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Abstract 

The initial evaluations of a range of levels for starting the extraction of block-cave mining is an important 
issue which needs to consider a variety of parameters such as extraction rate, block height, discount rate, 
block profit, cost of mining and processing and revenue factors. This paper deals with finding the best 
level to place a block cave extraction level based on the maximum discounted ore profit. 

Grade uncertainty has profound impact on the total ore profit of each level and as a result on the 
placement of extraction level. A set of simulations of the mineral grade is modelled and for each 
realization the best level for starting extraction is specified.  

The maximum NPV is determined using mathematical programming approach (MP) after determining the 
best extraction level. The model is created in MATLAB and CPLEX as a solver is implemented to solve 
the optimization problem. The purpose of this paper is to present a methodology to find the best 
extraction level under grade uncertainty. The extraction level is used to maximize the NPV; given some 
constraints such as mining capacity, grade of production, extraction rate and precedence.   

1. Introduction

Among the underground mining methods available, caving methods are favored because of their low-cost 
and high-production rates. Production scheduling in block caving, because of its significant impact on the 
project’s value, has been considered a key issue to be improved, so researchers have applied different 
methods to model production scheduling in block caving. 

Grade uncertainty can lead to significant differences between actual production and planning expectations 
and as a result the NPV of the project (Osanloo et al., 2008; Koushavand and Askari-Nasab, 2009). 
Various researchers have considered the effects of grade uncertainty in open-pit mines and introduced 
different methodologies (Dimitrakopoulos, 2011). Dowd (1994) presented a risk-based algorithm for 
surface mine planning. For different variables such as commodity price, processing cost, mining cost, 
investment required, grade and tonnages a predefined distribution function is implemented. Several types 
of schedules are generated for a number of realizations of the grades. The result of this methodology is 
various schedules that accounts for grade uncertainty. Simulated ore-bodies are utilized by Ravenscroft 
(1992) and Koushavand and Askari-Nasab (2009) to show the influence of the grade uncertainty on 
production scheduling. Ramazan and Dimitrakopoulos (2004) used a mixed-integer linear programming 
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(MILP) model to maximize NPV for each realization. Then, the probability of extraction of a block at 
each period is calculated. These probabilities are the input of a second stage of the optimization to have 
one schedule at the end. Dimitrakopoulos and Ramazan (2008) presented a linear integer programming 
(LIP) model for generating optimal production schedules. This model considers multiple realizations of 
the block model and defines a penalty function that is the cost of deviation from the target production. 
This cost is calculated based on the geological risk discount rate which is the discounted unit cost of 
deviation from target production. A linear programming is used to maximize a new function that is NPV 
less penalty costs. 

Otherwise, a few numbers of authors have considered geological uncertainty in underground mining. 
Vargas et al. (2014) developed a tool that took geological uncertainty into account by using a set of 
conditional simulations of the mineral grades and defining the economic envelope in a massive 
underground mine. One of the main steps involved in the optimization of underground mines is 
determining a mining outline and inventory. The open-pit corollary to this is open-pit optimization, which 
is completed with algorithms such as Lerchs and Grossmann (1965). For optimization of block-caving 
scheduling, most of researchers have used mathematical programming; Linear Programming (LP), 
Mixed-Integer Linear Programming (MILP), and Quadratic programming (QP). LP is the simplest one in 
modelling and solving. Table 1shows some of the applied mathematical methodologies in block-caving 
production scheduling. 

This paper will introduce a method in which the best level for initializing extraction according to the 
maximum discounted ore profit and grade uncertainty is found. Several realizations are modelled by using 
geostatistical studies to consider the grade uncertainty. The production schedule is generated for the given 
advancement direction and in presence of some constraints at the chosen level.  

2. Methodology, assumption and notations

A geological block model represents the ore-body. Numerical data are used to represent each block’s 
attributes, such as tonnage, density, grade, rock type, elevation, and profit data. Fig. 1 shows the summary 
of the methodology.  

