
MEASUREMENT OF NONLINEARITY IN
CHEMICAL PROCESS CONTROL

By

Martin Guay

A thesis submitted to the Department of Chemical Engineering in conformity 
with the requirements for the degree of Doctor of Philosophy

Queen’s University at Kingston
Kingston, Ontario

March 1996

copyright© Martin Guay, 1996



For Bonnie...

i



Abstract

A framework for the assessment of nonlinearity in controlled processes is developed.

Assuming that the process can be represented by a twice differentiable process map, the extent

of nonlinearity is measured by evaluating the induced local curvature of the process response.

The magnitude of this curvature is assessed with respect to an appropriately chosen scaling

region. This approach provides an effective methodology for the development of dimensionless

curvature measures that can be used to characterize and quantify the nonlinear behaviour of

steady-state and dynamic controlled processes. The impact of steady-state curvature on controller

performance is studied using a bioreactor example. A potential application of the measure of

dynamic nonlinearity to chemical processes is demonstrated. First and second order sensitivity

equations of the output with respect to the inputs are used to evaluate the nonlinearity measures

for continuous and batch chemical processes. 

 Using classical differential geometrical tools, a set of second order identities related to the

invertibility of the nonlinear process are developed. Their geometrical interpretation provides a

fundamental definition and a new interpretation of the RGA. Application of the identities to the

assessment of higher order interaction is shown to be very similar to the analysis of the linear

RGA. Higher interaction tables are constructed to measure the contributions of the nonlinear

terms to interaction in a closed-loop process. 

An analysis of exact linearization of control systems by state-feedback and coordinate

transformations is presented. The Gardner and Shadwick (GS) algorithm is used to uncover

obstructions to linearizability of classes of models. This provides a systematic way of choosing
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appropriate model forms in process model formulation. Extension of this method to dynamic

feedback linearization of control-affine processes is also considered. A necessary and sufficient

condition for dynamic feedback linearizability of nonlinear control affine systems is developed.

The linearizability conditions are based on a filtering of the Pfaffian system associated with a

nonlinear system that take account of the presence of a specific precompensator. 
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Chapter 1

Introduction

A wealth of information currently exists describing nonlinear behaviour of processes such

as continuous stirred tank reactors (CSTRs), distillation columns, evaporators and biotechnological

processes. Nonlinearity in a chemical process may arise from a variety of sources. It may be

due to characteristics of the process such as temperature dependence of reaction rates. It may

also result from process limitations such as valve limits, leading to input saturation (i.e., flowrate

manipulation) or from physical constraints on output variables (e.g., mole fractions of chemical

species).

Although nonlinearity of chemical processes is widely recognized in mathematical

modelling, design and optimization, chemical process control remains primarily focused on the

use of linear controller design techniques. Linear controllers facilitate the development,

implementation and operation of control strategies. Even though the gains in controller

performance that result from nonlinear control design techniques (e.g. Kravaris and Chung, 1987;

Hoo and Kantor, 1986; Bequette, 1990; McLellan et al., 1990) are undisputed, nonlinear

controller design procedures may often be avoided in practice. The main impediment is the

requirement for mathematical settings that are not easily accessible. Consequently, the loss in

performance that results from the use of a linear control strategy is ignored and nonlinear plants

are usually controlled with some success using linear control strategies. Many applications have

been reported in the chemical engineering literature (see Morari and Zafiriou, 1989) supporting
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this approach.

The relative success of linear control strategies for nonlinear processes is surprising. Since

the development of a linear controller for a nonlinear process necessarily relies on linearization

of that process, its applicability is necessarily of a local nature. This means that reliable

performance of the resulting closed-loop system is assumed only within a potentially small

operating region. Consequently, serious performance loss, and even instability, may result for

processes that deviate beyond that limited range of operation. The reasons for the success of

linear controllers in the presence of significant process nonlinearity remain unclear. Although it

is possible to design controllers that can provide robust performance in the presence of certain

specific classes of nonlinearities, the robustness of linear controllers to systematic process

nonlinearities is still poorly understood. One reason for this situation is the absence of a

methodology to evaluate nonlinearity in controlled processes. Metrics currently used to evaluate

process nonlinearity do not reflect the nonlinearity of processes subjected to linear controller

strategies.

  There are two primary considerations in designing control systems for nonlinear processes.

First, the nonlinearity must justify the need for a nonlinear controller. This requires assessment

of the nature and magnitude of the nonlinear behaviour. Secondly, the controller must be able

to compensate for the effects of nonlinearity. This is normally achieved in practice by using

model based approaches that can systematically remove these effects. Predictions of the process

response are used to determine appropriate control action. Alternatively, one can apply

appropriately chosen coordinate transformations to linearize the process exactly. Using this

approach, the linearized process is controlled by application of linear control strategies on the
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transformed inputs and outputs. It is also possible to achieve satisfactory controller performance

by using collections of linear controllers, each applicable to a specific portion of the operating

region. This thesis investigates both of these approaches.

The primary objective of this thesis is to develop a framework for the quantification of

process nonlinearity that is applicable to both steady-state and dynamic control of chemical

processes. A generic assessment of process nonlinearity is developed that can be used to

compare different control strategies for a given process and for different processes.

     To achieve this result, it is important to identify the types of nonlinearities considered in

general terms. Throughout this thesis, processes are represented by differentiable maps of process

inputs to outputs. It is assumed that each of these process maps can be expressed as a Taylor

series expansion about nominal input values of interest. The nonlinearity of a process is

measured as the departure of actual behaviour from its first order Taylor series approximation,

and it is estimated by evaluating the contribution of the second order terms of the series relative

to the contribution of the first order approximation.

In order to measure the nonlinearity adequately, it is also important to consider the

intended range and direction of process operations. This is to ensure that the measure of

nonlinearity employed must reflect the anticipated variation in process variables on a meaningful

scale. For example, distillation columns typically exhibit moderate nonlinearity. However they

can be modeled and controlled using linear models when operated over small ranges. Since the

nonlinearity cannot be removed by the controller action, the region of operation and the controller

must be chosen such that the effects of the nonlinearity on the closed-loop operation are

attenuated.
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The proposed methodology is presented in Chapters 2, 3 and 4. In Chapter 2, the

framework is developed and applied to the measurement of nonlinearity in steady-state nonlinear

processes. Using ideas first introduced by Bates and Watts (1980) in nonlinear regression

analysis, the interpretation of the nonlinearity measures is enhanced by providing an orthogonal

decomposition that separates the contribution of the nonlinear terms into tangential and normal

effects. It is shown that the local effects of nonlinearity can be removed by developing

coordinate transformations for the tangential and normal parts.

In Chapter 3, a fundamental approach for assessing nonlinear interaction effects and

closed-loop nonlinearity in multivariable processes is presented. This approach is based on a

differential geometric interpretation of the relative gain array, which leads naturally to systematic

procedures for describing higher order interaction effects and for assessing closed-loop

nonlinearity effects in nonlinear processes. Two types of nonlinear effects associated with the

behaviour of a process are introduced. Between channel nonlinearity is associated with the

nonlinear dependence of an output channel on other input-output pairings. Within channel

nonlinearity is used to identify the nonlinear effects that result from the inherent nonlinearity of

an individual output channel. The framework developed in Chapter 2 is used to evaluate the

significance of local nonlinear effects. Nonlinear interaction measures are derived which provide

tools for assessing input-output pairings in a nonlinear process. This approach extends existing

standard techniques and provides an estimate of the effect of nonlinearity on closed-loop

interactions.   

In Chapter 4, the methodology developed in Chapter 2 is extended to the measurement

of nonlinearity of dynamic processes using the theory of Fréchet differentiable nonlinear operators
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on linear normed spaces. The main result of this extension is a meaningful scale-independent

measure of dynamic nonlinearity. The size and orientation of process operations are taken into

account to provide an appropriate scaling. This framework is then applied to input-output

processes represented by Volterra series expansions. It is shown that the nonlinearity of such

systems can be measured using first and second order kernels of the functional expansion. In the

more general case, this approach is shown to be equivalent to the solution of a set of ordinary

differential equations that provide first and second order derivatives of the process outputs with

respect to the inputs. As a demonstration, the methodology is applied to measure the nonlinearity

of a chemostat bioreactor and a batch non-isothermal stirred tank reactor.

When a process has been shown to display significant nonlinearity, using methods such

as that presented in Chapters 2, 3 and 4, it is important to provide methodologies to remove its

effects. Although this can be achieved in a number of ways, most successful methods listed in

the literature are based on the use of process models. In this thesis, differential geometrical

control techniques are applied to the study of the problem of exact linearization of nonlinear

systems by state-feedback and state-space. The analysis is based on an exterior calculus method

introduced by Gardner and Shadwick (1992) that can be used to solve the problem of exact

linearization by static state-feedback. This method provides a set of necessary and sufficient

conditions for exact linearizability and an algorithm, called the GS algorithm, that can be used

to calculate linearizing feedback and state-space transformations. More importantly, it gives a

framework for studying the general problem of equivalence of nonlinear systems to linear forms.

Using this algorithm, Atkins and Shadwick (1993) proved the existence of invariant functions that

define, for a class of structurally similar systems, the subclass of linearizable systems. These
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functions are curvature-like entities that act as obstructions to linearizability. Because of their

invariance under feedback and state-space transformations, these functions can be used as purely

geometric outputs that are generic for given classes of system. In this thesis, the GS algorithm

is used to compute these invariant structures for a class of nonisothermal continuous stirred tank

reactors. 

Conditions for linearizability by static state-feedback are often too restrictive and are rarely

applied in practice. To widen the scope of application of these methods, considerable work has

been done to provide relaxations of these conditions. Exact linearization by dynamic state-

feedback, first introduced by Charlet et al. (1989, 1991), and the associated concept of flatness

of nonlinear systems (Fliess et al., 1994b) have been considered to extend the class of linearizable

systems. Necessary conditions and sufficient conditions for dynamic feedback linearizibility have

been obtained by various researchers (Charlet et al., 1989, 1991; Shadwick, 1991; Sluis, 1993;

Aranda-Bricaire et al., 1995). In this thesis, the geometric framework developed by Gardner and

Shadwick (1992) is used to develop a new necessary and sufficient condition for dynamic

feedback linearizibility. This exterior calculus setting is shown to provide an effective method

to prove dynamic feedback linearizibility and compute the required feedback and coordinate

transformations. 
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CHAPTER 2

Measurement of Nonlinearity
In Chemical Process Control Systems:

The Steady State Map

1. Introduction

Most chemical processes are inherently nonlinear in nature. Nevertheless, they are often

treated using linear analysis and design techniques in order to simplify the development,

implementation and operation of a control strategy. However, the extent of nonlinearity in many

chemical processes is such that controller design and analysis methods based on linear process

models may no longer be satisfactory. Nonlinearities may arise from chemical process

characteristics (e.g., Arrhenius rate expressions), input saturation (e.g., valve limits), and output

saturation (physical limits on output variables - e.g., mole fractions). The impact of nonlinearities

on controller stability and performance depends on: (i) the degree of nonlinearity of the process,

(ii) the intended range and direction of operation and (iii) the choice of controller. For example,

distillation columns exhibiting moderate nonlinearity, but operated over a small range, may be

adequately modeled and controlled using a linear model, whereas the nonlinear temperature

dependence of reaction kinetics may be of great significance in a reactor operated over a wide

range of conditions such as in batch operation.

Research in nonlinear process control has been very active in recent years (e.g., Bequette,

1991; Kravaris and Kantor, 1990a; McLellan et al., 1990; Nijmeijer and van der Schaft, 1989;

Isidori, 1988) and there is now a wide range of possible control laws using output and state

feedback for output tracking, input-state and input-output linearization, and decoupling control.
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These nonlinear control laws frequently require substantial additional effort beyond that required

by linear methods. From a practitioner’s perspective, it is important to be able to assess when a

process is sufficiently nonlinear to justify using a nonlinear control law. The development of

useful measures of nonlinearity is the focus of this study.

Very few results for assessing the degree of process nonlinearity exist in the chemical

engineering literature. Recently, Nikolaou (1993) and Ogunnaike et al. (1993) have proposed

operator-based approaches where the process response to a set of input sequences is analyzed.

The degree of nonlinearity is viewed either as the departure of actual process performance from

an ideal linear approximation (Nikolaou, 1993) or as the change in local gain estimates over the

operating region (Ogunnaike et al., 1993). The operator approach offers limited insight into the

process structure, and specifically which components (e.g., vapour -liquid equilibria, reaction

kinetics) are responsible for the nonlinearity. The local gain estimate approach suffers from

sensitivity to the choice of perturbation directions. Both these approaches, and the approach

proposed in this study as well, are vulnerable to the effects of process noise.

Koung and MacGregor (1991,1992) studied process nonlinearity by examining the impact

on the singular value decomposition (SVD) of local steady-state gain matrices. The SVD is used

to obtain a structured description of the uncertainties due to gain mismatch. This mismatch,

which is due to the nonlinearity of the process, is measured by the extent of input and output

rotation observed in the steady-state gain with respect to the nominal plant. Although this method

is useful for the analysis of bivariate processes, its application to multiple inputs- multiple outputs

(MIMO) systems of greater dimension is difficult. 

In this Chapter, we propose an approach for quantifying process nonlinearity using first
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and second derivative information. The approach is based on the methodology developed by

Bates and Watts (1980, 1988) in nonlinear least squares regression analysis. The main features

of this approach are decomposition of second order information into tangential and normal

components and calculation of scale independent measures of nonlinearity. This method

quantifies the nonlinearities and identifies their causes. It can also suggest transformations to

remove or reduce these effects. 

The methods proposed in the following sections deal specifically with the process steady

state map, and as such, address the problem of gain nonlinearity in open-loop processes.

Extensions to closed-loop and dynamic processes will be described in next two chapters. The

current chapter proceeds as follows. A framework for curvature analysis is first proposed, and

curvature measures are developed. The problem of scaling is addressed by defining an operating

region for the process. The use of curvature arrays for identifying appropriate transformations is

described, and the issue of nonlinearity in prediction and control models is discussed. The

methodology is illustrated using biochemical and evaporator process examples which exhibit a

range of nonlinearities. In particular, we demonstrate how the approach can be used to quantify

geometrical properties of the steady-state map of a nonlinear system. 

2. Steady-state Measures of Nonlinearity

The assessment of nonlinearity of a process must take into account the extent of

nonlinearity of both the process and its inverse in order to obtain an appreciation of the potential

effectiveness of predicting and controlling a process using linear techniques. The first aspect of

nonlinearity, called Open-Loop Nonlinearity, describes the nonlinearity of predictions of the
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process variables given the input variables. The second, called Control-Law Nonlinearity, directly

measures the ability to control a process using linear techniques. 

In this study, these two aspects of nonlinearity are assessed by analyzing the extent of

nonlinearity of the steady-state process input-output map and its inverse. Although either map

can be used to assess both aspects of nonlinearity, it is clear that the extent of open-loop

nonlinearity is more directly related to the nonlinearity of the input-output map and that control-

law nonlinearity is more directly related to the nonlinearity of the inverse map. In what follows,

we present a framework used to measure the extent of nonlinearity of the process input-output

map. We first consider the input-state relationship, and then show how the framework can be

applied to the input-output map.

Consider an asymptotically stable nonlinear system of the form,

where u denotes the process inputs, and x the states. The linear approximation of the system at

(1)
 x  f(x,u )

u∈ P ,x∈ N

a stationary point (x0, u0) is given by

(2) x       ∂f
∂x

(x0 ,u0)(x  x0)       ∂f
∂u

(x0 ,u0)(u  u0)  A(x  x0)  B(u  u0)

Let the pair (A,B) be controllable with A asymptotically stable and rank(B)=P. For the linearized

system, the reachable set from x0 with constant controls is Range{B, AB, ..., An-1B}.

Furthermore, for each constant control there exists a final state x such that (x-x0)∈Range{B, AB,

..., An-1B} which satisfies the steady-state relationship A(x-x0)+B(u-u0)=0 (note that, naturally,
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x0∈Range{B, AB, ..., An-1B}). Asymptotic stability of the system implies that as u is changed

slowly in a neighbourhood of u0 given by u-u0<δ, the states also change slowly and remain

in a small neighbourhood of x0 given by x-x0<ε where ε and δ are small strictly positive

numbers. The consequence is that for each u in u-u0<δ there exists a steady-state x in x-

x0<ε. This means that, locally, there exists a matrix D such that (x-x0)=D(u-u0) where (x, u) is

another stationary point of the nonlinear system described by Equation (1). Note that since A

is asymptotically stable and rank{B}=P, the matrix D is given by -A-1B and rank{D}=P. Let Ne

be a neighbourhood of x0 for which each of these assumptions holds. It follows that the set of

states belonging to Ne reached as t→∞ depends smoothly on the inputs. Locally, this defines a P-

dimensional submanifold of the state space defined by f(x,u)=0 which is parametrized by the

inputs u. Therefore, in a neighbourhood of a point u0∈U⊂ P, there exists a nonlinear map

Ξ:U→Ne, which locally defines a P-dimensional manifold in  N denoted by Ξ(U). This surface

will be referred to as the steady-state locus. The measurement of nonlinearity is performed by

analyzing the local geometry of the steady-state locus. Application of the methodology to the

input-output relationship is discussed below.

In what follows, we describe a framework for the analysis of the geometry of the steady-

state locus of the states. The extent of curvature of this open neighbourhood gives a local

assessment of the gain nonlinearity of a process.

The geometry of the steady-state locus can be studied by defining locally a basis for its

tangent and normal spaces. In this study, the geometry is described by considering the first and

second order derivatives of the steady-state map with respect to the inputs. The first order

derivatives, given by
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span the P-dimensional tangent space of Ξ(u) at a point u0. These N-dimensional vectors, called

velocity vectors, define the steady-state gain matrix V=[v  1,..., v  p]. The extent of departure from

linearity of Ξ(u) at any point u0 is assessed by evaluating the magnitude of the second order

derivatives in this basis. For this purpose, we define the acceleration vectors as the P2 N-

dimensional vectors

and assign them to an N by P(P+1)/2 matrix of non-redundant vectors given by

Taking the QR decomposition (Bates and Watts,1988) of the combined matrix [V, W], evaluated

at a prescribed value of u, gives

where Q is an N by N orthonormal matrix and R is an N by P(P+3)/2 matrix. The first P

(3)

columns of Q, denoted by Q1
t, span the tangent space of the steady state locus at Ξ(u0). The next

Pn (≤N-P) columns, denoted Q1
n, span a Pn dimensional subspace of the space normal to Q1

t. The

remaining submatrix, written Q2, comprises an orthonormal basis of P2 column vectors spanning

the remainder of the state space. The matrix R is partitioned into a P by P upper triangular

matrix R1, an (N-P) by P submatrix consisting of zeros, and an N by P(P+1)/2 matrix A of
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second order derivatives.

The QR decomposition yields an orthonormal basis of  N used to decompose higher order

derivatives of the steady-state locus with respect to u into tangential and normal components.

Using the matrix Q we can express W in the new basis by projection onto the columns of Q,

yielding the N by P(P+1)/2 acceleration array A=Q W. The first P rows of A, denoted by At,

are the projections of W onto the first P columns of Q which span the tangent space to the steady

state locus, and the next Pn rows, denoted by An, are the projections of W onto the next Pn

columns of Q which span the normal space. The last P2(=N-P-Pn) rows yield, by virtue of the

QR decomposition, a matrix of zeros. This decomposition of the second order derivatives into

tangential and normal components creates a convenient basis for studying various aspects of

nonlinearity. These aspects can be illustrated in the following model of a chemostat bioreactor:

where x1 and x2 are the scaled biomass and substrate concentrations and u1, the input, is the

dilution rate. The model parameters, µmax, S0, kd and Ki, are the specific growth rate, inlet scaled

substrate concentration, death rate and substrate inhibition constant, respectively.

Figure 2.1 shows the steady-state relationship existing between x1, x2 and u1. The points

indicate the parametrization of the steady-state locus resulting from the inputs. These points are

the image under the steady-state map of evenly spaced points in the input space.
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Figure 2.1 Steady-state locus for the chemostat bioreactor model. Biomass and substrate
concentration are denoted as x1 and x2 respectively.

As expected, the nonlinearity of the input-output relationship causes an uneven spacing

of these points on the steady-state locus. Since this aspect of nonlinearity is related to the change

in magnitude and direction of tangent vectors along the steady-state locus, it is called the

"tangential component" of nonlinearity. The curvature of the steady-state locus in the surrounding

space can also be seen in Figure 2.1. This is related to the change in direction and magnitude

14



of normal vectors which lie in the space orthogonal to the tangent space along the steady-state

locus. This is the so-called "normal component" of nonlinearity.

Having decomposed the components of nonlinearity into normal and tangential parts, we

now proceed to define the corresponding measures of nonlinearity.

The curvature experienced along the steady-state locus along a direction e defined in the

input space (i.e., along the line u=u0+re) can be expressed as the ratio of the norm of the

associated acceleration vector to the tangential velocity vector (Bates and Watts, 1988). Although

these quantities can be expressed in terms of the original velocity and acceleration vectors, it is

more convenient to express them in terms of their orthogonal basis obtained from the QR

decomposition. Multiplying the original quantities by Q  transforms the original velocity and

acceleration vectors into the new basis, preserving the metric on the steady-state locus. The

resulting curvature becomes:

where Ar is an N-dimensional array of P by P matrices obtained from the N by P(P+1)/2 matrix

(4)

A. The array Ar takes the form
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where aijk is partial derivatives with respect to uj and uk of the ith coordinate of the rotated state

space. This array can be re-arranged, because of symmetry, into the N by P(P+1)/2 matrix A

written as

Pre-multiplication and post-multiplication by e, as expressed in Equation (4), is performed

on each P by P submatrix (also called face) of Ar. In what follows, the rearrangement of an N

by P(P+1)/2 matrix, such as A, into an N-dimensional array of P by P matrices will be noted by

the subscript r.

We can separate the tangential and normal contributions to the overall curvature by

evaluating the curvature for the first P and the next Pn faces of Ar, respectively. Because the

magnitude of the acceleration array depends on the scaling of the problem, it is difficult to

evaluate uniquely the degree of nonlinearity implied by these measures of curvature. Clearly,

scale independent measures of curvature would be more advantageous, and would enable a
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"generic" quantification of nonlinearity to be made for any process. 

In what follows, we propose a scale independent measure of nonlinearity similar to the

one proposed by Bates and Watts (1980, 1988), which takes into account the size of the region

of interest in the output space. Such a region of interest will typically be determined by the

desired operating region for the process. A combination of the curvature measures and a notion

of size in the state space yields a convenient and simple way to evaluate the nonlinearity of the

steady-state relationship in a chemical process.

3. Assessing Nonlinearity in Steady-state Relationships

In order to remove the dependence of the curvature on the state variables, we must specify

a region in the state space where the assessment of nonlinearity is of particular interest. It may

often be possible to define such a region from the extent of variation observed in normal process

operations or from the specifications imposed on the process outputs. In what follows, we

assume that these regions can be appropriately described by ellipsoidal regions in the state space

of the form

where S is an invertible matrix and ∆x=x-x0, where x0 is an output value at the centre of the

(5)

region corresponding to u0. This region can be scaled to a sphere by considering a linear change

of coordinates of the form z=S∆x and expressing the state region as

The nonlinearity of the steady-state map can then be assessed in the region of interest by

(6)z  z  1.
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evaluating the magnitudes of the second order derivatives expressed in the z-coordinates. 

We define the velocity vectors and non-redundant set of acceleration vectors in the z-

coordinates by Ṽ =SV and W̃ =SW, respectively, where the overbar ˜ indicates that these arrays

have been calculated for the scaled variables. Performing a QR decomposition of the scaled

matrix D̃ =[Ṽ ,W̃ ]=QR yields the acceleration array for the scaled output variables, Ã =Q W̃ . Note

that Q and R are partitioned as before.

We then transform u to orthogonal inputs given by

such that the denominator of Equation (4)  R1 u 2=1 for any θ (an arbitrary direction in the Φ-

space) of unit length. Although this transformation is not unique, it proves to be very

advantageous in this case. Such a transformation can be interpreted as removing first order

interaction effects, enabling a clear identification and interpretation of effects due to nonlinearity.

The velocity and acceleration vectors taken with respect to these new inputs are given by

and

respectively, where K=R1
-1. C̃ r is the "rearranged" relative acceleration array defined for the

region prescribed by the elements of S. In what follows, the overbar ˜ will be omitted and it will

be assumed that all arrays are scaled prior to the analysis.

The following example illustrates these calculations. 

18



Example 2.1

Consider again the two-state, one-input bioreactor model introduced in the preceding

section. Figure 2.2 shows the steady-state locus for this example, with points A, B and C as

steady-state conditions at which the nonlinearity is to be evaluated. Using the parameter values

shown in Table 2.1, the steady-state values for the states and inputs for each point appear in

Table 2.2. 

Table 2.1

 Parameter values for the bioreactor model in Example 2.1.

Model Parameter Value

µmax 0.5 (min-1)

S0 0.3 (g/L)

kd 0.05 (min-1)

Ki 10.0 (L/g)

At each of the three locations we consider a region of interest defined by the scaling

matrix S given by

The diagonal elements of S reflect the expected range of operation of x1 and x2, 0.019±(10-5)0.5

and 0.18±(10-4)0.5 respectively.
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Table 2.2

Steady-state conditions and tangential and normal components of the relative 

curvature array for three points on the steady-state locus for Example 2.1.

