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Abstract 

In this paper, a mixed integer model for the short-term scheduling of an open pit mine is 
formulated. The model includes a number of buffer stockpiles, waste dumps, and processes. The 
buffer stockpiles assist to smooth the process plant feed. Also, as blocks have different rock types, 
various processes and waste dumps are considered. In other words, extracted materials of blocks 
are sent to different destinations (waste dumps, processes, and stockpiles) based on their rock 
types. For validation of proposed formulation, a case study including 150 cuts are solved by 
CPLEX.      

1. Introduction  

One of the most important aspects of mine production planning is the short-term production 
planning/scheduling (Dimitrakopoulos and Ramazan, 2004). The objective of the short-term 
production scheduling is to determine the optimum sequence of extraction of blocks to meet the 
goals imposed by the long-term scheduling in each short-term period (output of long-term 
scheduling). In fact, the mine short-term production scheduling problem is the sequencing of each 
block’s removal from the mine with respect to a variety of physical and economic constraints. 
Typically, these limitations are about to: the mining extraction sequence, mining, milling and 
refinery capacities, grades of mill feed and concentrates, and different operational requirements 
like minimum mining width (Caccetta and Hill, 2003). 

On the other hand, one of the most challenging issues in the mine scheduling problems is the 
choice of solution methods. Typically, the short-term mine scheduling problems are complex.  The 
complexities arise from the involvement of several continuous and binary variables and the large 
number of blocks to be extracted in the real-world problems. There are many research related to 
solution methods of the mine scheduling problems in the literature. These methods are not limited 
to but include: 

1. Heuristics: Caccetta & Hill (2003) developed and implemented a graph-theoretic 
technique originally proposed by Lerchs and Grossman. They implemented a strategy 
including the application of a dynamic programming technique to “bound” the optimum. 
Also, Gershon (1987) proposed two heuristic methods; the first method is applicable in 
surface and underground mining with decisions on blending issues. Another method is 
applicable in general situations but mostly efficient in open pit mining problem.   

2. Dynamic programming techniques: Tolwinski & Underwood (1996) proposed a model for 
the mine scheduling problem as a sequential optimization. Tolwinski & Underwood 
(1996) developed an algorithm for its solution. To overcome the difficulty related to large 
number states in the problem, they used a method based on the dynamic programming. 
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3. Mixed integer linear programming: Caccetta & Hill (2003) proposed a mix integer 
programming model for open pit mine scheduling problem. Also, Gershon (1983) 
developed a mixed-integer formulation, modeling the mine scheduling problem to 
optimize both the mine production sequencing and the mill blending and processing 
problems, simultaneously. Carlyle & Eaves (2001) formulated a maximization integer 
programming model for mining platinum and palladium at Stillwater Mining Company, 
which is able to reach near-optimal solutions without applying any special methods to 
lessen solution time. 

4. And the applications of artificial intelligence algorithms: these algorithms include 
simulated annealing, genetic algorithms, and neural networks. For example, (Denby & 
Schefield (1995) applied the neural network algorithm in the mining context. Also, Denby 
et al. (1991) implemented the genetic algorithm in the underground mine scheduling.   

Smith et al. (2003) created a production scheduling model for a copper and zinc underground mine 
at Mount Isa, Australia. The decision variables in Smith et al. (2003) model represent the time at 
which to mine each extractable production block with the objective of net present value 
maximization. The constraints were the operational constraints, e.g., ore availability, concentrator 
capacity, mine infrastructure production capacity, grade (mineral quality) limits, continuous 
production rules, and precedence relationships between production blocks. Also, Shu-xing and 
Peter (2009) surveyed the application of real options in the mining industry and proposed a 
framework developed at the University of Queensland, Australia, for integrating real options into 
medium/short-term mine planning and production scheduling. Their work introduced a new form 
of real option or mine planning flexibility, into medium/short-term mine planning and production 
scheduling processes. Also, Shu-xing and Peter (2009) demonstrated the method for valuation of 
these flexibilities based on the concept of real options. Basically, the uncertainty parameter 
considered in their paper is fuel price uncertainty. In addition, they used the approaches to estimate 
the values of the real options. 