2.1. Geological Uncertainty 

GSLIB (Deutsch and Journel, 1998) is used for geostatistical modeling in this paper. The first step for a 
geostatistical study is defining different rock types based on the drillhole data. In this study with assuming 
stationary domain within each rock type, the geostatistical modeling is performed for each of the rock 
types separately. The following steps are implemented for generating geological model:  

1. Declustering
2. Multivariate statistical analysis
3. Determining the principle direction of continuity
4. Transforming data to Gaussian units
5. Calculating the variogram
6. Simulation

First, declustering algorithm is used to adjust the variable distributions for each rock type to decrease the 
weight of clustered samples (declus program). Then, the correlation of the multivariate data is determined 
(scatplt program). To determine the principle directions of continuity, global kriging is performed using 
arbitrary variograms with high range. In the case of rock-type modeling, indicator kriging (ik3d program) 
and for the rock-property modeling simple kriging (kt3dn program) is used. Afterwards, the data is 
transformed to Gaussian units; in the case of univariate data, nscore and for multivariate data, ppmt 
programs are used to removes the correlation between the variables in each rock type (Barnett, 2015). 
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Table 1. Summary of applied mathematical methodologies in block-caving production scheduling (Khodayari and Pourrahimian, 2014)

Author Methodology Model’s objective(s) Features 

Song (1989) MILP Minimization of total mining cost LP: 
This method has been used most extensively and it 
can provide a mathematically provable optimum 
schedule. But straight LP lacks the flexibility to 
directly model complex underground operations 
which require integer decision variables. 
 
MILP: 
MILP could be used to provide a series of 
schedules which are marginally inferior to a 
provable optimum. Computational ease in solving 
an integer programming problem is dependent upon 
the formulation structure. It can provide a 
mathematically provable optimum schedule. The 
advantage that MILP has over simulation when 
used to generate sub-optimal schedules is that the 
gap between the MILP feasible solution and the 
relaxed LP solution provides a measure of solution 
quality. The drawback in using MILP is that it is 
often difficult to optimize large production systems 
by the branch-and-bound search method. 
 
QP: 
Block caving process is non-linear, so it would not 
be appropriate to use linear programming for 
production scheduling in block caving. But solving 
of this kind of problems could be a challenge 
because we must change them to LP and then solve 
them, so we have conversion errors. 

Chanda (1990) Simulation and  
MIP 

Minimization of the deviation in the average 
production grade between operating shifts 

Guest et al. (2000) LP Maximization of NPV 

Rubio (2002) MIP Two models (a) maximization of NPV and (b) 
optimization of the mine life 

Diering (2004) NLP Maximizing NPV for M periods and 
minimization of the deviation between a 
current draw profile and a defined target 

Rubio and Diering (2004) LP, IP, QP Maximization of NPV, optimization of draw 
profile, and minimization of the gap between 
long and short term planning 

Rahal et al. (2008) MILGP Minimizing deviation from the ideal draw 
profile while achieving a production target 

Weintraub et al. (2008) MIP Maximization of profit 

Smoljanovic et al. (2011) MILP Optimization of NPV and mining material 
handling system 

Parkinson (2012) IP Finding an optimal opening sequence in an 
automated manner 

Epstein et al. (2012) LP, IP Maximization of NPV 

Diering (2012) QP Objective tonnage (to optimize the shape of 
the cave) 

Pourrahimian et al. (2013) MILP Maximization of NPV 

Alonso-Ayuso et al. (2014) MILP Maximization of NPV with considering 
uncertainty in copper price 

Pourrahimian and Askari-Nasab 
 (2014) 

MILP Maximization of NPV, Determining the 
BHOD 
based on the optimization   
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Fig. 1. Schematic representation of the methodology 
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The experimental variograms are calculated by using the determined directions of continuity in the 
previous step and a model is fitted to these variograms in different directions. Varcalc, varmodel 
and varplot programs are utilized for this purpose respectively. In the case of rock-type modeling, 
indicator variogram and for the rock-property modeling traditional variogram is used.  

