Aspen Engineering Suite 2004.1

Aspen Plus 2004.1

Getting Started Modeling Petroleum Processes

Who Should Read this Guide

This guide is suitable for Aspen Plus users who want to model petroleum processes. Users should be familiar with the procedures covered in *Aspen Plus Getting Started Building and Running a Process Model* before starting these examples.

Contents

11	NTRODUCING ASPEN PLUS	8
	Modeling Petroleum Processes with Aspen Plus	8
	Simulations in this Book	9
	Using Backup Files	9
1	BLENDING CRUDE AND PETROLEUM FRACTIONS	10
	Petroleum Process Flowsheet	
	Table 1.1: OIL-1 (API = 31.4) Table 1.2: OIL-2 (API = 34.8)	
	Starting Aspen Plus	
	To Start Aspen Plus	
	To Select the Template Option	
	To Specify the Application Type and Run Type	
	Specifying Title and Global Options	. 13
	Specifying Components	. 15
	Entering Assay Data	. 16
	Specify the Distillation Curve for OIL-1	. 16
	Specify the Light Ends Data for OIL-1	. 17
	Specify the API Gravity Data for OIL-1	
	Specify the Distillation Curve for OIL-2	. 19
	Specify the Light Ends Data for OIL-2	
	Specify the API Gravity Data for OIL-2	
	Blending the Oils	. 21
	Generating Pseudocomponents	. 22
	Running the Simulation	. 23
	Examining Results	. 23
	Plotting Distillation Curves	. 24
	To Locate the Curve Data for OIL-1	. 24
	To Plot the TBP Curve	. 25
	To Label This Curve for OIL-1	. 26
	To Plot the TBP Curve for OIL-2	
	To Add This Curve to the Plot Containing the Curve for OIL-1	. 27
	To Label This Curve for OIL-2	. 27
	To Plot the BLEND Curve	. 27

	To Add This Curve to the Plot	
	To Label This Curve for MIXOIL	
	To Combine Y-Axes	
	To Rename the Plot	
	Creating a Backup File	. 29
	Exiting Aspen Plus	. 29
2	ADDING A PREFLASH TOWER	31
	Preflash Tower Flowsheet	. 32
	Starting Aspen Plus	. 33
	Opening an Existing Run	
	Opening the Assay Data Analysis Simulation Created in Chapter 1	
	If Your Saved File blend.bkp Does Not Appear	
	If You Did Not Create blend.bkp	. 33
	Saving a Run Under a New Name	. 34
	Changing the Run Type	. 34
	Turning Off Automatic Naming of Blocks and Streams	. 35
	Selecting a Distillation Model	
	Defining the Graphical Simulation Flowsheet	
	To Choose a Different Icon for the Model	
	Place the Preflash Tower on the Flowsheet	. 37
	Place the Streams on the Flowsheet	. 37
	Specifying Properties	. 38
	To Select the BK10 Property Method	. 38
	Entering Stream Data	. 39
	Specifying the Preflash Unit	. 40
	Specify Column Configuration	. 40
	Specify Stream Locations	
	Specify Column Pressure Profile	
	Specify Condenser Temperature	
	Specify Furnace Configuration	
	-	
	Modifying Pseudocomponents	
	Running the Simulation	
	Examining Simulation Results	
	To Examine Summary Results To Examine Distillate Rate Results	
	To Examine Distillate Rate Results	
	Plotting Results	
	riulliin results	. 4/

	To Plot the Temperature Profile	. 47
	To Plot TBP Curves for PREFLASH Feed and Product Streams	. 48
	To Select CDU-FEED and MIXCRUDE as Dependent Variables	. 48
	Exiting Aspen Plus	. 49
3	ADDING AN ATMOSPHERIC CRUDE DISTILLATION UNIT	50
	Atmospheric Crude Distillation Unit Flowsheet	. 51
	Starting Aspen Plus	. 53
	Opening an Existing Run	. 53
	If You Saved the Preflash Flowsheet Simulation Created in Chapter 2	
	If Your Saved File preflash.bkp Does Not Appear	. 53
	Opening the Backup File preflash.bkp in the Examples Folder	. 53
	Saving a Run Under a New Name	
	To Update the Title for This Run	
	Adding the Crude Distillation Unit to the Flowsheet	
	To Make Space for the New Tower	
	To Place and Connect the Distillation Unit on the Flowsheet	
	To Connect to the Preflash Block Already on the Flowsheet To Connect Other Streams	
	Specifying Steam Feeds to the Tower	
	Specifying the Atmospheric Tower	
	Specify the Main Column	
	Specify the Side Strippers	
	Specify the Pumparounds	
	Enter Design Specifications	
	Running the Simulation	. 68
	Examining Simulation Results	. 68
	To Examine Furnace Duty Results	. 68
	To Examine Pumparound Return Temperatures	. 69
	Examining the Product Streams	. 70
	To Review the Stream Results for the Crude Tower Products	
	To Examine the Results for the Five Product Streams	
	To Examine the 5% and 95% Cutpoints and Product Yields	
	Plotting Distillation Curves	
	To Plot the Curves for the Product Streams	
	Exiting Aspen Plus	. 73
4	ADDING A VACUUM UNIT	74
	Vacuum Unit Flowsheet	. 75

	Starting Aspen Plus	. 76
	Opening an Existing Run	
	If Your Saved File crude.bkp Does Not Appear	
	Opening the Backup File preflash.bkp in the Examples Folder	
	Saving a Run Under a New Name	
	To Update the Title for This Run	
	Adding a Vacuum Tower to the Flowsheet	. 77
	To Make Space for the New Tower	
	To Place and Connect the Distillation Unit on the Flowsheet	
	To Connect the Distillation Unit to the Crude Block	
	Specifying the Steam Feed	. 79
	Specifying the Vacuum Unit	. 80
	Specify the Basic Column Configuration	. 80
	Specify the Pumparounds	. 82
	Enter Design Specification	84
	Running the Simulation	85
	Examining Simulation Results	85
	To Examine Column Profiles	. 86
	To Examine Pumparound Results	. 86
	Plotting Distillation Curves	. 87
	To Plot TBP Curves	87
	Examining Stream Results	. 88
	Exiting Aspen Plus	89
5	DISPLAYING PETROLEUM STREAM PROPERTIES	90
	Starting Aspen Plus	. 91
	Opening an Existing Run	91
	If You Saved the Simulation Created in Chapter 4	91
	If Your Saved File vacuum.bkp Does Not Appear	
	Opening the Backup File preflash.bkp in the Examples Folder	91
	Saving a Run Under a New Name	. 92
	To Update the Title for This Run	. 92
	Adding Sulfur Content Data	92
	To Enter Sulfur Content for OIL-1	
	To Enter Sulfur Content for OIL-2	. 94
	Selecting Options for the Sulfur Property	. 94
	Adding the Sulfur Property	95
	To Create the Property Set	95

To Add the Property Set to the Stream Property List	97
Running the Simulation	98
Examining Results	98
Leaving Aspen Plus	99
6 CONNECTING TO THE ASPEN PLUS SIMULATION ENGI	NE100
GENERAL INFORMATION	101
GENERAL INFORMATION	
Copyright	
	101
Copyright	101
CopyrightRelated Documentation	101 102 103

Introducing Aspen Plus

Aspen Plus is a powerful tool that allows you to easily model petroleum processes. Use this book to learn the basics of how to build and run a process model of a simplified crude fractionation train. After completing the five simulations in this guide, you will be able to perform basic simulations of petroleum processes.

This manual assumes you have:

- Installed the Aspen Plus simulation engine and user interface.
- Completed the tutorial simulations in *Getting Started Building and Running a Process Model*, so that you are familiar with the basics of how to use Aspen Plus.

Modeling Petroleum Processes with Aspen Plus

Petroleum refining processes are highly complex and integrated. They have unique characteristics that set them apart from other chemical processes, including:

- Process feedstocks, which consist of complex and wide-boiling mixtures of hydrocarbons, whose exact compositions are unknown.
- Highly-coupled and heat-integrated fractionation units, used to separate feedstocks into a variety of products with different specifications.
- Open steam and cooling water for stripping and heat recovery, giving rise to the presence of two liquid phases throughout the refining process.
- Degree of separation specified in terms of distillation temperatures, gaps, overlaps, and other properties.
- Product specifications given in terms of stream properties such as flash point, pour point, sulfur content, metal contents, and octane number.