Classical methods are not successful to consider the risk of not meeting production targets caused 
by the uncertainty in estimated grades. Gap between planned expectations and actual production 
may occur in any steps of mining (Dimitrakopoulos and Ramazan, 2004). Vallee (2000) reported 
that 60% of the examined mines had an average rate of production that was less than 70% of the 
nominal capacity in early years. Rossi and Parker (1994) reported shortcomings against predictions 
of mine production in the later years of production. Dimitrakopoulos and Ramazan (2004) propose 
a method to integrate the grade uncertainties in optimization models. Their integrated model 
considers quantification of risk, equipment access, and other operational requirements. These 
operational requirements are blending, mill capacity, and mine production capacity. Godoy and 
Dimitrakopoulos (2004) proposed a method for risk-inclusive cutback designs, which yield 
fundamental NPV increases.  

The organization of current paper is as follows: in section 2, the problem is defined in details.  The 
theoretical framework of the proposed formulation, including definition of parameters, variables, 
and mathematical models are explained in section 3. In section 4 and 5, the proposed model is 
implemented and a case study for a year of mine production with 3089 blocks which have been 
clustered in 150 mining-cuts is presented. The conclusions and future work directions are presented 
in the section 6.    

2. Problem definition  

As mentioned in the introduction section, the problem is the short-term scheduling of an open pit 
mine. Fig. 1 shows the general schematic view of the problem. The problem is defined for an open 
pit mine including S buffer stockpiles, P processes, and W waste dumps. The mine has E elements, 
which one of them is considered as the major product. The role of buffer stockpiles is to hold 
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excess amount of ore extracted from the mine. The shortage of feed for the processes in different 
periods is balanced by reclaiming ore from buffer stockpiles, whenever required. In fact, in each 
period, an amount of ore is extracted from the mine with respect to the mining capacity and 
precedence limitations. A portion of this extracted ore is delivered to the processes directly. But, all 
processes cannot accept ore with all rock types. The remaining ore is delivered to the stockpiles. 
Also, the same procedure is valid for the waste dumps. Each waste dump accepts waste materials 
with specific rock-types. Therefore, the short-term scheduling of the open pit mine is making a 
decision about: (i) the amount of material (ore and waste) that must be extracted from the mine in 
each period, (ii) the destinations (waste dumps, stockpiles, and processes) that the mined materials 
are sent to, and (iii) also, the decision about the amount of ore reclaimed from the stockpiles to the 
processes in each period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Schematic view of the problem. 

We assume that in the short-term horizon we have K periods with span of t. Also, from the long-
term scheduling it has been determined that during K periods which blocks should be extracted 
from the mine. In the short-term scheduling we should decide about the amount and the time of 
extraction of each block in each period. There are some main assumptions in the problem. Briefly, 
these imposed assumptions are as follows: 

• Each stockpile accepts ore from the mine with certain ranges of grade for different 
elements. In other words, the ore sent to each stockpile must have grades of elements 
within predefined ranges for that stockpile. We define stockpiles based on grade range 
bins. 
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• The grade of ore reclaimed from each stockpile is equal to the average grade of each 
element in that stockpile. 

• Depending on the rock type of each block, the waste material of that block is sent to a 
certain waste dump. 

• It is possible that some processes accept ore from specific stockpiles not from all of 
them. 

• Stockpiles are classified based on rock types and grade ranges. 

3. Theoretical framework and models 

The proposed model is a short-term scheduling model with the objective of costs minimization 
with respect to physical and economic constraints. There are many parameters and variables in the 
model. Before presenting the formulation of the proposed model, it would be better to define these 
parameters and decision variables.  

3.1. Parameters and decision variables 

3.1.1 Parameters   

1- t : period of scheduling (t=1,…,K) 
2- e : element e (e=1,..,E) 
3- J(n) : set of blocks that must be extracted during the short-term time horizon 
4- P(n) : set of processes that can receive ore from block n 
5- SP(n) : set of stockpiles that can receive ore from block n 
6- W(n) : set of waste dumps that can receive waste from block n 
7- N : number of blocks in J(n) 
8- t

mC : unit mining cost in period t 

9- t,i
wrC : unit waste rehabilitation cost in period t for waste dump i 

10- t,i
pC : unit processing cost in period t for plant i 

11- t
SP,iRH : unit rehandling cost of stockpile i in period t 

12- tMU : upper bound of mining capacity use in period t 
13- tML : lower bound of mining capacity use in period t 
14- t

iPU : upper bound of capacity of process i in period t 

15- t
iPL : upper bound of capacity of process i in period t 

16- nO : mineral zone tonnage of block n 

17- nR : rock tonnage of block n    

18- e
ng : grade of element e in block n 

19- i
ndE : distance of block n to exit passing from ramp i  

20- t,i
egu : upper bound on acceptable grade of element e for process i in period t 