Steady-State u0 x1(u0) x2(u0) Ct Cn

A 0.01 0.019821 0.18107 0.24693 0.86733

B 0.016 0.014841 0.23878 0.33423 -0.07604

C 0.005 0.013453 0.15224 0.17643 0.08855

Table 2.2 also lists the tangential and normal components of the relative curvature array

calculated at each point. For point A, the velocity and acceleration vectors are given by

Taking a QR decomposition of this matrix yields

from which the acceleration array,

and the relative acceleration array,
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can be obtained.
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Figure 2.2 Steady-state locus for the bioreactor model of Example 2.1. The nonlinearity measures
are obtained at points A, B and C on the steady-state locus.

By relating the results listed in Table 2.2 to the plot of the steady-state locus in Figure 2.2,

we can establish the implications of the tangential and normal components. From Figure 2.2 it
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can be seen that the steady-state locus exhibits significant curvature with respect to the

surrounding coordinates at point A, but not at points B and C. The normal components of the

relative acceleration array in Table 2.2 reflect this behaviour as the magnitude of the normal

component at point A is ten times larger than at points B and C. As noted in the preceding

section, equally spaced inputs used to generate the steady-state locus are unevenly spaced on the

locus. This effect tends to be more pronounced at point B. From the results listed in Table 2,

this effect is reflected by a larger value of the tangential component at point B relative the values

at points A and C.

In summary, measures of nonlinearity which are independent of the scaling of the system

can be obtained. For a specified direction in the input space at any point of interest, the

tangential and normal components of the relative curvature can be calculated. The magnitude

of the normal component measures the degree of curvature in the steady-state locus at that point,

while the magnitude of the tangential curvature measures the nonuniformity and nonlinearity of

constant input lines on the steady-state locus at that point. 

Although this decomposition of second order effects can be used to characterize many

aspects of nonlinear behaviour of a process, it is desirable to have one unique measure which can

be used by a control engineer as an indicator of the nonlinearity of a process. One overall

measure of tangential and normal curvature can be derived by integrating the squared relative

curvature in a direction θ, 

over all possible directions. This yields a mean squared measure of curvature

(8)
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where A is the area of the (P-1)-dimensional sphere described by all unit-norm vectors θ (i.e.

(9)

vectors satisfying θ θ=1). Carrying out the integration yields the following result:

where cijk is the kth element of the jth row of the ith face of the relative curvature array Cr.

(10)

Summing over the first P faces gives the tangential mean squared curvature. Correspondingly,

summing over the next P  faces gives the normal mean squared curvature. Note that the choice

of integrating over a spherical region is arbitrary. It is also possible to obtain mean squared

curvature for arbitrarily shaped regions assuming that the integral can be evaluated. 

Figure 2.3 shows how a convenient scale for the root mean squared (RMS) curvature

measures c can be obtained. As discussed in Bates and Watts (1980), the steady-state locus can

be locally approximated by a sphere of radius 1/c. The magnitude of the RMS curvature can then

be related to the extent of deviation between this surface and its tangential approximation at a unit

distance from the point of linearization in the scaled input space z. That is, the deviation is

evaluated at the boundary of the region of interest. The magnitude of the deviation is given by

1/c-(1/c2-1)0.5. This is readily compared to the size of the region of interest which is simply unity

in the present setting. The percent deviation from the linear approximation expressed in terms

of the size of the region of interest is then equal to 100(1/c-(1/c2-1)0.5). This provides a

convenient scale with which to evaluate the nonlinearity of a process. Table 2.3 gives the percent

deviation as a function of the RMS curvature measure. 
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Table 2.3 

1

1/c

1/c-(1/c -1)
1/22

Tangent
 Plane

Figure 2.3 Scale for measuring the extent of nonlinearity. The steady-locus is approximated by
a surface of constant curvature 1/c where c is the RMS curvature.

 Scale for measuring nonlinearity based on the RMS curvature.

RMS Curvature %Deviation

0.1 5

0.2 10

0.3 15

0.4 21

Figure 2.4 shows a scaled diagram of surfaces with varying RMS curvatures ranging from

0 to 1.0. This diagram illustrates the degrees of nonlinearity associated with the RMS curvatures.
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Figure 2.4 Scaled diagram of surfaces with varying RMS curvatures.

Using the values in Table 2.3, the nonlinearity of a process can be evaluated in the

neighbourhood of a point of interest as a function of the percent deviation from the linear

approximation. As a guideline, a deviation of less than 15%, corresponding to a threshold RMS

curvature value of approximately 0.3, may be considered negligible.

For the two-state, one-input bioreactor model, the tangential and normal RMS curvatures

at point A are 0.24693 and 0.86733, respectively. From the foregoing discussion, only the normal

component is significant in this case. As observed in Figure 2.2, the curvature of the steady-state

locus at that point is large with respect to the surrounding space and, as a result, the direction of

the open-loop steady-state gain vector quickly changes in this region. However, the negligible
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tangential curvature indicates that the magnitude of the steady-state gain vector is nearly constant

in this region. The implications for control are that linear controllers would perform adequately

in neighbourhoods of points B and C. Controlling about the steady-state point A can be

problematic since the direction of the controller action changes in the prescribed region. 

The application of the methodology to a MIMO control problem is illustrated in the

following example. 

Example 2.2

Consider the following two-state, two input bioreactor model:

where x1, x2 and u1 are as in Example 2.1 and u2 is the inlet substrate concentration. The steady-

state conditions of interest for this case are x0=[0.019821, 0.18107]  and u0=[0.01, 0.3] . The

region of interest can be described by the scaling matrix

This matrix reflects the expected variations in x1 and x2 under normal operating conditions.

Figure 2.5 shows the steady-state loci and the superimposed region of interest in the scaled output

space. The straight horizontal dashed lines are constant u1 lines and the curved vertical lines are
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constant u2 lines. The constant u2 lines exhibit significant curvature but there is no apparent

curvature in the constant u1 lines. This is supported by the relative curvature matrix which is

given by

The RMS curvature is 0.37492, indicating that, overall, the process exhibits significant

nonlinearity. Inspection of Cr shows that the main contributions to nonlinearity are in the second

face which is related to variations in the direction of the steady-state gain vector corresponding

to the scaled orthogonal input φ2, i.e., in the direction of Qt
•2, the second column vector of the

tangential component of the decomposition. The first diagonal term, 0.38787, demonstrates that

there is significant variation in the gain related to φ1 in the direction of Qt
•2 as φ1 is varied. That

is, as one moves along Qt
•2, the magnitude of Qt

•1 changes. This indicates that there is significant

arcing of the constant φ2 lines in the direction of Qt
•2. The off-diagonal term (-0.33791) indicates

that there is significant variation in the gain related to φ2 in the direction of Qt
•2 as φ1 is varied

(or, alternatively, variation in the gain related to φ1 as φ2 is varied). This indicates that there is

a fanning effect in the Qt
•2 direction of the lines of constant φ2 as φ1 is varied. Both the fanning

and the arcing are demonstrated in Figure 2.5. It is interesting to note that the Qt
•2 direction is

essentially parallel to the z1 axis. This indicates that it is more difficult to predict the gain using

a linear approximation when the process moves along the z1 axis.

4. Accounting for Nonlinearity
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Local curvatures can be used to determine output or state transformations which reduce
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Figure 2.5 Steady-state locus and the region of interest for the model of Example 2.2. Solid lines
show the effect of u1 at constant u2. Dashed lines show the effect of u2 at constant u1.

the extent of nonlinearity. It is possible to account for the tangential and normal components of

nonlinearity by defining appropriate systems of coordinates in the state space. Tangential

coordinates of the steady-state locus are simply given by
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where, as defined previously, Q1
t is the N by P matrix which contains the first P columns of the

(11)τ  Q t  

1 z(u)

Q matrix. These coordinates are nonlinear functions of the inputs. Note that Equation (11)

implies that the τ coordinates are projections of the steady-state locus on the tangent basis defined

at z(u0). They can re-written as nonlinear functions of the orthogonal inputs φ as τ =H(φ). The

map H can be approximated by 

where Ct
r is the tangential part of the relative acceleration array. Intuitively, τ coordinates

(12)H(φ) ≈ φ     1
2

φ Cr
tφ.

eliminate tangential curvature since the nonuniformity with respect to the basis at u0 is

accommodated. 

Similarly, normal coordinates can be obtained. Let G(z) be a Pn dimensional vector

valued function which vanishes as z reaches the steady state locus, i.e. G(z0)=0. This vector

valued function can be used to describe the geometry of the steady-state locus with respect to the

surrounding space. Since G(z)≡0 on the steady-state locus z(u), the rate of change of G with

respect to u is zero, i.e., 

In a neighbourhood of z0, the rows of the Jacobian of G(z) span the space normal to the tangent

 
 
 

 
 
 

      ∂G
∂z

     ∂z
∂u


z0 ,u0

 0

space. As a result, it can be represented locally by
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where Q1
n is the N by Pn normal component of Q. Differentiating a second time with respect to

          ∂G  z
∂z


z0 ,u0

 Q n  

1

u gives

where the notational dependence of G on z has been removed for convenience. Using Equation

 
 
 
 
 

 
 
 
 
 

       ∂z  

∂u
          ∂2G
∂z∂z  

         ∂z
∂u

       ∂G
∂z

           ∂2z
∂u∂u  

 0

(11) and the QR decomposition, this expression can be re-written as

or

R  
1 Q t  

1
                  ∂2G

∂z∂z  
Q t

1 R1  Q n  

1
                    ∂2z

∂u∂u  
 0

in a neighbourhood of z0 where An
r is the normal part of the acceleration array. Pre-multiplying

R  
1 Q t  

1
                  ∂2G

∂z∂z  
Q t

1 R1  Ar
n  0

by K  and post-multiplying by K yields

where Cr
n is the normal part of the relative acceleration array. This gives

Q t  

1
                    ∂2G

∂z∂z T
Q t

1  Cr
n  0

Equation (13) is important because it establishes that the normal component of the relative

(13)           ∂2G

∂z∂z  
  Q t

1 Cr
nQ t 

1 .
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curvature array of the steady-state locus can be obtained from the second order derivatives of

some function of z with respect to z. That is, the presence of normal curvature is attributable to

the need for a nonlinear transformation of the z-coordinates which can be obtained as G(z). The

vector valued function G(z) can be replaced by its second order approximation, thereby ensuring

that, at u0, the normal curvature of the steady-state locus is accounted for in the transformation.

The second order approximation can be expressed in terms of the normal curvature above, leading

to the following coordinates for the state space:

The tangential coordinates representation of the steady-state locus provided by Equation (11) can

(14)ξ  G(z) ≈ Q n  

1 z     1
2

z  Q t
1 Cr

nQ t  

1 z.

be used to express z(u)=Q1
t (τ(u)). The normal coordinates of the steady locus become

To summarize, the steady-state locus in the (τ, ξ) coordinate system given by Equations (11) and

(15)

(15) yields coordinates in which the steady-state locus has zero local tangential and normal

curvature at u0. As in Hamilton et al. (1982), we separate, in a local fashion, the steady-state

input-state map into two maps. First, the input space is mapped onto the tangent space to the

steady-state locus by the map Ξt(u)=Q1
t z(u) defined in Equation (11). We can then combine

Equations (11) and (15) to give an approximation of the steady-state locus in terms of τ,

It is clear that only the tangential coordinates given by Equation (11) depend explicitly

(16)
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on the form of the steady-state dependence on the inputs. As a result, it is the only component

of nonlinearity which can be affected by input transformations of the form u=Φ(v) where v is a

transformed input which experiences no tangential curvature. The normal coordinates ξ for the

steady-state locus given by Equation (15) reflect the intrinsic geometry of the process and can

only be taken into account by nonlinear coordinate transformations and feedback transformations.

To justify these observations let us consider a single input nonlinear system of the form of

Equation (1). Let the linear approximation of the nonlinear system be such that the required

assumptions are fulfilled. Since the (A,B) pair is controllable, there exists a linear change of

coordinates of the form z=[z1, z2, ..., zN]=P(x-x0) that transforms the single input linearized system

to Brunovsky normal form

At steady-state, we impose that, locally, z2=z3=...=zN=0. Consequently, we get 

(17)

The steady-state gain vector of the process at x0 is given by

This clearly identifies the output function z1 as the tangential, or τ, coordinate of the steady-state
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locus at x0 and demonstrates that the variables z2, z3, ..., zN act as normal coordinates. In the

presence of significant nonlinearity, the system may not be transformable to a Brunovsky normal

form. But since the pair {A, B} from the linear approximation is controllable, the Brunovsky

form of the linear system remains. The normal nonlinearity displayed by the system at steady-

state in a neighbourhood of x0 can be expressed as controller mismatch terms for the linear

approximation. The transformation of the linear system into a Brunovsky form simplifies the

computation of these terms. 

As described above, z1 is taken as an appropriate choice of tangential coordinate (τ) for

the steady-state locus. According to Equation (16), the normal nonlinearity displayed by the

nonlinear system at steady-state is given by 

where cn
i1 are the elements of the normal component of the relative acceleration array. Note that

τ=z1 is still due to the Brunovsky normal form of the linearized system. 

In a neighbourhood of the steady-state locus, the underlying system must such that

Equation (16) holds. The following approximation of the original nonlinear system results in
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a neighbourhood of the steady-state locus with slowly changing inputs

It is readily seen that the steady-state behaviour of this system yields the expressions derived

from Equation (16). The normal component of curvature enters the process as a mismatch term

that can only be taken into account by nonlinear changes of coordinates and nonlinear state-

feedback. 

In addition, when significant tangential nonlinearity exists, the tangential component must

be approximated by

where

Substituting in the last differential equation of Equation (17) gives
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This demonstrates that the tangential component can be removed by introducing a nonlinear input

transformation or a nonlinear state-feedback transformation. 

In situations where there is incomplete knowledge of the state space, appreciation of

process behaviour is usually restricted to the measured variables. Clearly, there is no specific

need to restrict the preceding analysis to the input-state map. All that is required for the

application of the framework in the present form is the existence of an injective map from the

space of the inputs to the space of the measured variables. Injectivity is required to avoid input

multiplicities in the region of interest, such that any steady-state point in this region leads to a

unique set of velocity and acceleration vectors. Because injectivity may constitute a serious

restriction in a number of situations, the framework must be adapted to account for this problem.

 In what follows, we will consider the application of this methodology to the study of the

input-output steady-state relationship. In particular, we highlight a simple modification of the

framework that alleviates the injectivity restriction. 

5. Application to the Input-output Relationship

Note that specific output functions can be incorporated into this framework. To see this,

let

denote an output function, where y∈ M. Let the Jacobian matrix ∂h(x)/∂x have rank M in a

(18)

neighbourhood X⊂ N of x0. Assume that the state velocity matrix ∂Ξ/∂u evaluated at u0 has rank
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P everywhere on X∩Ne and is such that the input-output gain matrix

k(x0,u0)=[(∂h(x)/∂x)(∂Ξ/∂u)]x0,u0
 has constant rank P on X∩Ne; then the steady-state input-output

map U h(X∩Ne) is locally injective. Under these assumptions, we can view the local steady-state

input-output relationship as a smooth injective map from an open neighbourhood of u0 in the

input space to an open neighbourhood of h(Ξ(u0)) in the output space. This ensures that the

variation of the input leads to a unique measure of nonlinearity on a given neighbourhood of x0..

As a result, the framework can be directly applied by considering only the dependence of the

inputs on the outputs.

If k(x0,u) does not have constant rank as u is varied in a neighbourhood of x0, application

of the methodology in neighbourhoods of the singular points yields infinite curvature measures.

In order to account for this problem, we apply the methodology to the process steady-state graph

rather than the steady-state locus in the output space. 

The process graph in a neighbourhood U of a point p∈ P is viewed as a map

Γp:U⊂ P→Y×U⊂  M× P of the form

where g(u) denotes the gain matrix in a small neighbourhood of x0. This alleviates difficulties

encountered in rank deficient cases by unfolding the input-output steady-state locus. The

methodology can be applied in a straightforward manner to analyze the local geometry of the

process graph and measure the nonlinearity of the map Γp in a neighbourhood of a steady-state

value u0. We note that this requires scaling in the input and output space simultaneously. 
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6. Assessment of Control-law Nonlinearity

The analysis performed above was primarily concerned with direct assessment of open-

loop nonlinearity by analysis of the process input-state map. However, it is also possible to get

a sense of the extent of control-law nonlinearity from this analysis by considering the following.

For a linear system, the steady-state gain is constant everywhere and the region of interest

described by z z=1 is mapped to an ellipsoidal hypersurface in the input space given by 

which can be written in the φ-space as

(19)

For a nonlinear system, similar regions can be constructed by solving z(u) z(u)=1 for the inputs

φ φ  1.

u. Because of the nonlinearity of the process, this gives rise to distorted ellipsoids in the input

space. The extent of distortion is directly related to the degree of nonlinearity of the inverse map

or, alternatively, to the extent of control-law nonlinearity. We can therefore get an appreciation

of control-law nonlinearity using this approach. 

Equations (11) and (15) can be used to derive an approximation of the model inverse to

predict the change in input required to achieve a given point in the output space belonging to

a neighbourhood of the point of linearization. Such inverses have been derived by Bates and

Watts (1981) and Hamilton et al. (1982) to construct improved parameter inference regions for

nonlinear regression models. Their analysis is similar in construction to the case where M≥P.

If N≥P, then Ξ(U) is an immersion of U to  N. One possibility would be to consider the

inverse function, u=H(τ,ξ), where τ and ξ are the tangential and normal coordinates defined by
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Equations (11) and (15), respectively. If we assume that the normal component displays

negligible nonlinearity, we can let ξ=0 and consider the map u=H(τ). The first order derivatives

of u with respect to τ are given by

where Q1
t and R1 are the tangential components from the QR decomposition of the matrix ∂z/∂u,

(20)

and the superscript + denotes the generalized matrix inverse. Assuming that the matrix Q1
t does

not vary as z is varied (which is true locally), the second order derivatives are given by

where Ar
t and Cr

t are the tangential components of the acceleration array and the relative

(21)

acceleration array, respectively, for the steady-state input-state map. The problem with this

approach is that the assumption that Q1
t does not vary as z is varied may often be a very poor

one. As a result, the inverse calculated from Equations (20) and (21) may be unreliable. Only

approximate second-order information about the inverse process map can be obtained from the

analysis of the input-state map. Therefore, the extent of control-law nonlinearity cannot be

directly assessed by studying the input-state map only. The process inverse map, Π:Y⊂ M→U⊂ P,

must be analyzed directly. 

To do this, we can repeat the analysis by using derivatives of the inputs with respect to

the state space,or output space, to obtain an assessment of the nonlinearity of the inverse map.

We first define a region of interest in the input space and use the size of this region to define a

scaling matrix to give scaled inputs
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The required derivatives are then given by

for the velocity vectors and

for the acceleration vectors. We can then proceed to perform the QR decomposition of the

velocity and non-redundant acceleration vectors as 

which gives the acceleration array

(22)

and the relative acceleration array

(23)

where Ki=R1i
-1. The subscript i indicates that these values have been calculated from the inverse

(24)

map. The RMS curvatures can then be defined as in Equations (8), (9) and (10). This analysis

gives a direct assessment of control-law nonlinearity but it also yields an appreciation of open-

loop nonlinearity. The nonlinearity of the input-output map creates distortion in regions in the
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output space given by

which are ellipsoidal in the input space. When the extent of nonlinearity is negligible, these

regions can be approximated by 

Compensation of nonlinear effects can also be performed as described in the previous

(25)

section. We can define tangential coordinates as

 and normal coordinates as

(26)

and compute the derivatives of y with respect to τ as

(27)

to obtain an approximate inverse relationship.

(28)

As discussed in the previous section, it is possible to consider the input-output behaviour

of a process. Since the inverse process gain is frequently rank-deficient, we can also consider

the application of the methodology to the inverse process graph. This graph would take the form
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As mentioned above, this would require the simultaneous scaling of the inputs and the outputs.

7. Effect of Scaling

An important feature of the methodology presented here is the definition of a region of

interest in the output space or in the input space. When considering the nonlinearity of the

steady-state locus, we defined a scaling matrix which was used to develop a scale-independent

measure of nonlinearity. The main effect of pre-multiplying coordinates by this matrix is the

imposition of an orientation which may or may not be inherent to the process. As a result, the

nonlinear effects may be enhanced or diminished for directions in the input or output space which

do not reflect the actual effects of the process. An appropriate choice of scaling matrix is of

great importance in this methodology and should be performed with care to ensure that the true

nonlinearity of the process is accurately assessed. In general, this choice will be determined from

prior investigations which dictate typical variations and orientation. 

It is not necessary, however, to dictate regions of interest in both the input and output

spaces, as the choice of a region of interest for one space will dictate an appropriate region for

the other through the input-output map. For the case where a region in the input space is

specified, the scaling matrix describes an ellipsoidal region in the input space which can be

mapped to the output space, where it becomes distorted and rotated. A linear approximation for

a specified region in the input space is given by

41



or,

Therefore we can take R1i as an appropriate output scaling matrix with which to analyze the

nonlinearity of the input-output map. This simple procedure, termed Input Prescribed Scaling,

ensures that the choice of a region of interest is made with regard to the inherent process

orientation. The term "input prescribed scaling" is used to emphasize the fact the scaling is

performed with respect to the choice of a region of interest in the input space. 

As an illustration, consider the following example due to Newell and Lee (1989). In this

example nonlinearity measures are obtained for both input prescribed and output prescribed

scalings. 

Example 2.3

A diagram of an evaporator system as well as the model equations for the system are

given in Figure 2.6. The model consists of three states, three inputs and five disturbances. The

states are the liquid level in the separator (L2, m), the product composition (X2, mass %) and the

operating pressure (P2, kPa). The inputs are the product flowrate (F2, kg/min), the steam

pressure (P100, kPa) and the cooling water flowrate (F200, kg/min). The disturbances are the

circulating flowrate (F3, kg/min), the feed flowrate (F1, kg/min), the feed composition (X1,

mass%), the feed temperature (T1, °C) and the cooling water temperature (T200, °C). A

summary of evaporator variables along with the values used in the simulation is also given in
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Tables 2.4 and 2.5, respectively.

Evaporator

P100
T100Steam

F100

P2

Condensate F3

Feed

F1, X1, T1

Product
F2, X2, T2

Condensate

F5

Cooling
Water

F200, T200

Condenser

T201

Separator

L2

Vapor F4, T3

Figure 2.6 Process diagram for the evaporator model of Newell and Lee (1989).
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Table 2.4

Description of variables for the evaporator model of Newell and Lee (1989).

Variable Description Values Units

F1 Feed flowrate 10.0 kg/min

F2 Product flowrate 2.0 kg/min

F3 Circulating flowrate 50.0 kg/min

F4 Vapor flowrate 8.0 kg/min

F5 Condensate flowrate 8.0 kg/min

X1 Feed composition 5.0 mass%

X2 Product composition 25.0 mass%

T1 Feed temperature 40.0 °C

T2 Product temperature 84.6 °C

T3 Vapor temperature 80.6 °C

L2 Separator level 1.0 meters

P2 Operating pressure 50.5 kPa

F100 Steam flowrate 9.3 kg/min

T100 Steam temperature 119.9 °C

P100 Steam pressure 194.7 kPa

Q100 Heat duty 339.0 kW

F200 Cooling water flowrate 208.0 kg/min

T200 Cooling water inlet temperature 25.0 °C

T201 Cooling water outlet temperature 46.1 °C

Q200 Condenser duty 307.9 kW
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Table 2.5

List of equations of the Newell and Lee evaporator model (1989).

Process Liquid Mass Balance:

Process Liquid Solute Mass Balance:

Process Vapor Mass Balance:

Process Liquid Energy Balance:

Heater Steam Jacket:

Condenser:
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Prior to assessing steady-state nonlinearity, the liquid level control loop L2-F2, which is

not self-regulatory, was closed using the PI controller settings given by Newell and Lee (1989).

The analysis was then performed on the input-output map of the remaining 2 by 2 system. 

We are interested in evaluating the nonlinearity of this process in a neighbourhood of the

steady-state conditions 

We first consider assessing nonlinearity using output prescribed scaling. The scaling matrix

which describes the region of interest in the output space is given by

From the QR decomposition of the scaled matrix of first order and second order derivatives, we

obtain

If we use input prescribed scaling with a scaling matrix in the input space given by

we obtain a scaling matrix in the output space given by

Performing the QR decomposition on the scaled derivatives yields
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Since the matrix R1 is diagonal, we see that the relative curvature array obtained using input

prescribed scaling is directly related to the original inputs. This yields an easier interpretation

of the results. The relative curvature array obtained using output prescribed scaling is expressed

in terms of the orthogonal inputs obtained with the matrix R1. It is important to note that a

diagonal matrix is obtained whenever the gain matrix has mutually orthogonal columns. 

For this example, both approaches suggest that the system displays significant open-loop

nonlinearity. From the result obtained using input prescribed scaling, we see that most of the

nonlinear behaviour is attributable to large variations in the process gain associated with F200,

the cooling water flowrate. This is because only the elements of the second face of the relative

curvature array are large. The most prominent element, 0.61383, indicates an increase in the

process gain associated with F200 as P100 is increased. 

Figure 2.7 shows a portion of the steady-state locus for the process along with the regions

of interest obtained with input prescribed scaling and output prescribed scaling. The solid lines

are constant P100 lines. The dashed lines are constant F200 lines. As observed above, most of

the nonlinearity is attributable to the change in the process gain associated with F200.

 The input prescribed scaling region captures the overall orientation of the steady-state

process well and this has a significant effect on the extent of nonlinearity observed. Even though

the prescribed region covers a larger neighbourhood about the point of linearization in the output

space, we observe the same degree of nonlinearity for both choices of scaling region. Output
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prescribed scaling does not take into account the orientation of the process. As a result, nonlinear

effects and interaction effects are confused. 
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Figure 2.7 Steady-state locus for the evaporator model of Newell and Lee (1989). Solid lines
show the effect of variation of F200. Dashed lines give the effect of the variation of P100.
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8. Nonlinearity and Performance

In this section we consider the single-input bioreactor introduced in Example 2.1 to study

the effect of nonlinearity on controller performance. More precisely, we demonstrate the

applicability of the nonlinearity measures in controller design. 

