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Abstract 

Planning block-caving operations poses complexities in different areas such as safety, 
environment, ground control, and production scheduling. Production schedules that provide 
optimal operating strategies while meeting technical constraints are an inseparable part of mining 
operations. Applications of mathematical programming in mine planning have proven very 
effective in supporting decisions on sequencing the extraction of materials in mines. The objective 
of this paper is to develop a practical optimization framework for production scheduling of block-
caving operations. A mixed-integer linear programming (MILP) formulation is developed, 
implemented and verified in the TOMLAB/CPLEX environment. In this formulation, the slices 
within each draw column are aggregated into selective units using a hierarchical clustering 
algorithm and the mining reserve is computed as a result of the optimal production schedule for 
each advancement direction. This paper presents a model application of a production schedule for 
102 drawpoints with 3,457 slices over 14 periods. The results show in order to obtain the maximum 
net present value, only 88% of the reserve is extracted.  Also, the solving time for the presented 
method is 78 times faster than method without slice aggregation.  
 

1. Introduction 

Production scheduling of any mining system has an enormous effect on the operation’s economics. 
A production schedule must provide a mining sequence that takes into account the physical and 
technical constraints and, to the extent possible, meets the demanded quantities of each raw ore 
type at each time period throughout the mine life. As the mining industry is faced with more 
marginal resources, it is becoming essential to generate production schedules which will provide 
optimal operating strategies while meeting technical and environmental constraints. 

Most of the common production scheduling methods in the industry rely only on manual planning 
methods or computer software based on heuristic algorithms. These methods cannot guarantee the 
optimal solution. They lead to mine schedules that are not the optimal global solution 
(Pourrahimian et al., 2012a). On the other hand, the height of draw (HOD) is determined before 
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production scheduling without considering the advancement direction. Improvements in computing 
power and scheduling algorithms over the past years have allowed planning engineers to develop 
models to schedule more complex mining systems (Alford et al., 2007; Caccetta, 2007). 
Consequently, it is now possible to formulate a mixed-integer linear programming (MILP) 
scheduling model that captures the essential components of a caving mine to generate a robust, 
practical, near-optimal schedule. The caving industry is now moving towards the next generation of 
caving geometries and scenarios: super caves (Chitombo, 2010). This requires a new approach to 
looking at scheduling block-cave operations.  

The objective of this study is to develop, implement, and verify a theoretical optimization 
framework based on a MILP model for block-cave long-term production scheduling. The objective 
of the theoretical framework is to maximize the net present value (NPV) of the mining operation 
and determine the best height of draw (BHOD), while the mine planner has control over the 
planning parameters. The planning parameters considered in this study are: (i) mining capacity, (ii) 
draw rate, (iii) mining precedence, (iv) maximum number of active drawpoints, (v) number of new 
drawpoints to be opened in each period, (vi) continuous mining, and (vii) reserve. The production 
scheduler defines the opening and closing time of each drawpoint, the draw rate from each 
drawpoint, the number of new drawpoints that need to be constructed, the sequence of extraction 
from the drawpoints, and the BHOD for each draw column. 

The resulting formulation and methodology generate a practical, long-term block-cave schedule in 
a reasonable CPU time and compute the mining reserve based on the cave advancement direction 
as a result of the optimal production schedule. 

The following general workflow for a block-cave operation is proposed in this research: 

1. The slices within each draw column are aggregated into selective units using a modified 
hierarchical clustering algorithm developed based on an algorithm presented by Tabesh 
and Askari-Nasab (2011).  Aggregation is necessary to reduce the number of variables, 
especially binary variables in the MILP formulation, to make it tractable and generate 
near-optimal realistic schedules in a reasonable CPU time. 

2. The optimal life-of-mine multi-period schedule is generated for the clustered slices.  

The optimization formulation is implemented in the TOMLAB/CPLEX (Holmstrom, 2011) 
environment. A scheduling case study with real mine data is carried out over 14 periods to verify 
the MILP model.  

Pourrahimian (2013)  used a multi-step method to overcome the size problem of the mathematical 
programming model. In his method, the problem is first solved at the cluster level. At the cluster 
level, the draw columns are aggregated into practical scheduling units using a hierarchical 
clustering algorithm. Then, the result of the cluster-level formulation is used to reduce the number 
of variables in the drawpoint-level formulation. Finally, using the result of the drawpoint-level 
formulation, the problem is solved at the drawpoint-and-slice level. The combination of the method 
presented here and the multi-step approch (Pourrahimian, 2013) can solve large-scale problems in 
reasonable CPU time. The main contributions of the paper are (i) proposition of using a hierarchcal 
clustering algorithm to aggregate slices within each draw column into selective units, (ii) 
introduction of the concept of multi-directional clustering in which the result of the drawpoints 
aggregation (horizontal clustering) and the slices aggegation (vertical clustering) are used to 
production scheduling of block-caving operations, and (iii) computation of the mining reserve as a 
result of the optimal production schedule for each advancement direction. 

