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Abstract 

Uncertainty is always present because of sparse geological data. Conditional simulation 
algorithms such as Sequential Gaussian Simulation (SGS) and Sequential Indicator Simulation 
(SIS) are used to assess uncertainty in the spatial distribution of grades. Long-term mine planning 
and the management of future cash flows are vital for surface mining operations. Traditionally the 
long-term mine plans are generated based on an estimated input geological block model. 
Estimated or kriged models do not capture uncertainty and must be tuned to avoid biases.  Mine 
plans that are generated based on one input block model fail to account for the uncertainty and its 
impact on the future cash flows and production targets. A method is presented to transfer grade 
uncertainty into mine planning. First, Sequential Gaussian Simulation is used to generate fifty 
realizations of an oil sands deposit. An optimum final pit limits design is carried out for each SGS 
realization while fixing all other technical and economic input parameters. Afterwards, the long-
term schedule of each final pit shell is generated. Uncertainty in the final pit outline, net present 
value, production targets, and the head grade are assessed and presented. The results show that 
there is significant uncertainty in the long-term production schedules. In addition, the long-term 
schedule based on one particular simulated ore body model is not optimal for other simulated 
geological models. The mine planning procedure is not a linear process and the mine plan 
generated based on the krig estimate is not the expected result from all of the simulated 
realizations. The probability of each block being extracted in each planning period and the 
probability that the block would be treated as ore or waste in the respective period are calculated 
and can be used to assist in long range mine planning. Finally a stochastic linear programming 
model is presented to use all simulation realization in mine planning. This model tries to minimize 
negative effects of geological uncertainty and maximize the NPV simultaneously. 

1. Introduction  

Open pit production scheduling is the process of defining a feasible block extraction sequence that 
maximizes the net present value (NPV) of mining operation while meeting technical and economic 
constraints. There are three time ranges for production scheduling: long-term, medium-term and 
short-term. Long-term can be in the range of 20 – 30 years. This period is divided into several 
medium-term periods between 1 to 5 years. Medium-term schedules provide detailed information 
that allows for an accurate design of ore extraction from a special area of the mine, or information 
that would allow for necessary equipment substitution or the purchase of essential equipment. The 
medium-term schedule is also divided into 1 to 6 month periods (Osanloo et al., 2008). 
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In this paper, the main focus will be on long-term production planning (LTPP) in open pit mines. 
LTPP determines the distribution of cash flow over the mine life, the feasibility of the project, and 
also it is a prerequisite for medium and short-term scheduling.  

Uncertainty is inevitable with sparse geological data. Geostatistical simulation algorithms are 
widely used to quantify and assess this uncertainty. The generated realizations are equally probable 
and represent plausible geological outcomes (Journel and Huijbregts, 1981; Deutsch and Journel, 
1998). Choosing one or some of these realizations does not realistically account for what might 
happen in the future. In addition, the uncertainty of ore grade in block models may cause 
discrepancies between planning expectations and actual production. Traditional production 
scheduling methods that use an estimated block model as the input into the scheduling process 
cannot capture the risk associated with production schedules caused by the grade variability. The 
majority of the current production scheduling methods used in industry have two major 
shortcomings: (i) the production scheduling methods are either heuristic based, or derived from the 
mine planner’s experience; most of the current scheduling tools do not use global optimization 
methods, therefore the generated schedules are not necessarily optimal; and (ii) the inability to 
account for the grade uncertainty inherent within the production scheduling problem and as a 
result, there is no measure of the associated risk with the generated mine plans.  

Effective open pit design and production scheduling is a critical stage of mine planning. The effects 
of pit design and scheduling and related predictions have major consequences on cash flows, which 
are typically on the order of millions of dollars. Open pit push-back design is commonly based on 
the well known Nested Lerchs-Grossman algorithm. This algorithm provides an optimal scenario 
of how an orebody should be mined given a set of geological, mining and economic considerations. 
Since 1965, several types of mathematical formulations have been considered for the LTPP 
problem: Linear programming (LP), mixed integer programming (MIP), pure integer programming 
(IP), dynamic programming (DP) and Meta-heuristic techniques.  

