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Abstract  

Open pit mine plans define the complex strategy of displacement of ore and waste over the 
mine life. The objective of the mine plan is to maximize the future cash flows within the 
technical and physical constraints. Various mixed integer linear programming (MILP) 
formulations have been used for production scheduling of open pit mines. In the MILP 
formulation the slope constraints guarantee that all the overlying blocks are mined prior to 
mining a given block. Traditionally, the slope constraints have been modeled with cone 
templates representing the required wall slopes of the open pit mine. The overall pit slopes 
constructed by these templates are a function of the width and height of the geological 
block model. Therefore, the overall slopes are fixed in one bearing. This paper presents a 
general MILP model for open pit mine scheduling with variable slopes constraints. The 
methodology utilizes a directed graph to capture the precedence of extraction of blocks 
and pit slopes in different bearings. Depth-first-search algorithm was used to traverse the 
graph for constructing the slope constraints in the MILP problem. TOMLAB/CPLEX was 
used as the implementation platform to efficiently integrate the mathematical solver 
package CPLEX with MATLAB. A case study on intermediate scheduling of an iron ore 
mine over twelve periods was carried out to validate the models. 

1. Introduction  
Mixed integer linear programming (MILP) mathematical optimization have been used by 
different researchers to tackle the long-term open-pit scheduling problem (Caccetta and 
Hill, 2003; Ramazan and Dimitrakopoulos, 2004; Dagdelen and Kawahata, 2007). The 
MILP models theoretically have the capability to consider diverse mining constraints such 
as multiple ore processors, multiple material stockpiles, and blending strategies. In this 
paper, we present a general MILP model for open pit mine scheduling with variable pit 
slopes constraints. The methodology utilizes a directed graph to capture the precedence of 
extraction of blocks and pit slopes in different bearings. Depth-first-search algorithm is 
used to traverse the graph for constructing the slope constraints in the MILP problem. 
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2. MILP theoretical framework and models 
In this paper, we extend our model based on the basic concepts of  the MILP model 
presented by Ramazan and Dimitrakopoulos (2004). We revise the MILP model for better 
performance and introduction of variable pit slopes into the formulation. The parameters, 
decision variables, and indices used in the formulation are as follows. 

Parameters  
e
ng    average grade of element e in ore segment of block n . 

,t egu    upper bound on grade (maximum grade) of element in period . e t
,t egl    lower bound on grade (minimum grade) of element in period . e t

no    ore tonnage in block n . 

nw    waste tonnage in block . n

nu    unknown waste tonnage in block . n

nbt    total block tonnage equal to n no w un+ +   
,t epu  upper bound on processing capacity of ore containing element  in 

period t (tonnes). 
e

,t epl  lower bound on processing capacity of ore containing element e in 
period t (tonnes). 

tmu    upper bound on mining capacity in period (tonnes).  t
tml    lower bound on mining capacity in period (tonnes).  t

,t er  processing recovery, is the proportion of element e  recovered by 
processing it in period t . 

,t ep  price of product in present value terms obtainable per unit of product 
(element ) sold in period t .  e

,t ecs  selling cost of product in present value terms per unit of product 
(element ) sold in period t . e

,t ecp  extra cost in present value terms per tonne of ore for mining the 
material as ore and processing element in time period t . e

tcm  cost in present value terms of mining a tonne of waste in period . t
t
ndbv  discounted block value of extracting block in period .  is the 

discounted cash flow generated by extracting block in period . 
n t t

ndbv
n t

Indices  

{1,...., }t T∈   Index for scheduling periods from 1 to T 
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{1,..., }n N∈   index for blocks form 1 to N 

{1,..., }e E∈   index for elements of interest in each block 

N  set of all blocks in the block model (or set of all vertices in the 
directed graphG ). 

{1,..., }N=

{1,..., }A=  set of all edges in the directed graph G (N, A). A 

Decision variables  
t
nb  binary variable, equal to 1 if block is to be mined in period , 

otherwise 0.  Where .  
n t

{0,1}t
kb ∈

2.1. Calculating the discounted economic block value  

In simple terms the discounted block value or the discounted profit of block is calculated 
by equation 

n
(1).  

discounted profit = discounted revenue - discounted costs   (1) 
in other words: 

, , , ,

1 1

cos

[ ( ) ] [(
E E

t e t e t e t e t e t
n n n n n n n

e e

discounted revenues discounted ts

dbv o g r p cs o cp o w u cm
= =

= × × × − − × − + + ×∑ ∑ ) ]

t

0n

 (2) 

2.2. Mixed integer programming model  

The objective function is to generate a schedule which will provide the order of extraction 
of blocks over the mine life. The goal of the schedule is to maximize the overall discounted 
cash flow of the mining project, while satisfying constraints such as: grade blending, 
mining capacity, processing capacity, precedence of extraction of blocks, and safe overall 
pit slopes, over the scheduling period. The MIP objective function is represented by 
equation (3) based on the assumption of one processing path. Multiple processing paths 
could be added to the model if necessary. 