The rest of the paper is organised as follows: the section on summary of literature review 
summarizes the literature on the block-cave production scheduling problem. Then the problem 
definition, methodology and assumptions are discussed. Afterwards, the problem’s MILP 
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formulation is explained and a case study about implementing the MILP model is presented. 
Finally, the last section presents the conclusions followed by a reference list. 

2. Summary of literature review 

In spite of the difficulties associated with applying mathematical programming to production 
scheduling in underground mines, the authors have attempted to develop methodologies to 
optimize production schedules. These difficulties could be due to the complicated nature of 
underground mining (Kuchta et al., 2004; Topal, 2008). On the other hand, there is a wide range of 
underground mining strategies that makes it difficult to develop a general framework for 
optimizing production scheduling in underground mines (Alford et al., 2007). Newman et al. 
(2010) presented a comprehensive review of operations research in mine planning. They 
summarized authors’ attempts to use different methods to develop methodologies for optimizing 
production scheduling in underground and surface mines using different methods. 

The manual draw charts were used to avoid early dilution entry at the beginning of block-caving 
(Rubio, 2006). Over time, different methods and objective functions have been used to present a 
good production schedule and optimized outline for block caving. Chanda (1990) implemented an 
algorithm to write daily orders and developed the interface between mathematical programming 
and simulation by integrating the two into a short-term planning system for a continuous block-
cave. The objective function was defined to minimize the fluctuation in the average grade drawn 
between shifts. The production schedule given by the integer program was used as input to a 
simulation model that considered constraints such as production capacity. Winkler and Griffin 
(1998) described a production-scheduling model to determine the amount of ore to mine in each 
period from each production block. They used linear programming to solve a corresponding single-
period model, and simulation to fix the current period’s decisions and optimize over the successive 
period. Song (1989) also attempted to account for material movement within the panel by using 
simulation with mathematical programming. He used simulation to determine the effect of undercut 
parameters, drawpoint spacing, caving probability, and drift stability on production. A MILP 
formulation was then developed using regression equations for the restrictions revealed within the 
simulation study. Guest et al. (2000) applied mathematical programming to long-term scheduling 
in block-caving. In this case, the objective function was explicitly defined to maximize draw-
control behavior. Rubio (2002) developed a methodology that would enable mine planners to 
compute production schedules in block-cave mining. He proposed new production process 
integration and formulated two main planning concepts as potential goals to optimize the long-term 
planning process, thereby maximizing the NPV and mine life. Rahal et al. (2003) described a 
mixed-integer goal program. The model had the objective of minimizing the deviation from the 
ideal draw. This algorithm assumes that the optimal draw strategy is known.  The authors 
developed life-of-mine draw profiles for notional scenarios and showed that by using the results 
from their integer program, they greatly reduced deviation from ideal drawpoint depletion rates 
while adhering to a production target. Diering (2004) presented a non-linear optimization method 
to minimize the deviation between a current draw profile and the target defined by the mine 
planner. He emphasized that this algorithm could also be used to link the short-term plan with the 
long-term plan. The long-term plan is represented by a set of surfaces that are used as a target to be 
achieved based on the current extraction profile when running the short-term plans. Rubio and 
Diering (2004) described the application of mathematical programming to formulate optimization 
problems in block-cave production planning. They formulated two main planning strategies: 
maximization of NPV and maximization of mine life. They used the operational constraints 
presented by Rubio (2002). Weintraub et al. (2008) developed and successfully used MIP models 
for El Teniente, a large Chilean block-caving mine. They used a priori and a posteriori aggregation 
procedures to reduce the model size in their model. Parkinson (2012) developed three integer 
programming models: Basic, Malkin, and 2Cone. All of the models share three basic constraints. 
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The start-once constraint ensures that each drawpoint is opened once and only once. The global-
capacity constraint ensures that the number of active drawpoints does not exceedthe downstream-
processing capacity. The last constraint, that the opened drawpoints must form a single, contiguous 
group, or cave, is the source of the model variations. Pourrahimian (2013) presented a theoretical 
optimization framework based on a MILP model for block-cave long-term production scheduling. 
He introduced three MILP formulations for three levels of problem resolution: (i) cluster level, (ii) 
drawpoint level, and (iii) drawpoint-and-slice level. These formulations can be used in two ways: 
(i) as a single-step method in which each of the formulations is used independently; (ii) as a multi-
step method in which the solution of each step is used to reduce the number of variables in the next 
level and consequently to generate a practical block-cave schedule in a reasonable amount of CPU 
runtime for large-scale problems. 

