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Abstract  

The US coal mining industry consumes approximately 142 billion kWh per year of energy. The US 
Department of Energy estimates that the industry’s annual energy consumption can be reduced by 
49% (24.6 billion kWh/year by using currently available best practices and a further 44.8 billion 
kWh/year with more research). This constitutes nearly $3.7 billion of potential savings on coal 
production costs at 5.3¢/kWh of energy. Additionally, with climate change regulation on the 
horizon, any benefits from energy savings in the near future are compounded by associated 
reductions in CO2

The goal of this work was to apply stochastic process simulation to model the energy efficiency of a 
typical truck and shovel mining system and use the model to evaluate production strategies to 
improve energy efficiency. The research team conducted energy audits of truck-and-shovel 
overburden removal and highwall miner operations. This information was used to develop 
regression models describing truck and shovel fuel consumption. The research team then built a 
stochastic simulation model of the truck-and-shovel overburden removal operation and used it to 
assess a variety of improvement measures by simulation experimentation. 

 emissions. 

Valid fuel consumption models for shovel loading and truck haulage have been formulated based 
on the energy audit results. Valid stochastic process models of truck-and-shovel operations have 
been formulated to study energy efficiency. The following strategies, in decreasing order of impact, 
provide the most energy savings for truck-and-shovel overburden removal at the mine: (1) shorten 
haul roads; (2) increase shovel capacity; and (3) increase shovel utilization through optimal truck 
matching. Additional data will be required to adequately describe operator effects on energy 
efficiency.  

1. Introduction 

The US mining industry consumes approximately 365 billion kWh of energy annually to produce 
vital products to support the US economy. Of this, coal mining accounts for approximately 142 
billion kWh per year. The US Department of Energy (DOE) estimates that energy consumption can 
be reduced by 24.6 billion kWh/year by using current best practice and a further 44.8 billion 
kWh/year with more research to make coal mining more energy efficient (US Department of 
Energy, 2007). This translates into almost 49% decrease in energy consumption or nearly $3.7 
billion of potential savings on coal production costs at 5.3¢/kWh of energy. With climate change 
regulation on the horizon, the benefits of energy savings in any production endeavor will be 
compounded in the near future. According to US Department of Energy (2007), the most promising 
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processes for energy efficiency improvement are grinding and materials handling, including 
loading and hauling. 

Current energy-saving strategies in coal mining tend to involve improvements in technology (e.g. 
improving engine performance). Energy consumption monitoring and reporting emphasizes system 
performance without regard to the operating conditions. However, there is evidence that operator 
practices and mine operating conditions significantly affect the energy consumption. For instance, 
simulation experiments conducted by Awuah-Offei (2009) suggest that an electric shovel operator 
who operates near optimal with a 58 yd3

Fig 1

 bucket can save over $114,000/year in electricity costs for 
the digging cycle alone, when compared to an average operator. Other research shows that 
equipment utilization and loading, for instance, are key factors in the energy efficiency of mining 
operations (Kecojevic and Komljenovic, 2010).  shows, more comprehensively, the factors 
that affect energy consumption of mine equipment. 

 
Fig 1. Factors affecting coal mine equipment energy consumption. 

In order to understand the impact of operating conditions on energy efficiency, there is a need to 
conduct process specific, as opposed to system-wide, energy audits which account for operating 
conditions (Bogunovic, et al., 2009a). The knowledge can then be used to increase energy 
efficiency of mining operations and processes.  Modeling and simulation is a cost effective and 
reliable way to assess the impact of different operating conditions on energy efficiency. Stochastic 
process simulation based on Monte Carlo simulation is capable of modeling process interactions 
and quantifying the uncertainty surrounding model outputs (Kelton, et al., 2003). 

The objective of this research was to (i) apply stochastic process simulation to model the energy 
efficiency of a typical truck and shovel mining system; and (ii) evaluate production strategies to 
improve energy efficiency. The researchers conducted energy audits of the truck and shovel 
overburden removal operations at a surface coal mine. Following data analysis, they modeled the 
truck and shovel system in Arena® (Rockwell, 2010). The model was then validated with the field 
data and used to evaluate three improvement strategies. 

