
Askari-Nasab H. & Awuah-Offei K. 101- 1  
 
 

101 

Mixed integer linear programming formulations 
for open pit production scheduling 

 
Hooman Askari-Nasab and Kwame Awuah-Offei1 

Mining Optimization Laboratory (MOL) 
University of Alberta, Edmonton, Canada 

 

Abstract 

We have proposed two mixed integer linear programming (MILP) formulations for large-
scale long-term open pit production scheduling problem. We developed, implemented, and 
tested the proposed MILP theoretical frameworks for large-scale open pit production 
scheduling. 

1. Introduction  

Historical assessment of mineral project performances has demonstrated the sensitivity of 
projects’ profitability to decisions based upon mine production schedules. The life-of-mine 
production schedule defines the complex strategy of displacement of ore, waste, 
overburden, and tailings over the mine life. The objectives of long-term production 
schedules are to determine the sequence of extraction and displacement of material in order 
to maximize the future cash flows of mining operations within the existing economic, 
technical, and environmental constraints. Long-term production schedules lead to 
definition of reserves and are the backbone of short-term planning and day to day mining 
operations. The long-term production schedules resolve mine and processing plant capacity 
and their expansion potential; the production schedule, also defines the management 
investment strategy.  Deviations from optimal plans in mega mining projects will result in 
enormous financial losses, delayed reclamation, and resource sterilization.  

In this study, we have proposed four mixed integer linear programming (MILP) 
formulations for large-scale long-term open pit production scheduling problem. We 
developed, implemented, and tested the proposed MILP theoretical frameworks for large-
scale open pit production scheduling.  

Current production scheduling methods in the literature are not just limited to, but can be 
divided into three main categories: heuristic methods, applications of artificial intelligence 
techniques, and operations research methods. Some of these algorithms are embedded into 
available commercial software packages.  
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One of the heuristic methods used in mine production scheduling was proposed by 
Gershon (1987). XPAC AutoScheduler (Runge Limited, 1996-2009), a commercial mine 
scheduling software is developed based on Gershon’s (1987) proposed heuristic. Gershon’s 
(1987) algorithm generates cones upward from each block to approximate the shape of a 
pit and to determine whether or not the block in question could be part of the schedule. A 
list of exposed blocks and a ranking of those blocks based on what makes it more desirable 
or less desirable to mine an exposed block at the present time is updated through the 
algorithm with an index called the positional weight. This weighted function is used to 
determine the removal sequence.   

Another popular heuristic used in strategic mine planning software, such as Whittle 
(Gemcom Software International, 1998-2008) and NPV Scheduler (Datamine Corporate 
Limited, 2008) is based on the concept of parametric analysis introduced by Lerchs and 
Grossmann (1965) (LG). The LG algorithm provides an optimal solution to the final pit 
outline. There are unlimited numbers of strategies of reaching the final pit, which each has 
a different discounted cash-flow. The optimal production schedule is the strategy that 
would maximize the discounted cash-flow and meets all the physical and economical 
constraints. The parametric analysis generates a series of nested pits based on varying the 
price of the product (revenue factor) and finding an optimal pit layout using LG algorithm. 
These nested pits then are used as a guideline to identify clusters of high grade ore and to 
determine the production schedule.  The main disadvantage of heuristic algorithms is that 
the solution may be far from optimal and in mega mining projects, this is equal to huge 
financial losses.   

Various models based on a combination of artificial intelligence techniques have been 
developed  (Denby and Schofield, 1994; Denby et al., 1996; Tolwinski and Underwood, 
1996; Askari-Nasab, 2006; Askari-Nasab et al., 2008; Askari-Nasab and Awuah-Offei, 
2009).  Tolwinski and Underwood (1996) used a method which combines concepts from 
dynamic programming, stochastic optimisation, and artificial intelligence with heuristic 
rules to obtain ultimate pit limit and production planning concurrently. The method works 
by modelling the development of the mine as a sequence of pits where each pit differs from 
the previous pit by the removal of blocks. A probability distribution based on the 
frequency with which particular states occur is used to determine the state changes. 
Heuristic rules are incorporated to learn these characteristics of the sequence of pits which 
produce a good, or poor, result.  Denby et al. (1996) employed genetic algorithms and 
simulated annealing by generation of random pit population and assessment of a fitness 
function to acquire the production schedule and final pit, concurrently. The advantages of 
their method are flexibility and solution for the ultimate pit limit and production schedule 
at the same time. The major drawback is that the results are not reproducible and there was 
no measure of the optimality of the solution.  

In a series of publications the authors developed and tested the intelligent agent-based 
theoretical framework for open pit mine planning (Askari-Nasab et al., 2005; Askari-
Nasab, 2006; Askari-Nasab et al., 2007; Askari-Nasab and Szymanski, 2007; Askari-
Nasab et al., 2008) comprising algorithms based on reinforcement learning (Sutton and 
Barto, 1998) and stochastic simulation.  This intelligent open pit simulator (IOPS) (Askari-
Nasab, 2006) has a component that simulates practical mining push-backs over the mine 
life. An intelligent agent interacts with the push-back simulator to learn the optimal push-
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back schedule using reinforcement learning. The intelligent agent-based mine planning 
simulator, IOPS, was successfully used to determine the optimal push-back schedule of an 
open pit mine with a geological block model containing 883 200 blocks (Askari-Nasab and 
Awuah-Offei, 2009). A number of the artificial intelligence techniques, such as IOPS are 
based on frameworks that theoretically will converge to the optimal solution, given 
sufficient number of simulation iterations. The main disadvantage however, is that there is 
no quality measure to solutions provided comparing against the theoretical optimum.  

A variety of operations research approaches including linear programming (LP) and mixed 
integer linear programming (MILP) have been applied to the mine production scheduling 
problem. The pioneer work of Johnson (1969) used an LP model, which led to the MIP 
formulations by Gershon (1983) for the production scheduling problem. Mixed integer 
linear programming mathematical optimization models have the capability to consider 
multiple ore processors and multiple elements during optimization. This flexibility of 
mathematical programming models result in production schedules generating significantly 
higher net present value (NPV) than those generated by the other traditional methods. 
Every orebody is different, but for a typical open pit long-term scheduling problem, the 
number of blocks is in the order of a couple of hundred thousands to millions and the 
number of scheduling periods are twenty and more for a life-of-mine yearly schedule. 
Evidently, the number of integer and linear decision variables, and the number of 
constraints formulating a problem of this size would easily exceed the capacity of current 
state of hardware and commercial mathematical optimization solvers.  