The problem considered here is to control the substrate concentration, x2, by manipulating

the dilution rate, u1, for a constant inlet substrate concentration, S0=0.3. Substrate is a suitable

choice of control variable in this case because of its relative ease of measurement. This allows

small measurement times and quick control action. The process is to be operated under the

following constraints

For this range of substrate levels, the RMS steady-state curvature experienced in x2 at 0.18107

is 0.26. This can be calculated from the velocity and acceleration vectors given in Example 2.1.

Three controllers are considered: a nonlinear input-output linearizing controller with

proportional action only, a linear state-feedback controller with proportional-integral action and

a proportional-integral controller on the substrate. The linear state-feedback controller was

obtained by linearizing the model equations at the nominal operating point. Optimal ITAE

tunings were obtained for the three controllers for substrate set-point values of 0.15871 and

0.20343. ITAE was chosen in order to penalize sustained deviation from the set-points.

Optimal tuning parameters and optimal ITAE values for the three controllers are shown

in Table 2.6. The impact of nonlinearity on controller performance is assessed by examining the

increase in ITAE as set-point changes of larger magnitudes are made. Differences in the rate of
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increase between nonlinear and linear controllers are a reflection of the nonlinearity of the process

in a neighbourhood of the nominal operating point. Investigations of these trends enables one

to attach an interpretation to the nonlinearity measures. Furthermore, for a truly linear process

without mismatch, ITAE increases linearly as the size of the set-point change increases. This can

be seen by considering the transfer function relating error to set-point. Thus, the impact of

nonlinearity can be seen by examining both the relative trends of the controllers and the degree

of nonlinearity in the ITAE trends. 

Table 2.6

Optimal ITAE tunings for a nonlinear input-output linearizing controller, 

a linear state-feedback controller, a PI controller and a nonlinear gain PI controller 

and optimal ITAE

Nonlinear 

Controller

Linear

Controller

PI Controller Nonlinear Gain

PI Controller

Kc -0.047867 -0.047866 -0.40250 -0.62132

τI ----------- e3.4999 e3.1080 3.1019

Cc ----------- ----------- ----------- -19.660

ITAE 19.517 67.262 68.504 41.908

 

Figure 2.8 compares the performance of the controllers at various fractions of the range

of substrate set-points. First, note that the presence of normal curvature requires the use of

integral action in the linear controller laws to compensate for mismatch arising from the
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nonlinearity. The trends of Figure 2.8 confirm the presence of moderate nonlinearity. The ITAE

Figure 2.8 Optimal ITAE performance for a nonlinear input-output linearizing controller, a linear
state-feedback controller and a PID controller for substrate. 

of the linear controllers increases at a faster rate than that of the nonlinear controller for

increasing changes in set-point. The nonlinear control-law provides a better representation of the
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nonlinear process behaviour and can provide a compensation which moves the process to a new

set-point faster. This is particularly true when the operation shifts significantly away from the

nominal operating point, which is the point of linearization. Note that the ITAE profile for the

input-output linearizing controller is exactly linear, confirming the linearity of the input-output

relationship imposed by the controller. The ITAE profile for the linear controllers both exhibit

some nonlinearity, although the nonlinearity is not large. This confirms the moderate nonlinearity

implied by the measures. Figure 2.9 gives the resulting responses for the three controllers for set-

point changes in substrate from 0.18107 to 0.15871 and 0.20343. The time responses for the

biomass concentration (x1), substrate concentration (x2) and dilution rate (u1) are shown. On the

left, a set-point decrease in substrate from 0.18107 to 0.15871 is shown and, on the right, a set-

point increase from 0.18107 to 0.20343. 

The nonlinear controller yields a more favourable performance. In contrast to the response

of the linear controllers, there is no oscillatory behaviour. This is due to the absence of integral

action in the nonlinear controller. Although there is a noticeable difference between linear and

nonlinear controller performance in the trends of Figure 2.8, both linear controllers yield a

relatively good performance which reflects the fact that the curvature is relatively low in this

case.
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Figure 2.9 Time response for the optimal ITAE tunings of a nonlinear input-output linearizing
controller (solid line), a linear state-feedback (dashed line) and a PI controller (dotted line).

We can also design a controller based on the inversion of an expression of Equation (12).

A local estimate of the inverse of this expression is given by

A SISO PI controller design based on this expression would be of the form

(29)
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where Kc and τI are the usual controller gain and integral time constant and Cc is the controller

curvature. The resulting controller is termed a nonlinear gain PI controller. Using the same

tuning procedure as described above, optimal ITAE tuning parameters were calculated for this

controller. The values are listed in Table 2.6. The nonlinear gain controller performs better than

the two linear controllers but not as well as the nonlinear I-O linearizing controller. If we

consider the resulting controller gain and controller curvature and calculate the resulting controller

RMS curvature for the region u1=0.01±0.005, we obtain a value of 0.26. For this case, the

resulting nonlinear gain controller reflects the local nonlinearity observed for the process.

    

9. Conclusions 

A framework for the assessment of steady-state process nonlinearity has been developed.

It involves evaluating the tangential and normal components of second order information within

a prescribed region of interest. The magnitudes of second order derivatives are used to develop

a measure of the deviation from linearity of a process in a prescribed region. The tangential

component of the second order derivatives is related to variations in the magnitude of the process

gain. The normal component is related to variations in the direction of the process gain. The

main advantage of this framework is that it allows a generic treatment of nonlinear systems.

Although only two-dimensional examples have been presented, the framework is readily extended

to higher dimensional systems. Since this analysis deals with steady-state nonlinearity, it can be

performed for given input-state or input-output relationships. 
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Two aspects of nonlinearity have been identified: control-law and open-loop nonlinearity.

Open-loop nonlinearity is related to the ability to predict the output of a process given the inputs.

It is closely related to the concept of the left inverse of a control system (Hirschorn, 1979).

Control-law nonlinearity measures the ability to predict the inputs required to achieve a given

output, a notion which is related to the concept of the right inverse of a process. 

To assess these aspects of nonlinearity, it has been shown that either the input-output map

or its inverse may be considered. However, the extent of open-loop nonlinearity is more directly

measured through analysis of the input-output map. The inverse map provides a better

assessment of control-law nonlinearity.

The importance of scaling has been highlighted, since the extent of nonlinearity is

measured with respect to some prescribed region. The choice of this region, and consequently

the choice of scaling, is crucial to successful application of this method. A simple scaling

procedure has been proposed which takes into account the inherent orientation of the process.

In this Chapter, a framework was established for the analysis of nonlinearity of steady-

state process behaviour. In the following chapters, the framework is applied to the assessment

of closed-loop nonlinearity and to dynamic nonlinearity.
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Nomenclature

aijk partial derivatives with respect to uj and uk of the ith coordinate of the rotated state

space

A N by P(P+1)/2 matrix of nonredundant acceleration vectors in orthonormal 

frame

N by N Jacobian matrix with respect to the states of a nonlinear system at a

particular point

A Area of a (P-1) dimensional sphere described by P dimensional unit-norm

vectors

b Real number

B N by P Jacobian matrix with respect to the inputs of a nonlinear system at a

particular point

c Root mean squared curvature measure

C N by P(P+1)/2 matrix of nonredundant relative acceleration vectors

Cc Controller derivative action tuning parameter

D N by P matrix 

e Arbitrary direction in the input space

f Vector field describing dynamics on the state space

f11 Real number

F 1 by N matrix resulting from transforming a linear system to a linear controllable

form

F1 Feed flowrate (kg/min)

56



F2 Product flowrate (kg/min)

F3 Circulating flowrate (kg/min)

F4 Vapor flowrate (kg/min)

F5 Condensate flowrate (kg/min)

F100 Steam flowrate (kg/min)

F200 Cooling water flowrate (kg/min)

G Nonlinear transformation describing normal coordinates on steady-state locus

h State-output map

H Nonlinear vector valued function from input space to output space expressed in

tangential and normal coordinates

kd Specific death rate (min-1)

K Matrix inverse of upper left P by P partition of the matrix R obtained from the QR

decomposition

Kc Controller proportional action tuning parameter

Ki Substrate inhibition constant (L/g)

L2 Separator level (meters)

M Number of output variables

N Number of state variables

Ne Set of stationary points of the vector field f(x,u)

P Number of input variables

P N by N matrix transforming a linear system to a linear controllable form 

P2 Operating pressure (kPa)
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P100 Steam pressure (kPa)

Q Orthogonal matrix obtained from the QR decomposition of a matrix

Q100 Heat duty (kW)

Q200 Condenser duty (kW)

r Real number ∈ [0,1]

r· , r  Velocity and acceleration vectors in the space of inputs

R Upper triangular factor obtained from the QR decomposition of a matrix

S Output scaling matrix

S0 Inlet feed substrate concentration (g/L)

t Time

T Input scaling matrix

T1 Feed temperature (°C)

T2 Product temperature (°C)

T3 Vapor temperature (°C)

T100 Steam temperature (°C)

T200 Cooling water inlet temperature (°C)

T201 Cooling water outlet temperature (°C)

u Vector of input variables

u1 Dilution Rate (min-1)

U Open neighbourhood of a point u0 in the input space

v· , v  Velocity and acceleration vectors in the state (or output) space

V N by P matrix of velocity vectors
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w Vector of scaled input variables

W N by P(P+1)/2 matrix of nonredundant acceleration vectors

x Vector of state variables

x1 Biomass Concentration (g/L)

x2 Substrate Concentration (g/L)

x· Vector of time derivatives of state variables

X Open neighbourhood of a point x0 in the state space 

X1 Feed composition (mass%)

X2 Product composition (mass%)

y Vector of output variables

z Vector of scaled state or output variables

z Vector of states for a linear controllable form

Greek letters

Γp Process graph

Γp
I Inverse process graph

δ Small positive real number

ε Small positive real number

θ Arbitrary direction in the space of orthogonal inputs

µmax Maximum specific growth rate (min-1)

ξ, ξi Vector of normal coordinates from the input-state (or input-output) map and its

inverse, respectively

Ξ Nonlinear map from an open neighbourhood in the input space to an open
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neighbourhood in the state (or output) space 

Π Nonlinear map from an open neighbourhood in the state (or output) space to an 

open neighbourhood in the input space

τ, τi Vector of tangential coordinates from the input-state (or input-output) map and its

inverse, respectively

τI Controller integral action tuning parameter

φ Vector of orthogonal inputs

Subscripts

0 Specifies steady-state conditions

1, 1i Specifies the component of the Q matrix from the QR decomposition which

spans the tangential and normal space of the steady-state locus from the

input-state (or input-output) map and its inverse, respectively

1,1i Specifies the upper left P by P component of the R matrix from the QR

decomposition for the analysis of the input-state (or input-output) map and

its inverse, respectively

2 Specifies the component of the matrix Q which gives the orthogonal complement

of Q1

•2 Specifies the second column of the tangential component of the Q matrix from the

QR decomposition

i Specifies that the quantity (i.e., τ, ξ, K) is evaluated for the inverse relationship

r, ir Specifies the rearrangement of an n by m(m+1)/2 matrix to its corresponding n

by m by m three-dimensional array for the analysis of the input-state (or
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input-output) map and its inverse, respectively

Superscripts

 Transpose of a matrix or vector

+ Generalized inverse of a matrix

n Specifies the normal component of the quantity (i.e., A, Q1, C)

t Specifies the tangential component of the quantity (i.e., A, Q1, C)

N,M,P Indicates the dimension of the space

Overstrikes

˜ Indicates that the quantity has been scaled

., .. Indicates first and second order differentiation of the quantity
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Chapter 3

On a Measure of Closed-Loop Nonlinearity 
and Interaction for Nonlinear Chemical Processes

1. Introduction

The performance of closed-loop multivariable processes can be highly influenced by

interactions between individual control loops. For many applications involving linear dynamics,

the relative gain array (RGA) (Bristol, 1966) provides an effective tool for the evaluation of

potential control loop pairings for multi-loop controller design. Quantitative measures of

interaction such as the RGA have been used successfully in the control of linear chemical

processes and continue to be of considerable importance, especially with respect to the study of

robust stability (Grosdidier and Morari, 1987; Skogestad and Morari, 1987; Morari and Campo,

1994) and performance of ill-conditioned plants (Nett and Manousiouthakis, 1987; Skogestad and

Morari, 1987; Skogestad et al., 1988). 

Since the RGA is basically a first order measure of interaction, its interpretation for

nonlinear processes relies heavily on the direction of the input (or output) perturbations used to

estimate gains (Koung and MacGregor, 1991). Problems can be encountered in the study of gain-

asymmetric processes where interpretation of the RGA may often yield misleading results.

Interaction measures which take the gain nonlinearity of the process into account can prove

beneficial in overcoming these problems in a number of cases. 

Very few measures of interactions for nonlinear processes have been proposed. Daoutidis

and Kravaris (1992) used a differential geometric approach to develop a methodology for the

evaluation of control configurations in nonlinear control-affine processes. With this approach
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various control configurations are evaluated in terms of their corresponding relative order. Input-

output pairings are selected by virtue of the most immediately related (or less sluggish) pairs.

Assuming the availability of a detailed state space description of the process, this control pairing

selection methodology constitutes a very useful strategy for providing insight into the structure

of nonlinear systems. However, no information is provided regarding the magnitudes of output

changes in response to input changes. 

Manousiouthakis and Nikolaou (1989) developed a nonlinear block relative gain array

measure using an operator-based approach which elegantly demonstrated the need to consider

nonlinear effects in the assessment of interaction in nonlinear plants. This approach, although

very general and appealing, can constitute a considerable challenge when applied to complex

plants. Other approaches to this problem include that of Mijares et al. (1985) who developed a

methodology for assessing nonlinear interaction from evaluation of first order gains. 

Piette et al. (1995) have presented a graphical interpretation of the relative gain array in

terms of intersections of constant output contours and the degree of rotation of constant output

norm contours. A graphical assessment for nonlinear problems is also proposed which consists

of relative gain surfaces and constant output norm contours. Nonlinear effects are identified by

deformations in the contours, and by changes in the relative gains over the operating region. This

latter approach is consistent with the approaches identified above in which changes in linear

approximations are used to identify nonlinearity and nonlinear interactions. The main drawback

of graphical methods is their inherent subjectivity and the dependence on the particular graphical

representation employed. 

The purpose of this chapter is to present an alternative geometric interpretation of the
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RGA which extends directly to the treatment of higher (in particular, second) order interactions

in nonlinear processes. Furthermore, the problem of interaction is identified fundamentally as the

result of input and output coordinate choices. Standard linear techniques such as the relative gain

array identify interactions in coordinate choices arising at the first order level. The approach

presented is based on the framework proposed in Chapter 2 for the assessment of process

nonlinearity of steady-state nonlinear processes. This framework leads to scale-independent

measures for the average deviation of the actual behaviour of a nonlinear process from its linear

approximation in a neighbourhood of a steady-state, and highlights two perspectives of process

nonlinearity: Open-Loop nonlinearity and Control-Law nonlinearity. Open-loop nonlinearity is

related to the ability to predict process states and outputs given values of the manipulated

variables. It reflects the inherent process nonlinearity. Control-law nonlinearity is the ability to

determine the inputs from a particular output or state vector. In the development presented in the

current Chapter, methods are proposed for assessing nonlinearity within and between input-output

channels. This leads to the definition of a measure of higher order interaction, and also leads to

the concept of closed-loop nonlinearity. 

For a nonlinear closed-loop process operating at steady-state without offset, it follows that

the extent of open-loop nonlinearity, that is, nonlinearity due to input variation, is exactly

counterbalanced by the control-law nonlinearity. From a differential geometric perspective, this

is because either the inputs or the outputs can be used to parametrize the same space at steady-

state. By viewing the inputs and outputs as two coordinate systems on a differentiable manifold,

we can establish, through differential geometry, a number of interesting identities which provide

local measures of interaction. A direct consequence of this construction is the recognition of a
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certain arbitrariness in the choice of coordinates. We do not distinguish, a priori, between input

and output variables. Interchangeability of input and output coordinates has been widely

discussed by system theorists, particularly with respect to the development of behavioral

approaches in the study of dynamical systems (Willems, 1991) and closely related differential

algebraic methods (Fliess et al., 1994). In this approach, it becomes more natural to let the

underlying structure of the system dictate appropriate choices for the inputs and outputs. 

The advantages of interchangeability of coordinate systems is demonstrated here in the

development of interaction measures for nonlinear steady-state processes. It is shown that this

approach provides a natural rigorous framework for studying interaction effects for both linear

and nonlinear systems which provides a fundamental basis for the development of measures of

closed-loop nonlinearity and new measures of nonlinear interaction. The result is a set of

nonlinear interaction tables that provide easy interpretation of the contribution of nonlinear effects

to interaction effects. A CSTR model is used to demonstrate the application of the method.

The format of this Chapter is as follows. In Section 2 the differential geometric basis for

this analytical procedure is presented and a number of identities are derived. The application of

these identities to the assessment of closed-loop nonlinearity for nonlinear processes is presented

in Section 3. In Section 4 a simple chemical reactor example is used to illustrate the application

of the measures of nonlinearity. It is shown, in Section 5, how the identities can be used to

assess the extent of nonlinearity of closed-loop processes. Nonlinear interaction measures are

presented in Section 6. This is followed by two chemical process examples in Section 7 and

conclusions in Section 8.
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2. Relationship Between Open-Loop and Control-Law Nonlinearity

In this section, classical differential geometric tools (see Boothby, 1975) are used to

establish a relationship between open-loop and control-law nonlinearity. Some details pertaining

to differential geometrical approaches for process control are provided in Kravaris and Kantor

(1991). As will be demonstrated, the resulting relationship yields a nonlinear analogue of the

relative gain array (RGA) (Bristol, 1966), an empirical measure of interaction in square linear

multi-input multi-output systems.

Formally, the dynamic input-output relationship for a nonlinear process can be described

by an implicit relationship of the form

which, at steady-state, gives a relationship of the form

(1)

The state variables, x, evolve on an N-dimensional manifold. The outputs, y, and the inputs, u,

(2)

are P-dimensional vectors. The subscript 0 denotes initial conditions which specify an initial

position in the state space.

Assuming that the state space behaviour of a nonlinear system described by 

is such that the Jacobian matrix (∂f(x,u)/∂x) evaluated at (x0, u0) is stable and invertible and the

sensitivity matrix (∂f(x,u)/∂x) has rank P in a neighbourhood of x0, then equation (2) describes

a P-dimensional submanifold of  P× P, called the steady-state process graph of the input-output

relationship in the following way. For a given x0 it is assumed that the steady-state input-output
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relationship, can be described by an expression of the form

where y∈Y⊂  P and u∈U⊂  P and Gp is the process steady-state map in the output coordinates.

(3)

The graph (e.g. Georgiou, 1993) of a steady-state process can be written as a map

or, alternatively, as a map

(4)

where the superscript I is used to denote the inverse steady-state process graph.

(5)

Equation (3) defines a P-dimensional manifold, M, modeled on  P. It follows from

Equations (3), (4) and (5) that M can be locally expressed in either u or y coordinates. By

definition, this implies the existence, for every point p of M, of an open neighbourhood

diffeomorphic to some open set of  P such that M is completely covered by the union of such

open neighbourhoods. Let u1, ..., uP and y1, ..., yP represent local coordinate representations in

open neighbourhoods U and Y, respectively, of a point p of M. Let W=U∩Y≠  be an open set

in M. By the definition of coordinate neighbourhoods for differentiable manifolds, it follows that

there exists a diffeomorphism between the input and output coordinates for every point p of W.

This diffeomorphism represents the usual process steady-state map in the u and y coordinates.

This is shown schematically in Figure 3.1. 
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For every point p∈W, let ∂/∂ui, 1≤i≤P, and ∂/∂yj, 1≤j≤P, represent local bases of TpM, the

W
M

Gp

Gp
-1

U Y

Figure 3.1 Inputs and outputs as coordinate systems on a differentiable manifold.

tangent space to M at p expressed in the ui and yj coordinates, respectively. The exchange of

bases on TM at p, expressed in Einstein summation notation, is given by

in the y coordinates, and by

(6)
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in the u coordinates. Note that the Einstein summation notation is used to express summations

(7)

in the following wayBy this construction, variations in one coordinate system are immediately

expressed in the other through the action of a diffeomorphism on W. Thus, if one considers a

tangent vector in one coordinate system, it is possible to express it in terms of the other

coordinate system. Clearly, for consistency, the tangent vector must be recoverable by the inverse

mapping to the original coordinate system. To illustrate this, substitute Equation (7) into

Equation (6). This gives

which yields the identities

The usual RGA formula appears within this expression 

(8)

The RGA identities of Equation (8) simply reflect the fact that the sum of the RGA elements

(9)

from the same column is equal to 1. In this setting, the relative gain array adopts a very nice and

natural interpretation. The RGA reflects the ability to exchange bases on TM. It gives a measure
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of how individual components are mapped through the process map and its inverse.

Note that Equation (8) can be written in the standard form 

where K is the steady-state gain of the process and ⊗ denotes the Hadamard product of two

matrices (see Morari and Zafiriou, 1989). Letting K-1=∂u/∂y and K=∂y/∂u in (9) automatically

yields the standard definition of the RGA.

Summarizing, the RGA condition has been obtained by changing coordinates and then

mapping back to the original coordinate system. Consistency of coordinates imposes the RGA

condition. This approach forms a basis for deriving additional conditions.

In order to handle nonlinear situations, higher order effects must be considered. First

define a metric in either the y coordinates

or the u coordinates

The metric is a quantity which allows one to define and measure the distance between two points

on an abstract manifold. It follows that the metric associated with one system of coordinates can

be related to the other coordinate metric by considering

and

70



from the exchange of bases. The consistency requirement is imposed by substituting again,

yielding

This gives a second type of RGA identity of the form

for b≥a. The identities

can be written in terms of the elements of the RGA matrix, Λ, as

Having endowed M with a metric, it is natural to consider similar identities based on the

coefficients of the metric connection. Recall that the connection coefficients give rise to the

covariant derivative given by ∇AB of a vector field B in the direction of the vector field A. By

definition, the connection coefficients are uniquely determined by the covariant derivatives

expressed in the basis vector fields. In the current situation, they are given by 

in the input coordinates and by
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in the output coordinates. The connection coefficients adopted for a coordinate system reflect the

fact that the coordinate system is a nonlinear coordinate system. Intuitively, the coefficients Γabc

express the effect of the nonlinear dependence of the bth input component on the ath input

component when one moves an infinitesimal distance in the direction of the cth input component

of the coordinate basis.

Connection coefficients in the output coordinates can be obtained from the coefficients

in the input coordinates from the identity

and, similarly,

(10)

The consistency condition is imposed by substituting the expression for Γijk from Equation (10)

(11)

into Equation (11)

where a , b  and c  are additional indices. This yields
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Substituting for gij, 

or, upon simplification, using identities (8),

The following identity is then obtained:

which holds for all 1≤a,b,c≤P. This is a second order "relative gain type" identity for a nonlinear

(12)

process. 

Under the assumption of perfect control (i.e. integral action), the composition of the

process map and its inverse is required to yield the identity map on W. Clearly, this implies that

Equation (12) must also hold on W. Consider the diagram shown in Figure 3.2 in which the

process and controller are considered as the sum of a linear part and a nonlinear part.
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This diagram illustrates the implication of the cancellation implied by Equation (12). As
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Figure 3.2 Schematic illustration of second order identities for a closed-loop nonlinear process.

we see, the controller is decomposed into a linear gain part (Lc) and a nonlinear gain part (Nc).

These components can be represented locally by

respectively. Similarly, the output response is decomposed into a linear gain part (Lp) and a

nonlinear gain part (Np) represented by

respectively.
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From Figure 3.2, it is seen that, in the absence of a nonlinear gain controller (NC=0),

Equation (12) cannot hold unless the process is linear (Np=0). When the process is nonlinear,

The extent of mismatch experienced by the closed-loop system as a result of the nonlinearity of

a process is measured by the first term of Equation (12)

This term is called a mismatch term. It is a measure of the input mismatch experienced by a

nonlinear process controlled by a linear gain controller.

Consequently, the second term of Equation (12) 

can be interpreted as a measure of the extent of controller gain nonlinearity required to

compensate for that mismatch. It is called the mismatch compensation term. 

Note that Equation (12) summarizes the closed-loop nonlinearity of a nonlinear process

expressed in terms of the input coordinates. A similar identity can be obtained in the output

coordinates: 

The first term of this expression is a measure of the output mismatch experienced by a nonlinear

(13)

process controlled by a linear gain controller. The second term gives the extent of nonlinearity

of a controller which removes the output error. 
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Following a differential geometric argument, a more precise interpretation can be

developed for each of these identities. When considering the geometry of a manifold, the

curvature associated with a particular choice of connection indicates the extent of local

nonlinearity of the manifold. A connection is said to possess zero curvature if there exists a local

coordinate representation for which the corresponding connection coefficients vanish. 

To understand the implication of the exchange of bases, suppose that the manifold M

admits a connection with zero curvature and that the output coordinates provide a representation

in which the connection coefficients vanish (Γijk=0), that is a flat coordinate system of M. From

Equation (11), the connection coefficients expressed in the input coordinates are given by

Substitution into Equation (10) gives

which yields, upon substitution of the expression of gab in the output coordinates, the identity
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similar to Equation (13). Satisfying this identity is therefore equivalent to requiring that the

manifold M admit a connection with zero curvature whose coefficients vanish in the output

coordinates. Furthermore, satisfying this identity is independent of the metric employed. 