Managing energy efficiency is an important goal in reducing process cost, which has become even 
more important due to concerns over energy availability and supply. Energy efficiency is defined 
as the ratio of effective energy to the total energy (Zhu and Yin, 2008). For loading and hauling, 
the amount of material loaded and hauled and the fuel consumed in the process are used as proxies 
for effective and total energies, respectively.  

A fraction of the energy generated by an internal combustion engine is available for useful work as 
brake output due to heat, engine friction and pumping losses. In shovel loading, this output is used 
to overcome digging resistance and inertia, swing and spot, travel, and provide energy for 
accessories (Awuah-Offei, 2009). In trucking, the output is used to overcome aerodynamic drag, 
rolling resistance, drive train friction, inertial forces and accessory loads (Ang-Olson and Schroeer, 
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2002). For trucking, the contribution of each of these resistances to energy losses, and hence 
efficiency drops, depend on driving speed, truck weight, terrain, driver behavior, wind speed and 
direction, and road conditions (Ang-Olson and Schroeer, 2002). Researchers have evaluated the 
effect of reduced idling, speed reduction, driver training, and reduced empty runs through optimal 
truck scheduling on energy efficiency (Ang-Olson and Schroeer, 2002; Bates, et al., 2001; 
Hubbard, 2003; Leonardi and Baumgartner, 2004). 

Loading and hauling in surface mines is different from freight trucking because loading is a 
significant aspect of the energy demand due to significantly shorter distances. Consequently, the 
inefficiencies due to shovel-truck interactions (under-matched or over-matched shovels) are also 
significant. Bogunovic, et al. (2009b) show variability in energy consumption of trucks and shovels 
due to operating conditions (e.g. which coal seam is being mined) and operators.  

Kecojevic and Komljenovic (2010) show that just 10% reduction in engine load factor can result in 
fuel savings ranging from $40,000 to $267,000 per year depending on the size of truck, based on 
original equipment manufacturer (OEM) data and existing literature. Various studies have also 
shown that shovel depth of cut, which is a function of operator experience and preferences, 
significantly affects shovel energy consumption (Awuah-Offei and Frimpong, 2007; Patnayak, et 
al., 2008). However, what is missing in the literature is predictive modeling of energy efficiency as 
a function of operating conditions under uncertainty to facilitate evaluation of improvement 
strategies. As far as the authors know, there has been no work that characterizes uncertainty in a 
model and also attempts to determine statistically significant correlations. This can be achieved 
with stochastic process simulation with adequate data for uncertainty characterization. 

An important aspect of this study was the use of stochastic process simulation to evaluate energy 
saving production strategies, before implementation, and characterize uncertainty. Stochastic 
simulation is a well known technique that has been used to study several mining systems (Awuah-
Offei, et al., 2003; Raj, et al., 2009). Several special-purpose simulation languages like GPSS, 
Simscript, SLAM and SIMAN exist for modeling continuous, discrete and mixed continuous-
discrete event systems. An important advantage of these packages is the use of Monte Carlo 
simulation to handle uncertainty modeling. In this work, we used Arena® (Rockwell, 2010), which 
is based on the SIMAN simulation language, to model the energy consumption of the truck-shovel 
system of the mine (Kelton, et al., 2003). 

This work represents a novel attempt to model truck and shovel energy efficiency with uncertainty. 
Existing OEM software are deterministic and do not account for the inherent uncertainty. This 
approach to energy improvement planning will allow inexpensive experimentation prior to 
implementation so that the strategies that are implemented are likely to succeed and the risks are 
properly understood. 