Various models based on mixed integer linear programming mathematical optimisation 
have been used to solve the long-term open-pit scheduling problem (Caccetta and Hill, 
2003; Ramazan and Dimitrakopoulos, 2004; Dagdelen and Kawahata, 2007; Boland et al., 
2009). The applications of MILP models result in production schedules generating near 
theoretical optimal net present values. In practice, formulating a real size mine production 
planning problem by including all the blocks as integer variables will simply exceed the 
capacity of the current commercial mathematical optimisation solvers. Various methods of 
aggregation have been used to reduce the number of integer variables that are required to 
formulate the mine planning problem with MILP techniques. Ramazan and 
Dimitrakopoulos (2004) illustrated a method to reduce the number of binary integer 
variables by setting waste blocks as continuous variables instead of integer variables. 
Ramazan and Dimitrakopoulos (2004) reported a case study on a small single level nickel 
laterite block model with 2030 blocks over three periods.  

Ramazan et al. (2005; 2007) presented an aggregation method based on fundamental tree 
concepts to reduce the number of decision variables in the MILP formulation. The 
fundamental tree algorithm has been used in a case study with 38 457 blocks within the 
final pit limits, Whittle strategic mine planning software (Gemcom Software International, 
1998-2008) has been used to break-down the overall problem into four push-backs. 
Subsequently, the blocks within the push-backs were aggregated into 5512 fundamental 
trees and scheduled over eight periods using the formulation presented in Ramazan and 
Dimitrakopoulos (2004). Information about the run-time of the MILP models are not 
presented in Ramazan (2007); also the break-down of the problem into four push-backs 
based on the nested pit approach and formulating them as a separate MILP would not 
generate a global optimum solution to the overall problem.  On the other hand the size of 
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the problem of around thirty thousand blocks over eight periods is more a mid-range 
planning problem rather than a long-term life of mine schedule. 

Caccetta and Hill (2003) presented a formulation that used binary integer variables, they 
developed and implemented a personalized branch-and-cut (Horst and Hoang, 1996) 
method in C++ using CPLEX (Bixby, 1987-2009) to solve the relaxed LP sub-problems. 
Boland et al. (2009) have demonstrated an iterative disaggregation approach to using a 
finer spatial resolution for processing decisions to be made based on the small blocks, 
while allowing the order of extraction decisions be made at an aggregate level. Boland et 
al. (2009) reported notable improvements on the convergence time of their algorithm for a 
model with 96 821 blocks and 125 aggregates over 25 periods. However, combining 96 
821 blocks into only 125 aggregates would reduce the freedom of decision variables and 
the schedule generated could not be considered as an optimal solution in comparison to the 
case that 96 821 blocks had complete freedom.  Moreover, in Boland et al. (2009) there is 
no representation of the generated schedules in terms of annual ore and waste production, 
average grade of ore processed, and cross sections and plan views of the schedules to 
assess the practicality of the solutions from mining operational point of view. Boland et al. 
(2009) also did not represent enough information on their method of aggregation, they 
assumed that an aggregation method similar to Ramazan (2007) would be used.  

MineMax (Minemax Pty Ltd, 1998-2009) is a commercially available strategic mine 
scheduling software, which uses an MILP formulation solved by ILOG CPLEX (Bixby, 
1987-2009) solver.   Given that, MineMax is a commercial software we couldn’t find 
detailed information about the approach and formulation, but our understanding from the 
evaluation of the demo tutorial version of MineMax is that as a general strategy it is 
suggested to initially breakdown the final pit into nested pit shells based on parametric 
analysis concepts represented by Lerchs and Grossmann (1965).  The pit shells define a pit 
to pit precedence constrained by the minimum and maximum number of benches by which 
the mining of one specified pit shell is to lag behind the previous one. The other option to 
define rules for precedence of extraction is either by proportions mined on each bench or 
by block precedence based on the overall pit slopes. Next each pit shell is formulated as a 
separate MILP model which can contribute to the overall quantity of mining and 
processing targets within the grade and precedence constraints; this approach result in 
MILP formulations for each pit shell with smaller size which will converge faster, but it 
could not be considered a global optimization of the problem since the pit shells are 
defined by the parametric analysis first. Another optimization strategy is using sliding 
windows which are sub-problems that are tackled on a period by period basis.  

Blasor (Stone et al., 2007) and Prober (Whittle, 2007) are other proprietary software which 
tackle the strategic mine production scheduling by an MILP.  Current MILP formulations 
used for open pit production scheduling fail because of: (1) inability to solve large-scale 
real-size mining problems as global optimization problem, and (2) inability to quantify the 
geological uncertainty inherent within the problem and, as a result, the associated risk with 
the mine plans. To overcome these problems the first step is to develop, implement, and 
test a theoretical framework that is capable of handling real-size mining problems in a 
global optimization framework. The development of an MILP model that can handle a 
deterministic large-scale mine production schedule will fulfill this objective.  
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We have critically reviewed the MILP formulations of the open pit production scheduling 
problem. We have implemented, and tested two of these MILP formulations. The 
shortcomings and deficiencies of the formulations were documented. We have proposed 
two MILP formulations for the long-term open pit production scheduling problem to 
overcome the shortcomings of the reviewed methods. We have divided the major decision 
variables into two categories, continuous variables representing the portion of a block that 
is going to be extracted in each period and binary integer variables controlling the order of 
extraction of blocks or the precedence of mining-cuts through a dependency directed graph 
using depth-first-search algorithm. The depth-first-search algorithm component, added a 
very important practical mining feature to the model. This model allows variable pit slopes 
to be integrated in the MILP formulation. As a practical constraint our MILP formulation 
also ensures that the fractional extraction of blocks are not going to be split over more than 
three periods. We have implemented the optimization formulation in TOMLAB/CPLEX 
(Holmström, 1989-2009) environment. An iron ore mine intermediate scheduling case 
study over twelve periods was carried out to verify and validate the models and to illustrate 
the effectiveness of the generated schedules from mining point of view. The results proved 
that the models are accurate and efficient and showed enhanced CPU time performance 
comparing to the reviewed models.  

The next section of the paper covers the assumptions, problem definition, and the notations 
of variables. Section 3 presents four mixed integer linear programming formulations of the 
problem, while Section 4 presents the numerical modelling. The next section represents the 
numerical experiments used for verification and validation of the models. Finally, Section 
6 presents the conclusions and future work followed by the list of references. 