  Under the assumption that rank{∂y/∂u}=P at every point p of M, it can be seen that the

geometry of M is essentially the geometry of a flat metric space with metric gij. By letting gij=δij

(where δij is the Kronecker delta), M can be identified with a subset of  P along with coordinates

y1, ..., yP.

These simple identities establish the relationship between the nonlinearity of the input-

output map and the nonlinearity of its inverse,that is, between open-loop nonlinearity and control-

law nonlinearity. More importantly, they highlight the interaction between linear and nonlinear

components of a closed-loop process. As a result, they are very useful in the assessment of

nonlinearity of closed-loop nonlinear processes. In the following sections, these identities are

used to study nonlinear interaction effects and closed-loop nonlinearity in nonlinear processes.

3. Nonlinearity of Closed-Loop Processes

In this section, the identities (12) and (13) are used to develop a method to assess the

nonlinearity of closed-loop processes. This measure of nonlinearity is based on the

decompositions of the mismatch term and the compensation term of Equation (12) into their
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individual components. This gives an assessment of the contribution of each individual term to

the overall mismatch and compensation effects and provides information about the nature of the

nonlinear relationship existing between given input-output pairs. 

As above, the mismatch from Equation (12) is denoted by 

where the individual components of the sum are given by

The term γi
a•• is used to denote the P by P matrix associated with the ath input channel and the

ith output channel. These terms can be summarized in a table of the following form
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which is called a "mismatch nonlinearity" table.

For each input channel, ua, the table gives the contribution of each output channel, yj,

1≤j≤P, to the second order effects displayed by the process subject to variations of ua. For each

input-output pair, the P×P submatrix γi
a•• measures the impact of second order effects due to the

inputs. For the input-output pair, ua-yi, the corresponding (a,i)th submatrix of the mismatch table

is a measure of the nonlinearity due to fluctuations of the inputs on this pairing. By construction,
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it is related to the nonlinearity experienced by a nonlinear process subject to a linear gain

controller. Thus for a given input-output pair, ua-yi, each P×P submatrix gives the extent of

mismatch of the ath input channel due to the nonlinear effects of the inputs on the ith output

channel. This is called within channel nonlinearity since it gives the extent of nonlinearity of the

inputs on the input mismatch. This type of nonlinearity can be removed without affecting the

output channels by introducing nonlinear transformations of the inputs. 

If a particular input-output pairing is selected, one must also consider the effect of the

other output channels on that pairing. This can be detected by the presence of nonzero

submatrices in the entries of the mismatch table corresponding to that input and the remaining

output channels. Accordingly, it is called between channel nonlinearity. This type of effect is

related to the existence of a nonlinear relationship between two output channels. It can only be

removed by pairings of the input channels with nonlinear combinations of the output channels.

These nonlinearity effects are scale dependent and so their interpretation is subject to the scaling

of the system variables. The problem of scaling can be handled as described in Chapter 2. Since

the identities expressed in the input coordinates in Equation (12) (or alternatively in the output

coordinates in Equation (13)) are invariant under output (or alternatively input) scaling, we need

only define a region of interest in the input (or alternatively output) space and re-write the

identities (12) (or alternatively (13)) in terms of the scaled coordinates. That is, scaled inputs can

be defined as

where S is a P by P matrix whose elements define the scaling region in the input space. From

Equation (12), it is seen that the scaling of v leads to the scaling of each submatrix by post-
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multiplying by S-1. In what follows, each scaled submatrix is written as γ  i
abc=γi

abcS
-1. To avoid

bias in the measures, each channel is scaled independently by using a diagonal scaling matrix.

A mean squared measure, cai
2, can be associated with each submatrix γ̂ i

a••, where

and A is the area of the unit sphere  v 2=1 in the scaled input space. The resulting value is 

The root mean squared (RMS) measure, cia, is then used as a measure of significance of the

nonlinear effects. A RMS measure of 0.3 is usually considered to be significant as it leads to a

15% deviation from linearity for every unit step in the scaled input. 

When a nonlinear process is controlled using a linear controller, the nonlinearity measures

and the table obtained using the procedures described above provide a precise description of the

nature of the nonlinear effects in the closed-loop process. If a nonlinear controller is used, it

should be designed so that the identities (12) and (13) are satisfied and nonlinear effects are

removed. Information about the overall extent of closed-loop nonlinearity can be obtained from

the table given above; however, it does not yield information about the local nature of the

nonlinear transformations required to remove the between channel nonlinear effects. To provide

this information, the above table can be complemented by a second table obtained from mismatch

and compensation terms in the identities (12) and (13).

Consider the compensation terms of Equation (12), denoted by
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The measure of the nonlinearity arising from the control action ua required to compensate for

output changes in yi and yj can be locally represented by the individual components of δabc, given

by

In analogy with the table given above, these components are arranged in a table of the following

form which is called a compensation table:

This table describes in detail the nature of the nonlinear dependencies between the inputs

and the various output channels. Interpretation of this table is closely related to that of the
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corresponding table for the mismatch terms, γi
abc. It is clear that, by construction, addition of

each submatrix δij
abc of the compensation table with the corresponding entry in the table for the

mismatch terms γi
abc for the ath input channel yields a null matrix. Note, however, that only non-

redundant terms have been included. As a result, submatrices corresponding to the off-diagonal

terms of the form yi, yj (i≠j) must be counted twice for the identity (12) to hold. 

In considering a given pairing, ua-yi, the presence of within channel nonlinear effects can

be removed by using a nonlinear input transformation, va=φ(u), which locally eliminates within

channel nonlinearity. The corresponding terms of the matrix γa••
i given by

vanish locally where

The corresponding compensation terms are given by

Since this construction implies that the pairing of the new inputs va with yi yields a locally linear

response, 
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for all b and c. This suggests that the resulting table, re-expressed in terms of va, contains a null

submatrix in the (yi, yi) entry. The remaining non-zero submatrices corresponding to the ua input

channel indicate the nature of the between channel nonlinearity effects. The extent of between

channel effects implied by any given pairing, ua-yi, is explicitly indicated by the presence of a

nonzero submatrix among the (yk, y ) entries in the compensation table where 1≤k, ≤P with  ≠i.

This second table can be seen to complement the mismatch table by indicating, through the

existence of nonzero submatrices, the relationship between a particular input and higher order

output terms such as yk
2 and yky .

  In the next section, a simple CSTR model is used to illustrate the application of the

second order identities in the evaluation of local nonlinear effects in a nonlinear process.

4. An Example

Consider the following model of a CSTR due to Nikolaou (1993),

with output functions, y1=x1 and y2=x2. At steady-state

The values of the first and second order inverse gain matrices can be isolated by differentiating
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each expression with respect to y1 and y2: 

Differentiating with respect to u1 and u2 and solving for the required derivatives gives

For the steady-state conditions, y={0.61803399, 0.03085002}T, u={0,0}T, with Da1=1 and Da2=2,

and
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This gives

and

(14)

Each term in (14) is obtained by adding over all output channels. The contribution of each output

(15)

channel can be obtained by isolating the corresponding term of the sum which gives, for example,

 

and so forth. Tabulating these values as described above, 

The latter table demonstrates that the nonlinear behaviour of the process causes both

86



between and within channel nonlinear effects. The between channel effect arises from the

nonlinear effect of y1 on the u2-y2 pairing. The related submatrix contains a non-zero off-diagonal

term, 0.2211. The nature of this submatrix with one nonzero entry in the (1,1) position indicates

only dependence on y1 as confirmed from the steady-state relationships. This type of interaction

can only be removed by pairing u2 with a nonlinear function of y1 and y2. The null upper right

submatrix indicates that there is no nonlinear effect of y2 on the u1-y2 pairing. This is clearly

supported by the steady-state expressions for u1 and u2 given above. Furthermore, the null sub-

matrix also suggests that the linear RGA resulting from input variations in a neighbourhood of

the steady-state point will remain an identity matrix. The u2 steady-state response depends

nonlinearly on y1 and y2, while u1 depends only on y1. 

Using the following input scaling, 

the resulting second order scaled interaction table is given by

This table can be expressed in terms of RMS measures as
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For this example, there is no significant between channel nonlinearity effect. The small off-

diagonal term 0.067728 indicates a weak nonlinear dependency of the u2-y2 pairing on y1. The

larger value 0.85195 shows that there is evidence of strong within channel interaction for the u2-

y2 pairing. This could be removed by considering pairing the y2 channel with a nonlinear

combination of the inputs.

As discussed above, information about the nature of the nonlinearity is obtained by

analysis of the mismatch compensation terms listed in the following table. Consider first the

unscaled compensation table given by

This table provides considerable information about the structure of a nonlinear controller required

to decouple this system. It can be seen from the u1 channel that a simple quadratic

transformation involving only y1 would provide an appropriate controller. The quadratic nature

of the relationship is deduced from the presence of the nonzero term 0.4 in the submatrix relating

the u1 channel to the term (y1,y1). Since this term is in the upper left corner of this submatrix,

it involves only a second order effect related to u1. This indicates that the second order term of

the steady-state relationship expressing the dependence of u1 on (y1,y1) can be written in terms
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of a second order term involving u1 only. This can only happen when u1 becomes a quadratic

function of y1 at steady-state.

For the interpretation of the u2 channel, the previous table describing the mismatch can

be used. Recall that only the terms in the upper left corner of each submatrix are associated with

the between channel interaction. As a result, all other non-zero entries are related to the within

channel interactions of the u2-y2 pairing, and can be removed by a nonlinear input transformation

v2=φ(u1, u2). From the compensation table, it can be seen that steady-state decoupling can be

achieved locally by considering a nonlinear expression in y1 and y2. There are no terms of the

form y1y2, indicating that the expression form required is 

where β1(y1) is a quadratic function of y1 and β2(y2) is a nonlinear function of y2. This is

supported by the model equations given above. 

From this example, we see that inspection of the interaction table provides a good

description of the nonlinear effects existing in closed-loop nonlinear processes. By using both

the mismatch and compensation interaction tables, a good description of the required pairings is

obtained. Furthermore, by using the tables along with the RMS curvature measures, we can also

provide an accurate description of the steady-state nonlinearity of a process.

In order the assess the importance of these nonlinear effects in the region using the

prescribed scaling matrix, we can obtain the following table of RMS measures:
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This table indicates that there are no significant nonlinear effects due to u1. The u1-y1 pairing

provides an approximately linear steady-state behaviour. Only the y2,y2 term has a significantly

nonlinear effect on the u2 channel. A nonlinear transformation of the form 

would provide an approximately linear steady-state behaviour between u2 and z2. 

This example illustrates the application of the method presented and the usefulness of the

second order identities derived in Section 2. As has been seen, considerable information about

the extent and the nature of the nonlinear steady-state behaviour of a closed-loop process can be

obtained. 

This analysis provides an effective tool for the assessment of nonlinearity in control

problems and the extent of nonlinearity that must be addressed by a controller. The necessary

second order information about the process can be obtained from a mechanistic process model,

numerical simulation experiments in the case of a complex process model (e.g., using a design

simulator) or from plant data. A number of possible strategies exist for the assessment of second

order properties in steady-state processes. For this purpose, we can consider simple empirical

model building approaches, such as response surface methodology, or approximation methods,

such as the secant approximation method (Goldberg et al. (1983)). 

The next two sections discuss the application of Equation (12) for assessment of second

order interaction effects.
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5. Measurement of Closed-Loop Nonlinearity

In this section, the identities derived in Section 2 are used to measure the extent of the

nonlinearity of a process operating under closed-loop.

In the analysis of a nonlinear steady-state process, Equations (4) and (5) can be used to

describe the local geometry of the steady-state locus. Clearly, if a process operating under

closed-loop has no offset over a given set of output set-point values then we can re-write equation

(5) as

where r is a reference output signal, or more specifically in this case, an output set-point. 

(16)

The process dependence on reference signals, as given in equation (16), assumes the

existence of a controller which gives zero off-set. For the general case, we assume that both the

inputs and the outputs of the closed-loop process are parametrized by the reference signal. That

is, we assume that the input-output behaviour of the closed-loop process yields a P-dimensional

submanifold of  P× P, parametrized by r, given by

where Gc
C and Gp

C are the nonlinear closed-loop relationships between the inputs and the outputs,

(17)

respectively and the reference signal r and where the superscript C indicates closed-loop process.

We now consider the application of the identities obtained in Section 2. First, we derive

expressions for the first and second order derivatives of the inputs and the outputs with respect

to the reference signal in the closed-loop process. Figure 3.3 shows a standard flow diagram of
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a closed-loop process subjected to set-point changes.

For a linear steady-state process, the closed-loop expressions are given by

Figure 3.3 Standard flow diagram of a closed-loop process under set-point changes.

where P and C are P by P matrices corresponding to the process and the controller. For a

(18)

nonlinear steady-state process, we consider a nonlinear process map and a nonlinear controller

map given by

Assume that Gp and Gc are twice differentiable. Second order approximations of Gp and Gc

around a stationary point (y0, u0) are given by

and
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As a result, we obtain a second order approximation of the process given by

 where

and 

Substituting for P(u) and C(y) in (18), we can obtain expression for the first and second order

derivatives of y and u with respect to r. In what follows, we derive the expressions for the case

where C(y) is linear.

For the standard closed-loop diagram, the closed-loop input response is given by solving

the implicit nonlinear equation

Similarly, the closed-loop output response is given by solving

(19)
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Differentiating (19) with respect r gives, at u0 and r0=0, the following expressions for the first

(20)

and second order derivatives of u with respect to r

Similarly, the corresponding derivatives of the outputs with respect to r at u=u0 and r0=0 are

(21)

given by

Equations (21) and (22) are of particular importance in the measurement of local closed-loop

(22)

nonlinearity for a nonlinear process regulated by a linear controller. They are also closely related

to the identities developed in Section 2. In particular, it is readily verified that the right hand side

of the expression for the second order derivatives of the outputs with respect to the reference

signal in equation (22) is precisely a reformulation of equation (13) of Section 1. To see this,

write Equation (13) in terms of r and u by letting
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and substituting Equation (21). We immediately see that, for a nonlinear closed-loop process

with no offset, the second order derivatives of y with respect to r vanish locally. As a result,

equation (21) describes the local geometry of the process steady-state locus. It is the control-law

nonlinearity of the process as described above. 

The following example illustrates this procedure. 

Example 3.2

Consider the following model of a chemostat bioreactor:

where x1 and x2 are the scaled biomass and substrate concentrations and u1, the input, is the

dilution rate. The model parameters, µmax, S0, kd and Ki, are the specific growth rate, scaled inlet

substrate concentration, death rate and substrate inhibition constant, respectively. These

parameters are assigned the values µmax=0.5 min-1, S0=0.3 g/l, kd=0.05 min-1 and Ki=10 l/g.

The closed-loop steady-state behaviour observed in the control of the substrate

concentration by manipulation of the dilution rate is analyzed in the neighbourhood of the steady-

state conditions x0=[0.019821,0.18107], u10=0.01. To illustrate the implications of equations (21)

and (22) in the assessment of closed-loop process nonlinearity, we consider the closed-loop

response of the process under the action of a feedback controller of the form
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where Kc=0.1 l g-1 min-1. Figure 3.4 shows the resulting closed-loop response of the process

along with the actual steady-state locus. As should be expected from this simple proportional

controller, the closed-loop process displays a considerable offset at steady-state. Using Equations

(21) and (22), we proceed to calculate the contribution of the nonlinear effects to this offset. 

At x2=0.18107, u1=0.01 we find that

Substitution into equations (21) and (22) gives

The linear approximation of the closed-loop response resulting from these values of the first order

derivatives of x2 and u1 with respect to r is shown on Figure 3.4. As indicated by the first and

second order derivatives of x2 with respect to r, the closed-loop process deviates from the

intended behaviour. We can also calculate the RMS curvature associated with the nonlinearity

of the relationship between x2 and r. For the region of interest given by x2=0.18107±(5.0×10-4),

we obtain an RMS curvature of 0.15. The dependency of x2 on r is therefore not significantly

nonlinear in this region. For the linear controller considered, the closed-loop process behaves in

a linear manner in the range of set-point values considered. 

Since we are only considering steady-state, or gain, nonlinearity we only consider the

implication of nonlinearity in cases where purely proportional linear controllers are used. In order
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to consider the implications of implementing other linear controllers such as proportional-integral

controllers on nonlinear processes, we need to consider dynamic effects. 
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Figure 3.4 Steady-state behaviour of a closed-loop process. The steady-state locus is
parametrized by the setpoint signal, r.

6. Nonlinearity and Interaction

As demonstrated in Section 2, Equations (12) and (13) are closely related to second order

interaction effects. Equation (12) defines explicitly the inherent restrictions of input rotation

97



experienced in a closed-loop nonlinear process. It describes the trade-off that must exist between

process nonlinearity and controller nonlinearity, or between the mismatch and the compensation

terms in Equation (12). The mismatch term measures the extent of input rotation due to process

nonlinearity and the compensation term gives the corresponding rotation that must be supplied

by the controller in order to achieve perfect control. Similarly, Equation (13) defines restrictions

in output rotation. 

Consider the application of Equations (12) and (13) to the measurement of interaction

effects in a nonlinear process. From Equation (12), for a given input channel ua, the following

identity is obtained

 Note that this identity can also be derived by differentiation of the equation

with respect to uc. However, the derivation using the exchange of basis requirements for

connection coefficients identifies the coordinate representation issue which is the fundamental

basis for interaction. 

The second order expression can also be decomposed into i individual terms

The term, γi
ac, measures the effect of uc on the ua-yi pairing and its magnitude gives an estimate
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of the contribution of second order effects to closed-loop interaction effects. These terms can

summarized in a table of the following form

where the terms γa
i are P dimensional vectors whose elements are γac

i. By construction, this

table is symmetric. Furthermore, to satisfy Equations (12) and (13), the sum of all elements in

each row must be a null vector. The sum of the elements of each column must also be a null

vector. For a given direction in the input space, this table identifies the contribution of the

nonlinearity to the interaction effects.

Using equation (13), the effect of variation of the outputs can also be estimated. As

above, for a particular output channel yi,

which can be easily derived by differentiation of the equation

with respect to yj. Individual elements of Equation (13) are given by
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This term measures the effect of yj on the ua-yi pairing. As above, these terms can be arranged

in a table of the form

This table displays the same properties as the table corresponding to Equation (12). 

Interpretation of these measures of interaction supplements the interpretation of the RGA

calculated from the first order gain of the nonlinear process. Of particular importance are the

magnitudes of the terms γa
i and δi

a contained in the tables given above. Since these terms are

not scale independent, we must consider appropriate scaling of the original variables. This can

be performed as discussed in Section 3. The result is a dimensionless measure of the contribution

of the second order terms to the interaction effects in a nonlinear closed-loop process. Naturally,

large second order effects within a prescribed region of operation indicates highly nonlinear

behaviour and the need for a nonlinear decoupling control strategy. 

The choice of input-output pairings may also be affected by the second order measures.

For a given input-output pair, the corresponding P-dimensional vector entry from the second order
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interaction tables measures the expected variation in interaction due to the second order effects.

They therefore provide a method to quantify the interaction effects in nonlinear processes where

nonlinearity is the dominant source of interactions. The presence of large negative values in the

second order interaction terms associated with an input-output pair indicates large reverse effects

due to the nonlinearity, indicating a poor choice of input-output pairing. 

As mentioned above, the terms associated with Equations (12) and (13) are related to the

extent of input rotation and output rotation, respectively. As a result, significantly large values

of γa
i (or alternatively, δi

a) can be interpreted as an indication of significant variation in input

(or alternatively, output) rotation in a prescribed region of operation. This is closely related to

the effect of process nonlinearity on the input and output rotation components of the singular

value decomposition of the first order gain (Morari and Zafiriou, 1989), as discussed in Koung

and MacGregor (1991).

In the next section, two chemical process examples are used to demonstrate the application

of the tables discussed above in the assessment of nonlinear interaction effects. The first example

is a continuation of the simple CSTR discussed in Section 4. The second example is an

evaporator model described by Newell and Lee (1989). 

Although both examples are based on process models, it should be understood that the

analysis only requires the availability of first and second order gain information in a prescribed

region of operation. The models presented in the next section are therefore only used to evaluate

the gain information. Other empirical model descriptions such as second order Volterra series

(Maner et al., 1994), NARX or NARMAX models (Leontaritis and Billings, 1985) or simple

steady-state models may often provide the necessary information. 
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7. Chemical Process Examples

Example 3.3

Let us consider again the simple CSTR discussed in Section 4. As noted previously, this

process was shown to display significant nonlinearity in the region of operation described by the

scaling matrix

The relative gain array of this process at the conditions considered is given by

The process displays no first order closed-loop interaction; however, examination of the model

equations indicates the presence of one-way interaction from u1 to y2. Recall that transmission

interaction occurs when the action of one controller on an output is influenced by a path which

includes the other controllers. This is the type identified by the linear RGA. 

It is reasonable to ask whether the nonlinear effects contribute to transmission interaction

effects in the closed-loop process. Using the first and second order gain information given in

Section 4, the entries in the interaction tables discussed previously can be evaluated as follows:
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and, similarly, γ21
1=γ22

1=γ21
2=γ22

2=0. The terms corresponding to Equation (13) are
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It can be easily verified that δ21
1=δ21

2=δ22
1=δ22

2=0.

These results indicate that the process nonlinearity does not introduce transmission

interaction effects in the closed-loop system. From the steady-state point of view, the u 1-y1 and

u2-y2 control loops can be treated independently. However, one-way decoupling may be required

to compensate for the action of u1 on y2.

Example 3.4

The approach discussed in Section 5 is used to evaluate the extent of interaction in the

2×2 evaporator model of Newell and Lee (1989). In this process, the outlet product mass, y1 (%),

and operating pressure, y2 (kPa), are controlled using the inlet steam pressure fed to the

evaporator, u1 (kPa), and the cooling water flowrate to an overhead condenser, u2 (kg/min). In

Chapter 2, it was found that this process displays significant nonlinearity at the operating

conditions [y1, y2]
T=[25,50.5]T and [u1,u2]

T=[194.7,208.0]T. The first and second order gains are
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given by

and 

First and second order inverse gains are given by

and

The relative gain array is given by

indicating strong interaction effects. As suggested in Newell and Lee (1989), these results

indicate that there is no clearly advantageous choice of input-output pairings in this case. 
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In order to analyze the second order interaction effects, the first and second order gain

information must be appropriately scaled. For the construction of the interaction table

corresponding to Equation (12), the inputs can be scaled by the scaling matrix

This matrix scales the inputs with respect to the expected range of variation of both channels

during normal operation. The second order interaction table is given by

This indicates that, for the region of operation described by the scaling matrix, the nonlinearity

makes a mild contribution to closed-loop interactions. Furthermore, the positive diagonal

elements in this table demonstrate a positive interaction effect due to nonlinearity in the u1-y1 and

u2-y2 loop pairings. These loop pairings should therefore be adopted in this region of operation

in order to prevent reverse effects due to nonlinearity. Thus this analysis of second order effects

complements linear techniques and improves the ability to assign appropriate input-output pairings

in a nonlinear process. 

Construction of the table from Equation (13) for the output coordinates is now considered.

This requires specification of scaling in the output region. As in Chapter 2, consider the region

described by the scaling matrix
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The corresponding interaction table is given by

Again, it can be seen that the nonlinearity of the process contributes significantly to the

interaction effect. However, in this case the components of each 2-dimensional vector in the

interaction table are of opposite signs, indicating conflicting interaction effects for the closed-loop

process due to the nonlinearity. 

This situation complicates considerably the task of choosing appropriate input-output

pairings. Many strategies can be envisaged. One simple solution is to allocate pairings based

on the sign of the larger element in each vector. This is based on the assumption that, on

average, the dominant components summarize the interaction effects observed. To facilitate the

comparisons, one can normalize each P-dimensional element of the interaction table. 

Applying this simple rule in this example, it is seen that the dominant effect of the

nonlinearity is given by the term 6.3612×10-2. Since this term appears as a positive term on the

diagonal of the interaction table, the u1-y1 and u2-y2 pairings are selected for this process. 

This example highlights the importance of choosing an appropriate scaling region. In this

case, two scaling approaches were considered and it was shown that the interpretation of the

results generally depend on the choice of scaling region. In the first case, a region defined by
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a diagonal matrix was used to evaluate interaction effects in the input coordinates. A direct effect

of nonlinearity on closed-loop interactions was observed, which led to a clear choice of input-

output pairings. The second analysis, based on the choice of a scaling region in the output

coordinates, led to a different appreciation of the extent of nonlinear contributions to the

interaction effects, requiring a more cautious interpretation of the results. The relationship

between scaling and the orientation of a steady-state process has been in discussed in Chapter 2

where an alternative scaling procedure was proposed. 

8. Conclusions

A new approach for assessing closed-loop nonlinearity and interaction in nonlinear

processes has been presented. It is based on a differential geometric interpretation of the relative

gain array that leads to the derivation of second order identities. These identities can be used to

measure the extent and the nature of the nonlinearity of a closed-loop process under linear or

nonlinear control. These identities can also be used in the analysis of higher order interaction

effects.

Two types of nonlinear closed-loop process behaviour have been introduced. Between

channel nonlinearity is associated with the nonlinear dependence of output channels on other

input-output pairings. Within channel nonlinearity is used to identify the interaction effects that

result from the inherent nonlinearity of each output channel. A root mean squared measure of

interaction has been introduced to evaluate the significance of local nonlinearity effects.

Application of the approach has been illustrated using a two input two output CSTR model and

the method has been shown to yield considerable information about the nature of the nonlinear
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behaviour of that process.