2.2.1 Objective function model 1 

1 1
max

T N
t
n n

t n
dbv b

= =

×∑∑   (3) 

Subject to: 

2.2.2 Grade blending constraints 

,

1
( )

N
e t e t
n n

n
g gu o b

=

− × × ≤∑  { }1,..., , {1,..., }t T e∈ ∈ E

0

 (4) 

,

1
( )

N
e t e t
n n n

n
g gl o b

=

− × × ≥∑  { }1,..., , {1,..., }t T e∈ ∈ E  (5) 
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These inequalities ensure that the grade of the elements of interest and contaminants are 
within the allowable range. This is controlled for all the blocks and mining cuts.  

2.2.3 Processing constraints  

1

N
t t

n n
n

o b pu
=

× ≤∑  { }1,...,t∈ T  (6) 

1

N
t t

n n
n

o b pl
=

× ≥∑  { }1,...,t∈ T  (7) 

These inequalities ensure that the total ore processed in each period is within the 
acceptable range of processing plant capacity. The assumption here is that there is one 
process line. The model could be extended to multiple processes of different elements of 
interest. 

1
( )

N
t t

n n n n
n

o w u b mu
=

+ + × ≤∑  { }1,...,t∈ T  (8) 

1
( )

N
t t

n n n n
n

o w u b ml
=

+ + × ≥∑  { }1,...,t∈ T  (9) 

These inequalities ensure that the total tonnage of material mined in each period is within 
the acceptable range of mining capacity in that period. The mining capacity is a function of 
the capacity of mining equipment available and the possible contract mining equipment 
capacity. 

2.2.4 Precedence of extraction 

All the overlying blocks that must be mined prior to mining block n  have to be determined. 
Traditionally the slopes have been implemented through one ore more cone templates 
representing the required wall slopes of the open pit mine. In this study we are going to 
model the required wall slopes by a directed graph representing the order of extraction of 
blocks.  

1 1
0

J t
t i
n j

j i
J b b

= =

× − ≤∑∑  { }{1,..., }, 1,..., , ( )n N t T j P∀ ∈ ∈ ∈ J  (10) 

Using equation (10) will result in one constraint per block n per period .Where t ( )P J ⊂N 

is a set of all the blocks that must be extracted prior to mining block n  to ensure that block 
 is exposed for mining and to maintain the desirable safe slope.  n

Where: 

• J is the total number of blocks overlying block n . In other words J is the number 
of blocks in set ( )P J . 

• i  is the counter for scheduling periods. 
The other method is to use number of constraints for block  per period t as represented 
by equation 

J n
(11).  
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1
0

t
t i
n j

i
b b

=

− ≤∑  { }{1,..., }, 1,..., , ( )n N t T j P∀ ∈ ∈ ∈ J

N

 (11) 

Evidently using equation (11) will increase the number of inequality constraints in the MIP 
formulation. We will develop a variable slope model for setting up the  set, using 
directed graph theory, based on equation 

( )P J
(10).  

2.2.5 Reserve constraints  

We assume that a final pit limits is superimposed on the block model and we are going to 
schedule the extraction of all the blocks in the model. In other words, all the blocks within 
the pit outline are going to be extracted. 

1

1
T

t
n

t

b
=

=∑  {1,..., }n∀ ∈  (12) 

The MIP model presented above could be used as a final pit limits optimization tool. The 
economic block model would be the input into the MIP model. The MIP optimization will 
generate a schedule and the final pit limits at the same time. To achieve this goal, the 
reserve constraint demonstrated by equation (12) should be defined as an inequality 
constraint as demonstrated in equation (13).   

1
1

T
t
n

t
b

=

≤∑  {1,..., }n N∀ ∈  (13) 

{0,1}t
nb ∈  { }{1,..., }, 1,...,n N t∀ ∈ ∈ T  (14) 

3. Precedence of extraction and pit slope modeling using directed graphs 

We will focus on the techniques of how to construct the set of blocks as demonstrated 
in equation 

( )P J
(10). Let’s denote  as the set of all the blocks that must be extracted prior 

to mining block to ensure that block is exposed for mining and to maintain the desirable 
overall safe slope. We will use a directed graph to model the precedence of extraction 
between blocks. We defined a directed graphG (

( )P J
n n

N, A) by the set of vertices, N (blocks); 
connected by ordered pairs of elements called arcs, A. Each vertex (block) has an index 

 and it carries other block associated information such as tonnage, grade, block 
economic value, etc. Each arc  is considered to be a directed arc from block i  to 
block

{1,..., }N
( , )a i j=

j , where ;{1,..., }i and j N∈ j  is called the head and i  is called the tail of the arc; j  
is said to be a direct successor of , and i  is said to be a direct predecessor of i j . If a path 
made up of one or more successive arcs leads from  to i j , then j is said to be a successor 
of i , and  is said to be a predecessor of i j .  