Although simulation and heuristics are able to handle non-linear relationships and effects as a part 
of the scheduling procedure, they cannot guarantee the optimal solution. Applying mathematical 
programming models such as linear programming (LP) and MILP with exact solution methods for 
optimization has proved to be robust. Solving these models with exact solution methods, results in 
solutions within known limits of optimality. As the solution gets closer to optimality, production 
schedules generate higher NPV than those obtained from heuristic optimization methods. The 
literature has shown that both surface and underground mining systems can adapt to formulations 
as a set of linear constraints. This has resulted in extensive research on the application of 
mathematical programming models to the long-term production planning problem. 

The inherent difficulty in applying these models to the long-term production planning problem is 
that they result in large-scale optimization problems containing many binary and continuous 
variables. These are difficult to solve with the current available computing software and hardware, 
and may require lengthy solution times. On the other hand, defining the draw height of each 
drawpoint before optimization, and using this height for optimization without considering the 
advancement direction, lead to mine schedules that are not the optimal global solution. These 
limitations can affect the viability as well as other aspects of mining projects, emphasizing the need 
for optimization tools that take into consideration these deficiencies. 

This paper will introduce a MILP mine-scheduling framework for block-caving in which solving a 
large-scale problem in a reasonable CPU time and optimal mining reserve based on advancement 
direction will be addressed to generate a near-optimal production schedule with higher NPV. 

3. Problem definition, methodology, and assumption 

The production schedule of a block-cave mine is subject to a variety of physical and economic 
constraints. The production schedule defines the amount of the material to be mined from the 
drawpoints in every period of production, the opening and closing time of each drawpoint, the draw 
rate from each drawpoint, the number of new drawpoints that need to be constructed, the sequence 
of extraction from the drawpoints to support a given production target, and the best height of draw 
to achieve a given planning objective. 

Several assumptions are used in the proposed MILP formulation. The ore-body is represented by a 
geological block model. The column of rock above each drawpoint, which is referred as a draw 
column, is vertical. Each draw column is divided into slices that match the vertical spacing of the 
geological block model. Numerical data are used to represent each slice’s ore-body attributes, such 
as tonnage, density, grade of elements, elevation, percentage of dilution, and economic data. These 
attributes vary by slice throughout the height of the draw column (Fig 1). It is assumed that the 
physical layout of the production level is offset herringbone (Brown, 2003). There is selective 
mining, meaning that in order to maximize the NPV, all the material in the draw column or some 
part of that can be extracted. In other words, the mining reserve will be computed as a result of the 
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optimal production schedule. Extraction precedence for drawpoints and clusters is used to control 
the horizontal and vertical mining advancement direction. 

 

Fig 1. Required steps for block-cave production scheduling using the developed MILP model 

Fig 1 shows the workflow that has to be followed to schedule a block-cave mine using the 
developed MILP model. The developed MILP model uses PCBC’s (GEOVIA-Dassault, 2012) slice 
file as input. The first step is to create a block model in which each block represents an attribute of 
the geological deposit. The second step is to create a slice file. Afterwards, slices within each draw 
column are aggregated based on the similarity of the slices. The similarity index is defined based 
on economic value, dilution percentage, and physical location. All the clustering and optimization 
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steps are carried out by a prototype software developed in-house for drawpoint scheduling in 
block-caving (DSBC) (Pourrahimian, 2013). 

In practice, formulating a real-size mine production planning problem by including all the slices as 
integer variables will exceed the capacity of the current commercial mathematical optimization 
solvers. An efficient way of overcoming the large number of decision variables and constraints is 
to apply a clustering technique. Clustering can be referred to as the task of grouping similar entities 
together so that maximum intra-cluster similarity and inter-cluster dissimilarity are achieved. 

Various methods of aggregation have been used to reduce the number of integer variables that are 
required to formulate the mine-planning problem with mathematical programming (Epstein et al., 
2003; Newman and Kuchta, 2007; Weintraub et al., 2008; Askari-Nasab et al., 2011; Tabesh and 
Askari-Nasab, 2011; Pourrahimian et al., 2012a; Pourrahimian, 2013). 