All of these deterministic algorithms try to solve the LTPP problem without considering grade 
uncertainty. 

Vallee (2000) reported that 60% of the mines surveyed had 70% less production than designed 
capacity in the early years. Rossi and Parker (1994) reported shortfalls against predictions of mine 
production in later stages of production. Traditional production scheduling methods that do not 
consider the risk of not meeting production targets caused by grade variability, cannot produce 
optimal results. Therefore, the common drawback of all deterministic algorithms is that they do not 
consider any type of uncertainty during the optimization process. 

Dimitrakopoulos et al. (2001) show that there are substantial conceptual and economic differences 
between risk-based frameworks and traditional approaches. Some authors tried to use stochastic 
orebody models sequentially in traditional optimization methods. Dowd (1994) proposed a 
framework for risk integration in surface mine planning. Ravenscroft (1992) discussed risk analysis 
in mine production scheduling. He used simulated orebodies to show the impact of grade 
uncertainty on production scheduling. He concluded that conventional mathematical programming 
models cannot accommodate quantified risk. Dowd (1994) and  Ravenscroft (1992) used stochastic 
orebody models sequentially in traditional optimization methods. However the traditional process 
cannot produce an optimal schedule considering uncertainty.  

Godoy and Dimitrakopoulos (2003) and Leite and Dimitrakopoulos (2007) presented a new risk 
inclusive LTPP approach based on simulated annealing. A multistage heuristic framework is 
presented to generate a final schedule, which considers geological uncertainty so as to minimize the 
risk of deviations from production targets. A basic input to this framework is a set of equally 
probable scenarios of the orebody, generated by the technique of conditional simulation. They 
reported significant improvement on NPV in presence of uncertainty.  
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Leite and Dimitrakopoulos (2007) presented a proposed technique that for each of conditional 
simulation realizations, an optimum schedule is generated. Afterwards, using simulated annealing 
technique, a single schedule is generated based on all schedules, such that deviation from target 
production is minimized. The main drawback of simulated annealing method is that it merely finds 
an acceptably good solution in a fixed amount of time, rather than the optimum solution. 

Dimitrakopoulos and Ramazan (2004) proposed a probabilistic method for long-term mine 
planning based on linear programming. This method uses probabilities of being above or below a 
cut-off to deal with uncertainty. The LP model is used to minimize the deviation from target 
production. This method does not directly and explicitly account for grade uncertainty and also 
does not maximize the NPV. 

Dimitrakopoulos and Ramazan (2008) presented a stochastic integer programming (SIP) model to 
generate the optimal production schedule using equally probable simulated orebody models as 
input, without averaging the related grades. This model has a penalty function that is the cost of 
deviation from the target production and is calculated from geological risk discount rate (GDR) 
that is discounted unit cost of deviation from a target production. They use linear programming to 
maximize a function equal to NPV minus penalty costs. They concluded that the generated 
production schedule is the optimum solution that can produce the maximum achievable discounted 
total value from the project, given the available orebody uncertainty described through a set of 
stochastically simulated orebody models. The proposed scheduling approach considers multiple 
simulated orebody models without increasing the required number of binary variables and thus 
computational complexity.  

The objective of this study is to: (i) present two methodologies to quantify the grade uncertainty 
transferred into production schedules; (ii) assess the impact of grade uncertainty on output 
parameters of mine production scheduling such as: NPV, ore tonnage, head grade, stripping ratio, 
amount of final product, and annual targeted production; and (iii) propose a mixed integer linear 
programming (MILP) formulation for optimal production scheduling that aims at maximizing the 
net present value while minimizing the deviations from targeted production, caused by grade 
uncertainty.  

Kriging (Goovaerts, 1997; Deutsch and Journel, 1998) is used to estimate grades and construct the 
block model. Next, a final pit limit optimization study is performed using Lerchs and Grossmann 
(LG) (Lerchs and Grossmann, 1965) algorithm. Afterwards, a long-term life-of-mine production 
schedule is generated using Whittle software (Gemcom Software International, 1998-2008); this is  
referred to  as the krig schedule throughout the paper.         