2. Experimental procedures 

2.1. Study site 

The study site is a strip mine in the Illinois basin and recovers coal mainly from the Murphysboro 
seam, with some coal mined from the Mount Rorah seam. The mine produces about 600,000 tons 
of coal annually at an average stripping ratio of 17:1. The overburden is made up of grey, well 
laminated non-marine shales, overlain with up to 40 feet of glacial outwash clays and sand 
channels. The overburden is fragmented through blasting prior to removal. Overburden removal is 
mainly by carry dozers. However, the final overburden is removed by a Hitachi EX1900 hydraulic 
shovel (14.4 yd3

 

 dipper) and Caterpillar 785C (150-ton), rigid frame, haul trucks. Both the shovel 
and trucks had on-board data logging systems that were used to collect data on engine load factor 
and fuel consumption, respectively. 
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2.2. Shovel Energy Audit 

Hitachi’s onboard shovel data logging system, Machine Information Center (MIC) logs, among 
others, engine running time, the operating time of the front end1

EX1900 fuel consumption [gals/hr] = 52.971 Load factor 0.0133

EX2500 fuel consumption [gals/hr] = 71.304 Load factor 0.0059

× +

× +

, travel time, and engine load 
factor. MIC data from January 1 to July 12, 2010 was downloaded from the shovel for this study. 
After careful review, we used the shift averages of the engine running time, the operating time of 
the front end, travel time, and engine load factor for data analysis. Since MIC does not log fuel 
consumed, Hitachi data on fuel consumption and load factors was used to establish the 
relationships in Eq. (1), which relates engine load factor to fuel consumption for the two shovel 
models analyzed in this study. 

 (1) 

Additionally, researchers conducted time and motion studies of the shovel loading operation to 
obtain cycle times. Productivity of the shovel was obtained by correlating the time stamps on the 
data with the truck OEM data logging system (discussed in the next section). 

2.3. Truck energy audit 

Caterpillar’s Vital Information Management System (VIMS) logs payload, empty stopped time, 
empty travel time, empty travel distance, loading time, loaded stopped time, loaded travel time, 
loaded travel distance, total cycle distance, total cycle time, and fuel used for each cycle. The team 
downloaded data from May 3 to July 2, 2010. The summary performance was based on all this 
data. However, given the variability in haul distance, and haul road profile and conditions, the team 
only used the data from the experimental period (June 28-July 2) for detailed analysis. This was 
because the haul distances, profile and conditions were similar. The haul profile was surveyed with 
Topcon Hyperlite GPS units for real-time kinematic (RTK) surveying. Even though VIMS logged 
the cycle times, the team conducted manual time and motion studies of the trucks as well to 
confirm the VIMS data. The OEM data was proven to be reliable and better than the manual data 
and therefore all the analysis was based on that. 

3. Data analysis and model input 

3.1. Shovel data analysis and modeling 

Statistical correlation analysis, at 95% confidence, was used to examine correlation between the 
load factor (the proxy for fuel consumption) and the engine running time, the operating time of the 
front end, front-end utilization (ratio of time the front-end was active in the shift), travel time and 
ratio of time the shovel traveled in the shift. The decision to use the time ratios in correlation 
analysis was to enable extension of the results to different shift lengths. Regression analysis was 
then used to determine the relationship between load factor and key independent variables. 

Figs. 2-4 show plots of load factor against engine running time, front end operating time and travel 
time. As shown by Table 1, there is positive linear correlation between load factor and each of the 
variables except ratio of travel time (p-value is greater than α). The correlation between load factor 
and engine running time is due to the fact that short shifts (less than five hours) are usually for non-
production related work and do not result in significant loading of the engine. 

 
                                                      
 
 

1This time is cumulatively logged so long as any of the hydraulic pumps controlling cylinders on the shovel front 
end is active. The time logged is, thus, always more than the loading time of the shovel. 
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Table 1 Shovel fuel consumption correlation analysis. 

Independent variable Pearson correlation 
coefficient 

p-value 
(α = 0.05) 

Engine running time 0.66979 0.0000 
Front end operating time 0.76525 0.0000 
Front end utilization 0.77948 0.0000 
Travel time 0.51037 0.0000 
Ratio of travel time  -0.11818 0.1392 

 
Fig 2. Plot of load factor against engine running hours for a shift. 