In order to reduce the number of binary variables in the formulation presented here, the algorithm 
presented by Tabesh and Askari-Nasab (2011) was modified to aggregate slices within each draw 
column. The general procedure of the algorithm is as follows: 

1. Define the maximum number of required clusters and the maximum number of allowed 
slices within each cluster. 

2. Each slice is considered as a cluster. The similarities between clusters are the same as the 
similarities between the objects they contain. 

3. Similarity values are calculated. 
4. The most similar pair of clusters is merged into a single cluster. 
5. The similarity between the new cluster and the rest of the clusters is calculated. 
6. Steps (2) and (3) are repeated until the maximum number of clusters is reached or there is 

no pair of clusters to merge because of the maximum number of allowed slices within 
each cluster. 

Similarity value between slices i and j , ijS , is calculated by  

1
( ) ( ) ( )Dis Ev Dilij W W W

ij ij ij

S
Dis EV Dil

=
× ×

 (1) 

Where ijDis represents the normalized distance value between slices i and j , ijEV represents the 

normalized economic value difference between slices i and j , and ijDil represents the normalized 

dilution difference between slices i and j . DisW , EvW , and DilW  are weighting factors for distance, 
economic value, and dilution, respectively. The weights are defined by the mine planner. 

The economic value of each cluster (CLSEV) is equal to the summation of the economic value of 
the slices within the cluster and the costs incurred in mining. The CLSEV is a constant value for 
each cluster. 

According to the advancement direction, the precedence between drawpoints is defined. For each 
drawpoint d  there is a set dS which defines the predecessor drawpoints among the adjacent 
drawpoints that must be started before drawpoint d  is extracted. The set dS  is created in each 
advancement direction based on the presented method by Pourrahimian et al. (2012a; 2012b) 
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4. MILP model for block-cave production scheduling 

The MILP model for block-cave production scheduling optimization is explained in this section. 
The notation used to formulate the problem is classified as indices, parameters, sets, and decision 
variables. To solve the problem using the developed MILP model, one continuous decision variable 
and one binary variable for clusters and two binary variables for drawpoints are employed. The 
continuous decision variable indicates the portion of extraction from each cluster in each period. 
The binary variables control the number of active drawpoints, precedence of extraction between 
drawpoints, the opening and closing time of each drawpoint, the extraction rate from each 
drawpoint, the number of new drawpoints that need to be constructed in each period, and 
precedence between clusters. 

4.1. Notation 

4.1.1. Indices 

{1,..., }cl CL∈  Index for clusters. 

{1,..., }e E∈  Index for elements of interest in each cluster. 

l  Index for a drawpoint belonging to set dS . 

n  
Index for a cluster belonging to set 

dclS . 

p  
Index for a cluster belonging to set 

dlclS . 

q  
Index for a cluster belonging to set 

clS . 

{1,...., }t T∈  Index for scheduling periods. 

4.1.2. Parameters 

CL Maximum number of clusters in the model. 

clCLSEV  Economic value of cluster cl . 

D  Maximum number of drawpoints in the model. 

,d tDR  Minimum possible draw rate of drawpoint d in period t . 

,d tDR  Maximum possible draw rate of drawpoint d in period t . 

i  Discount rate. 

eclG  Average grade of element e in the ore portion of cluster cl .  

,e tG  Upper limit of the acceptable average head grade of element e in period t . 

,e tG  Lower limit of the acceptable average head grade of element e in period t . 
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tM  Lower limit of mining capacity in period t .  

tM  Upper limit of mining capacity in period t . 

,Ad tN  Maximum allowable number of active drawpoints in period t . 

dNcl  Number of clusters within the draw column associated with drawpoint d . 

,Nd tN  Lower limit for the number of new drawpoints, the extraction from which 
can start in period t . 

,Nd tN  Upper limit for the number of new drawpoints, the extraction from which 
can start in period t . 

T  Maximum number of scheduling periods. 

clTon  Total tonnage of material within cluster cl .  

dTon  Total tonnage of material within the draw column associated with 
drawpoint d . 

hdTon  Tonnage of material related to the minimum height of draw h  within the 
draw column associated with drawpoint d . 