Aspen Plus provides special features to handle the unique characteristics of petroleum refining applications. With Aspen Plus, develop a simulation model of your petroleum process, then use this model to study alternative modes of operation or optimize the existing operation.

This manual guides you through some of the key petroleum features in Aspen Plus. You can use these features with the wide range of other Aspen Plus capabilities, such as estimating and regressing physical properties, fitting plant data to simulation models, and optimizing your process.

Simulations in this Book

This book guides you in building a flowsheet that describes a crude fractionation train in a petroleum refinery. Each chapter contains a tutorial simulation that builds one block of the flowsheet. Complete the entire flowsheet by following each chapter in succession.

This book includes the following hands-on simulations:

Follow the steps in this chapter	To learn how to
1 Blending Crude and Petroleum Fractions	Define components, enter assay data for two crude oils, and blend the crude oils into a single process feed.
2 Adding a Preflash Tower	Model a preflash tower.
3 Adding an Atmospheric Crude Distillation Unit	Model a crude atmospheric unit.
4 Adding a Vacuum Unit	Model a vacuum unit.
5 Displaying Petroleum Properties	Use petroleum properties with your simulation model to obtain information about the process.

Using Backup Files

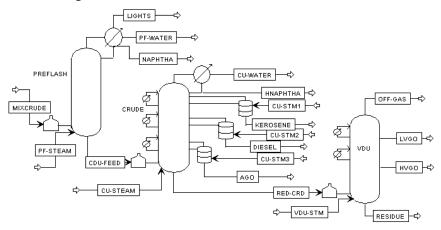
We recommend that you perform all simulations sequentially in order to build the entire model. However, skip chapters and work on the simulation of your choice, using backup files containing simulation data.

Aspen Plus provides backup files containing all problem specifications and results for each tutorial simulation. If you skip a simulation, you might need to load a backup file to supply missing data. The chapter describes how to do this. If you perform each tutorial simulation in order, use backup files to compare your results.

1 Blending Crude and Petroleum Fractions

This tutorial contains five simulations to guide you through the process of building a model of a crude fractionation train typically found in a petroleum refinery.

In this first simulation, begin building the model by defining the crude feed to the process, using the Aspen Plus Assay Data Analysis Run Type. Use this run type to analyze petroleum crudes before running a flowsheet simulation.


In this simulation you will:

- Define components.
- Enter assay data for two crude oils.
- Blend the crude oils to produce the crude feed.
- Generate pseudocomponents for the blend.
- Run the Assay Data Analysis calculations.
- Examine results.

Allow about 45 minutes to complete this simulation.

Petroleum Process Flowsheet

The following illustration shows the petroleum process flowsheet you will work with throughout this book:

Problem Definition: Crude Fractionation Train

The process consists of the following steps:

- 1 The process feed (MIXCRUDE), consisting of a blend of two crude oils (OIL-1 and OIL-2; see Tables 1.1 and 1.2), goes to the preflash furnace.
- **2** The preflash tower (PREFLASH) removes light gases and some naphtha from the partially vaporized feed.
- **3** Preflash bottoms (CDU-FEED) are further processed in the crude distillation unit (CDU). The CDU consists of a crude unit furnace and an atmospheric tower. First, the crude unit furnace partially vaporizes the bottoms from the preflash. Then the atmospheric tower separates the preflash bottoms into five cuts:
 - Heavy naphtha (HNAPHTHA)
 - Kerosene (KEROSENE)
 - Diesel (DIESEL)
 - Atmospheric gas oil (AGO)
 - Reduced crude (RED-CRD)
- **4** Reduced crude goes to the vacuum distillation unit (VDU) for further fractionation under vacuum conditions. The VDU consists of a vacuum unit furnace and vacuum tower. The vacuum tower produces the following additional cuts:
 - Overhead (OFF-GAS)
 - Light vacuum gas oil (LVGO)
 - Heavy vacuum gas oil (HVGO)
 - Asphaltic residue (RESIDUE)

Table 1.1: OIL-1 (API = 31.4)

		Light Ends Analysis		API Gravity	Curve
		Component	Liq. Vol Frac.	Mid. Vol. %	Gravity
6.8	130.0	Methane	0.001	5.0	90.0
10.0	180.0	Ethane	0.0015	10.0	68.0
30.0	418.0	Propane	0.009	15.0	59.7
50.0	650.0	Isobutane	0.004	20.0	52.0
62.0	800.0	N-Butane	0.016	30.0	42.0
70.0	903.0	2-Methyl-Butane	0.012	40.0	35.0
76.0	1000.0	N-Pentane	0.017	45.0	32.0
90.0	1255.0			50.0	28.5
				60.0	23.0
				70.0	18.0
				80.0	13.5

Table 1.2: OIL-2 (API = 34.8)

TBP Distillation		Light Ends Analysis		API Gravity	Curve
Liq. Vol. %	Temp. (F)	Component	Liq. Vol. Frac.	Mid. Vol. %	Gravity
6.5	120.0	Water	0.001	2.0	150.0
10.0	200.0	Methane	0.002	5.0	95.0
20.0	300.0	Ethane	0.005	10.0	65.0
30.0	400.0	Propane	0.005	20.0	45.0
40.0	470.0	Isobutane	0.01	30.0	40.0
50.0	550.0	N-Butane	0.01	40.0	38.0
60.0	650.0	2-Methyl- Butane	0.005	50.0	33.0
70.0	750.0	N-Pentane	0.025	60.0	30.0
80.0	850.0			70.0	25.0
90.0	1100.0			80.0	20.0
95.0	1300.0			90.0	15.0
98.0	1475.0			95.0	10.0
100.0	1670.0			98.0	5.0

Starting Aspen Plus

To Start Aspen Plus

- 1 From your desktop, select **Start** and then select **Programs**.
- 2 Select AspenTech | Aspen Engineering Suite | Aspen Plus 2004.1 | Aspen Plus User Interface.

The Aspen Plus Startup dialog box appears. Aspen Plus displays a dialog box whenever you must enter information or make a selection before proceeding. In this simulation, use an **Aspen Plus** template.

To Select the Template Option

3 Select the **Template** option and click **OK**.

The **New** dialog box appears.

Specify the Application Type and the Run Type for the new run. **Aspen Plus** uses the Application Type you choose to automatically set various defaults appropriate to your application. For this simulation, use the Petroleum with English Units template and the Assay Data Analysis Run Type.

To Specify the Application Type and **Run Type**

- 4 Select the **Petroleum with English Units** template.
- **5** Click in the Run Type field to display the available run types.
- 6 Select **Assay Data Analysis** to specify an Assay Data Analysis/PCS run.
- 7 Click **OK** to apply these options.

Note: If the Connect to Engine dialog box appears, see Chapter 6.

Wait a few seconds while Aspen Plus starts.

The Aspen Plus graphical workspace is shaded because you do not use a graphical simulation flowsheet in specifying an Assay Data Analysis run.

Use the Aspen Plus expert guidance Next function to take you to the next required input specification.

8 In the toolbar, click

The **Setup | Specifications | Global** sheet appears.

Specifying Title and Global Options

The Setup | Specifications | Global sheet displays the defaults Aspen Plus uses for other forms. Use this sheet to:

- Specify a title for your simulation.
- Review the global settings that were set when you selected the Petroleum with English Units application type.

Note: The run type Assay Data Analysis is already selected. You do not need to change this field.

It is always good practice to describe your simulation by entering a title for the simulation.