Method 1- We use Sequential Gaussian Simulation (SGS) (Journel and Huijbregts, 1981; 
Goovaerts, 1997; Deutsch and Journel, 1998) is used to generate equally probable realizations of 
the orebody. An optimum final pit limit design is carried out for each SGS realization with the 
same technical and economic input parameters as used for the kriged model. Next, the long-term 
schedule of each final pit shell is generated. Uncertainty in the final pit outline, net present value, 
production targets, and the head grade are assessed and compared against the krig schedule. This 
process is labelled as method number one in Fig. 1. 

Method 2- The optimal final pit limit and the krig production schedule are the basis of this 
approach. The same ultimate pit limit and the same krig schedule are applied to all the SGS 
realizations. This provides an assessment of the uncertainty in the production schedule. This 
process is labelled as method number two in Fig. 1. 
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Fig. 1.  Flow diagram of the study. 

The results show that there is significant uncertainty in the long-term production schedules. In 
addition, the long-term schedule based on one particular simulated ore body model is not optimal 
for other simulated geological models. The mine planning procedure is not a linear process and the 
mine plan generated based on the krig estimate is not the expected result from all of the simulated 
realizations. The probability of each block being extracted in each planning period and the 
probability that the block would be treated as ore or waste in the respective period are calculated 
and can be used to assist in long range mine planning. 

2. Methodology 

The comparison of Method 1 and 2 and the respective results will be illustrated through a case 
study corresponding to an oil sands deposit in Fort McMurray, Alberta, Canada. In order to 
quantify the grade uncertainty transferred into the mine plans using Methods 1 and 2 the following 
steps are followed: 

2.1. Geostatistical Modeling 

A sufficient number of realizations must be considered for the purpose of mine planing; otherwise, 
there may be undue reliance on some stochastic features. The steps presented by Leuangthong et al. 
(2004) are followed for geostatistical modelling of an oil sand deposit using GSLIB (Deutsch and 
Journel, 1998) software catalogue to create conditional simulated realizations. The steps presented 
by Leuangthong et al. (2004) (see Fig. 2) are: 

1. Analyze of correlation structure- This investigates whether a transformation of the vertical 
coordinate system is required, in order to determine the true continuity structure of the 
deposit. Determination of the correct grid is dependent on the correlation grid that yields 
the maximum horizontal continuity.  

2. Decluster drillhole data distribution- The relevant statistics must be deemed 
representative of the deposit prior to modelling. Declustering may be employed to 
determine the summary statistics that are representative of the field.   

3. Variography- Model the spatial continuity of the normal scores of the bitumen grade using 
variograms.  Directional experimental variograms are calculated and fit. The Azimuths of 
major and minor directions are 50 and 140 degrees. Figure 3 shows the experimental and 
the fitted variogram models in major (Fig. 3a), minor (Fig. 3b) and vertical (Fig. 3c) 
directions. 
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Fig. 2. Geostatistical modeling stages. 

4. Estimation- Perform estimation and cross validation using kriging as checks against 
simulation results. Ordinary kriging is used to estimate the bitumen grade (with no normal 
score transform) at each block location.  

5. Fig. 4a and 4b illustrate the map of the bitumen grade for the kriged and the E-type 
models. As expected, the E-type model is smoother than the kriged model. Multiple 
realizations of the bitumen grade are generated using Sequential Gaussian Simulation 
(SGS) (Isaaks and Srivastava, 1989) at a very high resolution three-dimensional grid at the 
point scale, this method is the means of constructing uncertainty models of bitumen 
grades. 

  

 
Fig. 3. Experimental directional variograms (dots) and the fitted variogram models (solid lines), distance 

units in meters. 
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6. Check simulation results against the input data and compare results against the Kriging 
model. We check the quality of geo-model by histogram and variogram reproduction.  Fig. 
5a to 5c show the variogram reproduction at major and minor horizontal, and vertical 
directions.  