21- t,i
egl : lower bound on acceptable grade of element e for process i in period t 

22- PB(n) : set of precedent blocks of block n 
23- PB(n)N : number of blocks in set PB(n) 
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24- R(n) : set of ramps for block n 

25- tME : minimum extraction of blocks in period t 

26- e
SP,iOG : grade of element e in the output ore of stockpile i 

27- e
SP,iUG : upper bound of grade of element e in received ore from mine for stockpile i 

28- e
SP,iLG : lower bound of grade of element e in received ore from mine for stockpile i 

29- SP,iC : Capacity of stockpile i 
30- P(SP(i)) : set of processes that receive ore from stockpile i ( destination for stockpile i) 
31- SP(P( j)) : set of stockpile that send ore to process j ( source for process j) 

3.1.2 Decision variables 

Decision variables are as follows: 

1- t
nu : fraction of block n extracted in period t ( ∈n J( n ) ) 

2- t,i
n,Wu : fraction of block n extracted in period t and sent to waste dump i ( ∈i W( n ) )  

3- t ,i
n,SPu : fraction of block n extracted in period t and sent to stockpile i ( ∈i SP( n ) )  

4- t,i
n,Pu : fraction of block n extracted in period t and sent to process i ( ∈i P( n ) )  

5- t
nb : binary variable, if block n is extracted in period t it gets value of 1 otherwise 0 

6- t,i
n,rx : amount of extracted material of block n in period t exit from ramp i 

7- t,i
n,rb : binary variable, if ramp i is selected for handling of amount of extracted material    

from block n in period t, it gets value of 1, otherwise 0 
8- t,P, j

SP,iy : amount of ore sent from stockpile i to process j in period t ( ∈i SP( P( j ))  which is 
the set of stockpiles that send ore to process j)  

9- t
SP,iI : Inventory of stockpile i in period t 

3.2. Formulation  

After defining the parameters and variables of the model, the mathematical formulation of the 
proposed model is presented. 

k N k N k P
t t t ,i t ,i t ,p, j t , j

n n m n,p n p SP,i p
t 1 n 1 t 1 n 1 i P(n) t 1 j 1 i SP(P( j))

totalmin ing cos t totalprocessin g cos t

k N
t,i t ,i
n,w n wr

t 1 n 1 i W(n)

totalw

Min Z R u C u R C y C

u R C

= = = = ∈ = = ∈

= = ∈

= ⋅ ⋅ + ⋅ ⋅ + ⋅ +

⋅ ⋅
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k
t
n

t 1
u 1, n 1...N

=

= ∀ =∑   (2) 

t,i t,i t,i t
n,P n,SP n,w n

i P(n) i SP(n) i W(n)

u u u u , n 1...N, t 1...k
∈ ∈ ∈
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n n,P n,SP n
t 1 i P(n) i SP(n)

R ( u u ) O , n 1...N
= ∈ ∈

⋅ + = ∀ =∑ ∑ ∑
  

 (4) 

t t
n nu b , n 1...N, t 1...k≤ ∀ = ∀ =     (5) 

t t t
n nME b u , n 1...N, t 1...k⋅ ≤ ∀ = ∀ =    (6) 

N
t t t

n n
n 1

ML R u MU , t 1...k
=

≤ ⋅ ≤ ∀ =∑
  

(7) 

N
t t, j t ,P, j t
j n n,P SP,i j
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∀ = ∈
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t
t

PB(n) n i
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N b u , n 1...N, t 1...kτ