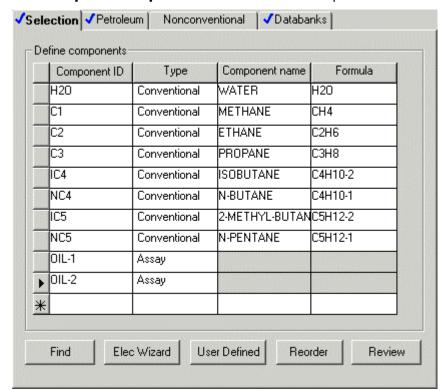
- **1** In the Title field, enter *Getting Started With Petroleum -Simulation 1*.
 - Since you chose the Petroleum with English Units application type when you started this simulation, Aspen Plus has set the following global defaults for input specifications:
 - ENGPETRO units (English Engineering units appropriate for Petroleum applications, such as volume flow in barrels per day)
 - StdVol flow basis for all flow inputs
 - Free-water calculations
 - The sheet is complete, and all the defaults set by the Petroleum with English Units application type are appropriate for this simulation:

2 Click to continue.

The **Components | Specifications | Selection** sheet appears.

Specifying Components

Use the **Components Specifications Selection** sheet to specify components for the simulation.


1 Enter the following component IDs and component names:

Component ID	Component Name
H2O	WATER
C1	METHANE
C2	ETHANE
C3	PROPANE
IC4	ISOBUTANE
NC4	N-BUTANE
IC5	2-METHYL-BUTANE
NC5	N-PENTANE

You will also define two crude assays, OIL-1 and OIL-2.

- 2 In the next Component ID field, enter OIL-1.
- **3** In the Type field for OIL-1, click and select Assay. ■
- 4 In the next Component ID field, enter OIL-2 and identify it as an Assay, in the same way as you did for OIL-1.

The **Components Specifications** sheet is complete:

The Components | Assay/Blend | OIL-1 | Basic Data | Dist Curve sheet appears.

Entering Assay Data

On the **Dist Curve** sheet, enter the laboratory assay data for OIL-1 (Table 1.1).

Specify the Distillation Curve for OIL-1

1 In the **Distillation curve type** field, click and select *True boiling point* (liquid volume basis).

Note: Select True boiling point to indicate that you are entering data for a TBP curve on a standard liquid volume basis.

- 2 In the **Bulk gravity value** area, select the *API gravity* option.
- **3** In the **API gravity** field, enter 31.4.
- **4** In the **Percent Distilled** and **Temperature** columns, enter the following TBP distillation values for OIL-1:

Percent Distilled	Temperature F
6.8	130
10.0	180
30.0	418
50.0	650
62.0	800
70.0	903
76.0	1000
90.0	1255

√Dist Curve | Light Ends | Gravity/UOPK Molecular Wt Optional Distillation curve Distillation curve type: Percent Temperature distilled True boiling point (liquid volume basis) ▶ 6.8 130 0.1933353 10.0 180 Bulk gravity value 30.0 418 C Specific gravity 50.0 650 API gravity 31.4 62.0 800 70.0 903 76.0 1000 90.0 1255 •

The Components | Assay/Blend | OIL-1 | Basic Data | Dist Curve sheet is complete:

Specify the Light Ends Data for OIL-1

5 Select the **Light Ends** sheet.

Use this sheet to enter light ends analysis data, given as a fraction of the assay mixture.

6 In the **Component** and **Fraction** (StdVol) fields, enter the following light ends analysis data:

Component	Fraction StdVol
C1	0.001
C2	0.0015
C3	0.009
IC4	0.004
NC4	0.016
IC5	0.012
NC5	0.017

✓Dist Curve Light Ends Gravity/UOPK | Molecular Wt Light ends fraction: Light ends analysis: Component Fraction Gravity Molecular weight StdVol ▼ C1 0.001 C2 0.0015 C3 0.009 IC4 0.004 NC4 0.016 IC5 0.012 NC5 0.017 ▼|

The **OIL-1** | **Basic Data** | **Light Ends** sheet is complete:

Specify the API Gravity Data for OIL-1

- 7 Select the **Gravity/UOPK** sheet.
 - The OIL-1 | Basic Data | Gravity/UOPK sheet appears.
- **8** In the **Type** field, select the *API gravity* option.
- **9** In the **Mid percent distilled** and **API gravity** fields, enter the following API gravity curve data:

Mid Percent Distilled	API Gravity
5.0	90.0
10.0	68.0
15.0	59.7
20.0	52.0
30.0	42.0
40.0	35.0
45.0	32.0
50.0	28.5
60.0	23.0
70.0	18.0
80.0	13.5

✓Dist Curve Light Ends Gravity/UOPK Molecular Wt C Specific gravity API gravity C UOPK API gravity curve data Bulk value: 31.4 Mid percent | API gravity distilled 50.0 28.5 60.0 23 70.0 18 80.0 13.5

The OIL-1 | Basic Data | Gravity/UOPK sheet is complete:

The OIL-2 | Basic Data | Dist Curve sheet appears.

Specify the Distillation Curve for OIL-2

- 1 In the **Distillation Curve Type** field, click and select *True boiling* point (liquid volume basis).
- 2 In the **Bulk gravity value** field, select the *API gravity* option.
- **3** In the **API gravity** field, enter 34.8.
- **4** In the **Percent distilled** and **Temperature** fields, enter the following TBP distillation values:

Percent Distilled	Temperature F
6.5	120.0
10.0	200.0
20.0	300.0
30.0	400.0
40.0	470.0
50.0	550.0
60.0	650.0
70.0	750.0
80.0	850.0
90.0	1100.0
95.0	1300.0
98.0	1475.0
100.0	1670.0

The OIL-2 | Basic Data | Dist Curve sheet is complete.

Specify the Light Ends Data for OIL-2

5 Select the **Light Ends** sheet.

The OIL-2 | Basic Data | Light Ends sheet appears.

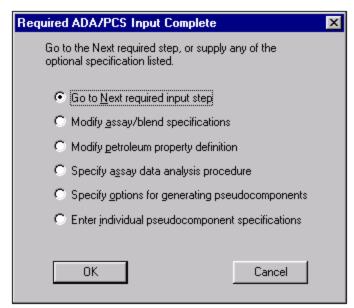
6 In the **Component** and **Fraction** (StdVol) fields, enter the following light ends analysis data:

Component	Fraction StdVol
H2O	0.001
C1	0.002
C2	0.005
C3	0.005
IC4	0.01
NC4	0.01
IC5	0.005
NC5	0.025

The OIL-2 | Basic Data | Light Ends sheet is complete.

Specify the API Gravity Data for OIL-2

7 Select the **Gravity/UOPK** sheet.


The OIL-2 | Basic Data | Gravity/UOPK sheet appears.

- **8** In the **Type** field, select the *API gravity* option.
- **9** In the **Mid percent distilled** and **API gravity** fields, enter the following API gravity curve data:

Mid Percent Distilled	API gravity
2.0	150.0
5.0	95.0
10.0	65.0
20.0	45.0
30.0	40.0
40.0	38.0
50.0	33.0
60.0	30.0
70.0	25.0
80.0	20.0
90.0	15.0
95.0	10.0
98.0	5.0

The OIL-2 | Basic Data | Gravity/UOPK sheet is complete.

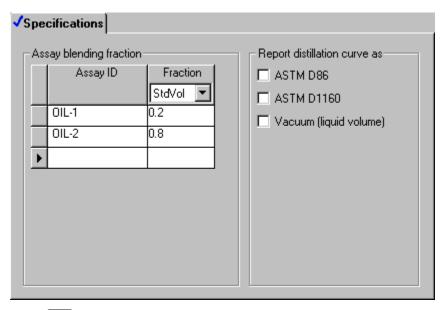
The **Required ADA/PCS Input Complete** dialog box appears.

Blending the Oils

1 On the **Required ADA/PCS Input Complete** dialog box, select *Modify assay/blend specifications* and click **OK**.

The **Components | Assay/Blend** object manager appears.

2 Click New.


The **Create new ID** dialog box appears.

- 3 In the **Enter ID** field, enter MIXOIL.
- 4 In the **Select type** field, click and select BLEND.
- 5 Click OK.

The Components | Assay/Blend | MIXOIL | Mixture | Specifications sheet appears. Use this sheet to define the fractions for each crude oil in the blend.

