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Abstract 

A mixed integer linear programming formulation for open pit production scheduling with multiple 
material destinations is presented.  

1. Notation 

We will present an MILP formulation for the open pit production scheduling problem with multiple 
materials destinations. The notation of decision variables, parameters, sets, and constraints are as 
follows: 

1.1. Sets 

K {1,..., }K=   set of all the mining-cuts in the model.  
P {1,..., }P=   set of all the phases (push-backs) in the model.  
D {1,..., }D=  set of all the possible destinations for materials in the model.  
Ak {1,..., }kA=  set of all the directed arcs in the mining-cuts’ precedence directed graph 

denoted by kG (K, Ak).   

( )kC L  for each mining-cut k , there is a set ( )kC L ⊂ K defining the immediate 
predecessor mining-cuts that must be extracted prior to extracting mining-
cut k . Where L is an integer number presenting the total number of blocks 
in the set kC . 

( )pB M  for each phase p there is a set ( )pB M ⊂K defining the mining-cuts 
constructing phase p . Phases are constructed to be sets of mining-cuts 
partitioning K. where M is an integer number denoting the total number of 
blocks in the set pB . 

( )PH R  for each phase p , there is a set ( )pH R ⊂  K defining the mining-cuts 
within the immediate predecessor pit phases (push-backs) that must be 
extracted prior to extracting phase p . Where R is an integer number 
presenting the total number of blocks in the set pH . 
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1.2. Indices 

A general parameter can take the following indices in the format of , ,
,
d t e

k pf . Where: 
{1,..., }k K∈   index for mining-cuts.  
{1,..., }p P∈   index for phases. 
{1,..., }d D∈   index for possible destinations for materials. 

{1,...., }t T∈   index for scheduling periods.  
{1,..., }e E∈   index for elements of interest in each block. 

1.3. Parameters 
,d t

ku  the discounted dollar value generated by extracting mining-cut k  and 
sending it to destination d in period t .  

,d t
kv  the discounted revenue generated by selling the final products within 

mining-cut k  in period t , if it is sent to destination d , minus the extra 
discounted cost of mining all the material in mining-cut k  as ore and 
processing at destination d .   

,d t
kq  the discounted cost of mining the material in mining-cut k  in period t  as 

waste and sending it to destination d .  
e
kg  average grade of element e in ore portion of mining-cut k .  

, ,d t e
g  upper bound on acceptable average head grade of element e , in period t , 

at processing destination d .  
, ,d t eg  lower bound on acceptable average head grade of element e , in period t , 

at processing destination d .  

ko    ore tonnage in mining-cut k .  

kw    waste tonnage in mining-cut k . 
,d tp  upper bound on processing capacity of ore in period t  at destination d

(tonnes).  
,d tp  lower bound on processing capacity of ore in period t  at destination d

(tonnes).  
t

m    upper bound on mining capacity in period t (tonnes).  
tm    lower bound on mining capacity in period t (tonnes).  
,d er  processing recovery, is the proportion of element e recovered if it is  

processed at destination d . 
,t es   price in present value terms obtainable per unit of product (element e ). 

,t ecs     selling cost in present value terms per unit of product (element e ). 
, ,d t ecp   extra cost in present value terms per tonne of ore for mining and 

processing at destination d .  
,d tcm  cost in present value terms of mining a tonne of waste in period t sending 

it to destination d. 



Askari-Nasab H. 102- 3  
 

kh  bench number corresponding to mining-cut k , benches are numbered from 
the top of the pit towards the bottom accordingly. 

ph  maximum acceptable lead between phase p and 1p + . Where the lead is 
the number of benches by which the mining of a specified phase must be 
ahead of the next one. 

ph  minimum acceptable lead required between phase p and 1p + .  

M  the total number of mining-cuts in the set ( )pB M . 

R    the total number of mining-cuts in the set ( )p RH .     

L   the total number of mining-cuts in the set ( )k LC . 

1.4. Decision Variables 
, [0,1]d t

kx ∈  continuous variable, representing the portion of mining-cut k  sent to 
processing destination d, in period t . 

, [0,1]d t
ky ∈  continuous variable, representing the portion of mining-cut k  mined in 

period t  , and sent to destination d. 
{0,1}t

kb ∈  binary integer variable controlling the precedence of extraction of mining- 

cuts. t
kb  is equal to one if extraction of mining-cut k has started by or in 

period t , otherwise it is zero. 