τ= ∈
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n n,SP SP,i SP,i SP,i
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∈
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Eivazy H. &  Askari-Nasab H.  104- 7 
 

t,i t
n,r n

i R(n)

b b , n 1...N, t 1...k
∈

= ∀ = ∀ =∑  
  

(18) 

t
n0 u 1, n 1...N, t 1...k≤ ≤ ∀ = ∀ =   (19) 

t,i
n,W0 u 1, n 1...N, t 1...k, i W(n)≤ ≤ ∀ = ∀ = ∀ ∈   (20) 

t,i
n,P0 u 1, n 1...N, t 1...k, i P(n)≤ ≤ ∀ = ∀ = ∀ ∈   (21) 

t,i
n,SP0 u 1, n 1...N, t 1...k, i SP(n)≤ ≤ ∀ = ∀ = ∀ ∈   (22) 

t,i
n,r0 x , n 1...N, t 1...k, i R(n)≤ ∀ = ∀ = ∀ ∈   (23) 

t,P, j
SP,i0 y , t 1...k, i 1...S, j P(SP(i))≤ ∀ = ∀ = ∀ ∈   (24) 

t
SP,i SP,i0 I C t 1...k, i 1...S≤ ≤ ∀ = ∀ =   (25) 

t t,i
n n,rb and b 0 /1 , n 1...N, t 1...k, i R(n)= ∀ = ∀ = ∀ ∈  (26) 

Eq. (1) indicates the minimization objective function. This function includes the cost terms as 
follows: 

1. Total mining cost: this cost contains the mining costs such as drilling, blasting and loading 
of material throughout K periods.  

2. Total processing cost: this cost is the summation of processing costs of ore sent from mine 
directly or from stockpiles indirectly throughout K periods.  

3. Total waste rehabilitation cost: this cost indicates the summation of costs for rehabilitation 
of waste dumps during K periods. 

4. Total rehandling cost: this is the total cost incurred for handling of ore from stockpiles to 
different processes. 

5. Total haulage cost: this is the total cost of haulage of materials from blocks to the exit of 
the mine.  

Minimization of the abovementioned costs is under some constraints. These constraints have been 
reflected in Eqs. (2) to (26). Eq. (2) shows the constraints regarding to the complete extraction of 
all blocks. All blocks should be mined during K periods. Eq. (3) refers to this fact that the fraction 
of each block that is mined in each period is sent to different destinations. In other words, total 
extracted material from block n in each period goes to processes, stockpiles, and waste dumps. So 
far, decision variables , ,

, ,, ,t t i t i
n n w n SPu  u  u  and ,

,
t i
n Pu  can get every value. Constraint 3 imposes the 

relationship between these decision variables. Eq. (4) indicates that at the end of K periods, all of 
the mineralized material and waste material of each block should be mined completely. Eq. (5) 
defines the relation between the binary variable t

nb  and the continuous variable t
nu . Whenever a 

portion of a typical block n is going to be mined, the respected binary variable t
nb  is set to 1. Eq. 

(6) refers to minimum extraction of blocks in each period. Based on this constraint, when the 
shovel extracts a block, it cannot extract a small portion of the block. In fact, it is not practical to 
extract a small fraction of a block. Thus, to avoid the very small extraction amounts, constraint 5 is 
used.  Eq. (7) indicates the mining capacity limitation in each period. In each period the total mined 
rock tonnage should be in an acceptable certain range of values. This range reflects the capacity of 
mining by available equipments. Eq. (8) is the constraint of process capacity in each period. 
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According to this constraint, total ore sent to each process from mine and stockpiles should be in a 
certain range. Like mining constraint, this range is assigned by available capacity of processes in 
each period. Eq. (9) forces the precedence or slope constraints in which the extraction of each 
block can be start only when all blocks which are placed above that block directly are mined 
completely. To explain this constraint, suppose block (x) with 9 blocks above. According to 
precedence constraint concept, in each period the extraction of block x can be performed only 
when all of these 9 blocks have been extracted completely through the previous periods and current 
period. The right-hand side of Eq. (9) shows the summation of portions of all of these 9 blocks 
through the previous periods and current period. The value of this summation can equal to a value 
less than 9 or exactly 9. Less than 9 value means that all of 9 blocks above are not mined 
completely. Therefore, the extraction of block x cannot be started. By dividing the value of 
summation by 9, a value less than 1 would be obtained. This less than 1 value forces t