2. Assumptions, problem definition, and notation 

We assume that the orebody is represented by a geological block model, which is a three-
dimensional array of rectangular or cubical blocks used to model orebodies and other sub-
surface structures. Numerical data are used to represent a single attribute of the orebody 
such as: rock types, densities, grades, elevations, or economic data. The size of the block 
that is needed for outlining the orebody depends on the shape and size of the ore body, 
mining  bench height, mining method, and mining equipment. Geostatistics provides 
accurate and reliable estimations or simulation of block attributes at locations where no 
measurements are available. The most common estimation method used is Kriging (Krige, 
1951). However, Kriging results do not capture uncertainty and may be systematically 
biased. Uncertainty always exists in presence of sparse geological data. Conditional 
simulation algorithms such as Sequential Gaussian Simulation (Isaaks, 1990) are 
geostatistical methods used to assess geological uncertainty. The generated realizations are 
equally probable and represent plausible geological outcomes. We will tackle the 
deterministic problem in this study so Kriging is the estimation method of choice. 

We assume that each block is subdivided into smaller regions identified as parcels. A 
parcel is part of a block for which the rock-type, tonnage and element content are estimated 
or simulated by Geostatistical methods. A block may contain zero or more parcels. The 
total tonnage of the parcels may be the same as the tonnage of the block, or it may be less. 
If it is less, the difference is called undefined waste, which is waste of unknown rock-type. 
If a block has no parcels, the total tonnage of the block is undefined waste. Neither the 
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position of a parcel within a block, nor its shape, are defined (Gemcom Software 
International, 1998-2008). The spatial location of each block is defined by the coordinates 
of its center; attributes such as rock-type, quantity of valuable and contaminant elements, 
and block tonnage are estimated and grade of each element of interest is calculated  based 
on the quantity of the attributes and the ore tonnage in that block.    

We consider that the geological block model is going to be extracted using open pit mining 
techniques. We assume that a classical  optimum design of final pit limits is carried out; 
either based on graph theory (Lerchs and Grossmann, 1965; Zhao and Kim, 1992) or 
network flow algorithm (Johnson and Barnes, 1988; Yegulalp and Arias, 1992). This pit 
outline represents reserves that would maximize the profit. We have illustrated in Askari-
Nasab and Awuah-Offei (2009)  that a final pit outline obtained directly by using an 
optimal long-term scheduling algorithm will result in a pit outline that is a subset of the 
conventional final pit outline generated by the Lerchs and Grossmann’s algorithm (1965).  
Consequently, we will follow the classical process of open pit long-term scheduling of 
first, finding the final pit limits and then generating a production schedule within the final 
pit outline. 

The basic problem, in its simplest form, is finding a sequence in which ore and waste 
blocks should be removed from the predefined open pit outline and their respective 
destinations, over the life of mine, so that the net present value of the operation is 
maximized. The production schedule is subject to a variety of physical, technical and 
economic constraints. The constraints enforce the mining extraction sequence, overall pit 
slopes, mining, milling, and refining capacities, blending material to meet head grade 
requirements, minimum mining width, and the number of active mining benches in each 
production period. The problem presented here involves scheduling of N different ore and 
waste blocks within the final pit outline over T different periods of extraction.  

Blocks within the same level or mining bench are grouped into clusters based on their 
attributes, spatial location, rock type, and grade distribution. We refer to these clusters of 
blocks as mining-cuts. Similar to blocks, each mining-cut has coordinates representing the 
center of the cut and its spatial location. Fig. 1 illustrates a schematic plan view of a 
mining bench. Blocks are aggregated into mining-cuts.  

 
Fig. 1. Schematic plan view of aggregated blocks into mining-cuts on a mining bench. 
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This grade aggregation methodology will summarize ore data, but will maintain a relevant 
separation of lithology. Instead of the common approach of estimating grades for the 
element of interest in blocks, the total amount of the element in the block would be 
modeled. This tactic will allow to combine the smaller blocks into mining-cuts without 
sacrificing the accuracy of the estimated values and to model a more realistic equipment 
movement strategy. The mining-cut clustering algorithm developed uses fuzzy logic 
clustering (Kaufman and Rousseeuw, 1990) and  is not within the scope of this paper and 
we will disseminate the clustering approach in another publication.  

2.1. Notation 

We will present four different MILP formulations for the open pit production scheduling 
problem. The notation of decision variables, parameters, sets, and constraints are as 
follows: 

2.1.1 Sets 

N   set of all the blocks in the model. {1,..., }N=
K   set of all the mining-cuts in the model.  {1,..., }K=
A  set of all directed arcs in the blocks’ precedence directed graph 

denoted by (N, A). 
{1,..., }A=

bG
B {1,..., }B=  set of all edges in the mining-cuts precedence directed graph 

denoted by (K, B).   cG
( )D J  for each block, n,  there is a set N which includes all the 

blocks that must be extracted prior to mining block  to ensure that 
block  is exposed for mining with safe pit slopes, where J is the 
total number of blocks in set .  

( )D J ⊂
n

n
( )D J

( )C L  for each block, , there is a set defining the 
immediate predecessor blocks that must be extracted prior to 
extraction of block , where L is the total number of blocks in set 

. 

n ( ) ( )C L D J⊂

n
( )C L

( )H S  for each mining-cut , there is a set K defining the 
immediate predecessor cuts that must be extracted prior to extracting 
mining-cut k , where S is the total number of cuts in set . 

kc ( )H S ⊂

( )H S

2.1.2 Indices 

A general parameter f can take four indices in the format of ,
,
e t

k nf . Where: 
{1,...., }t T∈    index for scheduling periods.  
{1,..., }k K∈   index for mining-cuts.  
{1,..., }n N∈    index for blocks.  
{1,..., }e E∈   index for elements of interest in each block. 
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2.1.3 Parameters 

t
nd   is the discounted profit generated by extracting block  in 

period t .  

t
nd n

t
nv  the discounted revenue generated by selling the final product within 

block  in period t  minus the extra discounted cost of mining all 
the material in block  as ore and processing it.   

n
n

t
nq    the discounted cost of mining all the material in block as waste.  n

kc    mining-cut k .  
,e e

n kg g  average grade of element e in ore portion of block  and average 
grade of element e in ore portion of mining-cut .  

n
k

,e tgu    upper bound on acceptable average head grade of element in period 
.  

e
t

,e tgl  lower bound on acceptable average head grade of element e in 
period t .  

no ,    ore tonnage in block n  and ore tonnage in mining-cut .  ko k
,n kw w    waste tonnage in block and waste tonnage in mining-cut . n k
tpu    upper bound on processing capacity of ore in period t (tonnes).  

tpl    lower bound on processing capacity of ore in period t (tonnes).  
tmu    upper bound on mining capacity in period (tonnes).  t

tml    lower bound on mining capacity in period (tonnes).  t
,e tr  processing recovery, is the proportion of element e  recovered in 

time period t. 
,e tp   price in present value terms obtainable per unit of product      

(element ). e
     selling cost in present value terms per unit of product (element e ). ,e tcs

,e tcp   extra cost in present value terms per tonne of ore for mining and 
processing.  

tcm    cost in present value terms of mining a tonne of waste in period . t

2.1.4 Decision Variables 

Model 01 
{0,1}t

nz ∈  binary integer variable, equal to 1 if block  is to be mined in 
period t , otherwise 0. 

n

 
Model 02 

[0,1]t
nu ∈  continuous variable, representing the portion of block  to be 

extracted and processed in period or mined and treated as waste in 
period t .  

n
t
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{0,1}t
na ∈  binary integer variable controlling the precedence of extraction of 

blocks. is equal to one if extraction of block n has started by or in 
period t , otherwise it is zero. 

t
na

 
Model 03  

[0,1]t
nx ∈  continuous variable, representing the portion of block  to be 

extracted as ore and processed in period t . 
n

[0,1]t
ky ∈   continuous variable, representing the portion of mining-cut  to be 

mined in period ,  fraction of 
kc

t y  characterizes  both ore and waste 
included in the mining-cut.  

