 0.37 

Upper bound 23.42 23.46 

Lower bound 22.98 22.72 

Median 22.78 21.41 –6.0 

Standard deviation 4.5 6.0 33.3 

Variance 20.0 36.5 82.5 

 
Fig. 10. Long haul histogram, company database 

150



Cervantes E. et. al.  MOL Report Nine © 2018 202-10 
 
 

 
Fig. 11. Long haul simulation output histogram, Methods 1 and 2 

It can be concluded from this study that Method 2 is much more accurate in its predictions over all 
distance ranges in comparison to Method 1. For the four cases, the maximum percentage difference 
of the mean values of loaded haul times between Method 2 and recorded company data is 1.3% for 
short/medium haul and the minimum difference is 0.12% for medium haul. For all the cases, 
Method 2 provided haul times within 1.3% of accuracy compared to the database. As expected, 
Method 1 overestimates the performance of the trucks by consistently underestimating haul times 
by about 25%. Comparisons of the histograms generated by the model to those generated from 
company data for the four cases suggest that the model is simulating the operation correctly.  

After the model is verified, it is extended to estimate TPGOH and the results compared against 
historical data. For this, a quarterly (3-month) simulation of TPGOH was performed. TPGOH is 
calculated by dividing the payload tonnage by the cycle time. Within the cycle time, the loaded 
haul time is simulated with Method 1 and 2, and the rest of the parameters are simulated directly 
from their probability distributions. Since the empty return trip time remains unknown due to the 
possibility of a truck returning from a combination of various dump locations, two scenarios have 
been analyzed. The first scenario does not incorporate return trip time to estimate TPGOH 
(scenario 1) whereas the second scenario does (scenario 2). For the second scenario, return trip 
time is assumed to follow a probability distribution similar to other cycle time components. This is 
considered a valid assumption at this stage of the study, as data are taken directly from the 
company database for the given time period being simulated and thus represent reality. Further 
study is proposed to eliminate this assumption and develop an accurate prediction model for both 
loaded and empty haul times. 

Eleven distinct dig locations with corresponding scheduled production tonnage over the 3 month 
quarter from 2016 production year are selected. These combinations of dig locations and 
corresponding dump locations are fed into the model, the corresponding centroids estimated and 
connected to the network (Fig. 3) and multiple replications run. The resulted TPGOH values for 
each source/destination combination are then multiplied by corresponding weighting factors. A 
weighting factor here is the fraction of tonnage scheduled for the dig location/dump location 
combination as compared to the total scheduled tonnage in the quarter. This process yielded a 
single TPGOH value estimate to be compared against the database. 

3.1. Scenario 1 (return trip not included) 

Fig. 12, 13 and 14 show the histograms of TPGOH values for scenario 1 derived from the historical 
recorded data and the predictions from Method 1 and Method 2, respectively. A statistical 
comparison of results is presented in Table 5. It can be observed that Method 2 overestimates the 
mean value of the TPGOH by only 0.58% as compared to 15% for Method 1. Moreover, standard 
deviation is observed to be fairly small in the prediction methods in comparison to reality. The 
reason for this variance may be attributed to the variability in truck speeds due to interactions with 
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other trucks and systems on the haulage paths. During the development of these results, it was also 
noted that there is a 2% difference in productivity during day and night shifts, with the night shift 
being more productive in reality, which is not accounted for in the current scenario comparison.  

Table 5. Quarterly TPGOH simulation output summary (normalized) – scenario 1 

 Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 0.5288 0.5319 0.58 
–58 

0.6081 15.1 

95% confidence interval 0.0058 0.0024 0.0027 –52.8 

Median 0.5365 0.5399 0.63 0.6068 13.1 

Standard deviation 0.1744 0.0857 –50.9 0.0981 –43.6 

 
Fig. 12. Quarterly tonnes per gross operating hour (TPGOH)company database histogram – scenario 1 

 
Fig. 13. Quarterly tonnes per gross operating hour (TPGOH) Method 1 output – scenario 1 

 
Fig. 14. Quarterly tonnes per gross operating hour (TPGOH) Method 2 output – scenario 1 
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3.2. Scenario 2 (return trip included) 

Fig. 15, 16 and 17 present the histograms of TPGOH values for scenario 2 derived from historical 
recorded data and the predictions from Method 1 and Method 2, respectively. A statistical 
comparison of the results is presented in Table 6.This scenario shows more precise estimations of 
TPGOH compared to scenario 1. Again, Method 2 outperforms method 1 in predicting the mean 
value of TPGOH with a difference of only 0.09% from recorded data in comparison to 8% for 
Method 1. Similar to scenario 1, standard deviation of the estimates remain very small in 
comparison to recorded data for the same reasons outlined above.  