4.1.3. Sets 
dS  For each drawpoint d , there is a set dS defining the predecessor 

drawpoints that must be started prior to extracting drawpoint d . 

dclS  For each drawpoint d , there is a set dclS defining the clusters in the draw 
column associated with drawpoint d . 

dlclS  For each drawpoint d , there is a set dlclS defining the lowest cluster within 
the draw column associated with drawpoint d . 

clS  For each cluster cl , there is a set clS defining the predecessor clusters that 
must be extracted prior to extracting cluster cl . 

4.1.4. Decision variables 

{ }, 0,1cl tB ∈  Binary variable controlling the precedence of the extraction of clusters. It is 
equal to 1 if the extraction of cluster cl  has started by or in period t ; 
otherwise it is 0. 

{ }, 0,1d tC ∈  Binary variable controlling the closing period of drawpoints. It is equal to 1 
if the extraction of drawpoint d  has finished by or in period t ; otherwise it 
is 0. 

{ }, 0,1d tE ∈  Binary variable controlling the starting period of drawpoints and precedence 
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of extraction of drawpoints. It is equal to 1 if the extraction of drawpoint d  
has started by or in period t ; otherwise it is 0. 

[ ], 0,1cl tX ∈  Continuous decision variable representing the portion of cluster cl  to be 
extracted in period t . 

 

Objective function 

( ) ,
1 1

Maximize   
1

T CL
cl

cl tt
t cl

CLSEV X
i= =

 
× 

 + 
∑∑  (2) 

Constraints 

{ },
1
( ) 1,...,

CL

tt cl cl t
cl

M Ton X M t T
=

≤ × ≤ ∀ ∈∑  (3) 

( )( ) { } { }, ,
1

0 1,..., , 1,...,
CL

e tcl ecl cl t
cl

Ton G G X t T e E
=

× − × ≤ ∀ ∈ ∈∑  (4) 

( )( ) { } { }, ,
1

0 1,..., , 1,...,
CL

e tcl ecl cl t
cl

Ton G G X t T e E
=

× − × ≤ ∀ ∈ ∈∑  (5) 

{ }, , 0 1,..., , {1,..., }, dlcl
p t d tX E t T d D p S− ≤ ∀ ∈ ∈ ∈  (6) 

{ }, ,( 1) 0 1,..., , {1,..., }d t d tE E t T d D+− ≤ ∀ ∈ ∈  (7) 

{ }
{ }

, , , 1,..., , {1,..., },

max
minimum draw rate

d cl
d t d t n t

d

E C L X t T d D n S

Ton
L

− ≤ × ∀ ∈ ∈ ∈

 
≥  
 

∑
 (8) 

{ }, ,( 1) 0 1,..., , {1,..., }d t d tC C t T d D+− ≤ ∀ ∈ ∈  (9) 

{ }, , ,
1
( ) 1,...,

D

d t d t Ad t
d

E C N t T
=

− ≤ ∀ ∈∑  (10) 

{ }, , 0 {1,..., }, 1,..., , d
d t l tE E d D t T l S− ≤ ∀ ∈ ∈ ∈

 
(11) 

{ }, ,
1

0 {1,..., }, 1,...,
t

cl j cl t
j

X B cl CL t T
=

− ≤ ∀ ∈ ∈∑  (12) 
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{ }, ,
1

0 {1,..., }, 1,..., ,
t

cl
cl t q j

j
B X cl CL t T q S

=

− ≤ ∀ ∈ ∈ ∈∑  (13) 

{ }, ,( 1) 0 {1,..., }, 1,...,cl t cl tB B cl CL t T+− ≤ ∀ ∈ ∈  (14) 

{ },
, , {1,..., }, 1,..., ,n t dcl

d t d t
d

X
E C d D t T n S

Ncl
≤ − ∀ ∈ ∈ ∈∑  (15) 

,, , ,( 1)
1 1

{2,..., }
D D

Nd tNd t d t d t
d d

N E E N t T−
= =

≤ − ≤ ∀ ∈∑ ∑
 

(16) 

,1 ,1
1

D

d Ad
d

E N
=

≤∑  (17) 

( ) ( ) { },,, , ,. . {1,..., }, 1,..., , dcl
d td td t d t n n tE C DR Ton X DR d D t T n S− ≤ ≤ ∀ ∈ ∈ ∈∑  (18) 

( ) { },
1

. {1,..., }, 1,..., ,
T

dcl
hd n n t d

t
Ton Ton X Ton d D t T n S

=

≤ ≤ ∀ ∈ ∈ ∈∑∑  (19) 

Profit from mining a drawpoint depends on the value of the clusters and the costs incurred in 
mining. The objective function, equation (2), is composed of the CLSEV, discount rate, and a 
continuous decision variable that indicates the portion of the cluster extracted in each period. The 
objective function seeks to mine clusters with higher economic value earlier than other clusters. 