7. The block dimensions for mine planning are selected according to the exploration drilling 
pattern, ore body geology, mine equipment and anticipated operating conditions. The sizes 
of the blocks used in mine planning are a function of the selective mining unit (SMU). 
The high resolution grid is up-scaled to get the correct block scale values. Arithmetic 
averaging of point scale grades provides the up-scaled SMU grades (Fig. 2). 

 
 

 
 

Fig. 4.  Plan view at 260m; (a) Kriging model, (b) E-type model, (c) realization 26. 
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Fig. 5. Variogram reproduction of simulation realizations (red dash lines) and reference variogram model 

(black line). 

2.2. Optimal final pit outline design 

The final pit limit design is carried out based on the industry standard Lerchs and Grossmann 
algorithm (Lerchs and Grossmann, 1965) using the Whittle strategic mine planning software 
(Gemcom Software International, 1998-2008). The kriged, E-type, and fifty SGS realizations 
models are imported into the Whittle software. The ultimate pit limit design is carried out based on 
the Syncrude's costs in CAN$/bbl of sweet blend for the third quarter of 2008 (Jaremko 2009). 
Price of oil was considered US$45 with an exchange rate of 1.25:1 equal to CAN $56.25/bbl SSB 
for the same time period. We assume that every two tonnes of oil sands with an average grade of 
10% mass will produce one barrel of sweet blend, which is approximately 200 kg. We also assume 
a density of 2.16 tonne/m³ for oil sands, and a density of 2.1 tonne/m³ for waste material, including 
clay and sand. Table 1 summarizes the costs used in the pit limit design. The mining cost of $12.18 
is per tonne of oil sands ore, we assumed a stripping ratio of 1.8:1, and this would lead to a cost of 
$4.6/tonne of extracted material (ore and waste). 

Table 1. Summary of costs used in pit limit design. 
Description Value Description Value 
Mining Costs (CAN $/ bbl SSB)  24.35 Mining Costs (CAN $/tonne)  12.18 
Upgrading Costs (CAN $/ bbl SSB) 10.05 Upgrading Costs (CAN $/tonne) 5.025 
Others (CAN $/bbl SSB) 1.5 Others (CAN $/tonne)  0.75 
Total Costs (CAN $/ bbl SSB)  35.9 Total Costs (CAN $/tonne)  17.28 

Table 2. Final pit limit and mine planning input parameters. 
Description Value Description Value 
Cutoff grade (%mass bitumen) 6 Processing limit (M tonne/year) 20 
Mining recovery fraction 0.88 Mining limit (M tonne/year) 35 
Processing recovery factor 0.95 Overall slope (degrees) 20 
Minimum mining width (m) 150 Pre-stripping (years) 5 
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Table 2 shows the pit design and production scheduling input parameters. Thirty three pit shells are 
generated using 49 fixed revenue factors ranging between 0.1 to 2.5, based on the Kriging block 
model. The number of pit shells is reduced to 14 after applying the minimum mining width of 150 
meters for the final pit and the intermediate pits. Table 3 summarizes the information related to the 
Kriging final pit limit at 6% bitumen cut-off grade. Fig. 6 illustrates the histogram of total tonnage 
of material within the optimal final pit limits. Ultimate pits are generated for each SGS realization. 
E-type and Kriging results are marked by a solid circle and a hollow circle respectively. 

Table 3. Material in the final pit using the Kriging block model. 
Description Value 
Total tonnage of material (M tonne) 653.61 
Tonnage of ore (M tonne) 280.5 
Tonnage of material below cutoff (M tonne) 37.4 
Tonnage of waste (M tonne) 335.71 
Bitumen recovered (M tonne) 27.52 
Stripping ratio (waste:ore) 1.33 

 

 
Fig. 6. Histogram of total tonnage of material within the final pit limits.  