An extension of the second order identities to the measurement of nonlinear interaction

effects has also been presented. The method yields a second order interaction table which can

be expressed in either the input or output coordinates to complement and extend the applicability

of the relative gain array to nonlinear processes. Models describing a simple CSTR and an

evaporator process have been used to demonstrate the application of the method. The CSTR

model was shown to display no first or second order transmission interaction effects. Although

this process is shown to display significant nonlinearity, the analysis demonstrates that the RGA

captures very accurately the extent of interaction in the closed-loop process. The evaporator

model displays both first and second order interaction effects. It has been shown that the choice

of input-output pairings may be affected by consideration of the second order effects under

different scaling possibilities.
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Nomenclature

a,b,c  Integer indices of input coordinates

a ,b ,c  Integer indices of input coordinates

A, B  Vector fields

Da1, Da2 Kinetic constants

f  Vector field describing the dynamics of a process on the state space

gab  Metric on a manifold expressed in the input coordinates

gij  Metric on a manifold expressed in the output coordinates

G  Implicit vector valued function of the inputs and the outputs

Gc  Nonlinear process inverse function of the outputs

Gp  Nonlinear process function of the inputs

i,j,k  Integer indices of output coordinates 

K  Steady-state input-output gain of a linear process

M  Differentiable manifold arising from the steady-state input-output behaviour

N  Dimension of the space of state variables 

p  A point of manifold M

P  Number of inputs and outputs

RGA  Relative gain array

   Set of real numbers

S  Input scaling matrix

T  Output scaling matrix

TM  Tangent space of the differentiable manifold M
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TpM  Tangent space at a point p of a differentiable manifold M 

u  Input vector

u(k)  kth time derivative of the input vector

U  Open neighbourhood of a point in  P

v  Scaled input vector

W  Intersection of two open neighbourhoods of a point p of a manifold M 

x  State variables

x0  Initial conditions for the state variables

y  Vector of outputs

y(k)  kth time derivative of the outputs

Y  Open neighbourhood of a point in  P

z  Reparametrization of the outputs

Greek Letters

β1, β2  Nonlinear functions of the outputs

γabc   Mismatch terms summed over all outputs

γ  abc   Scaled mismatch terms summed over all outputs

γabc
i  Mismatch terms corresponding to yi

γa••
i  P by P matrix of mismatch terms corresponding to the ua-yi pairing

γa
i  P dimensional vector element of the second order interaction table expressed in the

input coordinates

ΓP  Process graph

ΓP
I  Inverse process graph
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Γabc  Metric connection coefficients expressed in the input coordinates

Γijk  Metric connection coefficients expressed in the output coordinates

δabc  Mismatch compensation terms summed over all output combinations

δabc
ij  Mismatch compensation term corresponding output combination yi, yj

δa
i  P dimensional vector element of the second order interaction table expressed in the

output coordinates

δij  Kronecker delta

Λ   Relative gain array

φ   Nonlinear vector valued function of the inputs

Φ   Nonlinear vector valued function of the inputs

Symbols

 P  P-dimensional real space 

T  Transpose of a matrix or vector

⊗  Hadamard product

∇AB  Covariant derivative of B in direction of A

<v,w>  Inner product of two vector fields v and w
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Chapter 4

On a Dynamic Measure of Nonlinearity

1. Introduction

One advantage of the framework developed in Chapters 1 and 2 is that it allows the

assessment of the nonlinearity of a steady-state process in a neighbourhood of a point in a

systematic fashion. An important aspect of this framework is the recognition of the importance

of scaling on the quantification of the nonlinearity, and the development of a methodology to

scale the curvature measures obtained to produce generic measures. Although the analysis has

been restricted so far to steady-state processes, it is conceivable that this framework could be

applied to the analysis of dynamic processes. If one considers a dynamic process to be

adequately represented by an operator acting as a mapping between spaces of functions, it is

possible to apply the framework in a comprehensive manner using an operator-based approach.

  The purpose of this Chapter is to extend the steady-state analysis of nonlinearity to the

measurement of dynamic nonlinearity. The methodology is based on an operator description of

nonlinear input-output systems. In particular, the application of the input-output formulations

described by Zames (1966a, b), Willems (1971), Desoer and Vidyasagar (1975) and, more

recently, Georgiou (1993, 1994) to the problem of assessing the extent of dynamic nonlinearity

of a continuous nonlinear input-output system is considered. Using these formulations and some

other tools, it is shown that the steady-state analysis developed earlier in this thesis extends

naturally to the analysis of dynamic processes. Quantification of the nonlinearity of mappings

between infinite dimensional normed (Banach) spaces is involved. 
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The problem of quantifying dynamic nonlinearity of control systems has been an active

area of research in chemical engineering (Stack and Doyle III, 1995; Ogunnaike et al., 1993;

Nikolaou, 1993). Operator-based settings have also been considered by Nikolaou and

Manousiouthakis (1989a, b) for the development of nonlinear measures of interaction and to study

hybrid control approaches in chemical engineering. Nikolaou (1993) has also used this

formulation to develop a methodology for the measurement of dynamic nonlinearity and has

demonstrated its application to a simple two-state nonisothermal CSTR model. The lack of a

generic measure, along with the intensive computational requirements of this method, have made

it difficult to apply more generally.

Nikolaou (1993) has considered the measurement of dynamic nonlinearity for nonlinear

processes using random input sequences of different amplitudes. The approach is based on the

calculation of an alternative operator norm of a nonlinear operator. This norm is defined from

an inner product in the space of operators from bounded input signals to bounded output signals.

Given that a linear approximation of the nonlinear input-output operator exists, the norm of the

best linear approximation for a given class of input perturbations can be compared to the true

operator norm of the system. Since the linear model approximation is likely to change as the

amplitudes of the random sequences are varied, the degree of variation in the parameters of the

linear description can be used as a measure of process nonlinearity. Such variations of linear

model structures have also been successfully employed by Johansen and Foss (1993) to develop

NARMAX (Nonlinear AutoRegressive Moving Average with eXogeneous inputs) models from

a collection of ARMAX models which span different operating regions. 

The approach of Nikolaou (1993) does not propose a measure of nonlinearity, but rather

114



a procedure to assess nonlinearity of a process based on variations of linear approximations for

various input sequences. Although the framework is generally applicable to a number of

situations, its use has been mainly restricted to simulation studies where large numbers of input

sequences can be used to assess the nonlinearity of a system. 

    Recently, Stack and Doyle III (1995) proposed a methodology for the development of

control relevant measures of dynamic nonlinearity. An optimal structure is defined which allows

description of the input-output dynamic relationship subject to the optimization of a quadratic

performance objective. They state that measurement of dynamic nonlinearity subject to the

optimal policy provides control relevant measures of nonlinearity that are more informative than

open-loop measures nonlinearity. Although this approach is sound and may prove to be useful

in a number of applications (including the method proposed in this section), it may be susceptible

to the choice of measure of nonlinearity employed. They have used the coherency spectrum

(Ljung, 1987; Haber, 1985) to assess nonlinearity. Alternative measures, such as the one

proposed in this thesis would also be applicable. 

Measurement of nonlinearity has been of considerable importance in nonlinear systems

identification. A number of measures have been proposed in the literature (see Haber , 1985 for

a complete survey) for testing the presence of nonlinearity in input-output sequences. Such

methods can be useful in developing an empirical process model. However, they do not provide

generic measures that could be used to compare the extent of nonlinearity of alternate systems.

Since they are primarily designed for use in for modelling studies, they do not consider the

impact of the nonlinearity on process control. 

In this study, the nonlinearity of a process in the neighbourhood of a point is measured
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by the contribution of higher order terms of the Taylor series approximation of a nonlinear

operator relative to those of the first order terms rather than deviations from the best linear

approximation for a given input sequence. This yields a pointwise measure of nonlinearity which

is representative of the nonlinearity of the process over a neighbourhood of a point of

linearization. By studying the local behaviour of a nonlinear process relative to the behaviour

of its linear approximation in the neighbourhood of a point, a local measure of nonlinearity is

obtained that becomes an important characteristic of the local behaviour of a nonlinear process.

The extent of nonlinearity can be assessed with respect to various scaling strategies. 

Although the construction of this measure is intuitive, it provides a scale-independent

measure of the magnitudes of the nonlinear effects relative to the linear approximation of a

dynamic process in the neighbourhood of an equilibrium point or a nominal trajectory. The

ability to define a scale independent measure of nonlinearity is advantageous because it provides

a systematic method for evaluating and comparing the nonlinearities of a number of processes.

The flexibility of the scaling procedure provides a useful means of comparing the imple-

mentations of various stable control structures such as proportional-integral forms, internal model

controller (IMC) forms. (Note that the IMCs are closely related to the input prescribed scaling

procedure described in Chapter 2). 

The method presented here permits the quantification of dynamic nonlinearity effects in

nonlinear processes to yield a generic measure of the nonlinearity of a process in the

neighbourhood of a stationary point or a nominal trajectory. It is demonstrated that a simple

extension of the steady-state measures provides a measure of dynamic nonlinearity. The

extension is based on the existence of a continuous twice Fréchet differentiable causal unbiased
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operator describing the input-output behaviour of a dynamical control system in a neighbourhood

of a stationary point. As in the steady-state analysis, the magnitude of the second order terms

of a Taylor series expansion is measured relative to that of the first order terms. The assessment

of nonlinearity is performed relative to unit L2-norm output signals such that interpretation of the

curvature measures of the dynamical system is similar to the interpretation of those proposed in

the steady-state analysis. Greater flexibility in the scaling of the output signals is possible in the

analysis of dynamical systems.

The Chapter proceeds as follows. In section 2, background on the theory of nonlinear

differentiable operators is provided. Application of nonlinear operators to the study of dynamical

systems is introduced in Section 3. A measure of dynamic nonlinearity is presented in Section

4. The importance of scaling to the development of a meaningful measure is discussed in Section

5. In Section 6, the dynamic measure of nonlinearity is applied to the analyses of two processes.

In the first example, a bioreactor is used to demonstrate the application to a continuous chemical

processes. The second example involves a non-isothermal batch CSTR. 

2. Preliminaries

In this Section, a number of useful definitions and theorems are stated. They provide a

brief introduction to basic notions of operator theory (see Khatskevich and Shoiykhet, 1994) and

topology, (see Lang, 1985). Although the material discussed in this Section is of technical

importance to the development presented in this Chapter, its presentation is not indispensable

to the understanding of the following Sections. The reader may therefore wish to skip this

Section and proceed to Section 3, referring back as needed. 

1) Let   be a set. A topology on   is a nonempty family τ of subsets of the set  , satisfy-
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ing the following three conditions:

a) the intersection of any two elements of τ is an element of τ;

b) the union of the elements of any subfamily of the family τ belongs to τ;

c)   ⊆ ∪{  ∈τ}.

The pair ( , τ) is called a topological space. 

2) Let τ1 and τ2 be two topologies on  . It is said that τ1 is weaker than τ2, or,

alternatively, τ2 is stronger than τ1, if τ1⊆τ2. 

The topology of a space can be described through convergence. Let (C,≥) be a directed

set. A directedness S on   is a mapping S:C→   defined on the whole C. For example, a

sequence is a mapping defined on a set of natural numbers, i.e., where the directed set C is the

linearly ordered set  ={1,2,...}.

3) Theorem 1: A topological space is Hausdorff if and only if no directedness on this

space converges to two distinct points.

4) A mapping f from a topological space ( , τ) into a topological space ( ,β) is called

continuous if the preimage of any β-open set in  is τ-open in  . The composition of continuous

mappings is continuous. 

5) Let f: →  be a continuous mapping and  ⊆ ; then the restriction f  is also continuous.

It is said to be continuous on  .

6) Theorem 2: The following statements are equivalent:

a) The mapping f is continuous.

b) The preimage of any closed set is closed.

c) For each point x∈ , the preimage of any neighbourhood of f(x) is a 
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neighbourhood of x.

d) For each point x∈  and any neighbourhood  of the point f(x), there exists a 

neighbourhood   of the point x such that f( )⊆ .

e) For any directedness S in  , convergent to a point s, the composition f S is 

convergent to f(s).

7) A homeomorphism f (or a topological isomorphism) of the topological spaces ( , τ) and

( ,β) is an isomorphism of the sets   and   such that both f and f-1 are continuous.

8) A family γ of subsets of a topological space is called a cover of a set   if

 ⊆∪{BB∈γ}. A cover γ is called open if each set B∈γ is open. A subcover of a cover γ is

a subfamily of γ which is itself a cover. A topological space is called compact if every open

cover of the space contains a finite subcover.

9) Theorem 3: A topological space   is compact if and only if any directedness in   has

a limit point.

10) A metric on a set   is a nonnegative real-valued functional d defined in the direct

product  ×  which satisfies the following conditions:

a) d(x,y) = d(y,x);

b) d(x,y) + d(y,z) ≥ d(x,z);

c) d(x,y) = 0 if and only if x=y.

The pair ( ,d) is called a metric space. The set {y  d(x,y) < r} is called the open r-ball centred

at x. The family of all open balls provides a base for a topology τ on   called the metric

topology. 

11) Let ( ,d) be a metric space. A sequence {snn∈ } is called Cauchy if d(sn, sm)→0 for
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n,m→∞. A metric space is called complete if all its Cauchy sequences are convergent.

12) Theorem 4: In a metric space, any metric convergent sequence is Cauchy. If a

Cauchy sequence has a limit point, then it converges to that point.

13) Let   be a set and let K be the field   of real numbers or the field   of complex

numbers. The set   is a linear (or vector) space provided that the operations of addition of two

elements and multiplication by a scalar are given which satisfy the following axioms:

Let x, y, z ∈   and a, b ∈ K.

i) x+y=y+x

ii) (x+y)+z=x+(y+z)

iii) there exists a unique element 0∈  such that x+0=x

iv) for any x there exists a unique element (-x) such that x+(-x)=0

v) a(bx)=(ab)x

vi) (a+b)x=ax+bx, a(x+y)=ax+ay

vii) 1 x=x.

14) The topological space ( ,τ) is said to be a linear topological space if linear operations

on the set   are continuous with respect to the topology τ.

15) A norm on a linear space   is a real-valued functional, denoted by   , which obeys

the following conditions

i)  x ≥0;  x =0 iff x=0,

ii)  x+y ≤ x + y ,

iii)  ax  = a  x .

A linear space   equipped with a norm is called a normed space. On this space, the for-
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mula ρ(x,y)= x-y  defines a metric which induces a topology called the norm topology.

16) Two norms   1,   2 on   are said to be equivalent if there exists c1, c2>0 such that

c1 x 1≤ x 2≤c2 x 1 for every x∈ ..

17) A normed space which is complete in the norm topology is called a Banach space.

18) An operator defines a mapping between normed spaces.

19) An operator A: →  is linear if its domain D(A) is a lineal of   and A(αx+βy)

=αA(x)+βA(y), x,y∈D(A) and α,β∈ . A linear operator is bounded if  Ax ≤M<∞ for every

x∈D(A) with  x =1.

20) Theorem 5: A linear operator is continuous if and only if it is bounded.

21) The set L( , ) of all continuous linear operators from the normed space   into the

normed space   is a normed space with

i) (A+B)x = Ax + Bx,

ii) (αA)x = α(Ax)

for A,B ∈ L( , ), α∈  and the norm 

22) Let   be a normed space. The space of all continuous linear functionals on   is called the

conjugate space of   and is denoted by *.  *=L( ,K) where K is   or  .  * is a Banach space.

Consider the expression <x,f>, the value of f∈ * at x∈ . which is semilinear in the second argu-

ment, i.e., <x,αf1+βf2>=ᾱ <x,f1>+β̄ <x,f2>, f1,f2∈ *, α, β∈K, ᾱ  and β̄  are complex conjuguates.

23) Theorem 6: Let   be a normed space. Consider a set of elements xi, i=1,...,n, of  
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and define the space  i obtained by fixing all elements but the ith. An operator G: →  defined

everywhere on   is called a multilinear (n-linear) continuous operator if G is linear in each of the

variables xi∈ i, i=1,..,n, and is continuous on  .

24) Theorem 7: If an operator G: →  is linear in each of the variables xi∈ i, i=1,...,n, then

G is a multilinear continuous operator if and only if

for all x=(x1, ..., xn) where 0≤M<∞.

25) If G is a multilinear continuous operator, the norm of G is defined as the smallest

number M for which the inequality of Theorem 7 is fulfilled. That is,

26) An operator H is a homogeneous form of order n if there exists a multilinear operator

G∈Ln( , ) such that

27) For a homogeneous form of order n H is such that

for λ∈ , x∈ . Also,

Using this formalism, a methodology for measuring of dynamic nonlinearity will be

described in the following sections. It provides a unifying framework in which dynamic and
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steady-state processes can be treated using a number of different scenarios. Of particular

importance are processes whose states are described by systems of ordinary differential equations.

3. Input-Output Dynamical Systems

Following the formulation of Zames (1966a, b), Willems (1971) and Desoer and

Vidyasagar (1975), relevant input and output signals are those of finite magnitude with respect

to a certain metric. The magnitude of a signal x:[0,∞)→ N is measured by its p norm, defined as

where  x(t)  denotes any norm of the vector x(t). Signals with finite p-norm form an infinite

dimensional Banach space Lp
N defined as

Physical signals are usually not defined on [0,∞) but on a finite subset S and are therefore

always finite. For a signal defined on S=[0,∞),  x P=∞ if and only if  x(t)  grows without

bounds. To prevent this, a physical signal is usually defined as a truncated signal of the form

This leads to the definition of an extended Banach space Lpe
N defined as

A nonlinear input-output dynamical system is represented by a nonlinear operator, GP,

acting on certain signals u(t) belonging to a Banach space U=Lpe
P and producing finite output
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signals, y(t), also belonging to a Banach space Y=Lpe
M. 

In this study, we consider input-output dynamical systems described by Fréchet

differentiable nonlinear operators of the form

where Dp ⊆U is the domain of Gp (see Georgiou, 1993). We assume that this operator is

unbiased, i.e., 0∈DP and Gp(0)=0. This implies that the analysis is always carried out in terms

of deviation variables in the neighbourhood of a stable equilibrium of the process located at the

origin. 

The dynamic gain associated with the input-output operator Gp is defined as

The dynamic incremental gain is defined as

The input-output behaviour of a dynamical system described by a continuous operator Gp is stable

if for any bounded input u∈U such that  u ≤δ, there exists a 0<γ≤∞ such that  y ≤γ u 

(Willems, (1971)). A more restrictive definition of stability requires that the operator dynamic

gain is bounded, i.e.,  Gp p<∞. In the following, the former notion of input-output stability is

assumed. 
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4. A Measure of Dynamic Nonlinearity

In this section, a dynamic measure of nonlinearity of a process is considered. This

measure is based on the existence of a twice Fréchet differentiable operator representing the

input-output behaviour of a nonlinear dynamical system.

The (Fréchet) derivative of Gp at u0, denoted by dGp(u0), is defined as

The equality

maps u∈U to the operator H(u) belonging to the space of linear operators from U to Y defined

as L(U, Y). The operator dGp(u0) is a linear operator from U to Y. Assuming that the nonlinear

operator H is Fréchet differentiable, its Fréchet derivative is defined as

At an element h1, the value of K(u)h2 is the second Fréchet derivative of Gp defined as

d2Gp(u)(h1,h2). It maps U into the space of bilinear maps from U⊗U to Y, L(U, L(U, Y))=L2(U,

Y). The second order Taylor derivative of Gp evaluated at u0, d
2Gp(u0)(h1,h2), is assumed to a

be a continuous homogeneous form of order 2 (i.e., symmetric with to its entry h). Correspon-

dingly, it is written as d2Gp(u0)(h). 

Using the first and second order Fréchet derivative of a nonlinear operator, a measure of

dynamic nonlinearity analogous to the steady-state measure is constructed. As demonstrated in

the following section, the resulting dynamic measure is an extension of the steady-state measure.
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Under the assumption that the operator Gp is Fréchet differentiable up to order 2 on a

neighbourhood of u0, then the expressions 

where

is uniformly valid in h for  h p≤ε and the number M is independent of h. In that case, the

operator Gp is called Taylor differentiable and the expressions dGp(u0) (h) and d2Gp(u0)(h, h) are

called the first and second order Taylor derivative of Gp at u0. 

Under this formalism, a measure of the extent of dynamic nonlinearity of a nonlinear

process can be defined in a neighbourhood of a point u0 in Dp by considering the contribution

of the second order derivatives of Gp to the Taylor series approximation of Gp at u0. Let the

linear and the nonlinear part of the output signal be given by

and

respectively for a given input signal h(t) about the origin u0.

By analogy with the steady-state case, the curvature of the nonlinear operator at u0(=0)

in a direction h(t) is defined as the ratio

126



This ratio measures the magnitude of the part of the output signal related to the second order

effects relative to the signal of the linear approximation of the nonlinear operator. It can be re-

written as

The following theorem establishes that the measure is bounded for a stable process, Gp.

Theorem 8:

Suppose a dynamical system is described by a stable nonlinear twice Fréchet differentiable

continuous operator, Gp:U→Y. Then the measure of nonlinearity c2 is bounded.

The second order Taylor series of Gp at u0 is given by

where

M is independent of h.

Since Gp is continuous, then for any  >0 there exist r>0 such for all h with  h <r,

 Gp(u0+ρh)-Gp(u0) ≤ . Define the functional

127



For all ρ, 0≤ρ≤1,

For a linear functional f∈Y*, the functional

is a second order polynomial in ρ. It follows that it satisfies γ(ρ)<N for all ρ, 0≤ρ≤1, and all

f,   f ≤1. Then there exists a number  >0 such that

and

It then follows that

for all h,  h ≤r.

Finally, since the operator norms of the first and second order Taylor derivative of Gp are

such that

and
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then the measure is bounded as

This completes the proof.

Theorem 8 establishes that for a continuous nonlinear operator, the measure of nonlinearity

c2(h) remains bounded for (Lp) bounded input signals h∈U. It is a stable property of a nonlinear

process. It also establishes that a stable Fréchet differentiable nonlinear operator has stable (finite

dynamic gain) first and second order Fréchet derivatives. This extends the results of Willems

who established stability of the linearization of a nonlinear differentiable operator.

Conceptually, the application of this measure to the analysis of dynamic processes is

similar to the analysis of steady-state processes. We measure the deviation from linearity by the

relative magnitude of the second order contribution to the Taylor series expansion of a

differentiable mapping in a neighbourhood of a point of interest. In the steady-state case,

assessment of the magnitude of the curvature measure was made with respect to an operating

region of interest. The average contribution of the second order term of the Taylor series

expansion relative to this region interest was then summarized by integrating the measure overall

possible directions h.

It is clear that application of an average measure of nonlinearity such as the RMS

curvature measure may constitute a very difficult task in the dynamic case. Because this implies

conducting a search over an infinite dimensional space, it may be impossible to obtain such a
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measure. Although it is conceptually possible to consider overall measures of nonlinearity such

as a mean squared measure analogous to the steady-state measure (which would require the

solution of an abstract integral over a bounded set of input signals in L2), one is always restricted,

in practice, to specific classes of input signals. 

As a result, the dynamic measure c2(h) is to be computed for various input signals h in

a neighbourhood of the origin. Its magnitude must be assessed relative to a region of interest

defined in the Lp space, Y, where the first and second order derivative of the nonlinear operator

Gp take their value. The problem of defining such a region is discussed in the next section. 

4. Scaling of the Dynamic Measures 

The measure c2 does not constitute by itself an absolute measure of process nonlinearity.

It is subject to the scaling of the outputs and the size of the time horizon considered. Its

magnitude alone does not provide a meaningful measure. An appropriate scaling of the output

signals must then be considered. In this section, we consider the problem of scaling in the

assessment of dynamic nonlinearity. The approach relies on the operator approach highlighted

in the previous section. Certain ramifications of this strategy are discussed.

The main feature of the measure of curvature proposed for steady-state processes is that

it provides a scale-independent measure of nonlinearity. Provided that the output scaling

employed appropriately designated the process operating region, the steady-state measure was a

good reflection of the extent of nonlinearity within this region. Recall that by specifying a region

of interest, we considered a change of coordinates 

mapping output perturbations to a dimensionless unit normal perturbation, z. The scaled
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measures of nonlinearity were then gauged with respect to this region of unit norm. For dynamic

processes, the magnitude of output signals is measured by their Lp-norm. It then becomes natural

to measure nonlinearity and, consequently, to scale the output signals with respect to this norm.

A natural approach to scaling of the output response of a dynamic process is through an invertible

linear operator S:DS⊂Y→Y that defines a linear time varying output transformation of the form

The operator S is chosen to describe a subset of output signals of interest expressed in terms of

a dimensionless, unit Lp-normal signal z(t). Care must be taken when choosing an appropriate

scaling operator. It must be such that the composition SGP(u0) is stable. This is equivalent to the

requirement that the operator Gp(u0) is stabilizable by a linear controller. This is to ensure that

the scaled curvature measure remains bounded.

In this setting, scaling with respect to structures such as integrals and derivatives of the

output signal can easily be accommodated. For example, the nonlinearity of a system subject to

a linear control strategy with integral action can be assessed by scaling the output response with

respect to a region of the form

The resulting measure of curvature gives an indication of the degree of nonlinearity of the system

subject to a region describing the behaviour of a linear proportional-integral controller
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compensation.* A number of situations exist where highly nonlinear plants are adequately

controlled by linear control strategies. The approach proposed here could be used to evaluate the

nonlinearity of such plants with respect to a linear control structure expressed as a scaling

operator S. This provides great flexibility in the interpretation and application of the measures

of curvature. 

The interpretation of the curvature measure established for the analysis of steady-state

processes is directly applicable in the dynamic case. The scaled measure is related to the

curvature of a "surface" of radius 1/c. An output signal with a curvature of 0.3 displays, on

average, a 15% deviation from the linear approximation in terms of its Lp norm.