- **6** In the **Assay ID** column, click and select OIL-1.
- 7 In the **Fraction** (StdVol) field, enter 0.20.
- **8** In the next row of the **Assay ID** column, click and select OIL-2.
- **9** In the Fraction (StdVol) field, enter 0.80.

The **MIXOIL | Mixture | Specifications** sheet is complete:

The **Required ADA/PCS Input Complete** dialog box appears.

Generating Pseudocomponents

By default, Aspen Plus generates a set of pseudocomponents for your simulation based on all the assays and blends in your simulation. However, in this simulation, the pseudocomponents should be based on the blend only.

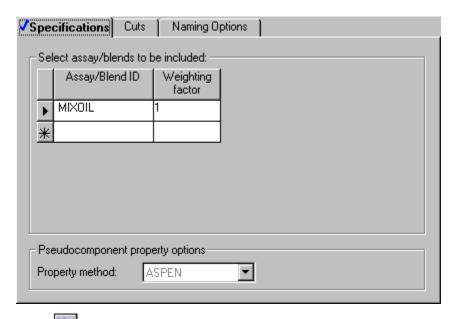
1 From the **Required ADA/PCS Input Complete** dialog box, select *Specify options for generating pseudocomponents* and click **OK**.

The **Petro Characterization | Generation** object manager appears.

2 Click New.

The **Create new ID** dialog box appears.

3 In the Enter ID field, enter CRUDE and click OK.


The **Petro Characterization | Generation | CRUDE | Specifications** sheet appears.

4 In the Assay/Blend ID field, click and select MIXOIL.

Note: The **Weighting factor** field automatically updates with the proper value based on the Assay/Blend ID you selected.

The **Specifications** sheet is complete.

The **Required ADA/PCS Input Complete** dialog box appears.

6 From the **Required ADA/PCS Input Complete** dialog box, select the default, *Go to Next required input step* and click **OK**.

The **Required Properties Input Complete** dialog box appears.

7 Click OK.

The Required Assay Data Analysis/Pseudocomponent Generation Input Complete dialog box appears.

Running the Simulation

You have entered the data and specifications for this simulation, and can now run the Assay Data Analysis.

1 In the Required Assay Data Analysis/Pseudocomponent Generation Input Complete dialog box, click OK.

The **Control Panel** window appears. The Control Panel allows you to monitor and interact with the Aspen Plus simulation calculations.

As Aspen Plus performs the analysis, status messages display in the Control Panel. The message *Results Available* appears in the status bar at the bottom of the main window.

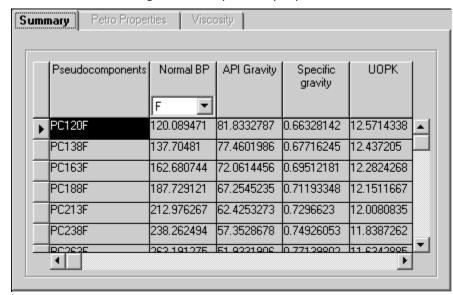
2 Examine the results of your analysis.

Examining Results

An ADA run calculates a wide variety of properties for the assays, blends, and generated pseudocomponents.

For this simulation, review pseudocomponent properties and TBP curves for the oils and the blend.

1 From the Control Panel, click

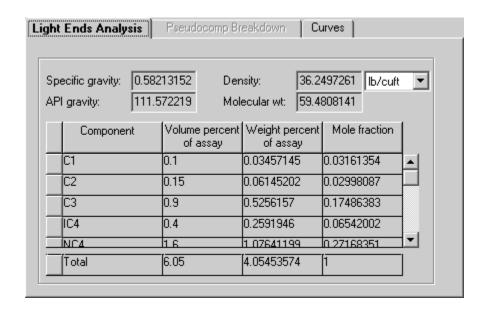


The Results Summary | Run Status | Summary sheet appears. It indicates that calculations were completed normally. The main properties for each pseudocomponent appear on the **Components | Petro** Characterization | Results | Summary sheet.

2 Use the Data Browser menu tree to navigate to the Components | Petro **Characterization | Results** form.

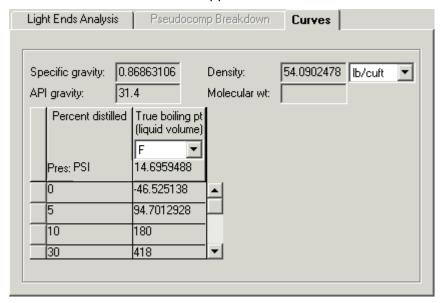
The **Summary** sheet appears.

3 Use the horizontal and vertical scrollbars at the bottom and right of the sheet to scroll through the component properties.


Plotting Distillation Curves

Plot the TBP curves for the blend and each crude oil in a single plot. The results for each assay or blend appear on the Components | Assay/Blend | assay/blend name | Results sheet.

To Locate the Curve Data for OIL-1


1 Use the Data Browser menu tree to navigate to the **Components** | Assay/Blend | OIL-1 | Results form

The **Light Ends Analysis** sheet appears.

2 Select the **Curves** sheet.

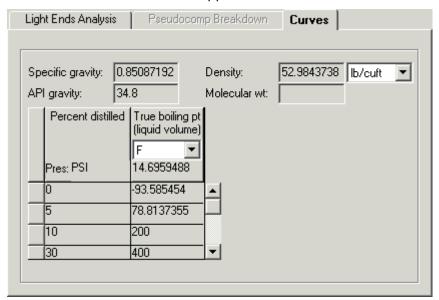
The **Curves** sheet for OIL-1 appears.

To Plot the TBP Curve

- 3 Select the **Percent distilled** column.
- 4 From the Aspen Plus menu bar, select **Plot | X-Axis Variable**.
- 5 Select the True boiling pt. (liquid volume) column.
- **6** From the Aspen Plus menu bar, select **Plot | Y-Axis Variable**.
- 7 From the Aspen Plus menu bar, select Plot | Display Plot.

The Components Assay/Blend Oil-1 Results Curves - Plot window appears.

To Label This Curve for OIL-1


- **8** Double-click the legend box.
 - The **Plot Legend Box** dialog box appears.
- 9 Select True boiling pt (vol). True boiling pt (vol) appears in the Legend Text field.
- **10** In the **Legend Text** field, delete *True boiling pt (vol)* and enter *TBP for OIL-1*.
- 11 Click Replace, then click OK.

Now that you have plotted and labeled one curve, you can add the other curves to the plot.

To Plot the TBP Curve for OIL-2

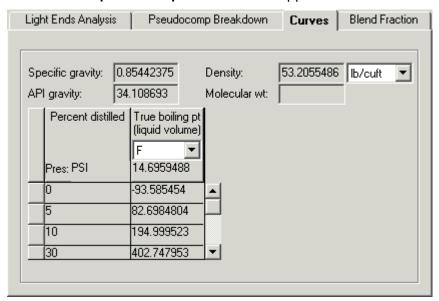
1 From the Data Browser, open the **OIL-2** | **Results** form, and select the **Curves** sheet.

The **Curves** sheet for OIL-2 appears.

- 2 Select the **Percent distilled** column.
- **3** From the Aspen Plus menu bar, select **Plot | X-Axis Variable**.
- 4 Select the **True boiling pt. (liquid volume)** column.
- **5** From the Aspen Plus menu bar, select **Plot | Y-Axis Variable**.

To Add This Curve to the Plot Containing the Curve for OIL-1

- 6 From the Aspen Plus menu bar, select Plot | Add New Curve.
 The Plot Window List dialog box appears.
- **7** Select *Components Assay/Blend OIL-1 Results Curves*, and click **OK**. The OIL-2 curve appears on the plot.


To Label This Curve for OIL-2

- 8 Double-click the legend box.
 - The **Plot Legend Box** dialog box appears.
- 9 Select True boiling pt (vol). True boiling pt (vol) appears in the Legend Text field.
- **10** In the **Legend Text** field, delete *True boiling pt (vol)* and enter *TBP for OIL-2*.
- 11 Click Replace, then click OK.

To Plot the BLEND Curve

1 In the Data Browser, open the MIXOIL | Results form, and select the Curves sheet.

The MIXOIL | Results | Curves sheet appears.