{0,1}t

pz ∈  binary integer variable controlling the precedence of mining phases.  t
pz  is 

equal to one if extraction of phase p has started by or in period t , 
otherwise it is zero. 

2. Economic block value modeling 

The objective function of the MILP formulation is to maximize the net present value of the mining 
operation. Hence, we need to define a clear concept of economic value based on the amount of ore 
within mining-cuts, which can be mined selectively. The profit from mining depends on the value 
of the mining-cut based on its processing destination and the costs incurred in mining and 
processing it. The cost of mining a cut is a function of its location, which characterizes how deep 
the mining-cut is located relative to the surface and how far it is relative to its final dump. The 
spatial factor can be applied as a mining cost adjustment factor for each mining-cut according to its 
location to the surface. The discounted profit from mining-cut k  is equal to the discounted revenue 
generated by selling the final product contained in mining-cut k  minus all the discounted costs 
involved in extracting mining-cut k , this is presented by Eq. (1). 

, , , , , , ,

1 1

cos

[ ( ) ] [( ) ]
E E

d t e d e t e t e d t e d t
k k k k k k

e e

discounted revenues discounted ts

u o g r s cs o cp o w cm
= =

= × × × − − × − + ×∑ ∑
 

        {1,..., }d D∀ ∈  (1) 

For simplification purposes we denote:  

, , , , , ,

1 1

( )
E E

d t e d e t e t e d t e
k k k k

e e

v o g r s cs o cp
= =

= × × × − − ×∑ ∑
       

{1,..., }, {1,..., }d D k K∀ ∈ ∈  (2) 
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, ,( )d t d t
k k kq o w cm= + ×                                {1,..., }, {1,..., }d D k K∀ ∈ ∈  (3) 

3. Model  

Objective function:  

, , , ,

1 1 1

max ( )
p

D T P
d t d t d t d t
k k k k

d t p k B

v x q y
= = = ∈

−
 
 
 

∑∑∑ ∑   (4) 

Subject to: 

, ,, , ,

1

( )
p p

P d t ed t e e d t
k k k k

p k B k B

g g o o x g
= ∈ ∈

≤ ≤
 
 
 

∑ ∑ ∑ { }1,..., , {1,..., }, {1,..., }t T d D e E∀ ∈ ∈ ∈  (5) 

, , ,

1 p

P
d t d t d t

k k
p k B

p o x p
= ∈

≤ ≤
 
 
 

∑ ∑
 

{ }1,..., , {1,..., }t T d D∀ ∈ ∈  (6) 

,

1

( )
p

P tt d t
k k k

p k B

m o w y m
= ∈

≤ + ≤
 
 
 

∑ ∑  { }1,..., , {1,..., }t T d D∀ ∈ ∈  (7) 

, ,

1 1

D D
d t d t
k k

d d

x y
= =

≤∑ ∑  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (8)   

,

1 1

0
D t

t d i
k s

d i

b y
= =

− ≤∑∑
 

{ }{1,..., }, 1,..., , ( )kk K t T s C L∀ ∈ ∈ ∈  (9) 

,

1 1

0
D t

d i t
k k

d i

y b
= =

− ≤∑∑  { }{1,..., }, 1,...,k K t T∀ ∈ ∈  (10) 

1 0t t
k kb b +− ≤  { }{1,..., }, 1,..., 1k K t T∀ ∈ ∈ −  (11) 

t t
pp l l j jh h b h b h≥ − ≥  { } 1{1,..., }, 1,..., , ,p pp P t T l B j B +∀ ∈ ∈ ∈ ∈  (12) 

,

1 1 1

. 0
R D t

t d i
p r

r d i

R z y
= = =

− ≤∑∑∑
 

{ }{1,..., }, 1,..., , ( )pp P t T r H R∀ ∈ ∈ ∈  (13) 

,

1 1 1

. 0
M D t

d i t
m p

m d i

y M z
= = =

− ≤∑∑∑  { }{1,..., }, 1,..., , ( )pp P t T m B M∀ ∈ ∈ ∈  (14) 

1 0t t
p pz z +− ≤  { }{1,..., }, 1,..., 1p P t T∀ ∈ ∈ −  (15)
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