(a) 

 

(b) 

 
Fig 3. Plot of load factor against (a) front end operating time; (b) front end utilization. 

Front end utilization allows one to extend the model to different shift times. Eq. (2) is the resulting 
regression model. Fig 5 shows the residuals of the model compared to the actual data. The mean 
residual for the 158 data points is 3.0918 × 10-17%. Fig 5 shows only 3 out of 158 data points could 
not be predicted with confidence. The R2

( )Shovel load factor = 0.2391 0.5337 front end utilization+

, the F statistic and its p-value, and the error variance are 
0.6062, 240.1482, 0, and 0.0030, respectively. 

 (2) 
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(a) 

 

(b) 

 
Fig 4. Plot of load factor against: (a) travel time; (b) ratio of travel time in a shift. 

 
Fig 5. Residuals and 95% confidence intervals of residuals for Equation (2) model. Red data points are 

residual intervals that do not include zero. 

3.2. Truck data analysis and modeling 

First, we used statistical hypothesis testing at 95% confidence to determine if the different 
operators and trucks had any impact on the fuel consumption and total cycle time. We used two 
sample, unequal variances, t-test hypothesis testing (NIST/SEMATECH, 2010). The data was 
collected by switching operators to ensure that different operators drove the different trucks. Tables 
2 and 3 show the summary of the input and output from the t-test. The null hypothesis was 
accepted for both cycle time and fuel when comparing the two trucks (Table 2). 

Hence, we conclude that there is not enough evidence at 95% confidence to reject the notion that 
the means of the cycle times and fuel consumption for both trucks are the same, given the available 
data. 

The null hypothesis was accepted in the test to compare the means of cycle times of the two 
operators (Table 3). However, when comparing the fuel consumptions with the null hypothesis, 

0 : A BH =µ µ  , the hypothesis was rejected. The team then proceeded to test the hypothesis that 
operator A was consuming more fuel/cycle than operator B (null hypothesis and corresponding 
alternate hypothesis shown in parenthesis in Table 3). 
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Table 2. t-test summary for comparing trucks. 
 Cycle time [mins] Fuel/cycle [gals] 

Truck 1 Truck 2 Truck 1 Truck 2 

No. of samples 115 113 115 113 
Mean 11.66 11.44 4.36 4.22 
Standard deviation 5.05 4.15 0.60 0.51 
Degrees of freedom 226 226 
Pooled standard deviation 4.62 0.56 
t-statistic 0.3591 1.8615 
H

1 2µ µ=0  1 2µ µ=  
H

1 2µ µ>1  1 2µ µ>  

Table 3. t-test summary for comparing operators. 
 Cycle time [mins] Fuel/cycle [gals] 

Operator A Operator B Operator A Operator B 
No. of samples 116 112 116 112 
Mean 11.29 11.83 4.36 4.21 
Standard deviation 3.98 5.20 0.55 0.56 
Degrees of freedom 226 226 
Pooled standard deviation 4.62 0.56 
t-statistic 0.3591 2.0944 
H

A Bµ µ=0  A Bµ µ=  ( A Bµ µ> ) 
H

A Bµ µ<1  A Bµ µ>  ( A Bµ µ≤ ) 

Again, there was enough evidence to reject the null hypothesis. One would have to conclude based 
on the t-tests at 95% confidence, that: (i) the means of the cycle times of the two operators are 
equal; (ii) the means of the fuel/cycle for the two operators are not equal; and (ii) the mean 
fuel/cycle of operator A is not greater than the mean of operator B. This leads to an inconclusive 
overall conclusion. On one hand, cycle times of the two operators are similar but there are 
indications that the fuel/cycle is not the same. Yet, one cannot definitively say, that the fuel 
consumption of operator A is higher than that of operator B. More data over a longer period, and 
possibly involving more operators, is needed to better characterize the impact of operators on fuel 
consumption. Given the foregoing, the team concluded that the different trucks and operators made 
no significant difference and, hence, all the data will be treated as one population. 