- 2 Select the **Percent distilled** column.
- **3** From the Aspen Plus menu bar, select **Plot | X-Axis Variable**.
- 4 Select the **True boiling pt. (liquid volume)** column.
- **5** From the Aspen Plus menu bar, select **Plot | Y-Axis Variable**.

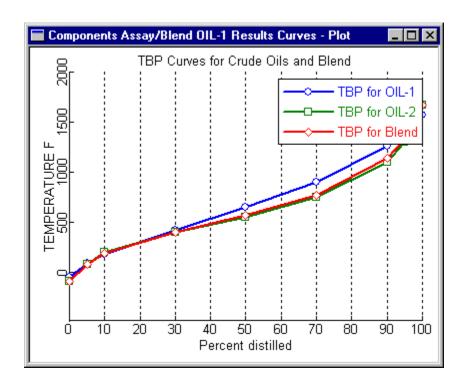
To Add This Curve to the Plot

- **6** From the Aspen Plus menu bar, select **Plot | Add New Curve**.
 - The **Plot Window List** dialog box appears.
- **7** Select *Components Assay/Blend OIL-1 Results Curves*, and click **OK**. The MIXOIL curve appears on the plot.

To Label This Curve for MIXOIL

- 8 Double-click the legend box.
 - The **Plot Legend Box** dialog box appears.
- **9** Select *True boiling pt (vol).*
- **10** In the **Legend Text** field, delete *True boiling pt (vol)* and enter *TBP for Blend*.
- 11 Click Replace, then click OK.

Now you have all three curves in one plot window, but there are some things you can do to make the plot look nicer.


To Combine Y-Axes

- **1** Double-click on the plot.
 - The **PfsPlot 2004.1 Control Properties** dialog box appears.
- **2** Select the **AxisMap** sheet.
- 3 Click All in One and then click OK.

To Rename the Plot

- 4 Double-click the Components Assay/Blend OIL-1 Results Curves title.
 - The **Plot Text Setting** dialog box appears.
- **5** In the Title text field, delete the text and enter *TBP Curves for Crude Oils and Blend*.
- 6 Click OK.

As the completed plot shows, the TBP curve for the blend is between the curves for each oil. Curve locations depend on the proportions of the two oils you define for the blend:

Creating a Backup File

Once satisfied with your Assay Data Analysis results, save this simulation as a backup file. This allows you to use the developed assay data analysis in another Aspen Plus simulation.

- 1 From the Aspen Plus menu bar, select File | Save As.
 The Save As dialog box appears.
- 2 In the Save as type field, click and select Aspen Plus Backup Files (*.bkp).
- 3 In the **File name** field, enter BLEND and click **Save**.
 - Note: Your working directory appears in the Save in field.

The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.

4 Click No.

Exiting Aspen Plus

- 1 From the Aspen Plus menu bar, select File | Exit.
 The Aspen Plus dialog box appears.
- 2 Click **Yes** to save the simulation.

The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.

3 Click No.

Note: The Chapter 2 simulation uses this run as the starting point.

2 Adding a Preflash Tower

In this simulation, add a preflash tower to the simulation and specify options for pseudocomponent generation.

You will:

- Define the flowsheet graphically.
- Specify properties, feed streams, and preflash tower.
- Modify cuts specifications for pseudocomponents generation.
- Run the simulation.
- Examine simulation results.

Allow about 45 minutes to complete this simulation.

Preflash Tower Flowsheet

Figure 2.1 shows the process flowsheet for this simulation. The process feed, consisting of the oil blend, goes first to the preflash furnace where it is partially vaporized. The partially vaporized feed then enters the preflash tower. Model the tower and the furnace simultaneously with a single PetroFrac block.

Steam feeds to the bottom of the tower. The tower produces a wide naphtha cut as a distillate product.

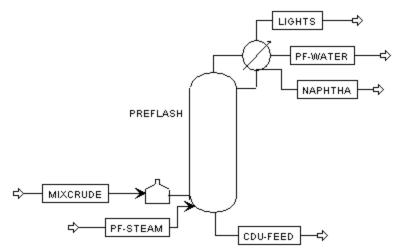


Figure 2.1 Flowsheet for Preflash Tower

Simulate the tower with 10 theoretical stages, no reboiler, and a partial condenser. The condenser operates at 170 F and 39.7 psia, with a pressure drop of 2 psi. The tower pressure drop is 3 psi.

The tower is stripped with open steam in the bottom. The steam stream is at 400 F and 60 psia, and has a flow rate of 5,000 lb/hr. The furnace operates at a pressure of 50 psia and a temperature of 450 F. The distillate rate is estimated at 15,000 bbl/day. Its value is manipulated to produce a wide naphtha cut with an ASTM 95% temperature of 375 F.

Starting Aspen Plus

- 1 From your desktop, select **Start | Programs**.
- 2 Select AspenTech | Aspen Engineering Suite | Aspen Plus 2004.1 | Aspen Plus User Interface.

The **Aspen Plus Startup** dialog box appears. **Aspen Plus** displays a dialog box whenever you must enter information or make a selection before proceeding. In this simulation, use an **Aspen Plus** template.

Opening an Existing Run

Opening the Assay Data Analysis Simulation Created in Chapter 1

- 1 In the Aspen Plus Startup dialog box, select the Open an Existing Simulation option.
- 2 In the list, select blend.bkp and click **OK**.

If Your Saved File blend.bkp Does Not Appear

1 In the list on the **Aspen Plus Startup** dialog box, double-click **More** Files.

The **Open** dialog box appears.

- **2** Navigate to the directory containing your saved blend.bkp file.
- **3** Select blend.bkp from the list of files, and click **Open**.

If You Did Not Create blend.bkp

If you did not create the assay data analysis simulation in Chapter 1, open the backup file blend.bkp in the **Examples** folder.

1 In the list on the **Aspen Plus Startup** dialog box, double-click **More** Files.

The **Open** dialog box appears.

2 Click .

By default, the Favorites list contains five folders that are provided with Aspen Plus.

3 Double-click the **Examples** folder.

4 Select the blend.bkp file, and click **Open**.

Note: If the **Connect to Engine** dialog box appears, see Chapter 6

The **Aspen Plus** window appears.

Saving a Run Under a New Name

Before you create a new run adding a preflash tower, create and save a copy of BLEND with a new Run ID, PREFLASH. Then make modifications under this new Run ID.

- 1 From the Aspen Plus menu bar, select File | Save As.
 - The **Save As** dialog box appears.
- **2** Select the directory where you want to save the simulation.
- 3 In the File name field, enter PREFLASH.
- 4 In the **Save as type** field, click and select Aspen Plus Backup Files (*.bkp).
- **5** Click **Save** to save the simulation and continue.
 - The **Aspen Plus** dialog box appears, asking if you want to save the simulation as an Aspen Plus Document file.
- 6 Click No.

The current Run ID, PREFLASH, appears in the title bar.

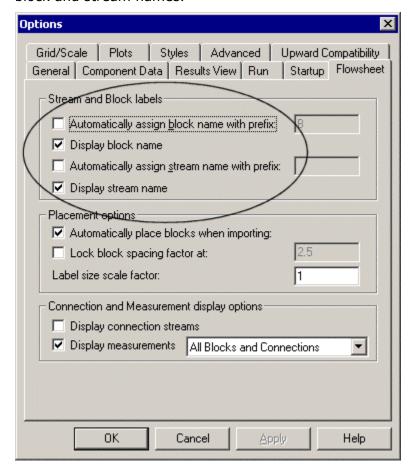
Changing the Run Type

In Chapter 1, the BLEND run you performed was an Assay Data Analysis run. In this simulation, perform a flowsheet simulation. First, you need to switch to the Flowsheet run type.

- 1 In the Data Browser, open the **Setup | Specifications | Global** sheet.
- 2 In the **Run type** field, click and select *Flowsheet*.
- 3 In the **Title** field, enter *Getting Started With Petroleum Simulation 2*.

The graphics workspace is now active and ready for you to build the flowsheet. No more changes to this sheet are necessary.

Turning Off Automatic Naming of Blocks and Streams


Since you will enter your own block and stream IDs, turn off the default options to create block and stream IDs automatically.