Table 6. Quarterly tonnes per gross operating hour simulation output summary (normalized) – scenario 2 

 Database Method 2 Difference (%) Method 1 Difference (%) 

Mean 0.3654 0.3651 –0.09 
58.6 

0.3951 8.1 

95% confidence interval 0.0009 0.0014 0.0015 76.3 

Median 0.3739 0.3629 –2.9 0.3929 5.1 

Standard deviation 0.1139 0.0491 –56.8 0.0547 –52 

 
Fig. 15. Quarterly tonnes per gross operating hour (TPGOH) database histogram – scenario 2 

 
Fig. 16. Quarterly tonnes per gross operating hour (TPGOH) Method 1 averaged output – scenario 2 
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Fig. 17. Quarterly tonnes per gross operating hour (TPGOH) Method 2 averaged output – scenario 2 

As expected, the outputs from Method 1 overestimate productivity by underestimating truck cycle 
times. However, Method 2 provides very close predictions of cycle times and productivity. This 
analysis proves the validity of the model and Method 2 in estimating the mean value of 
productivity/TPGOH and that the model is well calibrated and correct.  

To improve the current company 'in-house' method, it was compared to Method 2, as proposed in 
this paper. Using the 'in-house' method, three productivity curves are generated using two years of 
data, one year of data, and a dataset from the quarter to predict TPGOH for the quarter studied 
above. A comparison of predictions from the three curves against recorded TPGOH at the mine 
showed an under-prediction of TPGOH by 12.3,10.3, and 18.2%, respectively. In comparison, 
Method 2 was applied to replace the full haul distance with EFH while fitting the productivity 
curves. The resultant curve overestimated the quarterly TPGOH by 4% as compared to recorded 
data. Although, it is not an exact prediction, this represents a significant improvement in the 'in-
house' method. Moreover, an analysis of data used for fitting the productivity curves in both 
categorizations, i.e. EFH and full haul, showed a reduction in standard deviation by 25% for EFH, 
which can be regarded as a significant improvement in data variability for fitting amore 
representative productivity curve. 

4. Conclusion 

This paper presented a framework for improving the travel time predictions of loaded haul trucks in 
open pit mines with a focus on large scale oil sands operations, and an improvement to the 
industrial in-house method of productivity curve estimation for efficient prediction of truck 
requirements and budgeting. The framework presented here is the result of a thorough investigation 
of the production data for the mine site used in the case study. The proposed framework was 
developed to be flexible and easy to implement. During the development of this framework, the 
main data sources were identified and limited to those that are typically available from mine 
dispatch systems. Very tight half widths and high confidence intervals were achieved in short 
computation times for the validation/verification of the case study, adding to the positive features 
of this framework. The method also shows definite improvement over existing methods which rely 
solely on rimpull and manufacturer provided data. This improvement is rooted in the fact that the 
proposed framework is driven by historical data and thus incorporates the characteristics of the 
specific mine site.  

The proposition to replace loaded flat haul with EFH to derive productivity curves also showed 
reasonable improvements in its prediction. The proposed framework overestimates TPGOH by 4% 
in comparison to an underestimation of over 10% by the current in-house method used at the case-
study mine. However, further improvements to the framework are proposed to improve prediction 
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methods and to model truck travel times more accurately by capturing the actual spread in the 
travel times. In addition, as future work, the incorporation of methods to estimate empty truck 
travel times is also proposed. This would incorporate a realistic empty truck travel times to dig 
locations from various dump locations, similar to that provided by a dynamic dispatch system, in 
the proposed static simulation framework. Also, efforts will be made to more accurately 
characterize dig locations in order to model the variation in travel distances of trucks over the 
duration of mining at each location. 
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