We then proceeded to conduct linear correlation analysis to determine the correlation between 
fuel/cycle and the cycle time components and payload. Table 4 and Figs 6-9 show the correlation 
coefficients with their corresponding p-values and the scatter plots, respectively. Surprisingly, there 
was no statistically significant correlation between the payloads for the experimental period and the 
fuel/cycle as indicated by the p-value of 0.1801 (greater than α = 0.05). This was contrary to 
expectation and hence the correlation between payload for the entire available data set (May 3 to 
July2) and fuel/cycle was also analyzed. This yielded a statistically significant correlation (p-value 
of 0). Modeling fuel/cycle per ton is desirable so that the model can be extended to different truck 
payloads. In fact, it is expected that fuel consumption should be correlated to amount of material 
carried since more work is done. Hence, we proceeded to test the correlations between the cycle 
time components in Table 4 and fuel/cycle/ton. There was, statistically significant, positive 
correlation between the cycle time components and the fuel/cycle/ton. Based on this, the regression 
model in Eq. (3) was formulated. ti is cycle time in minutes for component i. The subscripts es, et, 
l, ls, and lt mean empty stopped, empty travel, loading, loaded stopped, and loaded travel.  
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Table 4. Truck fuel correlation analysis.  

Independent variable Pearson correlation 
coefficient 

p-value  
(α = 0.05) 

Payload (June 28-July 2) 0.0891¹ 0.1801 
Payload (May 3-July 2) 0.1518 0.0000 
Loading time 0.1861 0.0049 
Empty stopped time 0.3951 0.0000 
Empty travel time 0.5206 0.0000 
Loaded stopped time 0.1861 0.0049 
Loaded travel time 0.3511 0.0000 

¹ Correlation is between the independent variable and fuel/cycle. 
(a) 

 

(b) 

 
Fig 6. Fuel/cycle against: (a) payload over the period 6/28-7/2; (b) payload over the period 6/28-7/2. 

 
Fig 7. Fuel/cycle/ton against loading time.  

Fig 8. Fuel/cycle/ton against: (a) empty travel time; (b) empty stopped time. 
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(a) 

 

(b) 

 
Fig 9. Fuel/cycle/ton against: (a) loaded travel time; (b) loaded stopped time. 

Fuel/cycle/ton = 0.0037 0.0005 0.0035 0.0008 0.0031 0.0043es et l ls ltt t t t t+ + + + +  (3) 

Fig 10 shows the residuals of the model compared to the actual data. The mean residual for the 158 
data points is -8.6857 × 10-18 Fig 10%.  shows only 6 out of 153 data points compared could not be 
predicted with confidence. The R2

 

 statistic, the F statistic and its p-value, and the error variance are 
0.8356, 139.2678, 0 and 0.0519, respectively. 

Fig 10. Residuals and 95% confidence intervals of residuals for Equation (3) model. Red data points are 
residual intervals that do not include zero. 
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each cycle. Theoretical statistical distributions were fitted to data to describe the stochastic 
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in Arena®. Table 5 shows the results of distribution fitting using the data from the time and motion 
studies and the OEM onboard data logger. The expressions in Table 5 were used to describe the 
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Loading time (mins) Gamma  GAMM(0.0464, 3.05)  0.027245  
Spotting time (mins) Lognormal   LOGN(0.155, 0.109)  0.047969  
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Table 5b. Truck distribution fitting results. 

Process  Distribution  Expression  Square Error  
Payload (tons) Normal  NORM(139, 10.8)  0.001313 
Empty stopped time (mins) Beta  37 × BETA(0.171, 2.31)  0.011708  
Empty travel time (mins) Normal  NORM(2.3, 0.471)  0.006764 
Loaded stopped time (mins) Erlang  ERLA(0.458, 2)  0.000268 
Loaded travel time (mins) Beta  2.26 + 1.66 × BETA(3.3, 4.06)  0.003836  

4. Truck-shovel simulation model 

Discrete systems, such as the truck-and-shovel system, are modeled in Arena® using the process 
orientation approach usually referred to as object-oriented simulation. In this type of model, the 
modeler identifies the system’s entities, processes, and resources. The system is then 
conceptualized by letting entities go through static processes in a logical way. At each process, 
entities wait their turn to use up required resources to go through the process (Awuah-Offei, et al., 
2003). In Arena®, the modeler can create different entities, which can be given characteristics by 
specifying attributes. The software provides numerous modules for model construction (Kelton, et 
al., 2003). A model is therefore an appropriate assembly of blocks to mimic reality as closely as 
possible. 