There are several data structures used for graph realization. The most popular approaches 
are, the edge list structure, the adjacency list structure, and the adjacency matrix. We 
illustrate the adjacency matrix approach with an example. To model the block extraction 
precedence and the overall pit slopes an adjacency matrix represented by matrix 

is defined. The non-diagonal entry  is equal to one if there is an arc from (A N N× ) ( , )A i j
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vertex i to vertex j, and the diagonal entry is equal to zero, or in other words, the 
number of arcs from vertex  to itself is zero.  

( , )A i i
i

 

Figure 1 – Directed graph of extraction precedence   

Figure 1-a illustrates a two dimensional example of a set of blocks labeled from A to I 
alphabetically. The set of blocks{ , , , , , , , }B C D E F G H I comprise the entire predecessor set 

of blocks that must be removed prior to extraction of A. The set of blocks{ , , }B C D   
include the immediate predecessor set. Figure 1-b demonstrates the order of removal of 
blocks by pairs of arcs. To remove block A the minimal set of blocks that are required to 
be removed prior to extraction of block A is captured by a directed graph connecting each 
block to at least to three blocks immediately above it. The real problem is in three-
dimension and has the shape of an inverted cone; each block is at least connected to 
the nine immediate blocks above. The number of immediate blocks connected to a block 
for defining variable slopes and accurate slope modeling would be considerably more than 
nine blocks.  

( )P J

 A B C D E F G H I 
A 0 1 1 1 0 0 0 0 0
B 0 0 0 0 1 1 1 0 0
C 0 0 0 0 0 1 1 1 0
D 0 0 0 0 0 0 1 1 1
E 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0

Figure 2 - Adjacency matrix for example in Figure 1. 
Figure 2 demonstrates how the adjacency matrix is constructed for the example in Figure 
1. If there is an arc from the vertex index i to vertex j then cell  would be set to one. 
The direction of the arcs are mapped from rows to columns. For instance there is an arc 
from C to F represented by

( , )A i j

( , ) 1A C F = , but there is no arc from F to C represented 
by .  ( , ) 0A F C =

Initially a slope profile is defined with the safe overall slopes in different regions defined 
by two variables: the desired slope and azimuth. For each slope profile, the slope 
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requirements are converted into an inverted cone that defines the total amount of rock that 
must be mined to.  At each azimuth specified, the cone has the required slope.  

Figure 3 illustrates a two dimensional view of an inverted cone with a 45 degree slope all 
around. The desired 45 degree slope is achieved by using directed arcs constructed by only 
the nine immediate blocks on top of each block. When the nine arcs are applied to all the 
blocks, chaining the block dependencies by the adjacency matrix will result in every block 
in the inverted cone to be mined. 

 
Figure 3 – Inverted cone and the directed graph for 45 degree slope. 

Figure 4 demonstrates how variable slopes are achieved in different slope profiles and 
different azimuths. To achieve the desired slope the immediate predecessor blocks, which 
construct the directed graph would be more or less than the nine immediate blocks 
discussed in Figure 3. The more benches examined above for constructing the directed 
graph, the more accuracy in slope reproduction would be achieved. 

 
Figure 4 – Inverted cone and the directed graph defining variable slopes.  

We have used TOMLAB/CPLEX as the implementation platform to efficiently integrate 
the mathematical solver package CPLEX with MATLAB.  MATLAB has a built in graph 
type: the sparse matrix. We have also used the MatlabBGL package (Gleich, 2006) for 
working with graphs in MATLAB. One of the powerful implementations of graph data 
structures and algorithms is the Boost Graph Library (BGL) (Siek et al., 2002). It contains 
efficient algorithms implemented as generic C++ template specifications. The MatlabBGL 
library uses the MATLAB sparse matrix as a graph type. MatlabBGL also adds a wide 
range of graph algorithms to MATLAB environment by wrapping the Boost Graph Library 
algorithms with functions which are callable from MATLAB.  
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The precedence of extraction sparse adjacency matrix is constructed using the inverted 
cone templates with variable slopes. The sparse adjacency matrix is used to create the 
inequalities constraints expressed in equation (10). If the adjacency matrix illustrated in 
Figure 2 is examined more closely one would find that each block is connected to the 
immediate predecessor blocks through directed arcs. In equation (10),  is the set of all 
the blocks that must be extracted prior to mining block n . For instance, in 