 

2.3. Production Scheduling 

The kriged model is the basis for production scheduling. The aim is to maintain a uniform 
processing feed throughout the mine life.  Four push backs are defined with a fixed lead of three 
benches between pushbacks. Five years of pre-stripping is considered to provide enough operating 
space and ore availability.  No stockpile is defined and the target production is set to 20 million 
tonnes of ore per year with a mining capacity of 35 million tonnes per year. Figure 8 illustrates the 
kriged block model schedule over 21 years of mine-life. This schedule is the basis of Method 2. 
The schedule is applied to all the 50 SGS realizations within the krig fixed optimal pit limit. In 
Method 1, the final pit limits is designed for E-type model and all the fifty realizations with the 
exact same input variables.  
 



Koushavand B. & Askari-Nasab H.  105- 9 
 

 
Fig. 7. Production schedule based on the Kriging block model. 

3. Discussion of results 

Conditional simulation enables us to provide a set of production scenarios, which capture and asses 
the uncertainty in the final pit outline, net present value, production targets, and the head grades. 
The realizations provide equally probable scenarios to calculate different outcomes in terms of 
NPV and production. The probability of each block being extracted in each planning period and the 
probability that the block would be treated as ore or waste in the respective period is calculated. 
The histograms and box plots for the following production schedule output variables are presented 
and discussed for Methods 1 and 2: 

1. Overall stripping ratio. 
2. Total tonnage of ore. 
3. Average grade of ore. 
4. Net present value. 

Fig. 6 illustrates the uncertainty within the final pit limits. The krig final pit (the hollow circle) has 
653 million tonnes, which is less than the average amount of 663 million tonnes, recorded for the 
simulation realizations. The inter quartile limits are 647 and 678 million tonnes. The stripping ratio 
of the krig pit is 1.33 (Fig. 8b), which is near the 1.35 stripping ratio of the lower quartile of the 
simulation realizations. As expected, Method 1 has a larger standard deviation compared against 
Method 2 (Fig. 8). 

Fig. 9 shows the histogram and box plot of ore at final pit. The amount of ore in the kriged and 
Etype models is close when different schedules are generated for each of them (Fig. 9a). The 
tonnage of ore in the kriged model is almost the same as Etype where the same schedule is 
followed (Fig. 9b). 

The histogram of average input grade to the mill for kiging (solid circle), Etype (hollow circle) and 
SGS realizations are presented in Fig. 10. The average grade of the kriged model is more than the 
Etype model and also it is higher than the third quartile of the realizations of both methods. The 
grade uncertainty is clearly illustrated in this figure. The average grade of the Etype is less than 
kriged model and even less than lower quartile of average grade of realizations.   
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Fig. 11 Figure 12 shows the input average head grade for each period. Kriged model (bold solid 
line), Etype model (bold dashed line) and the simulation realizations (dashed lines).  As expected, 
the grade fluctuations of the first method (Fig. 11a) are greater than second method (Fig. 11b).  

Histogram and box plot of produced ore is showed in Figure 13. 27.52 million tonnes of bitumen is 
produced by kriged block model. 26.86 and 26.97 million tonnes of bitumen was produced by 
Etype model for method 1 and 2 respectively. The kriged block model produced more bitumen than 
third quartile of realizations at both method.  

Fig. 13 shows the tonnage of feed to the plant. The deviation from target production is also 
presented in Fig. 14. There are under productions at first years for each of two methods. In 
addition, in first method, we have hard constraint for upper limit of plant feed, there is no over 
production for each of realizations (Fig. 13a). When the same schedule is followed for each of 
realizations, at some realizations, there are overproduction between years 8 to 16 (Fig. 13b). One 
should take into account that the shortfall in production has happened although we have used five 
years of pre-stripping. The effect of the grade uncertainty on the production targets would be more 
severe if the pre-stripping strategy was not adopted. 

Fig. 14 illustrates the box plot for the plant feed, the percentage deviation from the target 
production, and the probability that we would not meet the target production. There is a relatively 
high probability to not meeting the target production at first and last years of mine life. If the krig 
schedule would be followed, the probability of not meeting the target production for some middle 
age of mine life will be increase. There is a 1.2 and 2.1 percent probability of not meeting the target 
production for years 13 and 14 respectively.  