In modeling energy efficiency of the mine’s truck-and-shovel system, drivers/operators were 
identified as entities. Component cycle times (empty stopped, empty travel, loading, loaded 
stopped and loaded travel times), arrival and departure time at a station, and payload were defined 
as attributes which were changed for each cycle by sampling from the distributions in Table 5b or 
assigning current simulation time. Two stations were defined in the model and transporters (trucks) 
used to move entities between these stations. The logic at each station is shown in Fig 11. The 
shovel was defined as a resource, which was needed for an entity to go through the loading process. 
The shovel schedule was used to enforce the 30-minute break during an 11-hour shift. At the end of 
each cycle, fuel consumed in that cycle is calculated using Eq. (3). In order to ensure accurate fuel 
consumption data, the model was set-up to write the fuel consumed by trucks in each cycle to a 
comma separated text file for processing at the end of the simulation. Appropriate data, including 
shovel utilization, were collected and reported at the end of the simulation. Time consuming and 
instantaneous processes are defined as those that affect the simulation clock and those that do not, 
respectively. 

The main simulation output was energy efficiency, which (in this model) is a function of shovel 
utilization, truck fuel consumption, and productivity per shift. We, therefore, selected the number 
of replications to ensure that the half-widths2

 

 of production, truck fuel consumption per shift, 
shovel utilization, and energy efficiency were less than 1% of the mean in the base case simulation. 
It was determined that 100 replications achieved the desired half-widths for these key outputs. 
Hence, all simulation experiments were set up to run for 100 replications of eleven hours each 
(equivalent to 100 shifts). The simulation run until it was terminated after eleven hours. All trucks 
are allowed to dump the last load at the end of the shift. 

                                                      
 
 
2 Half-width, h, is defined, using central limit theorem, as ( ), 1 2

xh s t
−

= × αν
, where sx is the standard deviation of 

x, and ( ), 1 2
t

−αν
 is the t-statistic for ν degrees of freedom and (1-α) confidence level. 
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Fig 11. Flowchart of Arena® model logic. 

The model was verified and validated with animation and comparing with the field data, 
respectively. Table 6 shows comparison of the actual truck data for the experimental period and the 
average values after the 100 replications. The model was validated based on the truck data because 
the VIMS data was more detailed and useful for validation. Average shovel shift front end 
utilization and load factor from the MIC data is 80.31% and 66.78%, respectively. Since the cycle 
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time data did not capture any action of the front end apart from loading activities, it was not 
possible to predict front end utilization from the simulation. The simulation model, however, 
predicts shift shovel utilization to be 67.43% (less than the front end utilization, as expected). 
Given, the similarity between the shovel utilization and the load factor, it was assumed that the 
shovel utilization is a good predictor of the engine load factor for subsequent analysis. On the basis 
of the truck predictions, the model was deemed validated as it predicts fuel efficiency and fuel 
consumed per cycle to within 5%. 

Table 6. Simulation model validation. 
 Actual  Simulated Error  

Mean Half-width 

Production [tons]  15,887 16,590 57 4% 
Number of loads  114 120 0.4 5% 
Total fuel consumption [gals]  488.87 502.60 1.54 3% 
Average fuel consumption per cycle [gals]  4.24 4.27 0.01 1% 
Overall fuel efficiency [tons/gal] 17.81 18.51 1 0.03 4% 

¹ Based on calculated shovel fuel efficiency of 39.29 tons/gal from average engine load factor of 66.78% and 
hourly production from truck production data. 