( )P J
Figure 1 the set 

of blocks{ , , , , , , , }B C D E F G H I comprise the entire predecessor set of blocks that must be 
removed prior to extraction of A. To be able to generate the set  out of the adjacency 
matrix represented in 

( )P J
Figure 2, a traversing or search algorithm called depth-first-search 

(DFS) from the MatlabBGL package is used. DFS is an algorithm for traversing or 
searching a tree, tree structure, or graph. One starts at the root selecting the current block 
as the root in the directed graph (block A in our example) and explores as far as possible 
along each branch before backtracking. Formally, DFS is an uninformed search that 
progresses by expanding the first child node of the search tree that appears and thus going 
deeper and deeper until a goal node is found, or until it hits a node that has no children. 
Then the search backtracks, returning to the most recent node it hasn't finished exploring. 

Therefore, to construct the inequalities constraints expressed in equation (10), the DFS 
algorithm is called to search and determine the predecessor set of blocks through adjacency 
matrix. Afterwards, based on the set, inequalities constraints of equation ( )P J (10) are 
constructed. The scale of the MIP formulation presented in section 2.2 starts exceeding the 
capacity of conventional mathematical optimization tools very quickly. This is due to the 
large number of constraints that are generated by equation (10). As a remedy to the large 
number of constraints new MILP formulation are required to be able to tackle the long-
term mine planning problem. The new model needs to take into account the smaller set of 
the immediate predecessor blocks instead of the complete set of blocks covering each 
block. 

4. Results and discussion of iron ore mine case study  
A case study of scheduling a push-back of an iron ore deposit was carried out to verify and 
validate the models. The blocks within the push-back are scheduled in twelve periods. 
Three types of ore; top magnetite, oxide, and bottom magnetite are classified in the 
deposit.  The block model contains the estimated magnetic weight recovery (MWT%) of 
iron ore; the contaminants are  phosphor (P%) and sulphur (S%). The blocks in the 
geological model represent a volume of rock equal to50 25 15m m m× × .  

The objective function aimed to maximize the net present value with a discount rate of 
10% per period.  TOMLAB/CPLEX (Holmström, 1989-2009) was used for 
implementation and solving the MILP formulation. Table 1 summarizes the total tonnage 
of ore and waste material in the push-back, and average grade of ore and contaminants. 
Table 1 also illustrates the mining, processing, and blending constraints imposed to the 
scheduling problem over 12 periods. The maximum allowable average of sulphur in each 
period is 1.8%, whereas the average grade of acceptable phosphor is 0.14%. 

2598 blocks (integer variables) were scheduled over 12 periods this made a coefficient 
matrix, , defined by equations A (3) to (14) of a size (280,944 62,352)A ×  with 1,797,352 
nonzero elements. The CPLEX solver found a solution within 2% gap of the theoretical 
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optimal solution. Figure 5 illustrates the extraction schedule generated by the MILP 
formulation of the same cross section 98400m. 

Table 1 – Description of the push-back 
Description Value Description Value 
Total tonnage of rock  155,295,000 tonnes Maximum mining capacity   13 Mt  per period 
Total ore tonnage  84,059,000 tonnes Maximum processing capacity  7.15 Mt per period 
Total tonnage of contained Fe  61,811,000 tonnes Sulphur grade (S%) allowed  1.8% per period 
Average grade of  MWT%   73.5% Phosphor grad (P%) allowed  0.14% per period 
Average grade of sulphur  1.5% Number of scheduling periods   12 

 
Figure 5 – Cross section 98400 showing the push-back and the schedule, looking east (meters). 

 
Figure 6- Plan view of schedule on bench 1570 (metes).  
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Figure 7 – (a) scheduled ore and waste over twelve periods; (b) average grade of ore in each period.  
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Figure 8 – (a) average grade of phosphor in each period; (b) average grade of sulfur in each period. 
Since the MILP model is maximizing the net present value, it has high graded in early 
years to maximize the cash flows in the early periods (Figure 7b). Figure 8a and Figure 8b 
illustrate the allowable maximum grade of deleterious material, sulphur 1.8% and 
phosphor 0.14% are met. 

5. Conclusions  

The applications of the MILP model developed in this study showed that it has the 
capability of generating production schedules within a close gap to the theoretical optimal 
net present values for mining operations. Too many binary variables are required to 
formulate a life-of-mine schedule for a typical mine with the formulation presented in this 
study. It becomes almost impossible to solve such a problem with current state of 
optimization solvers. As the future work, we will focus on reformulating the problem with 
reduced number of integer variables and complexity.   
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