{0,1}t
kb ∈  binary integer variable controlling the precedence of extraction of 

mining- cuts.  is equal to one if extraction of mining-cut has 
started by or in period t , otherwise it is zero. 

t
kb kc

Model 04  
[0,1]t

ks ∈  continuous variable, representing the portion of mining-cut  to be 
extracted as ore and processed in period t . 

kc

 
Decision variables t

ky  and  with the same definition as in Model 
03 are used in Model 04 as well. 

t
kb

2.2. Economic block value modeling 

The objective functions of the MILP formulations are to maximize the net present value of 
the mining operation. Hence, we need to define a clear concept of economic block value 
based on ore parcels which could be mined selectively. The profit from mining a block 
depends on the value of the block and the costs incurred in mining and processing. The 
cost of mining a block is a function of its spatial location, which characterizes how deep 
the block is located relative to the surface and how far it is relative to its final dump. The 
spatial factor can be applied as a mining cost adjustment factor for each block according to 
its location to the surface. The discounted profit from block  is equal to the discounted 
revenue generated by selling the final product contained in block n  minus all the 
discounted costs involved in extracting block , this is presented by Eqs. 

n

n (1) and (2). 

discounted profit = discounted revenue - discounted costs  (1) 
 

, , , ,

1 1

cos

[ ( ) ] [(
E E

t e e t e t e t e t t
n n n n n n

e e

discounted revenues discounted ts

d o g r p cs o cp o w c
= =

= × × × − − × − + ×∑ ∑ ) ]m

, ]∑

 (2) 

 
For simplification purposes we denote:  
 

, , ,

1 1
[ ( )

E E
t e e t e t e t e t
n n n n

e e
v o g r p cs o cp

= =

= × × × − − ×∑  (3) 



Askari-Nasab H. & Awuah-Offei K. 101- 10  
 
 

( )t
n n nq o w cm= + × t   (4) 

3. Mixed integer linear programming models for open pit production scheduling  

We present four different formulations for the open pit production scheduling problem, 
with the objective function to maximize the NPV of the mining operation. It is intuitively 
apparent that higher NPV’s could be achieved by block models with small block sizes and 
high resolution of the orebody model. The block sizes for production scheduling must be 
chosen similar to the selective mining size.  If the size of the block is not properly defined, 
the generated schedule will be simulating the mining operation with a selectivity that could 
not be achieved in practice. We have developed, implemented, tested, and compared four 
MILP formulations based on different precedence of extraction graphs and extraction and 
processing selectivity levels. The four MILP formulations are: (i) Model 01- this 
formulation is similar to Ramazan and Dimitrakopoulos (2004), it only consists of binary 
integer decision variables, ,  and generates a schedule at block level resolution. We have 
extended the model by integrating a variable pit slope component into the implementation; 
(ii) Model 02 – we have proposed this model based on the concepts presented in Caccetta 
and Hill (2003).  The schedule is generated based on a strict temporal sequence of blocks. 
Caccetta and Hill (2003) formulation only uses binary integer decision variables, which 
makes the size of branch and cut tree intractable for a large scale problem. The proposed 
formulation uses continuous variables,  to model extraction and processing at block 
level and binary integer decision variables, , are used to control precedence of 
extraction; (iii) Model 03 – this formulation is developed based on the concepts of  Boland 
et al. (2009), processing is controlled at block level with continuous decision variables, 

t
nz

t
nu

t
na

t
nx ; 

where t
ky , controls the extraction at mining-cut level. Also, the precedence of extraction of 

blocks is controlled at the mining-cut level by means of binary integer variables . The 
continuous decision variables (

t
kb

t
nx and ) lead to fractional block extraction, the proposed 

model  provides control over the maximum number of fractions that each block would 
take; (iv) Model 04 – this formulation is based on a combination of concepts presented in 
Models 02 and 03. Extraction, processing, and order of block extraction are controlled at 
mining-cut level. 

t
ky

3.1. Model 01 – extraction and processing at block level – only binary decision 
variables 

Objective function: 

1 1
max

T N
t
n

t n
d z

= =

×∑∑ t
n   (5) 

Subject to: 
, ,

1 1

N N
t e e t t t e

n n n n n
n n

gl g o z o z gu
= =

≤ × × × ≤∑ ∑   { }1,..., , {1,..., }t T e∀ ∈ ∈ E  (6) 
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1

N
t t

n n
n

tpl o z p
=

≤ × ≤∑ u  { }1,...,t∀ ∈ T

t

 (7) 

1
( )

N
t t

n n n
n

ml o w z mu
=

≤ + × ≤∑  { }1,...,t∀ ∈ T  (8) 

1 1
0

J t
t i
n j

j i
J z z

= =

× − ≤∑∑   { }{1,..., }, 1,..., , ( )n N t T j D∀ ∈ ∈ ∈ J

N

 (9) 

1

1
T

t
n

t

z
=

=∑  {1,..., }n∀ ∈  (10) 

 
Where Eq. (6) is grade blending constraints; these inequalities ensure that the head grade 
of the elements of interest and contaminants are within the desired range in each period. 
There are two equations (upper bound and lower bound) per element per scheduling period 
in Eq. (6).  Eq. (7)  is processing capacity constraints; these inequalities ensure that the 
total ore processed in each period is within the acceptable range of processing plant 
capacity. There are two equations (upper bound and lower) per period per ore type.  Eq. (8) 
is mining constraints; these inequalities ensure that the total tonnage of material mined 
(ore, waste, overburden, and undefined waste) in each period is within the acceptable range 
of mining equipment capacity in that period. There are two equations (upper bound and 
lower bound) per period. Eq. (9) controls the precedence relationship of block extraction 
and pit slopes. For each block there is a set N ,which includes all the blocks that 
must be extracted prior to mining block  to ensure that block  is exposed for mining 
with safe pit slopes, where J is the total number of blocks in set .  The set  for 
the block labeled as 1 is hatched in 

( ) ⊂nD J
n n

( )nD J 1( )D J
Fig. 2.  J is the total number of blocks in the set; it is 

equal to 28 in this case. Fig. 2 also demonstrates how variable slopes could be modeled by 
means of constructing the set ; the block labeled as 5 is added to set  to 
construct a model with flatter slope on the right hand side. There is one equation per block 
per period for Eq. 