Rock-type model is generated for the chosen grid definition by using Sequential Indicator 
Simulation algorithm (SIS). Blocksis program is used for this purpose that generates multiple 
realizations of the rock-types.  

Rock-property model such as grade for each rock-type is generated by using sgsim program which 
is based on Sequential Gaussian Simulation algorithm (SGS). Then the data is back-transformed to 
original units by implementing backtr program or ppmt-b program for univariate and multivariate 
data respectively. In this step histplotsim program can be used for plotting cumulative distribution 
function (CDF) of each realization and reference distribution in one graph.     

Finally, the rock-property model is matched with the rock-type model by using mergemod 
program for each realization.  

At the next stage the best level described in determined for each of the simulated models. 

2.2. Placement of extraction level 

After importing the block model into the MATLAB (Math Works Inc, 2014), the ore tonnage and 
discounted profit for each level are calculated. Discounted profit of each ore block (Diering et al., 
2008)  and the total discounted profit of each level are calculated through Eqs. (1) and (2). 

PP
(1 )

blL d
ER

Dis
i

=
+

   (1) 

1
P P

n

L blL
bl

Dis Dis
=

= ∑   (2)  

Where PblLDis is the discounted profit of ore block bl in level L ; PLDis  is the total discounted 
profit of level L ; P is the profit of ore block bl  and its above ore blocks; i  is the discount rate; d  
is the distance between the center points of ore block bl in level L and its above blocks; ER is the 
extraction rate per period. The profit of each block is calculated by the following equations: 

 ( )TR G Ton R P SC= × × × −   (3) 

( )TC Ton MC PC= × +   (4) 

P TR TC= −   (5)                                                                
Where TR  is the total revenue; R  is the processing plant recovery; P is the price per tonne of the 
product; SC is the selling cost per tonne of material; G is the element grade; TC is the total cost; 
PC  is the processing plant cost and MC is the cost of mining per tonne of material. 

Then the tonnage-profit curve is plotted and the level with the highest profit is selected for starting 
the extraction.  

2.3. Making decision  

Two methods are introduced to select the best level among all the realizations: 

Method I) 

If the numbers of realizations are n , there are n block models with separate grade numbers for each 
of them. In this method just one block model is considered instead of n block models in which the 
average grade of all the block models for each cell is calculated. At the next step the best level of 



Malaki S. et al.                                           MOL Report Six © 2015 305- 6 
 
 
extraction is found for the created block model according to section 2.2. Fig. 2 shows the summary 
of the method. 

 
Fig. 2. Schematic representation of method I 

Method II) 

The best level for each realization is found according to section 2.2. The next step is calculating the 
probability of each selected levels based on the number of repetition. The level with the probability 
higher than p , is defined by planner, will be chosen for starting the extraction.     

2.4. Production Scheduling 

The actual outline of the ore-body for the best elevation is determined. Then the inside of the ore-
body outline is divided into rectangles based on the given information about the minimum mining 
footprint.  The minimum mining footprint (plan view) represents the minimum sized shape that will 
induce and sustain caving. This is similar to the hydraulic radius in a caving operation. It could be a 
rectangle, a circle, or any other shape. Finally the NPV through the objective function and 
subjected to a set of constraints is maximized. 

The notation of sets, indices and decision variables are as follows: 

2.4.1. Notation 

Indices  

{ }1,....,t T∈  Index for scheduling periods 

{ }1,...,bl BL∈  Index for big blocks 

Set  
blS  For each block, bl , there is a set blS defining the predecessor blocks that must 

be started prior to extraction of block bl . 

Decision Variables 

{ }, 0,1bl tB ∈  Binary variable controlling the precedence of the extraction of blocks. It is 
equal to one if the extraction of block bl  has started by or in period t; 
otherwise it is zero. 
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[ ],x 0,1bl t ∈  Continuous variable, representing the portion of block bl  to be extracted in 
period t. 