The half-width is a good measure of the uncertainty surrounding each of the estimates from the 
model. At (1-α) confidence, the estimate (predicted by the expected value, x ) will be between 
x h−  and x h+ . All half-widths in Table 6 are less than 1% of the mean, which indicates the 100 
replications are adequate. The ability to quantify that uncertainty is a key advantage of stochastic 
process simulation over deterministic methods such as those found in OEM haulage software. 

5. Evaluating energy-saving strategies 

The validated simulation model was then used to evaluate the energy saving improvement 
strategies. The following strategies were evaluated: 

• Strategy 1: Increase shovel utilization through optimal truck matching. This scenario 
involved increasing the number of trucks in the system in order to identify the optimal 
truck-shovel matching. In an alternate scenario, additional Caterpillar 777 (100-ton) trucks 
were added to the fleet since the mine has two of 777 trucks available already. The mine is 
more likely to add these 777 trucks than purchase new 785 trucks. It is estimated that the 
EX1900 shovel is able to load the 777 trucks in five passes. 

• Strategy 2: Increase shovel capacity. This scenario involved simulating the use of an 
EX2500 (20.4 yd3

• Strategy 3: Shorten haul roads. This can be achieved by reducing the size of the pit. This 
involved varying the haul distance from 0.2 to 1.0 miles in steps of 0.2 miles while keeping 
everything else constant. 

 dipper), which is the next size up in Hitachi’s fleet, instead of the 
EX1900 shovel currently in use. In order to do this, it was assumed (after consultation with 
Hitachi dealer staff) that the cycle times for the EX2500 shovel were the same as those for 
the EX1900 shovel. This shovel will load the 785 trucks in 5 passes. 

6. Results and discussions 

6.1. Strategy 1: increase shovel utilization through optimal truck matching 

Fig 12 shows there are potential gains in production and shovel utilization from adding trucks as 
expected (for each box, the central mark is the median, the notches represent the 95% confidence 
interval, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 
extreme data points the MATLAB boxplot algorithm does not consider to be outliers, and the 
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outliers are plotted individually in red). The largest gain comes when the number of trucks is 
increased from two to three – mean production increases by 4,400 and 5,700 tons/shift (Fig 12a and 
Fig 13a), and shovel utilization increases by 19.53 and 23.26% (Fig 12b and Fig 13b) for adding 
777 (100-ton) and 785 (150-ton) trucks, respectively. However, increasing the number of trucks 
increases queue lengths or time spent waiting at the shovel (Fig 12c and Fig 13c) and longer queue 
lengths causes total fuel consumed by trucks in a shift to increase, even when shovel fuel 
consumption is constant (Fig 12b & d and Fig 13b & d). The overall effect is that fuel efficiency 
declines in spite of the increased productivity. Adding one 777 or 785 truck decreases fuel 
efficiency by 1.06 and 0.89%, respectively. The reduction is significant at 95% confidence, as 
shown by the non-overlapping notches in Fig 12e and Fig 13e. 

 
Fig 12. Simulation Results for Strategy 1 – Adding 150-ton Trucks. 
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Fig 13. Simulation Results For Strategy 1 – Adding 100-ton Trucks. 

 

This phenomenon is described more clearly in Fig 14, which shows that the only cycle time 
component that varies as trucks are added to the system is empty stopped time. The increase in 
empty stopped time is smallest when a third truck is added to the system, but it rises sharply as 
additional trucks are added and the resulting inefficiencies outweigh any gains in productivity and 
shovel utilization. The conclusion is that for this mine, having more than three trucks in the system 
is sub-optimal. 
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Fig 14. Simulated Cycle Time Components for Trucks: (a) 100-ton; (b) 150-ton. 

The uncertainty surrounding the estimates in Figs 12 and 13 are relatively low, which builds 
confidence in the estimates and the conclusions drawn from them.  