- 1 From the **Aspen Plus** menu bar, select **Tools** | **Options**.
 - The **Options** dialog box appears.

2 Select the **Flowsheet** tab.

3 Clear the checkboxes for the Automatically assign block name with prefix and the Automatically assign stream name with prefix options.

Since you have deselected these options, Aspen Plus will prompt you for block and stream names.

4 Click **OK** to apply these changes.

You are ready to build your flowsheet. Figure 2.1 shows the process flow diagram for this simulation. To review how to define a flowsheet graphically, see *Getting Started Building and Running a Process Model*, Chapter 2.

Selecting a Distillation Model

Aspen Plus offers several distillation models. To determine which is appropriate for the preflash tower, use prompts and online help.

- 1 Close the Data Browser. You are now in the **Process Flowsheet** window.
- 2 From the **Model Library**, select the **Columns** tab.
 - The list of available distillation columns appears.
- **3** Select different models within the Model Library and read the descriptions in the Status bar.
 - From the prompts, it appears that PetroFrac is appropriate for this petroleum problem. Obtain more extensive information on PetroFrac by reading the online help:
- 4 Select the PetroFrac model.
- **5** Press **F1** on the keyboard.
 - The **Aspen Plus Help** window appears, with detailed information about the PetroFrac model.
- **6** Review this information to confirm that PetroFrac is the best choice, then close the help window.

Defining the Graphical Simulation Flowsheet

Now you will begin to build the process flowsheet by adding the preflash distillation unit.

- **1** From the Model Library, select the **Columns** tab.
- **2** From the **Columns** tab, select PetroFrac (the unit operation model to place in your process flowsheet).

To Choose a Different Icon for the Model

- 3 Click next to the PetroFrac block icon to display all the PetroFrac model icons.
- **4** Move the mouse over the icons to see a name (or label) for each.
- **5** Locate the PetroFrac icon PREFL1F in the first row of icons, and select it.

Place the Preflash Tower on the **Flowsheet**

- **6** From the **Columns** tab, select the PetroFrac icon and drag it to the Process Flowsheet window.
- **7** Release the icon in the desired location within the flowsheet. The **Input** dialog box appears.
- 8 In the Enter the Block ID field, enter PREFLASH and click OK.

Place the Streams on the Flowsheet

Connect and name the streams, as shown in Figure 2.1. Use the port names shown below to connect to the appropriate port:

Stream	Port	
MIXCRUDE Main Column Feed		
PF-STEAM Main Column Feed		
LIGHTS	Vapor Distillate from Main Column	
PF-WATER	Condenser Water Decant for Main Column	
NAPHTHA	Liquid Distillate from Main Column	
CDU-FEED	Bottoms Product from Main Column	

When you move the mouse to the flowsheet, the stream ports appear.

- **10** Select the **Main Column Feed** port and select it to create a new stream.
- 11 Point to a blank part of the window where you want the feed to originate and click.

The **Input** dialog box appears.

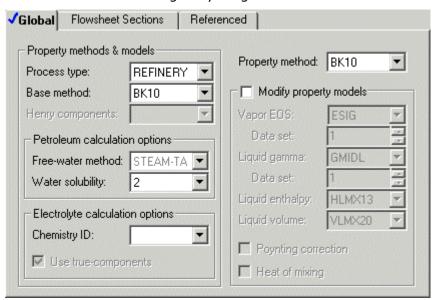
- 12 In the Enter the Stream ID field, enter PF-STEAM and click OK.
- 13 For the MIXCRUDE stream, click the feed port and then drag the mouse to the desired location in front of the feed furnace before releasing the button.
- **14** Create the remaining streams in similar fashion.
- **15** When all streams are complete, click to continue.

The Flowsheet Complete dialog box appears.

16 Click OK.

The **Properties | Specifications | Global** sheet appears.

Specifying Properties


Use the **Properties | Specifications | Global** sheet to select the thermodynamic methods used to calculate properties such as K-values, enthalpy, and density. Property methods in Aspen Plus are arranged according to process types. The BK10 property method (Braun K-10 method) is appropriate for most refining applications involving heavy petroleum fractions and low pressures.

To Select the BK10 Property Method

- 1 In the **Process type** field, click and select REFINERY.
- 2 In the Base method field, and select BK10.

Since you selected the Petroleum with English Units application type in Chapter 1, Aspen Plus selected the appropriate defaults for petroleum applications. Steam Tables (STEAM-TA) is the default method for calculating free-water phase properties, as shown in the **Free-water method** field. Aspen Plus also selected Method 2 for the water solubility default, as shown in the **Water solubility** field. The Water solubility option controls the method for calculating the solubility and K-value of water in the hydrocarbon phase.

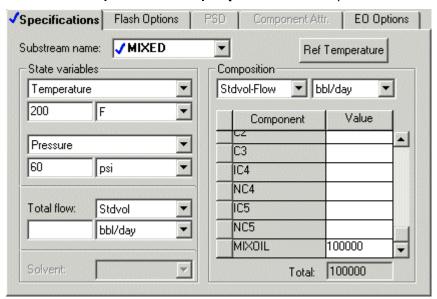
You do not need to change anything else on this sheet.

3 Click to continue.

The **Required Properties Input Complete** dialog box appears.

Correct representation of physical properties is essential to process modeling. For many simulations, the only physical property specification you must provide is to select an option set. The **Required Properties**Input Complete dialog box is a reminder that the Aspen Plus physical

property system has many optional capabilities that you can use to increase the accuracy of physical property calculations.


4 Click OK.

The **Streams | MIXCRUDE | Input | Specifications** sheet appears.

Entering Stream Data

MIXCRUDE is the crude oil blend feed stream to the tower. Enter condition and flow rates for the MIXCRUDE stream.

- 1 In the **Temperature** field, enter 200.
 - The default units F (Fahrenheit) are correct for this simulation.
- 2 In the **Pressure** field, enter 60.
 - The default units (psi) are correct for this simulation.
- **3** In the **Composition** section, use the scrollbar to access the MIXOIL component.
- 4 In the **Value** column of the MIXOIL component, enter 100000.
 - The **Streams | MIXCRUDE | Input** form is complete:

5 Click to continue.

The **PF-STEAM | Input | Specifications** sheet appears. PF-STEAM is the steam feed to the tower.

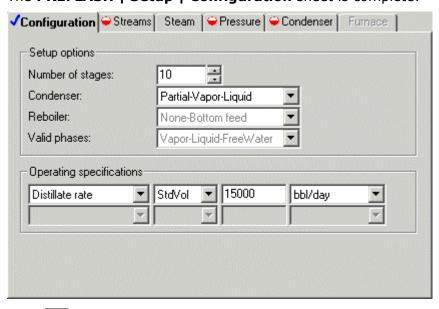
- **6** In the **Temperature** field, enter 400 F.
- 7 In the **Pressure** field, enter 60 psi.
- **8** In the **Composition** section, click and select Mass-Flow.
- **9** In the **Value** column of the H2O component, enter 5000 lb/hr.

The **PF-STEAM | Input | Specifications** sheet is complete.

10 Click to continue.

Specifying the Preflash Unit

Use the **Blocks | PREFLASH | Setup | Configuration** sheet to enter configuration and operating specifications for the column, including:


- Number of theoretical stages.
- · Valid phases in the column.
- Distillate vapor fraction.

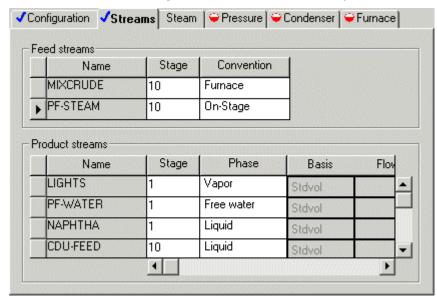
Specify Column Configuration

- 1 In the **Number of stages** field, enter 10 for ten theoretical stages.
- 2 In the **Condenser** field, click and select *Partial-Vapor-Liquid*. This indicates that there is a partial condenser with both vapor and liquid distillate.
 - In the **Reboiler** field, the default *None-Bottom feed* option is appropriate, since the column has no reboiler and there is a bottom steam feed.
- **3** In the **Distillate rate** field, enter 15000 to specify an estimate for the distillate rate of 15,000 bbl/day.