Fig. 15 shows the histogram of cumulated discounted cash flow. E-type and krig results are marked 
by solid circle and hollow circle respectively. NPV of kriged block model is 847 million dollars, 
where the NPV of Etype method is 724 and 780 million dollars for method 1 and 2 respectively. 
The NPV of kriged model is also more that third quartile of realizations.   

Fig. 16 illustrates the discounted cash flow over the years. Cumulative discounted cash flow for 50 
realizations and the kriged and Etype models are showed by dashed lines, solid line and dashed 
blue line respectively. The optimum final pit limit is calculated for each realization; therefore,  
there are some realizations that the mine life is 22 years, where for most realizations, kriged and the 
Etype model the mine life is 21 years (Fig. 16a). In method 2, the same schedule as kriged model is 
followed. Therefore the mine life is 21 years for all realizations and Etype model (Fig. 16b).  

Fig. 17 shows the box plot of discounted cash flow for all realizations. Kriging model is showed by 
solid line and dashed line is used for E-type model. The probability of meeting the NPV from 
Kriging model is also presented. As it is clearly illustrated, based on 50 realizations, there is very 
low chance to reach the NPV of Kriging model for each period. There is not any realization at first 
method to exceed the NPV of Kriging model. Where, there is only one realization (2%) that 
exceeds the final NPV of Kriging model for second method (Fig. 17b). This graph shows generated 
schedule based on the kriging model and generally based on only one block model can produce 
unrealistic and unachievable NPV in present of grade uncertainty.  
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Fig. 8. Histograms and box plots of overall stripping ratio. (a) schedules are generated for each block model 
separately. (b) Kriging schedule applied to all realizations. E-type and Kriging results are marked by solid 

circle and hollow circle respectively. 

 
Fig. 9. Histograms and box plots of total tonnage of ore. (a) schedules are generated for each block model 
separately. (b) Kriging schedule applied to all realizations. E-type and Kriging results are marked by solid 

circle and hollow circle respectively. 
 

 
Fig. 10. Histograms and box plots of average head grade in bitumen %mass. (a) schedules are generated for 
each block model separately. (b) Kriging schedule applied to all realizations. E-type and Kriging results are 

marked by solid circle and hollow circle respectively. 



Koushavand B. & Askari-Nasab H.  105- 12 
 

 

 
Fig. 11. Head grade simulation realizations, Kriging, and E-type models. (a) schedules are generated for each 

block model separately. (b) Kriging schedule applied to all realizations. Kriging result is marked by solid 
line. 

 
 Fig. 12. Histograms and box plots of tonnage of bitumen produced. (a) schedules are generated for each 
block model separately. (b) Kriging schedule applied to all realizations. E-type and Kriging results are 

marked by solid circle and hollow circle respectively. 
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Fig. 13. Plant feed (realizations dash lines), Kriging Model (solid line) and E-type (blue dash line). (a) 

schedules are generated for each block model separately. (b) Kriging schedule applied to all realizations. 
 

 
Fig. 14. Box plot of the simulation plant feed, Kriging schedule (solid line) and E-type (blue dash line). 
Deviations from target production are reported in percentage. (a) schedules are generated for each block 

model separately. (b) Kriging schedule applied to all realizations. 
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Fig. 15. Histograms and box plots of NPV in billion dollars. (a) schedules are generated for each block model 

separately. (b) Kriging schedule applied to all realizations. E-type and Kriging results are marked by solid 
circle and hollow circle respectively. 

 

 
Fig. 16. Cumulative discounted cash flow for 50 realizations (dashed lines) and Kriging model (solid line). 

(a) schedules are generated for each block model separately. (b) Kriging schedule applied to all realizations. 

 

 

 
 

Fig. 17. Box plot of the Cumulative discounted cash flow for 50 realizations (dashed lines) and Kriging 
model (solid line). Probabilities of reaching the Kriging NPV over realizations are presented in percentage. 
(a) schedules are generated for each block model separately. (b) Kriging schedule applied to all realizations. 
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4. MILP formulation 

The discounted profit of mining a block is represented by Eq. (1).  

discountedprofit discounted revenue –  discounted costs  (1) 

Askari-Nasab and Awuah-Offeri (2009) present four mixed integer linear programming models 
without taking into account the grade uncertainty. The proposed model in this paper uses Askari-
Nasab and Awuah-Offeri (2009) fourth model as the starting point. 