( )D J 1( )D J

(9). Depending on the spatial location of the block in the block model 
the set of would have different number of blocks. The slope constraints presented by 
Eq. 

( )D J
(9) is the main reason of increase in the number of constraints and the complexity of 

Model 01 formulation. Finally, Eq. (10)  defines reserve constraints; we assume that a final 
pit limit is superimposed on the block model and we are going to schedule the extraction of 
all the blocks within the final pit limit or push-back.  Eq. (10) ensures that all the blocks 
within the final pit are going to be extracted once. 

3.2. Model 02 - extraction and processing at block level – binary and continuous 
variables 

In this model the mining and processing are at block level resolution; the schedule is 
controlled by continuous variables so fractional extraction of blocks may occur. The order 
of block extraction is controlled by binary integer variables at block level.  

Objective function: 

1 1
max

T N
t
n n

t n
d u

= =

×∑∑ t   (11) 
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Fig. 2.  Precedence of block extraction in the proposed MILP models. 
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1
1
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t
n

t
u

=

=∑  {1,..., }n∀ ∈  (18) 

 
Eq. (12) controls the grade blending constraints. Eqs. (13) and  (14) are processing and 
mining capacity constraints. Eqs. (15) to (17) control the relationship of block extraction 
precedence by binary integer variables at block level. Model 02 only requires the set of 
immediate predecessors’ blocks on top of each block to model the order of block extraction 
relationship. This is presented by set in Eq. ( )C L (15). Fig. 2 illustrates the set for 
the block labeled as 1, the set includes 

1( )C L

1( ) {2,3,4,5}=C L . Where L the number of blocks is 
equal to 4; compare this to formulation in Model 01 where J was 28. Eq. (18) ensures that 
the fractions of blocks that are extracted over the scheduling periods are going to sum up to 
one, which means all the block within the final pit outline are going to be scheduled. 
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3.3. Model 03 – extraction at mining-cut level and processing at block level – binary 
and continuous variables 

In this model, processing is at block level and extraction is at mining-cut level. The amount 
of ore processed is controlled by the continuous variable t

nx , this allows  fractional 
extraction of blocks in different periods. The order of block extraction which is controlled 
by the directed graph (N, A) is transferred into the control of the precedence of mining-
cuts by means of directed graph (K, B). The precedence of mining-cuts relationship is 
modeled via the binary integer variable . This is superior to Models 01 and 02, in that, 
the amount of ore processed and amount of material mined are controlled by two separate 
variables.   

bG

cG
t
kb

Objective function:  

1 1
max ( )

k k

T K
t t t t
n n n k

t k n c n c
v x q y

= = ∈ ∈

⎛ ⎞
× − ×⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑ ∑   (19) 

Subject to: 
, ,

1 1

N N
t e e t t t e

n n n n n
n n
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≤ × × × ≤∑ ∑  { }1,..., , {1,..., }t T e∀ ∈ ∈ E

t

 (20) 
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⎛ ⎞
≤ + × ≤⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

 (21) 

1
( )

k

K
t t t  { }1,...,t T∀ ∈

n

 (22) 

,
t t
n kx y≤  {1,..., }n N∀ ∈ , { }, 1,...,kn c t T∈ ∈  (23)   

1
0

t
t i
k s

i
b y

=

− ≤∑  { }{1,..., }, 1,..., , ( )k K t T s H∀ ∈ ∈ ∈ S (24) 

1
0

t
i t
k k

i
y b

=

− ≤∑  { }{1,..., }, 1,...,k K t∀ ∈ ∈ T  (25) 

1 0t t
k kb b +− ≤  { }{1,..., }, 1,..., 1k K t T∀ ∈ ∈ −  (26) 

 
Eqs. (20) to (22) control the grade blending, processing capacity, and mining capacity. In 
Model 02 grade blending, processing capacity, and mining capacity are modeled by only 
one decision variable, . In Model 03 the extraction and processing of ore is controlled by 
continuous decision variable 

t
nu

t
nx  at block level, where mining is modeled using a 

continuous variable t
ky  at mining-cut level. This method enables us to have a high 

resolution solution for selection of ore and processing. The total amount of material mined 
and the order of extraction is then modeled at mining-cut level t

ky . This approach reduces 
the number of binary integer variables in the model drastically. Fig. 2 illustrates set 

, the predecessor mining-cuts that must be extracted prior to extraction of 
mining-cut A. Eq. 

( ) { , }H S B C=
(23) represents inequalities that ensure the amount of ore of any block 

which is processed in any given period is less than or equal to the amount of rock extracted 
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from the mining-cut that the block belongs to in the considered time period. For each 
mining-cut, , Eqs. k (24) to (26) check the set of immediate predecessor cuts that must be 
extracted prior to extracting mining-cut, . k

3.4. Model 04 – extraction and processing at mining-cut level – binary and continuous 
variables 

In this model, mining and processing are both at mining-cut level. The blocks are 
aggregated prior to schedule optimization and the ore processing and mining are controlled 
by two continuous variables.  

Objective function:  

1 1
max ( )

T K
t t t t
k k k k

t k
v s q y

= =

× − ×∑∑   (27) 

, ,

1 1

K K
t e e t t t e

k k k k k
k k

gl g o s o s gu
= =

≤ × × × ≤∑ ∑  { }1,..., , {1,..., }t T e∀ ∈ ∈ E

t

 (28) 

1

K
t t

k k
k

pl o s p
=

≤ × ≤∑ u  { }1,..., , {1,..., }t T e∀ ∈ ∈ E

t

 (29) 

1
( )

K
t t

k k k
k

ml o w y mu
=

≤ + × ≤∑  { }1,...,t∀ ∈ T  (30) 

t t
k ks y≤  {1,..., }k K∀ ∈ , { }1,...,t∈ T  (31)    

Equations (24)  to  (26)    

Eqs. (28) to (30) control the grade blending, processing capacity, and mining capacity 
constraints at mining-cut level with fractional extraction from mining-cuts. The extraction 
from mining-cuts is assumed to be uniform among all the blocks which belong to that 
mining-cut. Eq. (31) ensures that the amount of ore extracted and processed from any 
mining-cut in any given period is less than or equal to the amount of rock extracted from 
that mining-cut. Eqs. (24)  to  (26) are similar to those demonstrated in Model 03 for 
precedence of block extraction.  