nb  to be 0. On 
the other hand, if the value of summation equals to 9, by dividing by 9, the value of 1 would be 
obtained which indicates that mining of block x can be start from this period. Eq. (10) indicates the 
head grade constraint of each process in each period. Based on this constraint, the average grade of 
each element in ore sent to each process in each period should be in a certain range which is 
determined by processes. Eq. (11) is the balancing of stockpiles inventory during time horizon. 
Total material that each stockpile receives in each period plus the current inventory minus the ore 
tonnage it sends to processes determines the inventory for the next period. Eq. (12) shows that the 
total ore sent from each stockpile in each period should be less than the inventory of that stockpile 
at the beginning of that period. Here, the assumption is that the ore is going to be sent from each 
stockpile to processes at the beginning of each period. As each stockpile stores ore with a certain 
grade for each element, Eq. (13) is the constraint on the values of grade of elements in ore sent to 
each stockpile. Eqs. (14) and (15) guarantee that after sending ore from each stockpile, the average 
grade of elements of ore inside that stockpile remains in the acceptable range. The following 
theorem shows that Eqs. (14) and (15) result in keeping the grade of elements in stockpiles between 
lower and upper bounds.  
Theorem 1:   

Fig. 2 indicates the procedure of reclaiming ore from a typical stockpile i in period t. As 
mentioned, the assumption is that reclaiming ore from stockpiles is done at the beginning of each 
period. Suppose the metal content for element e in stockpile i at the beginning of period t (or at the 
end of period t-1) is e,t 1

SP,iN − . Since the ore is sent with average grade e
SP,iOG , the remaining metal 

content for element e is as follows:  

e,t 1 e t,P, j
SP,i SP,i SP,i

j P(SP(i))

N OG y , e 1...E−

∈

− ⋅ ∀ =∑   (27) 

Also, the remaining ore in stockpile i is as follows: 

t 1 t,P, j
SP,i SP,i

j P(SP(i))

I y−

∈

− ∑   (28) 

As the average grade of element e in ore stored inside the stockpile i should be between its 
predefined lower and upper bound, then 

 

e,t 1 e t,P, j
SP,i SP,i SP,i

j P(SP(i))e e
SP,i SP,it 1 t,P, j

SP,i SP,i
j P(SP(i))

N OG y
LG UG , e 1...E

I y

−

∈
−

∈

− ⋅

≤ ≤ ∀ =
−

∑
∑

 (29) 

After reorganization of Eq. (29), Eqs.(14) and (15) are obtained. It should be mentioned that the 
metal content of element e in stockpile i is calculated by Eq. (30).  
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t 1 t 1
e,t 1 ,i e e ,P, j e
SP,i n,SP n n SP,i SP,i SP,i

1 n:SP(n) i 1 j P(SP(i))

N u R g IMC y OG ,

e 1...E, t 1...K, i 1...S

− −
− τ τ

τ= ∀ = τ= ∈

= ⋅ ⋅ + − ⋅

∀ = ∀ = ∀ =

∑ ∑ ∑ ∑
    (30) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2. Procedure of sending ore from stockpile i to processes. 

In Eq. (30) the metal content of element e in period t for stockpile i is calculated by the summation 
of all received ore tonnages in the previous periods and the initial metal content of element e, 
minus the total ore tonnages that the stockpile have sent to the processes through the previous 
periods. 

Eqs. (16) to (18) indicate that total extracted material from each block in period t is handled to one 
of the possible ramps. In other words, just one of possible ramp is selected for handling the 
material of each block. Eq. (16) means summation of material sent from block n to different ramps 
in each period equals to total extracted material from that block in that period. Eqs. (17) and (18) 
indicate the extracted material can be sent to only one of the possible ramps. Eqs. (19) to (26) 
represent the sign constraints regarding to decision variables. Among these constraints, Eq. (25) 
shows the limitation of storage for stockpiles.  

4. Discussion and results 

In this section, an illustrative example for short-term planning of an open pit mine is presented. The 
example refers to Gol-E-Gohar mines in south of Iran. The main element of this mine is Iron (Fe). 
The contaminants present are phosphor and sulfur. Fig. 3 shows the 3D view of one of the designed 
pit. The open pit has 20 benches. Only blocks of benches 14, 15, 16, and 17 are used for the 
purpose of short-term planning. These benches are scheduled over 12 months. The total number of 
blocks in these benches is 3089. These 3089 blocks are clustered into 150 mining-cuts using fuzzy 
C-mean method. We aggregate blocks for two reasons: (i) to reduce the number of variables in the 
MILP formulation, and (ii) to generate a schedule that follows a selective mining unit.   For this pit, 
only one exit has been designed. Also, on average, two ramp accesses have been designed for each 
bench. For the four benches considered in this study, there are 7 ramp accesses. Table 1 represents 
the general information of the problem. All the blocks can be sent to all destinations.  Stockpile 1 
only feeds process 1 and Stockpile 2 feeds process 2.  
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Fig.  3. 3D view of the open pit mine. 