The constraints are presented by equations (3) to (19). Equation (3) represents the mining capacity 
which ensures that the total tonnage of material extracted from clusters in each period is within the 
acceptable range that allows flexibility for potential operational variations. The constraints are 
controlled by the continuous variable ,cl tX . There is one constraint per period. 

Equations (4) and (5) control the production’s average grade. They force the mining system to 
achieve the desired grade. The average grade of the element of interest has to be within the 
acceptable range and between the certain values.  

Each draw column is divided into slices. Then, slices are aggregated based on the presented 
clustering method. The lowest cluster in each draw column controls the starting period of 
extraction from the associated drawpoint. This means that the extraction from the draw column 
associated with drawpoint d  is started by the extraction from the relevant lowest cluster. Equation 
(6) controls this concept and forces variable ,d tE  to change to 1 when a portion of the lowest 

cluster of the draw column is extracted in period t . Equation (7) ensures that when variable ,d tE  
changes to 1, it remains 1 until the end of the mine life. 

When the extraction of the last portion of a cluster is finished in period t , extraction of the cluster 
above can start in period t  or 1t + . In other words, the extraction of a cluster can start if the cluster 
below has been totally extracted. If the extraction of a cluster is not started after finishing the 
extraction of the cluster below in period t or 1t + , the relevant drawpoint must be closed. The 
concept is applied using equation (8). This ensures that when drawpoint d  is open, at least a 
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portion of one of the clusters within the draw column associated with drawpoint d  is extracted. 
This means extraction must be continuous; otherwise, the drawpoint will be closed. Equation (9)
ensures that when variable ,d tC  changes to 1, it remains 1 until the end of the mine life. 

As mentioned, when variables ,d tE  and ,d tC  change to 1, they remain 1 until the end of the mine 
life. This helps us to control the maximum number of active drawpoints in each period using 
equation (10).  

The mining precedence is controlled in vertical and horizontal directions. The precedence between 
drawpoints is controlled in a horizontal direction while the precedence between clusters is 
controlled in a vertical direction. Equation (11) ensures that all drawpoints belonging to the 
relevant set, dS , are started before drawpoint d  is extracted. This set is defined based on the 
selected mining advancement direction. The set can be empty, which means the considered 
drawpoint can be extracted in any time period in the schedule. Equation (11) also ensures that only 
the set of the immediate predecessor drawpoints needs to start prior to starting the drawpoint under 
consideration. 

Extraction of cluster cl  can be started if the cluster below it has been totally extracted. For each 
cluster within the draw column except the lowest, there is a set clS defining the predecessor cluster 
that must be extracted prior to the extraction of cluster cl . The extraction precedence of the 
clusters within each draw column is controlled by equations (12), (13), and (14). Equation (12) 
forces variable ,cl tB  to change to 1 if extraction from cluster cl  is started in period t . Equation 

(13) ensures that variable ,cl tB can change to 1 only if the cluster below it has been extracted 

totally. In other words, this ensures that the extraction of the slice belonging to the relevant set, clS , 
has been finished prior to the extraction of cluster cl . Equation (14) ensures that when variable

,cl tB  changes to 1, it remains 1 until the end of the mine life. Equation (15) guarantees that cluster 
cl  is extracted when the relevant drawpoint is active. 

The drawpoint opening is controlled by the variable, ,d tE , which takes a value of 1 from the 
opening period to the end of the mine life. From period two to the end of the mine life, the 
difference between the summation of opened drawpoints until and including period t , and the 
summation of opened drawpoints until and including previous period 1t − , indicates the number of 
new drawpoints that need to be opened in each period. Equation (16) ensures that the number of 
new drawpoints opened in each period except period one is within the acceptable range. At the 
beginning and in period one, the number of new drawpoints is equal to the maximum number of 
active drawpoints, equation (17). 

Equation (18) ensures that the draw rate from each drawpoint is within the desired range in each 
period. Equation (18) imposes upper and lower bounds for the draw rate. When drawpoint d  is not 
active, ( ), ,d t d tE C−  is equal to zero and this relaxes the lower bound of the equation.  