4. Numerical modeling  

In most linear optimization problems, the variables of the objective function are continuous 
in the mathematical sense, with no gaps between real values. To solve such linear 
programming problems, ILOG CPLEX implements optimizers based on the simplex 
algorithms (Winston, 1995) (both primal and dual simplex) as well as primal-dual 
logarithmic barrier algorithms.  

Branch and cut is a method of combinatorial optimization for solving integer linear 
programs. The method is a hybrid of branch and bound and cutting plane methods (Horst 
and Hoang, 1996).  Refer to Wolsey (1998) for a detailed explanation of the branch and cut 
algorithm, including cutting planes. In recent years there has been significant 
improvements in mathematical programming optimizers such as ILOG CPLEX (Bixby, 
1987-2009). This optimizer uses branch and cut techniques to solve MILP models and it 
makes the latest theory in optimization of large-scale industrial problems available 
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commercially. In this study we used TOMLAB/CPLEX version 11.2 (Holmström, 1989-
2009) as the MILP solver. TOMLAB/CPLEX efficiently integrates the solver package 
CPLEX (ILOG Inc, 2007) with MATLAB environment (MathWorks Inc., 2007). An 
important termination criterion that the user can set explicitly in CPLEX is the MILP gap 
tolerance. We have used the relative MILP gap tolerance, which indicates to CPLEX to 
stop when an integer feasible solution has been proved to be within the gap tolerance of 
optimality.  

4.1. Size and complexity 

One of the major obstacles in using the MILP formulations for mine production scheduling 
is the sheer size of the problem. The number of blocks, N, in the model is usually between 
tens of thousands to millions which will lead to a formulation with an objective function 
with many variables. Moreover, the main physical constraint in open pit mining is the 
block extraction precedence modeled by binary integer variables. This set of constraints 
also controls the overall pit slope in different regions. The numbers of blocks that must be 
extracted prior to mining each block are numerous and will result in formulations with 
many constraints. Therefore, we are dealing with an MILP formulation with many 
variables and many constraints. 

The most common difficulty with MILPs is the size of the branch and cut tree. The tree 
becomes so large that insufficient memory remains to solve an LP sub-problem. The 
number of binary integer variables in the formulations determines the size of the branch 
and cut tree. As a general strategy in our formulations we aimed at reducing the number of 
binary integer variables, we also focused on developing formulations that will mainly use 
continuous optimization techniques rather than discrete optimization. Table 1 shows the 
number of decision variables and the number of binary integer variables required for the 
proposed MILP formulations as a function of number of  blocks, N, number of mining-
cuts, K, and number of scheduling periods, T. The goal has been to reduce the number of 
binary integer variables in the models by introducing mining-cuts as the means of 
controlling the precedence of extraction of blocks rather than having one binary integer 
variable per block.  

Table 1 – number of decision variables in the MILP formulations 

MODEL  Number of decision variables Number of  integer variables  

Model 01         N T×      N T×  

Model 02         2 N T× ×      N T×  

Model 03        (2 )K N T× + ×      K T×  

Model 04         3 K T× ×     K T×  

5. Results and discussions 

We have  developed, implemented, and tested the proposed MILP models presented in 
section 3 in TOMLAB/CPLEX environment (Holmström, 1989-2009). We compare the  
performances of the proposed models based on net present value generated, practical 
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mining production constraints, smoothness of the generated schedules, size of the 
mathematical formulations, the number of integer variables required in formulation, and 
computational time required for convergence. 

All the developed formulations are verified by numerical experiments on a synthetic data 
set containing 120 blocks and a real mining push-back including 2 598 blocks with seven 
mining benches. We have also validated Model 03 and Model 04 with an iron ore life-of-
mine schedule with 26 000 blocks over a 20 year scheduling horizon. We tested our 
models on a Quad Core Dell Precision T7400 computer at 3.00 GHz, with 3.25 GB of 
RAM. Since we aimed at a comparative analysis of the proposed models a relative 
tolerance of 2% on the gap between the best integer objective and the feasible integer 
solution was chosen.  

Table 2a and b show the numerical results of the tests of MILP models with the data set 
containing 120 blocks over four periods of extraction. To reach a feasible solution in 
different models we have used a mining capacity upper bound of 64 to 66 million tonnes 
per period, whereas the processing capacity varies between 4.9 to 5.3 million tonnes per 
period. We were forced to set different upper and lower bounds for different models, 
because the tighter boundaries on some models resulted in infeasible solutions. As 
expected Model 02 generated the highest NPV; in this formulation processing and mining 
are both at block level with continuous variables so fractional extraction of blocks are 
allowed. The variables in Model 02 have the highest resolution among all the other 
models. Model 01 had the longest runtime with 42.53 seconds as expected; this is due to 
the numerous numbers of constraints that are generated by Eq. (9). Also, the model is a 
pure MIP with no continuous variables, the formulation searched 4 432 branch and bound 
nodes to reach an optimized solution within a 2.25% gap.  Ramazan et al. (2005) proposed 
to reduce the number of binary integer variables required by Model 01 by defining only the 
ore blocks as binary variables; this approach will reduce the number of binary integer 
variables but since the formulation assigns blocks to periods of extraction, rather than 
determining a strict temporal sequence of blocks, still the size of the problem and the 
runtime even for a small number of blocks is not within a reasonable timeframe and simply 
this formulation is not a practical tool.  In Models 03 and 04 the concept of mining-cuts are 
introduced and the number of binary integer variables and the computational time required 
is reduced drastically compared to Model 01 and 02 (>72% and >99.6%, respectively). On 
the other hand, the NPV of Model 03 and 04 are reduced by 0.72% and 1.11% when 
compared to Model 02, as in Model 03 and Model 04 the variables are aggregated and 
have less freedom in the MILP formulations. 