 
  Table 1. General information of the problem. 

 Bench Number 

 1 2 3 4 
Number of blocks 614 726 820 929 
Number of Cuts 30 35 40 45 
Ramp access # 1 ,2 3, 4 5, 6 7 
Total number of blocks 3089 
Total number of cuts 150 
Block size 25×25×15 ( ) 
Total rock tonnage 93.8544 Million Tonnes 
Total mineral tonnage 47.4898 Million Tonnes 

 

For implementation of the proposed mathematical model, 6 destinations including 2 processes, 2 
stockpiles, and 2 waste dumps are considered. Table 2 and Table 3 indicate the main specifications 
of these destinations. Material could be sent to any of the waste dumps.  

Table 2. Processes main features. 
Process Lower grade Upper grade Min.  

capacity 
(tonne) 

Max.  
capacity 
(tonne) 

MWT S P MWT S P 

Process 1 0 0 0 1 1 1 1,000,000 2,000,000 

Process 2  0 0 0 1 1 1 1,000,000 1,750,000 
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Table 3. Stockpiles main features. 

Stockpile Lower grade Upper grade Output grade Max.  
capacity 
(tonne) 

Initial 
inventory 

(tonne) MWT S P MWT S P MWT S P 

Stockpile 1 0.55 0 0 0.65 0.3 0.3 0.6 0.04 0.035 2,000,000 0 

Stockpile 2 0.651 0 0 0.78 0.3 0.3 0.71 0.04 0.035 2,000,000 0 

Unit costs are shown in Table 4. Fig. 5 to Fig. 8 illustrate sample plan views and cross sections of 
the generated schedule. Fig.  5 shows the plan view of the top level of the considered blocks while 
Fig.  6 illustrates the plan view of bench 17.  Fig. 7 and Fig.  8 show the cross sections looking East 
and North, respectively. The values inside of these figures indicate the period that the maximum 
amount of extraction of blocks has occurred. For plan views, each cell has a size of 25m×25m and  
for Figs. 7 and 8, each cell has a size of 25m×15m. The optimum objective function shows the total 
costs including mining, haulage, processing, rehandling, and rehabilitation.  

Table 4. Unit costs. 
Processing 1 

($/tonne) 
Processing 2 

($/tonne) 
Rehandling 1 
($/tonne.m) 

Rehandling 2 
($/tonne.m) 

Waste 
rehabilitation 1 

($/tonne) 

Waste 
rehabilitation 2 

($/tonne) 
5.5 5.75 0.5 0.25 1.75 2 

Fig.  4 shows the schedule of extraction during 12 periods. Based on this figure, almost the 
maximum capacities of mining equipments and processes are used with a small deviations.     

 
Fig.  4. Schedule of mine production during 12 periods. 
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Fig.  5. Plan view of bench 14 (top level). Each block is 25 25m m× . 

 
Fig.  6. Plan view of bench 17 (bottom level). Each block is 25 25m m× . 

 
Fig.  7. Sample cross section looking East. Each block is 25 15m m× . 

 
Fig.  8. Sample cross section looking North. Each block is 25 15m m× . 
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5.  Conclusions and future work  

Mine scheduling is a challenging problem in the mining industry. In this paper, a mixed integer 
model for the short-term scheduling of open pit mines is formulated and solved. The proposed 
model includes different destinations, processes, stockpiles, and waste dumps. Each process plant 
processes the received ore to produce the final product. The stockpiles are considered to keep extra 
mined ore for using in the next periods. The objective function of model aims to minimize the total 
costs incurred by mining and haulage, processing, rehandling, and waste rehabilitation. This 
function is subject to different mining operational constraints such as head grade blending, 
precedence constraints, etc. The proposed model is solved by CPLEX for a typical set of blocks in 
4 benches.           
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7. Appendix 

MATLAB and CPLEX Code Documentation 
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