The distillate rate will be manipulated to achieve a specification on the ASTM 95% temperature for the naphtha product.

The **PREFLASH | Setup | Configuration** sheet is complete:

4 Click to continue.


The **PREFLASH | Setup | Streams** sheet appears.

Specify Stream Locations

Enter feed locations and conventions for the PF-STEAM and MIXCRUDE streams.

- **5** In the **Stage** column for PF-STEAM, enter 10.
- **6** In the **Convention** column for PF-STEAM, click and select On-Stage.
- 7 In the **Stage** column for MIXCRUDE, enter 10.
- 8 In the **Convention** column for MIXCRUDE, click and select *Furnace* to indicate that a furnace is attached to the tower on stage 10. The feed goes to the furnace first.

The **PREFLASH | Setup | Streams** sheet is complete:

9 Click to continue.

Specify Column Pressure Profile

The **PREFLASH** | **Setup** | **Pressure** sheet appears. On this sheet, enter the column pressure profile, or specify a top stage pressure and a pressure drop or the rest of the column.

- **10** In the **View** field, click and select *Top/Bottom*.
- **11** Enter the following pressure profile data:

Top Stage / Condenser Pressure39.7 psiStage 2 Pressure41.7 psiBottom Stage Pressure44.7 psiThe PREFLASH Setup Pressure sheet is complete.

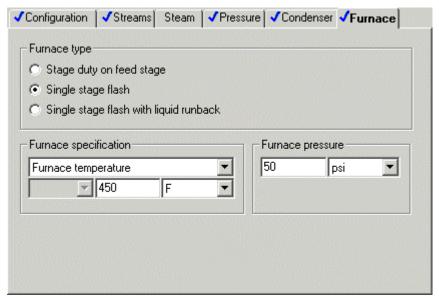
12 Click to continue.

Specify Condenser Temperature

The PREFLASH | Setup | Condenser sheet appears.

- 13 Select the **Temperature** option.
- **14** In the **Temperature** field, enter a value of 170 F.

 The **PREFLASH | Setup | Condenser** sheet is complete.
- **15** Click to continue.


Specify Furnace Configuration

The PREFLASH | Setup | Furnace sheet appears.

- **16** Select the **Single stage flash** option to specify the furnace type.
- **17** In the **Furnace specification** field, click and select *Furnace temperature*.
- **18** In the **Furnace temperature** field, enter 450 F.
- **19** In the **Furnace pressure** field, enter 50 psi.

These specifications model the furnace as a single-stage flash at the specified conditions.

The **PREFLASH | Setup | Furnace** sheet is complete:

20 Click to continue.

The **Required Input Complete** dialog box appears.

21 Click Cancel.

Create Design Specification

Next, you need to set up a design specification for the product quality of the naphtha stream, using the ASTM 95% temperature. Manipulate the distillate rate to achieve this target.

- 1 From the Data Browser, select the **PREFLASH | Design Specs** folder. The **Design Specs** object manager appears.
- 2 Click New.

The **Create new ID** dialog box appears.

- 3 In the **Create new ID** dialog box, click **OK** to accept the default ID of 1. The **Design Specs** | 1 | **Specifications** sheet appears.
- **4** Enter the following information for the naphtha product design specification:

Type ASTM D86 temperature (dry, liquid volume basis)

Target 375 F **Liquid %** 95

5 Click to continue.

The **Design Specs | 1 | Feed/Product Streams** sheet appears.

- **6** From the **Available streams** column, select the NAPHTHA stream and click to move the stream to the **Selected stream** column.
- **7** Click to continue.

The **Design Specs | 1 | Vary** sheet appears.

- **8** In the **Type** field, click and select *Distillate flow rate*.
- **9** Click to continue.

The **Required Input Complete** dialog box appears.

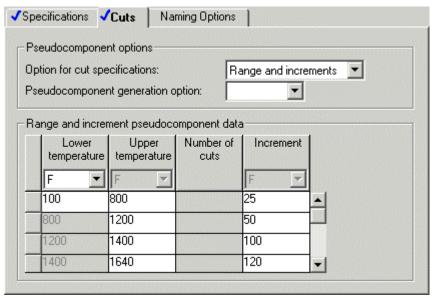
10 Click Cancel.

Modifying Pseudocomponents

In Chapter 1, Aspen Plus generated all pseudocomponents using default options. In this simulation, modify the number of pseudocomponents generated for different temperature ranges.

1 From the Data Browser, select the Components | Petro Characterization | Generation folder.

The **Generation** object manager appears.


2 Select the CRUDE line and then click **Edit**.

The **CRUDE** | **Specifications** sheet appears.

- **3** Select the **Cuts** sheet.
- 4 In the **Option for cut specifications** field, click and select *Range and increments*.
- **5** Enter the following temperature ranges and increments to generate pseudocomponents for this problem. Note that **Lower temperature** is filled in automatically for rows beyond the first.

Lower temperature	Upper temperature	Increment
100	800	25
800	1200	50
1200	1400	100
1400	1640	120

The **CRUDE | Cuts** sheet is complete:

6 Click to continue.

The **Required ADA/PCS Input Complete** dialog box appears.

7 Click OK.

The **Required Input Complete** dialog box appears.

Running the Simulation

1 From the **Required Input Complete** dialog box, click **OK**.

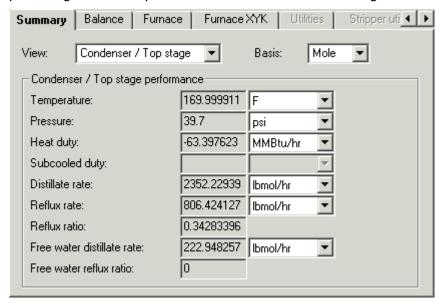
The **Control Panel** appears.

As the run proceeds, status messages appear in the Control Panel. It takes several seconds for Aspen Plus to process input specifications and perform the simulation. When the calculations finish, the message *Results Available* appears in the status bar at the bottom of the main window.

- **2** Use the vertical scroll bar to see the messages.
- 3 When the *Results Available* message appears in the toolbar, click ☑ at the top right corner of the Control Panel to close it.
- **4** From the Data Browser, click **■** to close the Data Browser.
- **5** Examine the results of your run.

Examining Simulation Results

Aspen Plus produces a wide variety of simulation results. In this simulation examine:


- Condenser duty.
- Distillate rate.
- Temperature profile.
- Crude TBP curves.

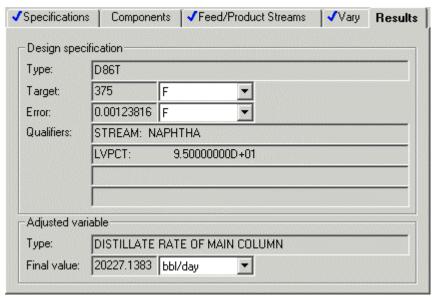
Condenser duty results appear on the **PREFLASH Results Summary** sheet.

To Examine Summary Results

- 1 From the **Process Flowsheet** window, select the PREFLASH icon.
- 2 Right-click to display the menu and select Results.

The **PREFLASH** | **Results Summary** | **Summary** sheet appears, providing a summary of all condenser and bottom stage results.

To Examine Distillate Rate Results

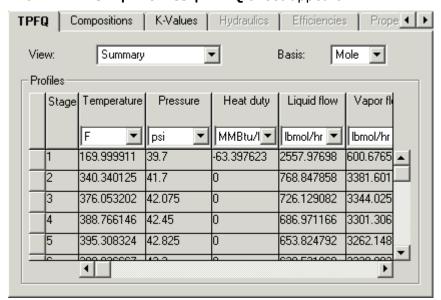

Distillate rate results appear on the **PREFLASH | Design Specs | 1 | Results** sheet.

3 From the Data Browser, click the + beside the **Design Specs** folder and then select **1**.

The **Design Specs | 1 | Specifications** sheet appears.