Parameters 

( )MCL Mt  Lower bound of mining capacity 

( )MCU Mt  Upper bound of mining capacity 

blg  The average grade of considered element in the ore portion of block bl  

(%)GL  Lower bound of the acceptable average head grade of considered element 

(%)GU  Upper bound of the acceptable average head grade of considered element 

( )ExtU Mt  Maximum possible extraction rate from each big block 

(%)i  Discount rate 

(%)R  Processing plant recovery 

($ )P tonne  Price per ton of the product 

($ )MC tonne  Cost of mining per ton of material 

($ )PC tonne  Cost of processing per ton of material 

($ )SC tonne  Selling Cost per ton of material 

L  An arbitrary big number 

T  Maximum number of scheduling periods 

BL  The number of big blocks in the model 
 

2.4.2. Objective function and constraints 

The objective function of the MILP formulation is to maximize the net present value (NPV) of the 
mining operation which depends on the value of the big blocks (based on distances between 
drawpoints and footprint size, the blocks are placed into bigger blocks.). The objective function, 
Eq. (6). is composed of the block profit value, discount rate, and a continuous decision variable that 
indicates the portion of a block, which is extracted in each period. The most profitable blocks will 
be chosen to be part of the production in order to maximize the NPV.       

,

1 1

Pr
(1 )

T BL
bl bl t

t
t bl

ofit x
Max

i= =

×
+∑∑                                                                                                           (6)            

Where Pr blofit is the profit value of the block bl which is equal to the summation of the blocks 
profit within the big blocks; and i the discount rate. 

The objective function is subject to the following constraints: 

Mining capacity: 

{ },
1

,    1,....,   
BL

t bl bl t t
bl

MCL Ton x MCU t T
=

≤ × ≤ ∀ ∈∑   (7) 
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These constraints ensure that the total tonnage of material extracted from big blocks in each period 
is within the acceptable range. The constraints are controlled by the continuous variable ,bl tx . 

Grade Blending: 

{ }
bl,

1

bl,
1

,   1,...,                       

BL

bl bl t
bl

t tBL

bl t
bl

g Ton x
GL GU t T

Ton x

=

=

× ×
≤ ≤ ∀ ∈

×

∑

∑
 (8) 

These constraints control the production’s average grade. 

Block Extraction Rate: 

{ } { }, ,     1,...,BL , t 1,...,T                                         bl bl t tTon x ExtU bl× ≤ ∀ ∈ ∈  (9) 

These constraints ensure that the extraction rate from each big block is less than or equal to the 
given maximum value. 

Binary Constraints: 

{ } { }, , ,    1,..., ,  1,...,  bl t bl tB L x bl BL t T≤ × ∀ ∈ ∈                                                                            (10) 

{ } { }, ,x ,    1,..., ,  1,...,bl t bl tB bl BL t T≤ ∀ ∈ ∈   (11) 

{ } { }, , 1 0,    1,..., ,  1,...,bl t bl tB B bl BL t T+− ≤ ∀ ∈ ∈   (12) 

Where ,bl tB is a Binary variable controlling the precedence of the extraction of blocks. It is equal to 
one if the extraction of block bl  has started by or in period t ; otherwise it is zero and L is an 
arbitrary big number. In these constraints every block has two variables (continuous and binary) in 
which constraints (10) and (11) ensure if the extraction of one block is started its binary variable 
should be one and otherwise it should be zero. Also Eq. (12) controls the fact that if the extraction 
of one block in period t has been started, so for the next period the extraction of that block is 
started. The results of these constraints is been used for the precedence constraint that the 
maximum number of active blocks is needed.  

Precedence Constraints: 

{ } { }, ,
1

,    ,    1,..., ,  1,...,   
n

bl
bl t k t

k
n Bl B k S bl BL t T

=

× ≤ ∈ ∀ ∈ ∈∑  (13) 

These constraints ensure that all the predecessor blocks of a given block bl have been started prior 
to the extraction of this block. 