6.2. Strategy 2: increase shovel capacity 

Fig 15 gives results when use of the larger EX2500 shovel, instead of the currently used EX1900, 
was evaluated. It shows a statistically significant increase in production and fuel consumed by the 
trucks (Fig 15a & d) and decreases in shovel utilization (Fig 15b) and average queue length (Fig 
15c), which lead to a 3.3% increase in fuel efficiency (Fig 15e). Even though shovel utilization is 
lower for the larger shovel, fuel consumption is 38.8 gals/hr compared to 35.4 gals/hr for the 
smaller shovel. This is due to a higher consumption rate for the larger engine. While the increase in 
production more than compensates for the increase in fuel consumption rate, lower utilization of 
the larger shovel is economically undesirable given its higher ownership costs. 

Fig 16 shows average cycle time components for trucks working with the two shovels. Average 
travel time and loaded stopped time (dumping time) remain the same. Loading time and empty 
stopped time (waiting on shovel) decrease with use of the larger shovel. Consequently, truck fuel 
consumption is reduced from 4.27 to 4.14 gals/cycle. The result is increased fuel efficiency when 
using the EX2500 shovel. 

6.3. Strategy 3: shorten haul roads 

The variation in truck fuel consumption and average haul distance over a shift is evident in the 
VIMS (‘Actual’) data shown in Fig 17. However, the observed variation cannot be, solely, 
attributed to changes in haul distance since other factors (e.g. haul road conditions and profiles) 
were not kept constant. This explains the different fuel consumptions for the same truck (Truck 2) 
at 0.3 miles observed on June 19 and 20. Consequently, simulation experiments were conducted to 
quantify the relation between fuel consumption and haul distance when only the haul road distance 
is varied in a controlled experiment (‘Simulated’ data points and line in Fig 17).  
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Fig 15. Simulation Results for Strategy 2 – Larger Shovel. 

Fig 18 shows that production, shovel utilization, queue length, and fuel efficiency decrease with 
increasing haul distance. The only one of these that is an efficiency gain from increasing haul 
distance is the reduction in queuing or truck waiting. This decrease in empty stopped time 
diminishes with increasing haul distance, as shown in Fig 19, such that beyond approximately 0.8 
miles, empty stopped time is not dependent on haul distance. Fig 19 shows both travel times 
increasing with longer haul distances. This predictably increases the overall cycle time. 
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Fig 16. Truck Cycle Time Components When Different Shovels Are Used. 

 
Fig 17. Variation in Truck Fuel/cycle with Average Haul Distance. 

While significant gains can be achieved by shortening haul distances, a systems approach should be 
taken in implementing this strategy. In reducing haul road length, the mine operator must be careful 
not to significantly increase either the haul road grade or the dozer push distance. A limitation of 
this analysis is that it did not include dozer fuel consumption. 

7. Conclusions 

The objective of this work was to apply stochastic process simulation to model the energy 
efficiency of a typical truck and shovel mining system and use the model to evaluate production 
strategies to improve energy efficiency. The following conclusions are drawn from the results and 
discussion presented: 

• Process specific energy audits provide insights into improving operations in a way that is 
not possible with global energy consumption figures. This was illustrated by the fuel 
consumption analysis of the truck-and-shovel system. 
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Fig 18. Simulation Results for Strategy 3 – Shorten Haul Distance. 
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Fig 19. Variation in Truck Cycle Time Components with Haul Distance 

• Eqs. (2) and (3) are valid fuel consumption models for shovel loading and truck haulage, 
respectively. 

• Valid stochastic process models of truck-and-shovel operations have been formulated to 
study fuel efficiency. 

• For the study mine, the following strategies, in decreasing order of impact, provide the 
most improvement in energy efficiency for truck-and-shovel overburden removal: (i) 
shorten haul road lengths while maintaining similar haul road grades and dozer push 
distances; (ii) increase shovel capacity by using next size model (Hitachi EX2500); and 
(iii) increase shovel utilization by adding one more truck. While adding one more truck 
actually results in 1.5 and 1.3% decreases in fuel efficiency, for 777 and 785 trucks, 
respectively, this is compensated for by 4,400 and 5,700 tons/shift increases in production, 
and by 19.53 and 23.26% increases in shovel utilization.  

• The effect of operators cannot be adequately described without additional data. 
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