The main difficulty is the requirement to remove the dependence on output and time

scalings. To demonstrate this explicitly, let the output signals (belonging to L2) of a system be

scaled such that

where S is a constant invertible matrix. As in the steady-state case, the time dependent scaling

region is described by  z(·) 2=1. The L2-norm of an output signal remaining on the boundary

of the time dependent scaling region is given by

Adjustment of the time scale through division of the norm by T yields L2(z(σ))=1. Thus,

     *Note that, in this case, the norm of z(t)

and, consequently, the curvature measure depend on the size of the time interval [0,T). This must
usually be accounted for in the analysis.
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combination of output and time scaling results in a curvature measure given with respect to a

region of unit norm signals. For a given input signal, the scaled measure of dynamic nonlinearity

proposed here gives a measure of the magnitude of the second order terms when the linear

approximation of the operator generates an output signal of unit L2-norm.

A more general approach to scaling is to provide a weight operator for both the inputs and

the outputs. Recall that, in the steady-state case, this was achieved through the manipulation of

the Q and R factors of the QR decomposition of the first order gain matrix and a scaling matrix

S. In the dynamic case, it is not practical (although it is conceivable) to develop a counterpart

of the QR decomposition for linear operators. We must use a more generic procedure defined

as follows. 

Suppose there exists a pair of stable invertible linear operators Q∈L(Y,Y) and R∈L(U,U)

such that for h=Ra,  QdGp(u0)R(a) =1 with  a =1. The measure is redefined with respect to

a as

where A(a)=Qd2Gp(u0) (Ra). We identify with a particular trajectory, a, a family of linear

invertible operators with the specified property. This gives 

By definition, the operator norm  A  is the maximum value of the measure experienced by the

system in the region  a ≤1. Since
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it follows that there exists a positive nonzero real number 0≤ρ≤1 such that

The parallel with the steady-state analysis is obvious. The operators Q and R are identified with

the matrices Q  and R1
-1 from the QR decomposition of the scaled first order steady-state gain

matrix. In the dynamic case, the operators Q and R are interpreted as weighting (or scaling)

operators for the output and input spaces, respectively. The operator Q describes the dynamic

region of interest for the assessment of nonlinearity. The operator R is such that h=Ra provides

a typical input signal for the process. Note this approach is similar in nature to the procedure

described in Morari and Zafirou (1988) for the assessment of process robustness. In fact, the

development of weighting factors prescribed by these authors is directly applicable to the current

problem. 

The main obstacle in the application of the framework presented above is the actual

computation of the second order derivatives of the operators at u0. Naturally if a nonlinear

process model exists then it is possible to calculate such measures and evaluate the need for

nonlinear control directly. A number of situations exist where this is not possible. Since the

measure of nonlinearity provides a scale, a more pragmatic approach would be to use the measure

as a gauge of the anticipated nonlinearity of a process control configuration. Assuming a certain

of degree of nonlinearity (e.g. c≈0.3 for mildly nonlinear and c≈1.0 for highly nonlinear) and an

appropriately chosen pair of weighting operators Q and R, one could conceivably construct an

estimate of the contribution of the higher order effects to the output response and design a robust
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linear controller that achieves a specified performance. It would then be reasonable to assume

that, as the extent of nonlinearity is increased, the search for an acceptable linear controller would

become more difficult, justifying the need for a nonlinear controller. Such an implementation

of the proposed curvature measure and its extact relation to robust performance remain to be

demonstrated. This will not be attempted in this study. It is of considerable interest however in

light of the current analysis.

In the following section, the curvature measure is used to assess the nonlinearity of a

continuous chemostat bioreactor model and a batch non-isothermal CSTR model. The first and

second order sensitivity coefficients of the process outputs with respect to the process inputs are

computed explicitly from the process models to obtain the curvature measure. The main objective

is to highlight the potential advantages of assessing nonlinearity in a controlled process. 

5. An Application of the Nonlinearity Measure

In this section, we consider the application of the measure of nonlinearity to time invariant

state-space realizations of time-invariant nonlinear operators. It is assumed that a time invariant

realization of a dynamical input-output nonlinear operator of the form 

exists. 

In the following, we demonstrate how one can evaluate the curvature of a dynamic

process expressed in this state-space form by calculating the first and second order sensitivity

coefficients of the process outputs with respect to the inputs in a neighbourhood of a nominal

point u(t)∈U. To motivate this, we consider the calculation of curvature of a Volterra series
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expansion of a nonlinear system. 

Suppose the nonlinear input-output operator is expressed as a Volterra series expansion

of the form 

where i1, ..., ik are integers between 1 and P, inclusively. The functions w0, wik...i1
 are analytic

functions called the kernels of the Volterra series expansion. The first and second order Taylor

Fréchet derivative of the Volterra operator are easily computed at an equilibrium point of the

system (u0, y0, x0). Assume that the input and output variables have been translated to the origins

of U and Y, respectively, by using deviation variables about a point of interest**. The first order

derivative at the origin u0=0 is simply given by

The second order derivative is given by

Now, consider the response of the process to constant input functions. This can be written as

where the inputs are simply taken out of the integral. Differentiation of y(t) with respect to the

     **In the case where the Volterra series is realized by a nonlinear time invariant system, it is
known that achieving this translation requires a new state-space coordinatisation and a feedback
transformation.
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inputs yields the kernel representations of the first and second order gains. That is,

and

The first and second order instantaneous gains evaluated at a stationary point (u0, y0, x0) are

identified with the unit impulse response of the first and second order kernels of the Volterra

series expansion.

In general, process models expressed in state-space form are employed rather than their

Volterra series expansion. One must therefore rely on the model equations to calculate the

required derivatives. It is well known that the solution of a system of the form (1) in which

f(x,u) = f(x)+g(x)u with initial condition x(0)=x0 can be expressed in terms of a Volterra series

functional expansion. Convergence of the Volterra series is ensured for small input signals,

 u(t) ≤δ for t∈[0,T]. Because of the close connection between Volterra series and their state-

space realizations, we can justify the calculation of the first and second order sensitivity

coefficients of the process directly from the state-space models with the understanding that these

coefficients are related to the first and second order Fréchet derivatives of the underlying input-

output nonlinear operator.
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The coefficients can be evaluated by solving the set of ordinary differential equations

These equations, called sensitivity equations, are obtained by differentiating the equations of

system (1) with respect to u. 

In what follows, the nonlinearity of nonlinear dynamical process expressed in state-space

form is assessed by solution the sensitivity equations. A bioreactor model is considered in the

first example to demonstrate the application of the dynamic measure of nonlinearity to continuous

dynamical processes. 

Example 4.1

Consider the two-state, one-input bioreator model
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where x1 and x2 are the biomass and substrate concentrations (g/l), u1 is the reactor dilution rate

(min-1) and µ is specific growth rate given by

The model parameters are the maximum specific growth rate, µmax (min-1), the specific death rate,

kd (min-1), the substrate inhibition constant, Ki (g/l) and the inlet substrate concentration, S0 (g/l).

 Nominal values of these variables are given in Table 4.1.

Table 4.1

Nominal operating conditions of two-state one-input bioreactor model

Variables Nominal Values

x1 0.019821

x2 0.18107

u1 0.01

µmax 0.5

kd 0.05

S0 0.3

Ki 10.0

Figure 4.1 shows the first and second order instantaneous gains of this process evaluated

at the nominal conditions shown in Table 4.1. 
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We first consider scaling of the derivatives with respect to static regions of the state space.

The scaling matrix

provides a time independent scaling region of the state space about the stationary point x =[x1,
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Figure 4.1 First and second order instantaneous gains of the bioreactor at the nominal conditions
listed in Table 4.1.

x2] =[0.019821, 0.18107] . The L2 curvature measure is given by
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The impact of time scaling on the resulting value of c(T) is removed by dividing the integrals of

the numerator and the denominator by T(=1000). The contribution of x1 and x2 are given by

For this choice of scaling region, the dynamic measure of nonlinearity is evaluated at 0.88.

Therefore, the process can be said to display a highly nonlinear behaviour in a neighbourhood

of the stationary point. The biomass contributes to 94.55% (=0.73) of the total squared curvature

(=0.77).

In example 4.1, the assessment of nonlinearity was performed by solution of the sensitivity

equations about a stationary point. In the same manner, we can also assess the extent of

nonlinearity of a nonlinear system about a nominal trajectory, y0(t), corresponding to a nominal

input signal u0(t). We can assign to each input trajectory u0(t) a unique state trajectory x0(t) with

initial condition x(0)=x0 which is mapped to y0(t). The effect of perturbations of the inputs about

its nominal trajectory can be assessed from the first and second instantaneous gains evaluated at

a point (u0(t), x0(t)). These are obtained by solving the equations
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As discussed above, the first and second order coefficients evaluated at a given nominal input

trajectory u0(t) can be associated with the first and second Fréchet derivatives, i.e., dGp(u0(t))h(t)

and d2Gp(u0(t))(h(t)), of the underlying nonlinear operator Gp:U→Y in the direction of constant

input perturbations, h(t)=c. These derivatives can be used to assess the nonlinearity of a

nonlinear process about a nominal time-varying trajectory. In chemical engineering, this can be

applied to batch processes operating in the neighbourhood of an optimal output trajectory. In the

following example, this approach is used to assess the nonlinearity of the batch isothermal CSTR

model discussed by Kravaris and Chung (1987).

Example 4.2

The problem addressed by Kravaris and Chung (1987) was the temperature tracking

problem of a batch reactor where the simple reaction scheme

takes place. The first reaction is assumed to be of second order. The second reaction is first

order. Let x1, x2 and x3 represent the concentration of A, concentration of B and the reactor

temperature then the process model can be expressed as
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where

The input u1 is chosen such that the steam temperature Ts and the reactor heat transfer coefficient

Uc are given by

The input u1 must remain between 0 and 1 in order to meet the system limitations in steam

temperature and cooling rate. The following process parameters have been defined
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The parameters of the model are described in Table 4.2 along with the values used for the

simulations.

Table 4.2
Process parameter descriptions and values

Process Parameter Description Value

A10 Frequency factor of Rx 1 1.1 (m3 kmol-1s-1)

A20 Frequency factor of Rx 2 172.2 (s-1)

E1 Activation energy of Rx 1 2.09×104 (kJ kmol-1 K-1)

E2 Activation energy of Rx 2 4.18×104 (kJ kmol-1 K-1)

R Ideal gas constant 8.314 (kJ kmol-1 K-1)

Ts Steam Temperature [70,150] ( C)

Uc Overall heat transfer coeffi-
cient of cooling coil

[1.39,4.42] (kJ m-2  C-1s-1)

ρ density 1000 (kg m-3)

Cp Heat capacity 1 (kJ kg-1  C-1)

-∆H1 Heat of reaction 1 4.18×104 (kJ kmol-1)

-∆H2 Heat of reaction 2 8.36×104 (kJ kmol-1)

Ac/V Heat transfer area of cooling
coil per unit volume

30 (m-1)

Aj/V Heat transfer area of heating
jacket per unit volume

17 (m-1)

Tc Coolant Temperature 25 ( C)

Uj Overall heat transfer of
heating jacket

1.16 (kJ m-2 C-1s-1)

The reactor temperature is to follow an optimal trajectory given by

This trajectory maximizes the yield of B for a batch time of one hour. Two controllers are to
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be used for this tracking problem. The first controller is a input-output linearizing controller of

the form

where β0 and β1 are controller tuning parameters. This controller is such that the new input, v,

acts linearly on the temperature. Control is achieved by manipulating v according to a PI

controller of the form

where Kc and τI are the controller gain and time constant. The tuning parameter values suggested

by Kravaris and Chung (1987) are β0=1, β1=1000, Kc=0.1 and τI=3600. The second controller is

a simple PI controller

where, as suggested by Kravaris and Chung (1987), Kc=0.1 and τI=3600.

Using the nonlinear controller to calculate the required input trajectory, u1(t), the first and

second order sensitivity coefficients were evaluated by solving the corresponding time-varying

sensitivity equations. The initial conditions x1(0)=1, x2(0)=0 and x3(0)=25, were used. First and

second order sensitivity coefficients of the output signal to perturbations in u1 about its nominal

trajectory u1(t) are plotted in Figure 4.2. The curvature measure is simply given as the ratio
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Two scaling strategies were used to evaluate the nonlinearity of the process. First, the first and

second order sensitivity coefficients were scaled with respect to a 5 degree window about the

nominal output trajectory. Scaling is simply performed as in the steady-state case by dividing

the coefficients by 5. 

Since nonlinearity is evaluated for the entire batch, the integrals used in the estimation of

c are simply divided by 3600 seconds to remove the time dependence. Alternatively, we could

scale by expressing the time t in terms of batch units of time. In this case, expressing t in terms

of hours would have removed the dependence of the curvature measure on the size of the time

interval used. The resulting curvature measure is 0.12. This process is therefore nearly linear.

On average, perturbations of the input about its nominal trajectory do not contribute to the

nonlinearity of the batch process.

According to the simulations performed by Kravaris and Chung (1987), it would seem that

this conclusion is contradictory. In their work, the performance of the nonlinear and linear PI

controllers were compared on the basis of their response to noise temperature measurement. They

observed that the linear controller was very sensitive to this measurement error whereas the

nonlinear controller performed very well. Although this can only be due to the presence of

nonlinearity in the closed-loop system which is not accounted for by the linear controller, the

current analysis indicates that this nonlinearity is not inherited by the process dynamics. This
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also suggests that the scaling procedure employed for this analysis was not appropriate. The
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Figure 4.2 First and second order sensitivity coefficients evaluated at the nominal trajectory
generated by the nonlinear controller given by Kravaris and Chung (1987).

simple scaling approach employed does not provide a measure of nonlinearity with respect to the

regions of the output space where nonlinearity is manifested. 

An alternative scaling approach consists of filtering the output signal by an integral

operator 
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The nonlinearity associated with perturbations of the inputs on the scaled output z(t) is assessed

by evaluation of the first and second order sensitivity coefficients of z(t) with respect to the

inputs. This scaling procedure transforms the problem of assessing the nonlinearity of the process

output subject to input perturbations to the evaluation of the nonlinearity of the controller output

subject to the same perturbations. Consequently, we can simply choose kc and τs to be the

parameters (Kc and τI, respectively) of the linear PI controller suggested by Kravaris and Chung

(1987). Figure 4.3 shows the response of the scaled output, z(t), generated by the closed-loop

process subject to linear PI control. 
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The initial condition, z(0), is dictated by the controller equation, i.e., z(0)=0.1(51+74-
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Figure 4.3 Scaled output signal for the closed-loop response of the batch reactor under linear PI
control.

25)=10. The first and second order sensitivity coefficients are shown in Figure 4.4.
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Since the controller output must be constrained between 0 and 1, we simply divide the sensitivity
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Figure 4.4 First and second order sensitivity coefficients of the scaled output z(t) evaluated at
the nominal trajectory of the linear PI controlled batch reactor.

coefficients by 10 to convert the controller output to input units. Upon averaging the numerator

and denominator integral by 3600 seconds to remove the impact of the time scale, the curvature

measure is evaluated at 0.38. This suggests that the closed-loop system is nonlinear and that its

nonlinearity originates from saturation of the input. Inspection of the simulation performed by

Kravaris and Chung (1987) confirms this observation. The response of the process under linear
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PI controller subjected to noisy temperature measurements results in fast fluctuations of the input

between 0 and 1. Although the nonlinearity of the process to fluctuations of the inputs is small,

the linear PI controller amplifies its magnitude through saturation of the input. The large input

changes required for the controller output to fulfil the saturation bounds introduce nonlinearity

in the closed-loop system. 

6. Conclusions

In this chapter, a measure of dynamic nonlinearity was introduced. The measure reflects

the importance of the contribution of the second order Taylor derivative of Fréchet differentiable

time invariant unbiased operator describing the dynamic input-output behaviour of a nonlinear

system.

Development of the dynamic measure of nonlinearity comes as a result of a simple

extension of the steady-state measure. In the steady-state case, the contribution of the second

order terms to the second Taylor series expansion of a differentiable map is measured relative to

the Euclidean norm. The dynamic extension requires the evaluation of the contribution of the

second order terms relative to the Lp-norm of the process output signals. As in the steady-state

case, scaling must be provided to remove the dependence of the curvature measure to output

scaling. Scaling must be provided in order to measure curvature relative to a region of unit norm.

This can be done in a number of ways. The general approach is to define a scaling operator that

maps a bounded set of the space of output signals to a unit norm bounded set of scaled output

signals. This approach to scaling provides great flexibility in the analysis allowing, for example,

to measure nonlinearity of a process relative to sets described by linear controller structures. 

The application of the curvature measure was demonstrated using two chemical process
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examples. A bioreactor example was used to demonstrate the application of the measure to

continuous processes. The nonlinearity of the batch CSTR example presented by Kravaris and

Chung (1987) was also calculated. The latter example clearly demonstrated the benefits of

measuring process nonlinearity in the analysis of a nonlinear chemical process. Since the process

did not display significant nonlinearity about the nominal trajectory, nonlinear control, as

performed by Kravaris and Chung (1987), was not necessary. Using an alternative scaling

procedure, it was shown that the nonlinearity of the closed-loop process was due to large input

saturation effects that could have been removed by appropriate linear controller design.

The ability to measure the extent of nonlinear of a process is a powerful in controller

design. It is interpreted as a justification for nonlinear controller design which comes as a result

of restrictions of the performance of linear controller imposed by the nonlinearity. In that sense,

the nonlinearity measure could be used as a tool of analysis for developing robust linear controller

of nonlinear plants. Elucidating the relationship between robust performance of a linear controller

and the nonlinearity measure may prove to be an essential component in the implementation of

the framework presented in this Chapter.
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Nomenclature

A Linear operator

a Real number

B Subset of a topological space

b Real number

C Directed set

c Root squared curvature

d Metric on a topological space

d Fréchet differential of a nonlinear operator

D Domain of an operator

Dp Domain of the input-output operator

f Mapping

f Vector field describing dynamics on the state space

Gp Differentiable Input-output nonlinear operator

g Vector field describing input-driven dynamic on the state space of a control-affine

nonlinear system

H Homogeneous form

h State-output map 

K Field

KC Controller gain

L(U,Y) Space of linear operators between topological spaces U and Y

LP
N Banach space of p-integrable functions taking values in  N
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M Real number

Q Linear operator

R Linear operator

r Real number

S Directedness on a topological space

S Linear operator

s Sequence in a topological space

T Final integration time

t Time

U Banach space of p-integrable input trajectories

u Input trajectory

u0 Nominal input trajectory

w Wiener-Volterra kernel

x Point in a topological space

x State trajectory

x0 Nominal state trajectory

Y Banach space of p-integrable output trajectories

y Point in a topological space

y Output trajectory

y0 Nominal output trajectory

yL Linear part of output trajectory

yN Nonlinear part of output trajectory
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z Point in a topological space

Greek Letters

α Real number

β Real number

β Topology

γ Cover of a topological space

δ Real number

 Real number

ξ Real number

ρ( , ) Metric of a normed space

ρ Real number

τ Topology

τI Controller time constant

φ Functional

ω Functional

Symbols

 Topological space

 Topological space

 * Conjugate space of  

 Topological space

 Topological space

 Set of complex numbers
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 Real number

 Set of natural numbers

 Set of real numbers
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Chapter 5

Linearizability of Nonlinear Control Processes

1. Introduction

The focus of this thesis, as demonstrated in Chapters 2, 3 and 4, is to provide a

methodology for measuring nonlinearity in controlled processes. It is important to provide a

systematic way to account for nonlinearity in order to achieve adequate controller designs. For

steady-state processes, as shown in Chapters 2 and 3, curvature measures can be used to derive

transformations that remove the local effects of gain nonlinearity. For dynamic processes, the

approach presented in Chapter 4 provides a methodology for the measurement of process

nonlinearity. However, the problem of finding coordinate transformations that remove

nonlinearity cannot be addressed empirically. More fundamental approaches must be considered.

 Of primary interest in this chapter is the problem of exact linearization of nonlinear

systems by coordinate transformations and feedback. The exact (and the approximate)

linearization problem has been an active area of research over the last 20 years in the systems

theoretic literature. The most powerful approaches involving rigorous treatment of this problem

have used differential geometric techniques (Brockett, 1978; Brockett et al. , 1983; Hunt, Su and

Meyer, 1983a, 1983b; also see Nijmeijer and van der Schaft, 1989 and Isidori, 1989 for a

comprehensive development of differential geometric methods). These techniques have been used

extensively in the study of the equivalence of nonlinear systems to linear systems by state space

transformations and feedback. The ability to linearize nonlinear control systems exactly currently

forms the basis for most engineering applications of nonlinear control techniques (see Hoo and
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Kantor, 1986, Henson and Seborg, 1990 and McLellan et al., 1990, for chemical engineering

applications).

It is generally recognized, however, that linearizability is not a generic property of

nonlinear control systems (Atkins and Shadwick, 1994; Shadwick, 1993). By this we mean that

the class of feedback linearizable nonlinear systems forms a subset of the set of all nonlinear

systems with infinite co-dimensions. The occurrence of feedback linearizable systems is therefore

extremely rare in practice. To overcome this problem, approximation techniques are often used

to linearize systems approximately that cannot be exactly transformed by feedback and state-space

transformations to a linear system. This situation introduces another aspect of the nonlinearity

of a process, namely its linearizability.

Two types of linearization are usually considered: 1) exact linearization of a nonlinear

dynamical system by feedback and state space transformation and 2) exact linearization of an

input-output response by feedback and state-space transformation where feedback transformations

can be either static or dynamic.

The problem of linearization by state feedback has been considered by a number of

researchers. In the differential geometric setting, two approaches have been used to solve this

problem. Originally, the problem of formal linearization of Lie algebras of vector fields

(Hermann, 1968) was applied to the problem of linearization by state feedback. This led to the

development of necessary and sufficient conditions for linearization (Jakubzcyk and Respondek,

1980; Hunt, Su and Meyer, 1983a) and to the development of procedures for multi-input

nonlinear systems (Hunt, Su and Meyer, 1983b). The second approach to the solution of this

problem was motivated by the study of Cartan’s method of equivalence of Pfaffian systems
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(Gardner , 1967, 1989; Hermann, 1982). Gardner and Shadwick (1990, 1992) used this setting

to develop an algorithm which is essentially the exterior differential counterpart of the method

of Hunt, Su and Meyer (1983b). However, this algorithm is more general in construction and

is considerably easier to implement using computer algebra software such as MAPLE® or

MATHEMATICA®. 

It is obvious that the linearizability of a nonlinear system by state feedback and state space

transformation is a truly non-generic property. But since linearizability is such an important

feature of controller design using differential geometrical control techniques, a great deal of effort

has been devoted to extending the applicability of linearization methods of nonlinear systems.

Dynamic feedback transformations, first introduced by Charlet et al (1989), have been used to

linearize nonlinear systems which are more intrinsically nonlinear. Their development, later

supported by Shadwick (1991), considered dynamic feedback linearization of single-input systems

using a simple dynamic compensator obtained by differentiating the input channel with respect

to time. Charlet et al. (1989) and Shadwick (1991) showed that, for this specific class of

compensators, a nonlinear system can be linearized by dynamic feedback if and only if it can be

linearized by state feedback. Thus the use of dynamic feedback does not broaden the class of

SISO systems that can be linearized. Their result demonstrated that the use of dynamic feedback

is essentially reserved to multi-input systems since it cannot be used to extend the class of

systems that are linearizable by state feedback. Recently, Tchon ́  (1994) demonstrated the non-

genericity of multi-input control-affine systems which are linearizable by dynamic feedback using

linear compensators. This work showed that most control-affine systems cannot be linearized by

dynamic feedback and the ability to do so is not an inherent property of MIMO nonlinear
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systems. Rouchon (1994) and Sluis (1993) developed necessary conditions for the linearizability

of multi-input general nonlinear systems. In particular, Rouchon (1994) showed that these

necessary conditions imply the non-genericity of dynamic feedback linearization in general

nonlinear systems.

It is significant that these results have been developed in the absence of a condition for

dynamic feedback linearizibility which is both necessary and sufficient. Non-genericity, as

discussed by Rouchon (1994) and Tchoń  (1994), is deduced from topological considerations

which can be argued to be too general and poorly adapted to the problem at hand. This point

was discussed by Rouchon (1994), who noted the paradox posed by the apparent genericity of

dynamic feedback linearizability in practical applications. 

Another approach to the problem of linearization by state feedback is to implement

feedback and state space transformations which approximately linearize a nonlinear system. This

problem was first treated by Krener (1984). It essentially consists of finding feedback and state-

space transformations which are polynomials of order ρ in the states and ρ-1 in the inputs, such

that a nonlinear system can be linearized up to order ρ. Krener et al. (1987, 1988) and Krener

and Wang (1990) demonstrated the benefits of using approximate linearization techniques to

simplify the design of nonlinear controllers for single-input systems. Guzzella and Isidori (1993)

and Hunt and Turi (1993) extended the approach presented by Krener et al. (1987) to multi-input

systems using simplified approaches. Banaszuk and Hauser (1994) used a heuristic approach

based on the homotopy operator to solve the approximate linearization problem for single-input

systems. Using these techniques, it is relatively easy to find coordinate transformations and

feedbacks which approximately linearize a system. Although not an issue in most of these
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developments, such techniques are approximate and the validity of the approximations must be

checked. Doyle III and Morari (1990) demonstrated the robustness of controller designs based

on the approximate linearization approach of Krener et al. (1987, 1988). In their approach, the

higher order terms neglected by approximate linearization are treated as residual nonlinearity.

The structured singular value was used to demonstrate the robustness of approximate linearizing

controllers to the effect of higher order terms for a chemical reactor. 

When a system is not linearizable, it is important to know how far it is from being

linearizable or how well it can be approximated by a linearizable system. Atkins and Shadwick

(1993) and Shadwick (1993) considered this question and used the Gardner and Shadwick (GS)

algorithm (1992) and the group reduction technique of Cartan (see Gardner, 1989) to identify

invariant functions which must vanish in order for a system to be linearizable. Using a class of

models from air flight control, Shadwick (1993) demonstrated how these invariant functions can

be used in design to uncover natural geometrical outputs and how they can be used to parametrize

subclasses of linearizable systems. 