The profit from mining a block depends on the value of the block and the costs incurred in mining 
and processing. The cost of mining a block is a function of its location, which characterizes how 
deep the block is located relative to the surface and how far it is relative to its final dump. The 
spatial factor can be applied as a mining cost adjustment factor for each block according to its 
location to the surface. The discounted profit from a block is equal to the discounted revenue 
generated by selling the final product contained in block n minus all the discounted costs involved 
in extracting block. 

Grade uncertainty causes shortfalls from target production levels. Therefore, to obtain an optimum 
schedule, NPV must be maximized and the deviation from target productions must be minimized 
simultaneously among all simulation realizations. 

Max.  NPV

Min.   Deviationfrom target production




 

A new profit function is defined by Eq.  (2). 

New discounted profit = discounted profit – penalty cost for over and under production (2) 

The objective function of the mathematical programming formulation is presented by Eq (3), All 
notations are defined in the appendix.  

( ) ( ),
1 1 1

1T N L
t t t t t t t
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1

0
t

i t

n n
i

y a
=

− ≤∑  1, 2, , , 1, 2, ,t T n N∀ = =   (10) 

Where t

nV  is the expected discounted revenue over all simulation realizations and ,

t

l nQ  is the 
expected discounted cost over all simulation realizations as is shown by Eq. (11): 

,
1

,
1

1

1

L
t t

n n l
l

L
t t

n n l
l

V v
L

Q q
L

=

=

=

=

∑

∑
  (11) 

The discounted revenue and discounted cost can be rewritten as Eq. (12) and Eq.(13). 

( ), , , ,
, , ,

1 1

E E
t e e t e t e t e t
l n l n n l n

e e

v o g r p cs o cp
= =

= × × × − − ×∑ ∑     1, , 1, , 1, ,l L t T n N∀ = = =    (12)  

( ), , ,

t t

l n l n l nq o w cm= + ×         1, , 1, , 1, ,l L t T n N∀ = = =    (13) 

Eq. (4) is grade blending constraints; these inequalities ensure that the head grade of the elements 
of interest and contaminants are within the desired range in each period. There are two equations 
(upper bound and lower bound) per element per scheduling period in Eq.(4). Eqs. (5) and (6) are 
processing capacity constraints; these inequalities ensure that the total ore processed in each period 
is within the acceptable range of processing plant capacity. There are two equations (upper bound 
and lower) per period per ore type. Eq. (7) is mining constraints; these inequalities ensure that the 
total tonnage of material mined (ore, waste, overburden, and undefined waste) in each period is 
within the acceptable range of mining equipment capacity in that period. There are two equations 
(upper bound and lower bound) per period. Eq. (8) represents inequalities that ensure the amount of 
ore of any block which is processed in any given period is less than or equal to the amount of rock 
extracted in the considered time period.  

Eqs. (9) and (10) control the relationship of block extraction precedence by binary integer variables 
at block level. This model only requires the set of immediate predecessors’ blocks on top of each 
block to model the order of block extraction relationship. This is presented by set ( )nC L in Eq.(9). 

In this model, the number of variables is equal to the number of blocks multiplied by the number of 
periods. Boland et al. (2009) and Askari-Nasab and Awuah-Offeri (2009) tried to solve this 
problem with clustering the blocks into aggregates to reduce the number of variables. Using grade 
aggregation methodology similar blocks are clustered into one group. Clustering blocks into 
mining-cuts is done without sacrificing the accuracy of the estimated (or simulated) values. The 
mining-cut clustering algorithm developed uses fuzzy logic clustering (Kaufman and Rousseeuw, 
1990). Coordinates of each mining-cut has been represented by the center of the cut and its 
location. 