For applying this constraint at first the adjacent blocks of each block is determined then by 
considering the extraction direction and determining the perpendicular line to it which crosses the 
center point of a given block, the adjacent blocks under this line have been specified which are the 
blocks that should be extracted before that given block. The formulas that have been used in 
finding the predecessor blocks of each block are described in the following equations:  

( )new bl new blY y m X x− = − −   (14) 

( )( ) ( )( )adj bl new bl adj bl new blD x x Y y y y X x= − − − − −  (15)                                       

Where m− is the slope of the perpendicular line to the mining direction; bly and blx are the 
coordinates of each big block in the extraction level; newX is an arbitrary coordinate and as a result 
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newY is calculated by Eq. (14). (perpendicular line crosses both the center point of each big block 
and a point with coordinates of ( newX , newY )). In Eq. (15). adjx and adjy are the coordinates of the 
adjacent blocks of each big block. By calculating D , the blocks with 0D < are below the 
perpendicular line and considered as the predecessors of a given big block. 

Reserve Constraints: 

{ },
1

1,    1,...,
T

bl t
t

x bl BL
=

= ∀ ∈∑  (16) 

In this formulation, all material inside of the big blocks should be extracted which is controlled by 
Eq. (16). 

3. Case study 

3.1. Grade Uncertainty 

Geostatistical study based on the drillholes data and according to what mentioned in section 2.2. is 
performed. The data is belonged to cupper grade, so it is a univariate data and multivariate 
statistical analysis to find the correlation between the variables is not needed. The initial inspection 
of drillholes locations demonstrated equally-spaced drillholes and as a result declustering algorithm 
is not implemented. 

The next step is grid definition for simulation. Distance between the grid nodes in each direction, 
the number of grid nodes in each direction and the coordinates of first grid node are important 
parameters for defining a grid. By considering all of these parameters the size of the grid is chosen 
according to  

Table 2. 
Table 2. Grid Definition for Geostatistical Study 

Direction Number of nodes Center coordinates of first node Grid Spacing 
Easting 45 145 10 

Northing 60 25 10 
Elevation 70 395 10 

The modeling has two parts: rock-type modeling and rock-property modeling. There are two types 
of blocks in this model: ore blocks (18%) and waste blocks (82%). Rock-property modeling should 
be implemented for both rock-types (ore and waste) separately. 

3.1.1. Rock-type Modeling 

The principal directions of continuity are found using indicator kriging based on two categories; 0 
(waste) and 1 (ore). The azimuths of major and minor directions were chosen to be 0 and 90 
degrees (Fig. 3) that are used for variogram calculation at the next step. 

Afterwards indicator variograms are calculated and a theoretical variogram model is fitted with 
three structures, nugget effect of 0 and sill of 0.14 (Fig. 4). 

At the next step, 20 realizations for rock-types are generated using Sequential Indicator Simulation 
(SIS) algorithm. Fig. 5 illustrates the results for the first realization. 
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Fig. 3. Plan view of maximum direction of continuity for rock-types at elevation 40  

 

  

 
Fig. 4. Experimental directional variograms (dots) and the fitted variogram models (solid lines) for rock-type, 

distance units in meter 
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Fig. 5. Plan view of rock-type simulation for first realization at elevation 40 

3.1.2. Rock-Property Modeling 

As in this case all the cupper grades related to waste blocks were zero, rock-property modeling is 
unnecessary to be performed for the waste and just zero values equal to grid-size are considered for 
waste modeling. 

For ore modeling, the principal directions of continuity are extracted by doing simple kriging with 
the help of arbitrary variograms. As it can be seen in Fig. 6 the azimuth of 90° (major) and zero 
(minor) in horizontal direction are selected for the following variogram calculation. 