Another design alternative which has been considered in differential geometrical control

is the exact linearization of the input-output response (Isidori, 1989; Nijmeijer and van der Schaft,

1990). This technique is often preferred in practice because the regularity conditions which are

used to prove necessity and sufficiency (Isidori, 1989) are generally less restrictive than the

conditions for exact linearization by state feedback. Input-output exact linearization with dynamic

feedback has also been considered in a differential geometrical setting by Isidori et al. (1986).

Approximate input-output linearization has recently been considered by Kang (1994).

Differential algebraic techniques (Fliess, 1987; Di Benedetto et al., 1989) have been used
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to complete or improve results obtained in the differential geometric setting. Of particular

importance is the concept of differential flatness of a nonlinear system. This concept, introduced

by Fliess et al. (1993), generalizes the concept of linearizing outputs of a nonlinear system using

a differential algebraic framework which does not differentiate between state, input and output

variables. This approach is consistent with the behavioral methodology of Willems (1991).

Sufficient conditions for differential flatness have been formulated in geometrical terms by Martin

(1993). In the differential geometrical context, flatness is a property displayed by linearizable

systems. It is not, however, restricted to this class of systems. 

It is obvious that, from a system theoretic point of view, the nonlinear behaviour of a

system should be handled with appropriate techniques. In this framework, the "true" nonlinearity

of a process reflects the impossibility of linearizing it exactly using coordinate and feedback

transformations. This aspect of the nonlinearity of a process is considered in this Chapter.

  The primary tool of the analysis presented here is the exterior calculus setting employed

by Gardner and Shadwick (1992), Sluis (1993), Martin (1994) and Aranda-Bricaire et al. (1995).

This setting is summarized in Section 2. In Section 3, we present the GS algorithm for the

linearization of nonlinear systems. In Section 4, this algorithm is used to uncover invariant

functions which are curvature-like quantities acting as geometric obstructions to the linearizability

of classes of chemical processes. A simple CSTR model is used to illustrate the ideas. In section

5, the GS algorithm is adapted to provide a solution to the problem of dynamic feedback

linearization of nonlinear systems by endogenous feedback. A new necessary and sufficient

condition for dynamic feedback linearizability is presented which also provides a systematic way

to obtain linearizing dynamic precompensators.
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2. Exterior Calculus Setting

Before engaging in a discussion of the application of the exterior calculus setting in

control theory, a brief review of exterior algebra and exterior calculus will be presented.

a) Exterior algebra

Let V be an n-dimensional vector space*** of the field of real numbers  . 

The wedge product between two vectors v,w∈V is a non-commutative product which is

i) distributive,

ii) bilinear,

iii) skew-commutative

Note that property (iii) ⇒v∧v≡0.

The result of the wedge product of two (one-)vectors is called a two-vector. The space

of two-vectors on V, Λ2(V), is given by the set of all wedge products of the form

Let {e1, ..., en} be a basis for V. The n(n-1)/2 elements 

     ***A vector space is a space made up of elements called vectors along with the operations of addition and
multiplication by scalars. 
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form a basis for Λ2(V). The space Λ2(V) is a linear space of dimension n(n-1)/2.

We can also define a p-vector as the result of the wedge product of p (one-) vectors. Let

ω(=v1∧ ...∧vp) ∈Λp(V) with v1, .., vp∈V. It is clear that ω=0 if any vi=vj, i≠j. Because of the

skew-commutativity property (iii) above, the sign of ω is changed when any two (one-) vectors

vi, vj are exchanged in the wedge product v1∧ ...∧vp. The space Λp(V) has dimension n!/p!(n-

p)!=nCp.

Let ω ∈Λp, υ∈Λq. The wedge product of ω and υ is given by

The vectors v1, ..., vp∈V are linearly dependent if and only if v1∧...∧vp=0. In other words,

for any w, vi∈V, we see that if w∧v1∧...∧vp=0 then there exist αi∈  such that

Let V* be the covector space of V, where a covector maps v∈V to  . V* is also known

as the dual space of V. By defining an exterior algebra on V*, the space of p-covectors given

by Ωp(V)=Λp(V*) is defined. If {e1
*, ..., en

*} is a basis for V*, then {ei1
∧...∧eip

}, 1≤ i1<...<ip≤n, is

a basis of Ωp(V), the exterior algebra on the covector space of V.

By definition, covectors w*:V→  are linear functions on V. If w*=∑iwiei
*∈V* and

v=∑iviei∈V, then w*(v)=∑iwivi. Similarly, two-covectors ω∈Ω2(V) are skew bilinear maps

ω:V×V→ . For any ω=∑ijωijei
*∧ej

*, i<j and v, w∈V, then
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b) Differentiable manifolds

An n-dimensional differentiable manifold M is an abstract set of points with the following

properties:

1) The notion of a continuous function is defined on M (i.e., M is Hausdorff with countable

base).

2) M is the union of a collection of open sets Ui. M⊂∪iUi, i∈A, where A is an indexing set. 

3) For each i∈A, there exists a continuous equivalence between Ui and  n. More precisely, there

exists a diffeomorphism φi:Ui →  n called a coordinate chart of M.

4) For any two intersecting coordinate charts Ui∩Uj, the change of coordinate map expressed as

the composition φi φj
-1 is a smoothly differentiable map.

The collection {(Ui, φi)  i∈A} is called an atlas of charts on the manifold M.

Conceptually, a differentiable manifold is an abstract space that locally looks like a

Euclidean space. Using local coordinate representations, familiar operations from differential

calculus can be applied directly to abstract manifolds.

At each point p∈M, a tangent space can be attached to M. This tangent space is denoted

as TpM. The differentiable structure (property 4) allows the concept of a tangent space on a

manifold to be related to the familiar concept of a tangent space in  n.

For a point x∈ n, the tangent space Tx 
n at x is the set of tangent vectors to  n at x. Tx 

n

is in fact a copy of  n. The natural basis of Tx 
n is denoted by
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A corresponding basis for TpM can be identified as follows. Consider a manifold of dimension

n and let p∈M. Let (U,φ) be a coordinate chart in a neighbourhood of p. For v∈Tφ(p) 
n, define 

The expression φ*(p)v is the image of v in TpM via the local coordinate representation. The

tangent space TpM at p is defined as

The elements of TpM are called tangent vectors at p. Since φ is a diffeomorphism, the mapping

φ*(p):Tφ(p) 
n→TpM is a linear isomorphism. Hence the vectors

form a basis of TpM. The set TM={(p,v) p∈M, v∈TpM} is called the tangent bundle of M.

Note that this definition of TpM coincides with the intuitive notion of the tangent space

to a surface in  n. It is also independent of the choice of local coordinates. 

A vector field v on M is a mapping that assigns a tangent vector v(p)∈TpM to each p∈M.

A vector field is smooth if for each p∈M there exists a coordinate chart (U,φ) around p and

smooth functions v1, ..., vn on M such that for all p  ∈U, v(p  )=∑i=1
nvi(p  )∂/∂φip  , i.e., v can be

expressed in terms of the basis vector fields with smooth coefficient functions.

A distribution ∆ of M is a mapping that assigns to each p∈M a linear subspace of TpM.
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∆ is called a smooth distribution if for each p∈M there exists a neighbourhood U⊂M of p and

a set of vector fields v1, ..., vi, i∈I, with I some (possibly infinite) index set, such that for all

p  ∈U, ∆(p  )=span{vi(p  )i∈I}.

c) Differential forms

The cotangent space, Tp
*M, of M at p is defined as the space of linear mappings of TpM.

Its elements are linear maps ω:TpM→ . The elements of Tp
*M are called cotangent vectors at p.

If ω∈Tp
*M, the value of ω at v∈TpM is denoted by ω(v).

Let {v1, ..., vn} be a basis of TpM at p. The unique basis {ω1, ..., ωn} which satisfies

ωi(vj)=δij, 1≤i,j≤n, is called the dual basis of Tp
*M with respect to {v1, ..., vn}.

Given a coordinate chart (U,φ) around p, the dual basis to

is given by

The cotangent bundle is the set

A differential one-form (or covector field) ω on M is a mapping that assigns to each p∈M a

cotangent vector ω(p)∈Tp
*M. A differential one-form is smooth if for each p∈M there exists a

coordinate chart (U,φ) around p and smooth functions ω1, ..., ωn on M such that for all p  ∈U,

ω(p  )=∑i=1
nωi(p  )dφip  .

The cotangent space (space of one-forms on M) is denoted by Ω1(M) or simply Ω(M).
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Similarly, a k-form on M at p is a mapping ω that assigns to each point p∈M a k-covector

ω(p)∈Λk(Tp
*M)=Ωk(TpM).

A codistribution Θ of M is a mapping that assigns to each p∈M a linear subspace of Tp
*M.

Θ is called a smooth codistribution if for each p∈M there exists a neighbourhood U⊂M of p and

a set of one-forms ω1, ..., ωi, i∈I, with I some (possibly infinite) index set, such that for all p  ∈U,

Θ(p  )=span{ωi(p  )i∈I}. 

d) Exterior derivative

Let

be a smooth p-form on M where ai1...ip
 are smooth functions of xij

. The exterior derivative of ω

is the (p+1)-form

Note that

The operator d has the following properties:

i) Linearity
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ii) Action on wedge products

iii) Poincaré Lemma

d) Integrability of forms

A codistribution I⊂T*M of constant dimension k is integrable if there exist k functions h1,

..., hk such that I=span{h1, ..., hk}.

Theorem 1 (Frobenius) A k-dimensional codistribution I=span{ω1, ..., ωk} is locally integrable

if and only if there exist one-forms θij such that

A closed one-form is such that dω=0. A one-form is said to be exact is there exists a

function h such that ω=dh. Theorem 1 asserts that all closed one-forms are exact.

e) Exterior differential systems

An exterior differential system is given by a homogeneous ideal I⊂Ω(M) that is closed

under exterior differentiation. More specifically, I satisfies
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f) Pfaffian systems

An algebra V is called a ring if and only if the following conditions are satisfied

A commutative ring is such that

A module for the algebra V is a vector space W over the field K along with a binary

product V×W into W mapping (υ,w), υ∈V, w∈W to υw∈W such that

∀ν∈V, ∀w∈W and ∀α∈K.

A submodule U of a module W is a subspace closed under the composition by elements

of the algebra.

A Pfaffian system, P, is a submodule of the module of differential one-forms Ω(M) over

the commutative ring of smooth functions C∞(M). Locally, a Pfaffian system is represented by

a set of one-forms {ω1, ..., ωn} and
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A Pfaffian system defines an exterior differential system

A control system of the form

where x∈M⊂ n, u∈ p, defines a Pfaffian system on the manifold M*=M× p×  with local

coordinates (x, u, t) generated by the one-forms

The integral curves c(s)∈M* of the control system are the solutions of

where c (s) is the velocity vector tangent to c(s).

f) Congruence

Let I={ω1, ..., ωk} be an exterior differential system. Two forms, ω and ξ∈Ω(M), are

congruent modulo I, written 

if there exists µ∈I such that ω=ξ+µ.

If I is a Pfaffian system then

for θi∈Ω(M).
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It follows that 

As a result, we see from the Frobenius theorem that a Pfaffian system I is integrable if and only

if

3. The Gardner-Shadwick (GS) Algorithm

The algorithm of Gardner and Shadwick (1992) is presented in this section. More

precisely, we consider the necessary and sufficient condition for linearizibility of nonlinear

systems utilized in the development of their approach.

We consider systems with n states and p inputs of the general form

Associated with a system of this form is a Pfaffian system given by

(1)

which is called the associated Pfaffian system (Hermann, 1986). Of primary importance in the

(2)

GS algorithm is an invariant filtering of the associated Pfaffian system, called the derived flag.

This flag is composed of a sequence of Pfaffian systems called derived systems. Let γ

be a collection of differential one-forms which define the original system I. The first derived

system, I(1), of I is a collection of one-forms, δ, which satisfy the Frobenius condition, dδ≡0 mod

I. The second derived system, I(2), is generated by forms which satisfy dδ≡0 mod I(1). This
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procedure can be continued inductively until a derived system is reached for which I(N)=I(N+1).

N is called the derived length. The derived system I(N) is the largest completely integrable system

contained in I.

For a system in Brunowsky normal form, there exist Kronecker indexes k1≥k2≥...≥kP and

independent functions, t, y1,1, ..., y1,k1
, y2,1,..., y2,k2,..., yP,1,..., yP,kP

, v1, v2,..., vP which give the

following generators for its associated Pfaffian system:

The structure equations for these generators thus become

such that for i=1...P, j=1...ki-1,

and

(3)
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This yields the following structure for the derived flag of this Pfaffian system,

(4)

w1,1 w1,2 ... w1,k1
 ... ... wp,1 wp,2 ... wp,kp

 
      .      .
      .     .
      .      .
      . wp,1

      .
w1,1 w1,2

w1,1 
where the first row is formed by the generators of the system I and each subsequent row j is

formed by the generators of the corresponding jth derived system I(j). Each input generates a

tower of the form

wj,1 wj,2 ... wj,kj

.

.

.
wj,1 wj,2 wj,3

wj,1 wj,2

wj,1

One can construct such a structure if the equalities (3) are met. Clearly, this condition

will not be satisfied for a control system in general. Although the derived systems are feedback

invariant, their bases are not, and these equalities must be replaced by congruences modulo the

appropriate derived system. That is, the generators of I(j) must satisfy the following conditions:

where mj is the number of towers with at least j+1 rows.

mod I(j+1) (5)

Once the congruences have been established, it is possible to find new generators,w  i,j,
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which transform them to equalities. This is easily done by employing the procedure developed

by Gardner and Shadwick (1992).

One of the main advantages of the GS algorithm is that it guarantees a minimum number

of integrations. Assuming that there are   distinct Kronecker indexes with multiplicities ν1,...,ν ,

it was proven by Gardner and Shadwick (1992) that integration of   decoupled completely

integrable systems of dimensions ν1,...,ν  is required. In the case that each Kronecker index has

multiplicity one, the integration of P one-dimensional systems is required in order to find

generators of the form wj,1=ηj,1-bj,1dt, where ηj,1 are differential forms on the state space which

are independent of t, and bj,1 are functions defined on the state space, j=1,...,P. As a result, there

exist functions defined on the state space, yj,1, which satisfy

This then yields new generators

where yj,2=bj,1/µj,1. When multiple Kronecker indexes occur, similar manipulations, expressed in

matrix form, are required. 

Using the above generators as initiators of the towers, one can proceed with the Gardner

and Shadwick procedure (Gardner and Shadwick, 1992) to obtain the new generators. The

linearizing coordinates are simply obtained as the functions multiplying dt in each generator. 

This procedure is illustrated in Example 5.1.
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Example 5.1. Linearization by Static State Feedback using the GS Algorithm

Consider the following model of a mixed culture bioreactor developed by Hoo and Kantor

(1986):

where x1, x2 and x3 are the concentrations of inhibitor resistant cells, inhibitor sensitive cells and

inhibitor, respectively, and

The generators for this system are given by

These are generators of the Pfaffian system I={w1,w2,w3} which give structure equations of the

form
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The dependence of w1 and w2 on u1 can be removed by defining

mod I

such that dw4≡0 mod I. w4 generates the first derived system which terminates the derived flag

in this case. The system has Kronecker indexes k1=1, k2=2. 

The tower structure is then easily constructed by taking w2,1=w4. Differentiating yields

such that 

(6)

The second tower is simply composed of w1,1 which is equal to w1. The following tower
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structure thus results

w1,1 w2,1 w2,2

w2,1

This problem is relatively simple in that only one congruence appears. w1,1 and w2,1 do not need

to be transformed. w2,2 must be transformed in order to satisfy the congruence (6). This is done

by taking

The linearizing coordinates can then be easily obtained. The coordinate transformation

y2,1 is obtained by integrating the equation

which gives y2,1=ln(x1/x2). y2,2 is the function multiplying dt in w2,1. This gives

The linearizing feedback transformation, v2, is the function multiplying dt in w2,2. That is,

The remaining coordinates are obtained from the second tower. They are simply
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It can be verified that these coordinates are similar to those calculated by Hoo and Kantor (1986).

4. Linearizability Conditions for Classes of Chemical Processes  

When a system is not linearizable, the structure equations of its corresponding Pfaffian

system contain terms which fail to be congruent to zero. The coefficients of these terms are

curvature-like quantities which represent obstructions to linearity. When these quantities vanish,

the GS algorithm can be used to obtain the linearizing state and feedback transformations. 

In this section, we follow an analysis performed by Shadwick (1993) on a class of air

flight control models and demonstrate how the GS algorithm can be used to uncover obstructions

to linearizations using the batch reactor example of Kravaris and Chung (1987). The model is

based on the reaction

where it is assumed that the first reaction has second order kinetics, whereas the second reaction

has first order kinetics. The model form used by Kravaris and Chung (1987) is
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where x1, x2 and x3 are the molar concentrations of A and B and the temperature of the reactor,

respectively. The rate constants, k1(x3) and k2(x3), are treated as arbitrary functions of

temperature. The manipulated variable, u, is as defined by Kravaris and Chung (1987). It is

chosen to be a balance between cooling and heating of the system (i.e., a split range manipulated

variable). The parameters γ1, γ2, a1, a2, b1 and b2 are constants.

It is shown by Kravaris and Chung (1987) that this system is not linearizable by state

feedback when the standard Arrhenius relationships are assumed for the temperature dependencies

of the rate constants. Using the GS algorithm, we will show how the set of linearizable models

of this form can be characterized.

The model yields a Pfaffian system of the form

Following the GS algorithm, we calculate the structure equations. They can be written in vector

form as
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The first derived system, I(1)=[w1, w2], is

Next, we construct the generator

which is such that

We then see that this system is linearizable if we can find k1(x3) and k2(x3) such that

where A(x) is matrix of functions of the states only. It can be confirmed that

The coefficient of dx1∧dx3 is an example of the curvature-like quantities which act as obstructions
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to linearizability. For this example, we can rearrange this term to obtain the following sufficient

condition for linearizability of this class of models:

Assuming that the first rate constant depends on the temperature, we finally obtain the condition

which parametrizes the class of linearizable systems in terms of the temperature dependencies of

(7)

the rate constants. For this case, a simple linear temperature dependence for the rate constants

is sufficient to ensure feedback linearizability of the model.

Assuming Equation (8) is fulfilled, we can state that the differential one-form 

is approximately exact. As a result, the generator w4 provides, through exterior differentiation,

a normal form that approximates the original system. When the functions k1(x3) and k2(x3) are

known, the condition for linearizibility given by Equation (7) provides a measure of the departure

of this approximation from the original model that is, by construction, invariant under state-

feedback and state-space transformations. These invariant obstructions to linearizibility provide

geometric outputs for this class of nonisothermal CSTRs.
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5. A Necessary and Sufficient Condition for Dynamic Feedback Linearization of Control-

Affine Systems

A comprehensive framework for the problem of dynamic feedback linearizability of

control-affine systems was first proposed by Charlet et al. (1989, 1991). Using a standard Lie-

algebraic differential geometric framework, necessary conditions and sufficient conditions were

obtained. Other differential geometric techniques based on exterior calculus have also been used

to study this problem. Shadwick (1991) demonstrated the application of Cartan prolongations to

the problem of dynamic feedback linearization in single input systems. Sluis (1993) also

considered the implication of Cartan’s ideas for the problem of dynamic feedback linearization

and developed a necessary condition for dynamic feedback linearization. 

There have been a number of research efforts aimed at extending and generalizing the

framework of Charlet et al. (1989, 1991). Among the most useful generalizations is the concept

of differential flatness introduced by Fliess et al. (1992, 1994a, 1994b). The close relationship

between flatness and dynamic feedback linearization has been established by Rouchon (1994) and

Martin (1993) who also emphasized the importance of differential geometric techniques based on

the ideas of Cartan employed by Gardner and Shadwick (1992), Martin (1993) and Shadwick

(1990). 

Aranda-Bricaire et al. (1993, 1995) have recently developed a linear algebraic framework

for the study of dynamic feedback linearization for control affine systems. In their approach, an

infinitesimal Brunovsky form is identified which generalizes the Brunovsky canonical forms to

dynamically feedback linearizable systems. It is shown that, as in the GS algorithm, dynamic

linearizability requires the existence of exact differential forms. 
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In this section, a necessary and sufficient condition for dynamic feedback linearizability

of control-affine nonlinear systems by endogenous feedback is presented. The conditions extend

the approach considered by Shadwick (1990) to multi-input systems. They are based on a

modified derived flag of a Pfaffian system associated with a control system which takes into

account the presence of a precompensator. Similar to the results of Gardner and Shadwick

(1992), it is shown that the generators associated with this modified derived flag must satisfy a

number of congruences. The congruences ensure that the conditions stated by Gardner and

Shadwick (1992) are satisfied for the prolongated system, and thus provide an algorithm to

calculate the required feedback and state space transformations via the Gardner and Shadwick

algorithm (1992). As in Gardner and Shadwick (1992), a tower structure is identified with

respect to a set of indices corresponding to the infinitesimal Brunovsky form of Aranda-Bricaire

et al. (1995). 

Furthermore, using these conditions, a bound related to the extent of precompensation of

each input channel is identified, and it is shown how linearizing outputs can be obtained by

studying the derived flag of the Pfaffian system associated with a nonlinear system. 

The development proceeds as follows. Preliminary considerations related to feedback

linearizability of nonlinear systems are presented in Section 5.1. The conditions for dynamic

feedback linearizability are presented in Section 5.2. Examples are presented in Section 5.3.

5.1. Preliminary Considerations

Consider a smooth nonlinear system of the form

where x∈ N, u∈ P. The problem of dynamic feedback linearization of systems of this form in the

(8)
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sense of Charlet et al. (1989, 1991) is now considered. The existence of a regular dynamic

precompensator

is sought where v∈ m and z∈ q, along with a nonlinear state transformation

(9)

such that the combined system

(10)

is equivalent to a controllable linear system 

(11)

This system can be put in Brunovsky canonical form by a static state feedback and a linear

invertible transformation y=Tξ such that

where ν1, ν2, ..., νM are the controllability indices of the extended system.

(12)

The Pfaffian system associated with (11) is given by
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or

(13)

in terms of generators where

for 1≤i≤N, and

for N+1≤i≤N+q.

Following the approach of Gardner and Shadwick (1992), feedback linearizability of the

extended system implies the existence of a set of generators which fulfil the congruences

where 1≤i≤mj, mj=dim{Σ(j)/Σ(j+1)}, 1≤j≤ν1 and

(14)

Σ(j) is the jth derived system of Σ as defined in Section 3.

(15)

If we consider dynamic feedback linearizability in the sense of Charlet et al. (1991), we

see that the Pfaffian system associated with system (11) is equivalent to the Pfaffian system

Σ={S,P} where
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and

(16)

Denote the set of integers {α1, α2, ..., αp} as the degree of precompensation of the system. Other

(17)

types of precompensators have been discussed in the literature. Sluis (1993) considered a class

of precompensators in which the prolongated channels u1, ..., uP are possibly taken as state-

feedback transformations of the original variables. This provides a relaxation of the conditions

stated by Charlet et al. (1991). In the most general case, the coordinates z of the

precompensators are functions of x, u, u(1), ..., u(α), where α is finite. This approach is associated

with the notion of differential flatness Fliess et al. (1992). 

It is clear that, for any type of precompensator, the resulting Pfaffian system Σ must

always be equivalent to the Pfaffian system associated with (12), and the indices {α1,..., αP} and

{ν1, ..., νp} must always satisfy α1+...+αp=q and ν1+...+νP=N+q. We now consider the

equivalence of Pfaffian systems of the form (16), (17) to linear controllable forms. In particular,

we analyze conditions that describe the geometrical properties of a nonlinear system required for

feedback linearizability of the extended system (16), (17).

5.2 Conditions for dynamic feedback linearizability

In this section, geometric conditions for dynamic feedback linearizability of nonlinear

control systems are presented. First, a filtering of the Pfaffian system associated with a nonlinear

system which takes into account the presence of prolongated input channels is defined.
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Definition 1

Consider a control-affine system with N states and P inputs and a precompensator with

indices {α1, ..., αp}, α1≥...≥αp, with multiplicities {s1, ..., sm} and corresponding indices {k1, ...,

k1, ..., km, ..., km} (k1=αP, ..., km=α1). As in (16), let S be the Pfaffian system associated with

the nonlinear system. The first derived system associated with the precompensator is given by

the set of forms which satisfy

The second derived system associated with the precompensator is given by the set of forms, w(1),

which satisfy

or

Generally, we write the following defining relationship for the derived systems associated with

the precompensator:

for 1≤j≤ki+1-ki, 1≤i≤m-1. If there exists a number Q for which w(Q+1)=w(Q), it is called the derived

length associated with the precompensator.

Note that for this class of systems, this derived flag is invariant under feedback and state

space transformations. It does, however, depend on the choice of precompensator and may

therefore be subject to the presence of differential algebraic constraints.
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Note also that this filtering of the Pfaffian system associated with the nonlinear system

(8) relates to a more general setting. One can easily see that the linear constraints imposed by

the differential forms dui given in the definition can be replaced by nonlinear algebraic constraints

dzi, 1≤i≤q, where zi are functions of x and u. 

In what follows, conditions based on the derived flag associated with a precompensator

are presented. They are shown to be necessary and sufficient conditions for dynamic feedback

linearizability in the sense of Sluis (1993). First it is shown that the possible sets of indices

which are applicable for dynamic feedback linearizability are restricted.