5. Conclusion  

We used two methods to show the impact of grade uncertainty at mine planning. First, using the 
kriged model for an oil sand deposit, an optimal final pit limit is generated. Sequential Gaussian 
Simulation is used to generate fifty realizations. An optimum final pit limits design is carried out 
for each SGS realization based on same parameters and technique that are fixed with kriged block 
model. Afterwards, the long-term schedule of each final pit shell is generated. Uncertainty in the 
final pit outline, net present value, production targets, and the head grade are assessed and 
presented.  
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In the second method, for each SGS realization, schedule that generated from kriged model was 
followed. The results show that there is significant uncertainty in the long-term production 
schedules. In addition, the long-term schedule based on one particular simulated ore body model is 
not optimal for other simulated geological models. The mine planning procedure is not a linear 
process and the mine plan generated based on the kriged estimate is not the expected result from all 
of the simulated realizations. 

One of the main aspects of this study is to show the impact of grade uncertainty on mine planning. 
The study is not aimed to compare the simulation with kriging, because it is well-known that 
kriging is conditionally biased (Isaaks, 2005) and on the other hand “there is no conditional bias of 
simulation when the simulation results are used correctly” (McLennan and Deutsch, 2004). 
Conditional biasness of kriging can be reduced by tuning estimation parameter but it cannot be 
eliminated. Grade-Tonnage curve is the good tool to check the impact of kriging biasness. Fig. 18 
shows the grade tonnage curve of simulation realization (dashed lines), krig (bold solid line) and 
Etype (bold dashed line). The systematic biasness of kriging was tried to be minimized but still the 
there are differences between kriging and simulation results. Also Etype is slightly different than 
kriging; Theoretically Etype model is identical with simple kriging result at Gaussian space 
(Journel and Huijbregts, 1981).  

 
Fig. 18. Grade tonnage curve of Kriging, simulation realizations and E-type 
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7.  Appendix  

,
t
l nv  the discounted revenue generated by selling the final product within block n in 

period t at realization number l minus the extra discounted cost of mining all the 
material in block n as ore and processing. 

,
t
l nq  the discounted cost of mining all the material as waste in block n in period t at 

realization number l. 
E   number of element of interests in each block. 
T   Total number of periods. 
L   Total number of simulation realizations. 

,l no   Ore tonnage in block n at realization l. 

 ,
e
l ng   Average grade of element e in one portion of block n at realization l.  
,e tr   processing recovery, the proportion of element e recovered in time period t. 

 
,e tp   Price in present value terms obtainable per unit of product, element e. 

 
,e tcs   Selling cost in present value terms obtainable per unit of product, element e. 

 
,e tcp   Extra cost in present value terms per unit of production, element e. 

 ,l nw   Waste tonnage in block n at realization l. 

 tcm   Cost in present value terms of mining a tone of waste in period t. 

 { }0,1t

na ∈  Binary integer variable controlling the precedence of extraction of blocks. It is 
equal to one if extraction of block n has started by or in period t, otherwise it is 
zero. 

[ ]0,1t

nz ∈  continues variable, representing the portion of bock n to be extracted as ore and 
processed in period t. 

[ ]0,1t

n
y ∈   continues variable, representing the portion of bock n to be mined in period in 

period t, fraction of y characterizes both ore and waste. 
t
lop  is the over produced amount of ore tonnage above a desired tonnage, or upper 

limit, in period t and realization number l. 
t
lup  is the under produced amount of ore tonnage bellow a desired tonnage, or upper 

limit, in period t and realization number l. 
t
opc   is the discounted unit cost of top at period t. 
t
upc   is the discounted unit cost of t

lup  at period t. 
t

nV   is the expected discounted revenue over all simulation realizations. 

,

t

l nQ   is the expected discounted cost over all simulation realizations. 

 


	1. Introduction 
	2. Methodology
	2.1. Geostatistical Modeling
	2.2. Optimal final pit outline design
	2.3. Production Scheduling

	3. Discussion of results
	4. MILP formulation
	5. Conclusion 
	6. Reference 
	 Appendix 