In this formulation the mining reserve is computed as a result of the optimal production schedule. 
Equation (19) ensures that the amount of the extracted material from drawpoint d  is equal to or 
less than the total tonnage of the material within the draw column associated with drawpoint d . 
The lower bound of equation (19) is the tonnage related to the minimum height of the draw in each 
draw column associated with drawpoint d . The minimum height of the draw is defined by the 
mine planner. 
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5. Solving the optimization problem 

The proposed MILP model has been developed, implemented, and tested in the TOMLAB/CPLEX 
environment (Holmstrom, 2011). A prototype software with a graphical user interface has been 
developed in-house (DSBC) in the MATLAB environment. DSBC integrates all the steps of the 
optimization including setting up the input parameters, clustering, creating the objective function 
and constraints, and calling the CPLEX optimization engine in one environment. 

Using a branch-and-bound algorithm to solve MILP problem formulations guarantees an optimal 
solution if the algorithm is run to completion. We have used the gap tolerance (EPGAP) as an 
optimization termination criterion. The gap tolerance sets an absolute tolerance on the gap between 
the best integer objective and the objective of the best node remaining. 

The application of the model was implemented on a Dell Precision T7500 computer at 2.7 GHz, 
with 24GB of RAM. The goal was to maximize the NPV at a discount rate of 12% and determine 
the mining reserve as a result of the optimal production schedule, while assuring that all constraints 
were satisfied during the mine-life. 

6. Case study: implementation of MILP model 

The performance of the proposed model is analyzed based on NPV, mining production, and 
practicality of the generated schedules. A real data set containing 102 drawpoints and 3,470 slices 
with the slice height of 10 meters is considered. The minimum and maximum numbers of slices 
within draw columns are 33 and 36, respectively. Fig 2 illustrates a plan view of the drawpoint 
configuration based on the relevant coordinates and distance between the centre-lines of draw 
columns. Fig 3 illustrates a 3D view of the draw columns. The total tonnage of available material is 
22.5 Mt. The tonnage of draw columns varies from 203.5 kt to 355.5 kt. The deposit is scheduled 
over 14 periods. 

To aggregate the slices within each draw column, the modified clustering method was applied. The 
weight factors of the distance, economic value, and dilution were set to 5, 3, and 3, respectively. 
The maximum number of slices in each cluster could not be more than five. One-thousand clusters 
were created based on the presented algorithm. Fig 4 illustrates examples of grade distribution 
within two different draw columns. 

A capacity of 900 kt/yr is considered as the upper bound on the mining capacity. The maximum 
number of active drawpoints in each period was set to 40. The maximum number of new 
drawpoints which could be opened in each period was set to 15. The lower and upper bounds of the 
draw rate for drawpoints were set to 10 kt/yr/per drawpoint and 40 kt/yr/per drawpoint. The lower 
and upper bounds of the average grade of Copper were set to 0.8% and 1.7%.The height of draw is 
limited to not less than 50 m. This means at least 50 m of the drawpoints must be extracted. An 
EPGAP of 5% was set for the optimization run. The problem was solved for two directions, west to 
east (WE) and south to north (SN). Table 1 and Table 2 show the number of decision variables, the 
number of constraints, and numerical results for both the WE and SN directions. The resulting 
NPVs are $133.73 M and $132.0 M in the WE and SN directions, respectively.  
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Fig 2. Plan view of 102 drawpoints 

 

 

Fig 3. 3D view of draw columns (102 draw columns) 

 



Pourrahimian Y. et al.                   MOL Report Six © 2015 301- 14 
 
 

 
Fig 4. Grade distribution (Cu%) within draw columns 56 and 17, before and after clustering 

Table 1. Number of variables and constraints for the proposed formulation with 102 drawpoints and 1,000 
clusters 

Direction Number of 
DPs/CLs 

Number of 
constraints 

Decision Variables 

Total Continuous Binary 

WE 102 / 1,000 59,546 30,856 14,000 16,856 
SN 102 / 1,000 61,086 30,856 14,000 16,856 

Table 2. Numerical results for the proposed formulation with 102 drawpoints and 1,000 clusters 

Direction 
CPU time 

8 CPUs @ 2.7 GHz 
EPGAP 

(%) 
Optimality 
GAP (%) NPV ($M) 

Reserve 
(Mt) 

WE 01:21:19 5 4.99 133.73 11.93 
SN 02:09:05 5 4.43 132.0 11.94 

 

Figures 5 to 7 show that all assumed constraints were satisfied in the considered directions. Fig 5 
illustrates the production tonnage in each period. If mining reserve was calculated based on the 
BHOD (Diering, 2000) for each draw column, the total tonnage of material that could be extracted 
was almost 13.5 Mt, which was independent of direction. In other words, in each considered 
direction all the 13.5 Mt must be extracted. But in the proposed formulation, the mining reserve is 
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computed as a result of the optimal production schedule for each advancement direction. The total 
tonnage of material that must be extracted in the WE and SN directions is 11.9 Mt. 