Lemma 1:

Consider a control-affine system with N states and P inputs and define a precompensator

by ordering the inputs {u1, ..., up} according to the indices {k1, ..., km} with multiplicities {s1, ...,

sm} such that km≥...≥k1. If the system is dynamic feedback linearizable in the sense of Sluis

(1993), then the class of admissible precompensators is defined by 

Proof:

Consider the Pfaffian system associated with (16), (17),

which contains N+q generators. The first derived system is generated by

Inductively, the (k1)-th derived system is given by
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and

At this point, s1 of the input channels are not precompensated. Exterior differentiation of this set

of generators yields s2+...+sm generators from the precompensated channels which are necessarily

non-zero modulo this derived system. This leaves s1 generators which must be removed from the

Pfaffian system associated with the original system. Fulfilment of the congruences (14) for the

extended system first implies that there exists a set, w(1), of N-s1 generators which are such that

This is clearly equivalent to

which also implies that the set of generators w(1) forms the first derived system associated with

the precompensator. The system can always be feedback transformed to 

If we write the original Pfaffian system as
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feedback linearizability of the prolongated system requires that these generators fulfil

This is equivalent to the statement

which are simply the congruences expressed in terms of the derived flag associated with the

precompensator. The derived system 

is obtained. Similarly, the next derived system implies the existence of a set of N-s1-s1

generators, w(2), which are such that

Again rewriting the generators such that

the congruences to be fulfilled can be written as
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The next derived system is generated by 

Proceeding further, it is found, by induction, that 

and

As above, we find that s1+s2 input channels are not precompensated. The existence of a set of

N-(k2-k1)s1-s2 generators,

is required. Congruences (14) imply that the generators can be re-written as

such that
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This yields

Finally, the derived system

is obtained by induction. For the next step, feedback linearizability implies the existence of a set

of N-(k2-k1)s1-...-(km-km-1)(s1+...+sm-1) generators which satisfy

and, consequently,

As above, the set of generators 

is obtained. Fulfilment of the congruences (14) for the extended system implies that

193



Finally, the derived system is 

which must contain N-(k2-k1)s1-...-(km-km-1)(s1+...+sm-1) generators. 

It is obviously necessary that (k2-k1)s1-...-(km-km-1)(s1+...+sm-1)<N; otherwise, some of the

required linearizing outputs will be directly identified with certain input channels. 

It possible to refine the bounds on the set of possible precompensators. First consider the

situation where the precompensator required for dynamic feedback linearization is such that N-

(k2-k1)s1-...-(km-km-1)(s1+...+sm-1)≤P. Since feedback linearizability implies that the derived flag

stabilizes at this point, it follows that the class of admissible precompensators is described by

This completes the proof.

The bounds on the possible compensators can be improved by studying the derived flag

of the original system a priori. Assume that there is a certain number,  ≤P, of generators {ω1
1,

..., ω 
1} belonging to the kth derived system of the Pfaffian system associated with the nonlinear

system which fulfil congruences of the form

such that
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and, finally,

The Pfaffian system {ω1
1, ..., ω1

k+1, ..., ω 
1, ..., ω 

k+1, ..., ωP
1, ..., ωP

k}=w(km-k1) forms a subsystem

of the original system. By construction, it follows that these congruences must also be observed

for the derived system associated with a precompensator. Consequently, for every k≥0, the class

of precompensators is defined by

 Finally, since the conditions imply that the extended system with the precompensator

(18)

defined by the set of indices {α1, ..., αP} fulfils the feedback linearization conditions (14) for the

extended system, it is possible, by the GS algorithm, to find linearizing transformations which

transform the congruences to equalities. 

 Lemma 1 indicates that a dynamic feedback linearizable system has a filtering of the

derived flag associated with a precompensator of the form

containing {N-s1, ..., N-(k2-k1)s1, N-(k2-k1)s1-(s1+s2), ..., N-(k2-k1)s1-(k3-k2)(s1+s2), ..., N-(k2-k1)s1-

(19)

(k3-k2)(s1+s2)-...-(km-km-1)(s1+...+sm-1), .., N-(k2-k1)s1-(k3-k2)(s1+s2)-...-(km-km-1)(s1+...+sm-1)-(k)P} or,

similarly, {N-s1, ..., N-(k2-k1)s1, ..., N-(k2-k1)s1-(k3-k2)s2, ..., N-(k2-1)s1-...-(km-km-1)sm-1, ..., N-(k2-

k1+k)s1-...-(km-km-1+k)sm-1-(k)sm} generators. Depending on the number of generators,  ,

remaining in w(km-k1+k+1), we require that either 
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N-(k2-k1+k)s1-...-(ki+1-ki+k)si-(ki-ki-1+k+1)si-1-...-(km-km-1+1)sm-1-(k+1)sm=0 if  <P

or 

N-(k2-k1+k+1)s1-...-(km-km-1+k+1)sm-1-(k+1)sm=0 if  =P.

Define P integers, νi, 1≤i≤P as

such that Σiνi=N. Then a set of P integers is obtained with multiplicities {sm, ..., s1} which act

(20)

as generalized Kronecker indices of the nonlinear system. 

The generators of each successive derived system of the derived flag associated with the

precompensator are such that they fulfil the congruences of the GS algorithm for the prolongated

Pfaffian system. Lemma 1 also establishes the correspondence between the fulfilment of these

congruences and the fulfilment of the congruences related to the derived flag associated with a

precompensator. As shown in the proof of Lemma 1, these congruences take the form

for 1≤j≤ki+1-ki, 1≤i≤m-1 and

(21)
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 for 1≤p≤δ, where the matrices K( ) are such that

(22)

and

Using the generalized Kronecker indices obtained above, we can re-express these conditions in

a more generic fashion. By analogy to the GS algorithm, the generalized Kronecker indices give

the following set of generators of the Pfaffian system associated with the original system:

The last set of generators of the filtering is defined as

Fulfilment of the congruences (22) can be expressed as

for 1≤ i≤ . As a result of (22), the set 

is obtained and, inductively,
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Only the first sm channels depend on u1, ..., usm
, and the fulfilment of the congruences (21) can

be expressed as

and

Proceeding km-km-1 steps, 

or

Again, the congruences (21) require the existence of P-sm-sm-1 generators such that

and
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Inductively, the set of generators 

is obtained. This set of generators, ωi
j, is adapted to the derived flag associated with the

(23)

precompensator. Using these generators, the conditions for dynamic feedback linearizability can

be stated as follows. We first require the following definition.

As in Gardner and Shadwick (1992), we identify a tower structure associated with the

generalized controllability indices of the form

where the elements in the top row are generators of S. Generators in the second row generate

w(1) and those in each successive row generate derived systems of the derived flag associated with

a precompensator. Similar to Gardner and Shadwick, the set of integers 
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is defined which gives the number of towers with at least j+1 rows for 1≤j≤km-k1+k+1. We now

state the following theorem:

Theorem 2

A nonlinear control-affine system is dynamic feedback linearizable in the sense of Sluis

(1993) if and only if there exists a feedback transformation v=α(x,u) and a set of generators

adapted to the derived flag (19) associated with a precompensator which satisfy the following

conditions:

i) the precompensator, P, belongs to the class described in Lemma 1,

ii) its generators satisfy the congruences

where mj=dim(w(j)/w(j+1)), q=P-s1-...-sp, kp-1-k1+1≤j≤kp-k1 when 1≤p<m and km-k1+1≤j≤km-k1+k+1

(24)

when p=m. 

Proof:

The conditions for dynamic feedback linearizability given in terms of the derived flag

associated with the precompensator are closely related to the conditions of the GS algorithm. The

construction is also very similar. As in Gardner and Shadwick (1992), a feedback invariant

filtering of the Pfaffian system associated with a nonlinear system is considered, and the

conditions for dynamic feedback linearizability are expressed in terms of congruences. The state-
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space and feedback transformations required are obtained by transforming these congruences to

equalities.

The main difference is that the construction implies the existence of a precompensator of

the class described in Lemma 1.

Assume that the system is dynamic feedback linearizable. This naturally implies feedback

linearizability of the extended system ∑=[S,P], and the generators of the derived systems of the

Pfaffian associated with the extended system must fulfil the congruences (14) of the GS

algorithm. Let the precompensator be represented by the indices {k1, ..., km} with multiplicities

{s1, ..., sm}, m≤P, ∑isi=P. As shown in the proof of Lemma 1, fulfilment of congruences (14) is

equivalent to fulfilment of congruences (24) for the derived flag associated with the

precompensator. Fulfilment of these congruences therefore constitutes a necessary condition for

dynamic feedback linearizability. 

The sufficiency of this condition follows from the fact that, conversely, the fulfilment of

the congruences (24) also corresponds to the fulfilment of the congruences (14) for the

prolongated system. This can be seen directly by replacing the terms dv1,..., dvq in Equation (24)

by the generators associated with the prolongations of each input channel, given by

for kp-1-k1+1≤j≤kp-k1, q=P-s1-...-sp when 1≤p<m and km-k1+1≤j≤km-k1+k+1 when p=m. From the

fulfilment of congruences (14) it is therefore possible to construct the required state-space and

feedback transformations by application of the GS algorithm to the tower structure of the

prolongated system.  

Theorem 2 states that it is possible to construct precompensators from prolongations of
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state-feedback transformations of the original system by studying the derived structure given in

Definition 1. The conditions imposed on this structure by the GS linearizability conditions of the

prolongated system provide a method to compute these feedback transformations. They also

provides a necessary and sufficient condition for dynamic feedback linearizability by endogenous

feedback.

In the general case, we consider dynamic feedback linearizability by prolongations of

dynamic state feedback transformations of the form v=α(x,u,u(1), ..., u(β+1)), where v∈ p, u(β)

denotes the set {u1
(β1), ..., up

(βp)} and {β1, ..., βP} is the degree of precompensation of ui. In

order to construct these feedback transformations we must consider fulfilment of Theorem 2

subject to the presence of a linear precompensator. That is, we apply the conditions of Theorem

2 to the Pfaffian system

subject to the precompensator

with degree of precompensation {γ1, ..., γP}. Using this approach, the problem of dynamic

feedback linearization can be solved by constructing the derived systems of S  associated the

precompensator P  such that the conditions of Theorem 2 are met.

By construction, the degree of precompensation {α1, ..., αP} of the resulting

precompensator must be such that Σiαi=Σiβi+Σiγi=q. Consequently, the dynamic feedback

transformation must also be such that
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The restrictions of the class of precompensators described in Lemma 1 are still applicable

to the general case. To show this, consider an ordering of the inputs {v1, ..., vP} with degree of

precompensation {γ1, ..., γP}, γ1≤...≤γP, with multiplicities {s1, ..., sm} and corresponding indices

{k1, ..., km}. From Lemma 1, we know that the class of admissible precompensators is given by

Since the system S  is obtained by prolongation of the original system inputs, we know that its

derived flag contains at least one generator that fulfils the required congruences. This generator

can always be obtained from the prolongation of the input channel with the highest degree of

precompensation and must therefore be such that k≥maxiβi. The resulting class of

precompensators can therefore be restricted to

or, equivalently, to

This identity, along with the identity Σiαi=Σiβi+Σiγi, defines the class of admissible

precompensators.

We can now state the following theorem:
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Theorem 3

A nonlinear control-affine system is dynamic feedback linearizable if and only if there

exists a dynamic feedback transformation v=α(x,u, ..., u(β+1)) and a set of generators from the

ideal generated by the Pfaffian 

adapted to the derived flag (19) associated with a precompensator which satisfies the following

conditions:

i) the precompensator, P, belongs to the class described in Lemma 1

ii) its generators satisfy the congruences

where mj=dim(w(j)/w(j+1)), q=P-s1-...-sp, kp-1-k1+1≤j≤kp-k1 when 1≤p<m and km-k1+1≤j≤km-k1+k+1

(24)

when p=m. 

Proof: 

The proof is a direct consequence of Theorem 2. 

In the next section, we demonstrate the application of Theorem 2 to three examples.
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5.3 Examples

Example 5.2 Counter-example of Charlet et al. (1989, 1991)

Consider the counter-example of Charlet et al. (1989, 1991)

It is easily verified that this system is not feedback linearizable and that it does not fulfil the

sufficient conditions of Charlet et al. (1989, 1991). This system does, however, fulfil the

conditions of Theorem 2. 

The Pfaffian system associated with this system is given by

Let us first construct the class of possible compensators for systems with 4 states and 2 inputs.

This system has no Pfaffian subsystem which fulfils the congruences (14), and so we let k=0.

From Lemma 1,

or (k2-k1)s1=2 or 3. Since s1=1, k2-k1=2 or 3. 

Upon relabelling the inputs to {v1, v2}={u2,u1}, the precompensator can be defined by {α1,
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α2}={3, 0}, such that {s1, s2}={1, 1} and {k1, k2}={0, 3}.

We now construct the derived flag associated with this precompensator. From

we obtain the first derived system as w(1)=[w1, w2, w4]. Proceeding, we obtain

Defining w5=v1w2-w1, we see that

and, consequently, the second derived system is generated by w(2)=[w4, w5]. For the next step, 

such that w(3)=w4. This system fulfils the conditions of Theorem 2 and is therefore dynamic

feedback linearizable. To see this, let ω1
1=w4. From (19), we have that ν1=1 and ν2=3.

Consequently, we let ω2
1=w5. By exterior differentiation, we get 

and
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According Theorem 2, the system is dynamic feedback linearizable and is therefore equivalent

to a linear controllable system. Application of the GS algorithm to the extended system shows

that the extended system is linearizable with controllability indices {ν1, ν2}={4, 3} and linearizing

output functions

Example 5.3 Dynamic feedback linearization of a system without drift

Consider the simple system 

It can be easily verified that this system is not feedback linearizable. We now verify the dynamic

feedback linearizability of this system. As before, we construct the class of possible

precompensators. By Lemma 1,

and, therefore, (k2-k1)s1=1 or 2. Taking s1=1, we obtain k2-k1=1 or 2. Let us consider the

precompensator {s1, s2}={1,1}, {k1, k2}={0,1}, where k2 corresponds to the u1 prolongation.

We now construct the derived flag associated with this precompensator. The first derived
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system is obtained from

Taking w4=x2
2w3-w1, we obtain the derived system associated with the precompensator w(1)=[w2,

w4]. This system fulfils the conditions of Theorem 2. By exterior differentiation, the following

generators of original Pfaffian system 

are obtained with generalized Kronecker indices {1,2}. 

By the GS algorithm, the prolongated system is feedback linearizable with linearizing

output functions

and Kronecker indices {2,2}.

Example 5.4 Dynamic feedback linearization in the sense of Sluis (1993)

To demonstrate the application of Theorem 2 to the more general precompensators

described by Sluis, we consider the following example
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Inspection of the derived flag of the Pfaffian system associated with this nonlinear system

indicates the existence of generators of the first derived system that fulfil the congruences of the

GS algorithm. We therefore let k=1. 

From Lemma 1,

or

This gives k2-k1=2 or 3.Let k2=2 and consider the feedback transformation v2=u1-x6
2, v1=u2 with

degree of precompensation {k1, k2}={0,2}. The Pfaffian associated with this nonlinear system

is given by

The first derived system associated with the precompensator is obtained from the structure
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equations:

Defining w7=cosx5w6+w2 and w8=sinx5w6-w4, it can be verified that

The structure equations of the first derived system are given by

Defining
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it can be verified that

The structure equations associated with the second derived system are given by

Finally,

This system fulfils the conditions of Theorem 2 and is therefore dynamic feedback linearizable.

The Kronecker indices of the precompensated system are ν1=ν2=4. The generalized Kronecker

indices for the original system given by (20) are {2,4}.
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6. Conclusions

In this chapter, the exact linearization problem of nonlinear control systems has been

considered, using the exterior calculus framework of the GS algorithm. Using a bioreactor model

as an example, it was shown how the GS algorithm can be used to derive state-space coordinate

transformations and feedback transformations which exactly linearize a nonlinear system.

Using a CSTR example, it was shown how the GS algorithm can be used to uncover

obstructions to the linearizibility of a nonlinear system. These obstructions are curvature-like

functions which are invariant under state-space and state feedback transformations. Since

elimination of these obstructions will provide an exactly linearizable control system, these

feedback invariant functions provide a natural choice of geometric outputs for the system. More

work is required to understand more completely the implications of these functions in controller

design.

The problem of exact linearization by dynamic state feedback and state space

transformation was also solved. A necessary and sufficient condition for the linearizibility of a

control system by dynamic feedback was found by adapting the linearizability conditions of the

GS algorithm to account for the presence of a precompensator. This condition provides an

algorithm which generalizes the GS algorithm. For systems that are linearizable by static state

feedback, the algorithm developed in this Chapter reduces to the GS algorithm. 
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Nomenclature

A N+q by N+q matrix

A Chemical species A

a Smooth function of x and z

ai Batch reactor parameters

B N+q by P matrix

B Chemical species B

b Smooth function of x and z

bi Batch reactor parameters

C Chemical species C

Ck(M) Space of functions with k continuous derivatives 

c Smooth function of x and z

c(s) Curve in M*

d Smooth function of x and z

d Exterior derivative

ei Basis vector of a vector space

f Smooth vector valued function of the drift vector field of a nonlinear system

I Pfaffian system

I(i) ith derived system of I

I Inhibitor concentration

K Field

K Saturation constant
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KI Inhibition constant

ki Degree of differentiation of input channel(s) with multiplicity si

ki(x3) Rate constant for reaction i

M Differentiable manifold

M* Differentiable manifold (=M× P× )

mj Number of towers with at least j+1 rows

N State space dimension

P Pfaffian system associated with a precompensator

P Input space dimension

p Maximum rate of product inhibition

S Pfaffian system associated with a nonlinear system

Sf Inlet substrate concentration

si Multiplicity of input channels with degree of differentiation ki

T N+q by N+q invertible matrix

TpM Tangent space to M at a point p

Tp
*M Cotangent space to M at a point p

t Time

Ui Open set on a manifold M

U Open coordinate neighbourhood on a manifold M

u Input variables

V Vector space

V* Co-vector (or dual) space
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v Feedback transformed input

vi Vector of a vector space V

W Vector space

w Set of generators from the derived flag of the Pfaffian system S

wi Generator from the set w

w Vector of the vector space W

x State variables

Yi Yield of biomass for cells i

y Linearizing output variables

z Variables associated with a precompensator

Greek Letters

α Element of a field K

αi Degree of differentiation of an input channel ui

β Element of a field K

γ Set of generators from a Pfaffian system I

γi Batch reactor parameters

∆ Distribution on M

ΛP(M) Space of p-vectors on M

η Set of differential one-forms

Θ Codistribution on M

µi Specific growth of cells i

µmaxi Maximum specific growth rate of cells i
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νi Generalized Kronecker indices

ξ In Section 2, set of differential one-forms

ξ In Section 5, extended state-space coordinates

Σ Pfaffian associated with an extended system

Σ(i) ith derived system of Σ

φ Vector valued function

φi ith element of φ

Ωp(M) Space of p-covectors on M

ω Set of differential one -forms and generators from a Pfaffian system

ωi ith element of ω

Symbols

∧ Wedge products

d Exterior derivative

 Space of real numbers

216



Chapter 6

Conclusions

The development of nonlinearity measures is of great interest in a number of areas of

chemical engineering, especially in modelling, optimization and control of chemical processes.

In the modelling and optimization of chemical processes, measurement of nonlinearity has

important influence in parameter estimation (Bates and Watts, 1988) and in system identification

(Nikolaou, 1993; Haber, 1985). The application of nonlinear measures in chemical process

control, primarily motivated by the need for alternative nonlinear controller design methods, is

recent (e.g., Ogunnaike et al., 1993; Stack and Doyle III, 1995; Nikolaou, 1993). The assessment

and compensation of nonlinearity is a complex problem that can be investigated using a wide

variety of approaches spanning many research areas such as differential geometrical control,

optimal control theory, system identification and statistical model development. This study

extends the ability to detect and measure nonlinearity in steady-state and dynamic systems.

The main result of this thesis is the development of a framework for the assessment of

nonlinearity in controlled processes. Assuming that the process can be represented by a twice

differentiable process map, the extent of nonlinearity is measured by evaluating the induced local

curvature of the process response. The magnitude of this curvature is assessed with respect to

an appropriately chosen scaling region. This approach provides an effective methodology for the

development of dimensionless curvature measures that can be used to characterize and quantify

the nonlinear behaviour of steady-state and dynamic controlled processes. 

In Chapter 2, the framework was applied to the assessment of steady-state process

nonlinearity. A root mean squared measure of the deviation of the process behaviour from its
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tangential approximation was proposed as a measure of nonlinearity. Using an orthogonal

decomposition, the contributions of the tangential and normal components of the nonlinear terms

to the nonlinearity measure were evaluated. It was demonstrated that the presence of tangential

nonlinearity requires a change of input coordinates. Normal nonlinearity indicates the need for

state-space and feedback transformations. The impact of steady-state curvature on controller

performance using a bioreactor example. Gains in optimal performance were realized by using

an input-output linearizing controller in comparison to two linear controllers (linear state-feedback

and PI). A simple quadratic gain PI controller was also shown to improve the performance of

the closed-loop process. 

This methodology provides a simple approach for analyzing nonlinear control processes.

It can be easily employed for preliminary process investigation using models that locally

approximate the steady-state locus. It also provides a procedure for the computation of coordinate

transformations that can be used in controller design to remove local effects of gain nonlinearity.

 Application of this framework in engineering practice requires a rigorous methodology for

evaluating nonlinearity from plant data. Although this has been an important consideration in the

scope of this thesis, additional research is still needed to develop an effective method. This

method should also include provisions for sampling properties to enable assessment with

statistical uncertainty.

The fundamental impact of nonlinearity on closed-loop steady-state process behaviour was

studied. Using classical differential geometrical tools, a set of second order identities related to

the invertibility of the nonlinear process were developed. Associated with these identities was

the decomposition of closed-loop nonlinearity into mismatch terms and compensation terms. Root
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mean squared measures of closed-loop nonlinearity were developed and it was demonstrated that

they could be used together with individual contributions of the identities to describe the

significance and sources of the nonlinear behaviour of a process. 

The second order identities were also used to provide a nonlinear extension of the relative

gain array (RGA). Their geometrical interpretation also provided a fundamental definition and

a new interpretation of the RGA. Application of the identities to the assessment of higher order

interaction was shown to be very similar to the analysis of the linear RGA. Higher interaction

tables were constructed to measure the contributions of the nonlinear terms to interaction in a

closed-loop process. Further work is required to understand the implications of these measures

of nonlinear interaction in controller design. 

The process map framework was also used to develop a general methodology for the

assessment of dynamic nonlinearity in controlled processes. Using an operator-based approach,

a measure of nonlinearity was developed for processes described by twice Fréchet differentiable

nonlinear operators. As in the steady-state case, the magnitude of the measure was measured

relative to regions of unit norm in the output space. Scaling of the output response signals was

provided by linear invertible operators that mapped regions of interest in the output signal space

to regions of unit Lp norm. 

A potential application of the measure of dynamic nonlinearity to chemical processes was

demonstrated. First and second order sensitivity equations of the output with respect to the inputs

were used to evaluate the nonlinearity measures for continuous and batch chemical processes.

The batch example was used to demonstrate how the measure can be used to evaluate the extent

of nonlinearity in a closed-loop process. By scaling the process output with respect to the
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controller operator, one obtains a measure of the extent of nonlinearity resulting from the

combination of process output and controller response. In the example presented, it was shown

that the mild nonlinearity of the process was increased by the presence of a linear PI controller

as a result of considerable input saturation in the closed-loop system. From this point of view,

the measure developed in this thesis is indeed a control-relevant measure (Stack and Doyle III,

1995). Through scaling, an appreciation of the process nonlinearity as seen from the controller,

is obtained. The use of this measure may provide considerable insight into the relationship

between linear controller performance and process nonlinearity. The measure can also

potentially be used to develop alternative descriptions of process uncertainty with implications

in robust controller design. Further work is needed to fully develop this approach. 

In Chapter 5 of the thesis, the linearizability of control systems was studied. Analysis

focused on exact linearization of control systems by state-feedback and coordinate

transformations. The main tool employed was the linearization algorithm developed by Gardner

and Shadwick (1992), called the GS algorithm. This algorithm, based on an exterior calculus

setting, is an algebraically and computationally attractive way of solving exact feedback

linearization problems for nonlinear systems. Potential extensions and applications of this

algorithm were examined in this thesis.

It was shown that the GS algorithm can be used to characterize the set of linearizable

systems for different classes of process models. Using this algorithm to uncover obstructions to

linearizability of classes of models provides a systematic way of choosing appropriate model

forms in process model formulation. Since the vanishing of these quantities provides a sufficient

condition for linearizability, selection of model forms which satisfy this condition may lead to
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simplification of controller design procedures based on feedback linearization for particular

classes of processes.

  Extension of this method to dynamic feedback linearization of control-affine processes

was also considered. A necessary and sufficient condition for dynamic feedback linearizability

of nonlinear control affine systems was developed. The linearizability conditions are based on

a filtering of the Pfaffian system associated with a nonlinear system that take account of the

presence of a specific precompensator. In this setting, a precompensator can be expressed by a

set of nonlinear algebraic constraints that impact the structure of the derived flag of the system.

This approach can be used to define all kinds of dynamic compensator. As demonstrated in this

thesis, linear and nonlinear precompensators can be treated as well fully dynamic feedback

transformations. The GS algorithm was used to show how one can restrict the class of suitable

precompensators and design nonlinear precompensators. The conditions derived in Chapter 5

complement the sufficient conditions obtained by Charlet et al. (1989) and the necessary

conditions of Sluis (1993). The formulation presented in this thesis provides a very general

description of the problem of exact linearization that is closely related to the concept of

differential flatness. This formulation may provide enhanced insight into the understanding of

the geometric structure of nonlinear control system.
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