Table 2a – Inputs and numerical results for the synthetic data set containing 120 blocks 

MODEL  Blocks – Cuts 
( ) N K−

Periods 
(T ) 

/t tmu ml  
(MT) 

/t tpu pl  
(MT) 

NPV 
($M) 

01 120 - 0 4 64 / 0 5.3 / 0 387.88 

02 120 - 0 4 64 / 0 4.9 / 0 391.34 

03 120 - 21 4 66 / 0 5.0 / 0 388.53 

04 120 - 21 4 66 / 0 5.0 / 0 387.00 
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Table 2b – Inputs and numerical results for the synthetic data set containing 120 blocks 

MODEL Root Node  
Gap % 

CPU TIEM 
(S) 

Coefficient Matrix  
(A rows col)×  

No. 
decision 
variables 

No. Integer 
variables 

No. of B & B 
nodes visited 

01 2.25 42.53 372 × 480 480 480 4432 

02 2.37 0.61 3004 × 960 960 480 38 

03 1.29 0.17 920 × 648 648 84 0 

04 1.40 0.15 530 × 252 252 84 0 

Table 3a and Table 3b show the numerical results of the MILP models for an iron ore 
push-back data set containing 2 598 blocks over twelve scheduling periods. Fig. 3 and 4 
illustrate cross sections of the final pit limits including the orebody and rock type model. 
The push-back studied includes seven benches of the final pit demonstrated in Fig. 3 and 4 
from elevation 1500m to 1590m. The blocks represent a volume of rock equal to 
50m×25m×15m. The model contains 155 million tonnes of material with 84 million 
tonnes of iron ore with an average grade of 73% magnetic weight recovery (MWT%). 
Sulfur and phosphor are present as deleterious elements and their grades need to be 
controlled within an acceptable range in the processing plant feed. 

Table 3a - Inputs and numerical results for the data set containing 2598 blocks 

MODEL 
Blocks -Cuts 

( ) N K−
Periods 

(T ) 
/t tmu ml  

(MT) 
/t tpu pl  

(MT) 

, ,/e t e tgu gl  
(MWT%) 

, ,/e t e tgu gl  
(S% & P%) 

NPV 
($M) 

01 2598 - 0 12 13 / 0 7.15 / 0 No bounds 0 / 1.8 & 0.14 - 

02 2598 - 0 12 13 / 0 7.15 / 0 No bounds 0 / 1.8 & 0.14 3011.65 

03 2598 - 148 12 13.2 / 0 7.15 / 0 65 / 80 0 / 1.8 & 0.14 2947.68 

04a 2598 - 148 12 13.5 / 0 7.15 / 7.0 65 / 80 0 / 1.8 & 0.14 2947.09 

04b 2598 - 239 12 13.5 / 0 7.15 / 7.0 65 / 80 0 / 1.8 & 0.14 2985.02 

04c  2598 - 436 12 13.5 / 0 7.15 / 7.0 65 / 80 0 / 1.8 & 0.14 2991.55 

Table 3b – Inputs and numerical results for the data set containing 2598 blocks 

MODEL Root Node 
GAP % 

CPU TIME 
(S) 

Coefficient Matrix   
(A rows cols)×  

No. Of nonzero 
elements in A 

No. Integer 
variables 

No. of B & B 
nodes visited 

01 No Integer  Solution - 5 668 788 31 176 - 

02 0.05 14 748.32 280 944 × 62 352 2 091 882 31 176 340 

03 1.08 1 168.60 43 202 × 34 728 226 774 1 776 70 

04a 0.52 26.73 11 232 × 5 325 75 640 1 776 50 

04b 0.35 34.37 17 580 × 8 604 115 898 2 868 40 

04c 0.58 34.94 30 264 × 15 696 198 082 5 232 30 
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Fig. 3. Cross section 98400 N of the final pit including the orebody and rock type model looking 

west (meters). 
 

 
Fig. 4. Cross section 600640 E of the final pit including the orebody and the rock type model 

looking north (meters). 
 
The maximum allowable average grade for sulfur is 1.8% and for phosphor is 0.14% per 
period. It is also desirable to keep an average head grade between 65% and 80% of 
magnetic weight recovery (MWT). Our goal was to generate a schedule with a uniform 
feed within a range of 7 to 7.15 million tonnes of ore per period. Furthermore, we intended 
to keep a steady (1.89 to 1.93) stripping ratio over the scheduling horizon, so we chose a 
maximum mining equipment capacity of 13.5 million tonnes per period. This would ensure 
that the mining equipment capacity required is not going to fluctuate over time.  

To schedule 2598 blocks over 12 scheduling periods, Model 01 generated a huge 
coefficient matrix with more than 5.6 million nonzero elements and an integer solution for 
the formulation did not exist (Table 3b). Model 02 generated a coefficient matrix with 
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more than 2 million nonzero elements and ran for over four hours. As expected, Model 02 
generated the highest NPV of $3011.65 million of all the models, with a 0.05% gap 
tolerance. Fig. 5a to 5c show the plan view and cross sections of the generated schedule by 
Model 02. A closer examination of Fig. 5a to 5c reveals a tight schedule from a practical 
mining point of view. Fig. 5b shows that in the second period mining occurs on six active 
benches. This requires considerable equipment movement. Implementation of such a 
schedule is a challenge in the field, if limited numbers of mining shovels are available.   

In Model 03 we have used clustering techniques to aggregate the blocks into 148 mining-
cuts, clustering has reduced the number of integer variables to 1 776 from 31 176 in Model 
02.  Although in Model 03 the processing is at block level, the NPV has dropped to 
$2947.68 million, a 2.1% reduction (Table 3b). This is because mining occurs at the 
mining-cut level and has reduced flexibility when compared to Model 02. The run time has 
been reduced to half an hour from four hours.  

Figs. 6a to 6c illustrate the plan view and cross sections of the schedule generated by 
Model 03. This schedule is more practical from a mining point of view since there are only 
three active benches in the second period compared to the six active benches of Model 02.  

We have investigated the effect of number of mining-cuts on the quality of solutions in 
terms of NPV and the run-time on three different cases with Model 04. We clustered the 
2598 blocks into 148, 239, and 436 mining-cuts using the clustering algorithm. We refer to 
these as Model 04a, 04b, and 04c, respectively. A model with fewer mining-cuts will have 
fewer number of integer variables in the MILP formulation and result in reduced run-time, 
as shown in Table 3b. 

Alternatively, models with more mining-cuts imply more freedom for the decision 
variables and higher NPV would be expected. The NPV for Model 04a with 148 mining-
cuts is $2947.09 million, while the NPV for the Model 04c with 436 cuts has increased to 
$2991.55 million. One of the very important improvements with the Model 04 
formulations is the drastic drop in runtime.  Compare the four hour runtime for Model 02 
to the less than 35 seconds for Model 04. This is a very significant improvement; one must 
take into account that we are examining a very small model with only 2598 blocks in this 
study. The increase in the number of blocks would very quickly make Model 02 intractable 
and the model is not going to converge for larger real size models.  Scrutinizing Fig. 7a to 
7c shows that the number of active benches for different periods of extraction has 
decreased to two or three benches. The reduction of number of active benches is because of 
clustering blocks into mining-cuts. A smaller number of mining-cuts would generate 
clusters with more blocks. On the other hand, we are constructing the mining-cuts on a 
bench by bench basis; which tends to generate schedules that expand the mine outlines 
more horizontally rather than vertically. More research is required to develop a framework 
that will optimize the number of blocks included in each mining-cut in terms of making a 
balance in aiming for the highest NPV possible, while the maximum number of active 
benches included  in the schedule would be practical from a mining point of view.  