 
Fig. 6. Plan view of maximum direction of continuity for cupper grade at elevation 40 

At the next step the cupper grades should be transformed to Gaussian space. Then traditional 
variogram calculation and modeling with three structure and nugget effect of 0.1 are done for the 
cupper grade and the results are demonstrated in the Fig. 7.  
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Fig. 7. Experimental directional variograms (dots) and the fitted variogram models (solid lines) for Cu grade 

of ore blocks, distance units in meter 

At the next step, 20 realizations for cupper grade are generated using Sequential Gaussian 
Simulation (SGS) algorithms. The SGS needs a back-transformation to original units that the 
results are demonstrated in Fig. 8.  



Malaki S. et al.                                           MOL Report Six © 2015 305- 13 
 
 

 
Fig. 8. Plan view of Cu grade simulation for first realization at elevation 40 

3.1.3. Merging rock-type and rock-property models 

The next step is merging rock-type model with rock-property model. The plan view of final 
simulation for first realization is shown in Fig. 9. 

 
Fig. 9. Final simulation at elevation 40 and realization 1 

Fig. 10 shows the variogram reproduction of rock-property (ore) simulation (left) and rock-type 
simulation (right) in three major, minor and vertical directions. Since the variogram is reproduced 
quite reasonably, the generated realizations are considered representative of the grade uncertainty. 
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Fig. 10. Variogram reproduction at Gaussian units of cupper grade (left) and rock-type (right) realizations 

(gray lines), the reference variogram model (red line) and the average variogram from realizations (blue line) 
in three directions. 

3.2. Placement of extraction level 

For each block model, at the first step the discounted profit and tonnage of the ore blocks above 
each ore block in each level is calculated and the profit-tonnage curve is plotted which leads to 
selecting the best level for starting extraction based on the maximum profit (Fig. 11).   
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Fig. 11. Tonnage-Profit curve against the levels for one of the simulated block models 

This method has been implemented for all the realizations (Table 3). The average grade of all 
realizations is 1.4794 that is quite near the average grade of original data which is 1.4759.  

 Table 3. Best level for a number of realizations 

Realization  Average grade Best level Ore Tonnage (Mt) 
Ore discounted 

profit ($B) 

1 1.4784 48 28.884  123.907 

2 1.4873 46 24.108 109.964 

3 1.4845 46 24.964 115.114 

4 1.4648 49 25.015 110.174 

5 1.4649 47 25.300 112.752 

6 1.4629 48 26.910 116.964 

7 1.4607 45 25.188 109.274 

8 1.4986 47 24.284 108.451 

9 1.4901 46 23.892 108.673 

10 1.4831 46 25.452 113.599 

11 1.4779 47 25.930 116.430 

12 1.4822 46 25.130 110.634 

13 1.4921 49 26.630 116.611 

14 1.4817 47 24.012 109.150 

15 1.4747 47 22.920 101.623 

16 1.4798 46 25.636 117.686 

17 1.4942 46 26.642 120.052 

18 1.4872 46 23.746 110.302 

19 1.4767 47 24.276 107.577 

20 1.4664 47 26.210 114.670 
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3.3. Making Decision 

Method II is implemented to select the best level. The probability of each level from Table 3 is 
calculated. Level 46 with the highest probability is selected for the placement of extraction level 
and for production scheduling at the next step. 

3.4. Production Scheduling 

The proposed mathematical model will be used in further studies to generate the production 
schedule for the level 46 to maximize the NPV. 

4. Conclusion 

Geological uncertainty has been utilized recently in open-pit mining, but less studied in 
underground mining especially in block caving in which revision in production plan is not easy 
after caving (Vargas et al., 2014). This methodology is able to find the best extraction horizon 
placement under grade uncertainty. Also it will be able to implement mathematical programming 
through defining an optimization model in MATLAB and running it by CPLEX in the future 
studies.  

The results related to the profit of each level have been compared with each other thorough the 
profit-tonnage curve and as a consequence, the best level is recommended for initializing the 
extraction from all the realizations. Then by optimizing the proposed model maximum NPV will be 
obtained for the selected level. 
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