 

 
Fig 5. Production tonnage in the WE and SN directions 

Fig 6 illustrates the number of active drawpoints and the number of drawpoints that must be 
opened in each period. In the WE direction, the mine works with the maximum number of active 
drawpoints from periods two to ten. Then, the number of active drawpoints reduces. In the SN 
direction, the mine works with the maximum number of active drawpoints from periods two to 13 
except period nine. In both directions, the number of new drawpoints from periods two to 15 is less 
than 15 except in period six of the WE direction, in which 15 new drawpoints must be opened. In 
the WE direction, the last drawpoints are opened in period 11 while a number of new drawpoints 
are opened in period 12 in the SN direction. 

 
Fig 6. Number of active drawpoints and number of new drawpoints that must be opened in the WE and SN 

Fig 7 illustrates the average grade of production. In the WE direction, during the first two periods 
the average grade of the production is higher than the SN direction. In both directions, during the 
mine life the average grade of the production was higher than 0.9 %. In the SN direction, the 
average grade of production between periods 11 and 14 is higher than the WE direction.  
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Fig 7. Average grade of production in the WE and SN directions 

 

Fig. 8 shows the opening pattern of the drawpoints in the WE and SN directions. In the WE 
direction, 83% of drawpoints will be opened in the first seven years and the rest, most of which are 
located at the southwest area of the mine, will be opened after period seven. In the SN direction, if 
the mine is divided into two sections, north and south, most of the drawpoints in the south section 
are opened during the first four periods. 

 The possible advancement directions are defined based on geotechnical conditions. Then, using 
the proposed formulation, the best advancement direction and related mining reserve are computed. 
In the presented case study, the results are based on an optimization termination criterion (EPGAP) 
of 5%. In the presented formulation, the model uses drawpoints-and-slices (Pourrahimian, 2013) in 
which the slices are aggregated vertically in each draw column. The considered case study was also 
solved without vertical clustering. The solving time for the clustered slices was 78 times faster than 
for the other method.   

 

 
Fig 8. Opening pattern in the WE and SN directions 

Table 3 shows the obtained NPVs and CPU times for different EPGAPs. It is obvious that when the 
EPGAP decreases the CPU time dramatically increases.  

Table 3. Effect of the EPGAP on NPV and CPU time 
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 WE direction SN Direction 

EPGAP 
(%) 

NPV 
($M) 

CPU time 
(hr:min:sec) 

NPV Diff. 
From the best 

(%) 

NPV 
($M) 

CPU time 
(hr:min:sec) 

NPV Diff. 
From the best 

(%) 
3 135.13 04:48:50 0 132.91 20:31:04 0 
4 134.67 02:49:43 - 0.34 132.36 02:27:48 - 0.41 
5 133.73 01:21:19 - 1.04 132.0 02:09:05 - 0.68 

7. Conclusion 

This paper investigated the development of a mixed-integer linear programming (MILP) 
formulation for block-cave production scheduling optimization. The presented MILP formulation 
developed, implemented, and tested for block-cave production scheduling in the 
TOMLAB/CPLEX environment. The formulation maximizes the NPV subject to several 
constraints and the mining reserve is computed as a result of the optimal production schedule. To 
reduce the number of binary variables and to solve the problem within a reasonable CPU time, 
slices within each draw column were aggregated based on the similarity index that was defined 
based on the slices’ distance, economic value, and dilution. 

The proposed formulation can be used in different advancement directions which are selected 
based on geotechnical considerations. Consequently, the mining reserve, which is a result of 
optimization, also varies from one direction to another. The large-scale problems can be solved in a 
reasonable CPU time by applying the presented method here on the drawpoint-and-slice level of 
the multi-step method presented by Pourrahimian (2013). The concept of different cave 
advancement directions presented here helps planners to find the best single operation direction or 
combination thereof, and the best starting location to reach the maximum NPV. 

Production scheduling optimization techniques are still not widely used in the mining industry. 
There is a need to improve the practicality and performance of the current production scheduling 
optimization tools used by the mining industry. Future research will focus on modifying the 
approach for handling multiple-lift and multiple-mine scenarios. In addition, other efficient 
mathematical formulation techniques will be explored in an attempt to reduce the execution time 
for large-scale block-cave production scheduling. 
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