One of the features that make MILP formulations a robust platform for mine planning is 
not only the NPV maximization but also the control that the mine planner would have on 
upper and lower bounds of ore and waste production targets.  
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Fig. 5a. Model 02, plan view of bench 1575m.  

 

 
Fig. 5b. Model 02, cross section 98300m looking east.  

 

 
Fig. 5c. Model 02, cross section 600675m looking north. 
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Fig. 6a. Model 03, plan view of bench 1575m.  

 
 

 
Fig. 6b. Model 03, cross section 98300m looking east. 

 
 

 
Fig. 6c. Model 03, cross section 600675 looking north. 
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Fig. 7a. Model 04a, plan view of bench 1575m.  

 

 
Fig. 7b. Model 04a, cross section 98300m looking east. 

 
 

 
Fig. 7c.  Model 04a, cross section 600675m looking north. 
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Fig. 8a. Model 02 tonnage of ore and waste per period. 

 

 
Fig. 8b. Model 03 tonnage of ore and waste per period. 
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Fig. 8c.  Model 04a tonnage of ore and waste per period. 

 
Also, there is an inherent task of blending the run-of- mine materials before concentration. 
The objective is to mine in such a way that the resulting mix meets the quality and quantity 
specifications of the processing plant. The blending problem becomes more important as 
we get more into detailed planning in short/medium range plans.  

Fig. 8a to 8c illustrate the yearly tonnage of ore processed, waste mined, and the total 
tonnage of material mined in each period of production. In Model 02 we set a maximum 
mining capacity of 13 million tonnes per period and a processing capacity of 7.15 million 
tonnes per period (Table 3a) with no lower bound on mining and processing capacities. 
Fig. 8a illustrates the results of Model 02, the generated schedule is smooth with very little 
fluctuations in the tonnage of feed and stripping ratio. Meanwhile, referring Fig. 9 to 11 for 
the blending results show that the average grade of  MWT, sulphur, and phosphor are 
within the acceptable range defined in Table 3a (plots are for Models 02, 03, and 04a). A 
very interesting phenomenon that should be noticed is how in Model 02 (Fig. 9), the MILP 
high grades for iron ore in the early periods and then the MWT average grade starts to get 
lower every year. The high grading phenomenon in early periods is completely in 
accordance with the highest NPV generated by Model 02.  

In Model 03 we set a maximum mining capacity of 13.2 million tonnes per period and a 
processing capacity of 7.15 million tonnes per period (Table 3a) with no lower bound on 
mining and processing capacities. We were forced to increase the mining upper bounds 
since the 13 million tonnes upper bound did not generate a feasible integer solution; this is 
because of introduction of mining-cuts into the model, which reduces the freedom of the 
variables. Assessment of Fig. 8b shows that the ore feed is not as smooth as Model 02 
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schedule. Grade blending constraints are all honored except for phosphor in the first period 
that exceeded to 0.145% rather than 0.14%.  

In Model 04a we set a maximum mining capacity of 13.5 million tonnes per period and a 
processing capacity of 7.15 million tonnes per period (Table 3a) with a lower bound of 7 
million tonnes on the processing capacity. All the constraints presented in Table 3a are 
honored and the ore production schedule is the smoothest among all with an iron ore grade 
of 65% to 80% average for the MWT. 

 
Fig. 9. Average iron ore (MWT%) grade per period.  

 
Fig. 10. Average sulphur grade per period. 
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Fig. 11. Average phosphor grade per period. 

6. Conclusions and future work 

The paper investigated the shortcomings of the current mixed integer linear programming 
(MILP) models used for open pit production scheduling, particularly the inability to solve 
large-scale real-size mining problems. In this study, we have developed, implemented, and 
tested MILP theoretical frameworks for large-scale open pit production scheduling. The 
developed models proved to be able to handle deterministic large-scale mine production 
problems.   

To reduce the size of the open pit production scheduling problem we introduced the 
concept of mining-cuts into the MILP formulations.  Blocks within the same level or 
mining bench are grouped into clusters based on their attributes, spatial location, rock type, 
and grade distribution. Four MILP formulations are presented: Model 01- only consists of 
binary integer decision variables and generates a schedule at block level resolution; Model 
02 – the schedule is generated based on a strict temporal sequence of blocks. The 
formulation uses continuous variables to model extraction and processing at block level. 
Binary integer decision variables, are used to control precedence of extraction; Model 03 – 
processing is controlled at block level with continuous decision variables and the 
precedence of extraction of blocks is controlled at the mining-cut level by means of binary 
integer variables;  Model 04 –Extraction, processing, and order of block extraction are 
controlled at mining-cut level. We have implemented the optimization formulations in 
TOMLAB/CPLEX (Holmström, 1989-2009) environment.  

An iron ore mine intermediate scheduling case study over twelve periods was carried out to 
compare, verify and validate the models. The summary of the comparative analyses 
revealed that:  (i) an MILP formulation at block level resolution (Model 02) is not suitable 
for long-term scheduling. Although, the block level formulation generates a higher NPV 
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compared to the rest of the models, they would quickly go out of memory and it is almost 
impossible to generate a life-of-mine schedule for a real-size mine; (ii) block level 
resolution models (Model 02 and Model 03) are more appropriate for short-range 
scheduling where the number of blocks are in the order of thousands to ten thousand and 
the scheduling periods are in the order of ten to twelve periods. These formulations could 
be used to break-down the long-term yearly schedule into a monthly schedule; (iii)  
introduction of mining-cuts as the mining units (Models 03 and 04) and as a means to 
control the precedence of block extraction would drastically reduce the size and runtime of 
the MILP formulations and the number of binary integer variables required; (iv)  MILP 
formulations based on processing and extraction at mining-cut level (Model 04) leads to 
practical mathematical tools addressing life-of-mine schedules of large-scale open pit 
operations which was impossible to solve with the previous formulations. These models 
provides control over all the mining, processing, and blending constraints, to the mine 
planner while maximizing the NPV; (vi) clustering algorithms and the number of mining-
cuts affect the computational efficiency of developed MILP formulations and the generated 
optimal NPV.  

Further focused research is underway to develop and test different clustering techniques 
that would generate an optimized clustering approach for mining-cuts. Also the next step is 
to extend the mixed integer linear programming frame work into stochastic mathematical 
programming domain to address the geological uncertainty issue. 
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8. Appendix 

MATLAB  and TOMLAB/CPLEX code and documentation for Model 03.  
 
The code is for processing at block level and mining at mining-cut level. 
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