4 Select the **Results** sheet.

The **Results** sheet appears, providing the distillate rate value that Aspen Plus calculated to satisfy the design specification.



The temperature profile for the column appears on the **PREFLASH | Profiles | TPFQ** sheet.

To Examine the Temperature Profile

5 From the Data Browser, select the **Blocks** | **PREFLASH** | **Profiles**.

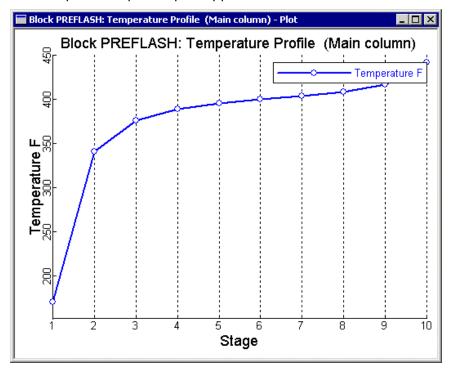
The **PREFLASH | Profiles | TPFQ** sheet appears.

Plotting Results

To Plot the Temperature Profile

- 1 From the Aspen Plus menu bar, select Plot | Plot Wizard.
 The Plot Wizard Step 1 dialog box appears.
- 2 Click Next

The Plot Wizard Step 2 dialog box appears.


- 3 Select the **Temp** plot type and click Next.

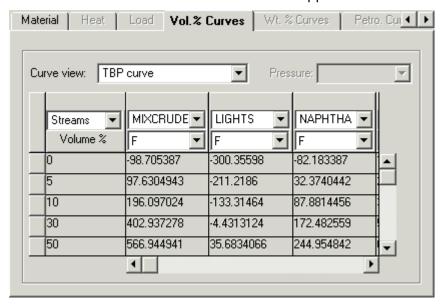
 The **Plot Wizard Step 3** dialog box appears.
- 4 Click Next>

The **Plot Wizard Step 4** dialog box appears.

5 Click Finish.

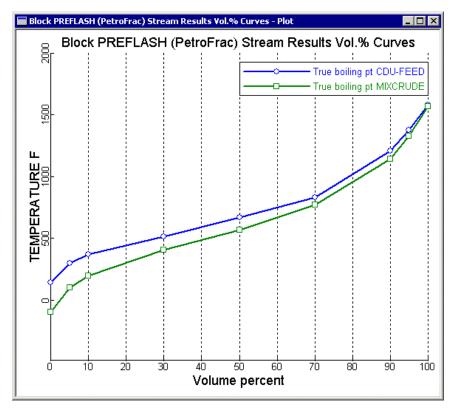
The temperature profile plot appears.

6 Follow the same steps to display any other column profile.


You may want to close some forms to make space for the new plots.

To Plot TBP Curves for PREFLASH Feed and Product Streams

The true boiling point curves appear on the **Stream Results | Vol.% Curves** sheet.


- 1 From the Data Browser, select the **PREFLASH** | **Stream Results** form.
 - The PREFLASH | Stream Results | Material sheet appears.
- 2 Select the Vol.% Curves sheet.

The **Stream Results Vol.%** Curves sheet appears.

To Select CDU-FEED and MIXCRUDE as Dependent Variables

- **3** Click at the top of the **CDU-FEED** column to select the column.
- **4** Use the horizontal scrollbar, if necessary, to locate the **MIXCRUDE** column.
- **5** At the same time, press Ctrl and select the **MIXCRUDE** column to select the column.
 - At this time, both the MIXCRUDE and CDU-FEED columns should be highlighted.
- **6** From the Aspen Plus menu bar, select **Plot | Y-Axis Variable**.
- 7 Select the Volume % column.
- **8** From the Aspen Plus menu bar, select **Plot | X-Axis Variable**.
- **9** From the Aspen Plus menu bar, select **Plot | Display Plot**.
- **10** Aspen Plus displays the following plot:

As expected, the preflash tower removes a significant portion of the light material from the process feed. This reduces the load for the subsequent atmospheric crude unit and increases overall process capacity.

11 When finished viewing the plot, close the plot window.

Exiting Aspen Plus

- 1 From the Aspen Plus menu bar, select File | Exit.
 - The **Aspen Plus** dialog box appears.
- **2** Click **Yes** to save the simulation.
 - The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.
- 3 Click No.

The Chapter 3 simulation uses this run as the starting point.

3 Adding an Atmospheric Crude Distillation Unit

In this simulation, add an atmospheric crude distillation unit to the simulation you ran in Chapter 2.

You will:

- Add the atmospheric crude distillation unit to the flowsheet.
- · Specify additional feed streams.
- Specify the atmospheric crude distillation unit.
- Run the simulation.
- Examine the results.

Allow about 45 minutes to complete this simulation.

Atmospheric Crude Distillation Unit Flowsheet

Figure 3.1 shows the process flowsheet you are developing in this simulation. The topped crude from the preflash tower goes first to the crude furnace, then to the atmospheric tower. Model the crude furnace and the atmospheric tower units together, using a single PetroFrac block. This approach enables you to adjust furnace variables to achieve certain tower specifications, such as the overflash.

The tower has:

- A total condenser.
- Three coupled side strippers.
- Two pumparound circuits.

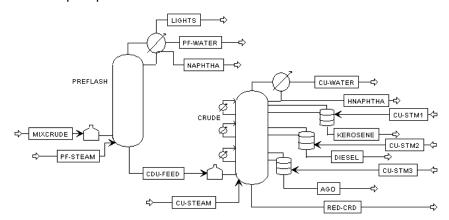


Figure 3.1 Process Flowsheet: The Atmospheric Crude Distillation Unit

PetroFrac simulates the furnace and the atmospheric tower simultaneously, as a single unit. The furnace operates at a pressure of 24.18 psia and provides an overflash of 3% in the tower. The furnace outlet enters the atmospheric tower on stage 22 of the main fractionator.

The main fractionator is modeled with 25 equilibrium stages. The heavy naphtha product flow is estimated at 13,000 bbl/day, and is manipulated to achieve an ASTM 95% temperature of 375 F. The condenser operates at 15.7 psia with a pressure drop of 5 psi. The tower pressure drop is 4 psi.

The main fractionator has 2 pumparound circuits. The following table summarizes the pumparound locations and specifications:

Pumparound	Location	Specifications
1	From stage 8 to 6	Flow: 49,000 bbl/day Duty: -40 MMBTU/hr
2	From stage 14 to 13	Flow: 11,000 bbl/day Duty: -15 MMBTU/hr

The crude distillation unit has three sidestrippers. Their locations and operating specifications are:

Stripper	Location	Specifications
KEROSENE	Liquid draw from stage 6 Vapor return to 5	Product rate: 11,700 bbl/day Steam stripping (CU-STM1) 4 equilibrium stages
DIESEL	Liquid draw from stage 13 Vapor return to 12	Product rate: 16,500 bbl/day (estimate) Steam stripping (CU-STM2) 3 equilibrium stages
AGO	Liquid draw from stage 18 Vapor return to 17	Product rate: 8,500 bbl/day Steam stripping (CU-STM3) 2 equilibrium stages

The diesel flow rate is an estimate only. Manipulate it to achieve an ASTM 95% temperature of 640 F for the diesel product.

All sidestrippers and the main fractionator use steam for stripping. The following table summarizes the steam flows and conditions:

Stream	Location	Conditions and Flow
CU-STEAM	Main tower	400 F, 60 psia, 12,000 lb/hr
CU-STM1	Kerosene stripper	400 F, 60 psia, 3,300 lb/hr
CU-STM2	Diesel stripper	400 F, 60 psia, 1,000 lb/hr
CU-STM3	AGO stripper	400 F, 60 psia, 800 lb/hr

Starting Aspen Plus

- 1 From your desktop, select **Start** and then select **Programs**.
- 2 Select AspenTech | Aspen Engineering Suite | Aspen Plus 2004.1 | Aspen Plus User Interface.

The **Aspen Plus Startup** dialog box appears. Aspen Plus displays a dialog box whenever you must enter information or make a selection before proceeding.

Opening an Existing Run

If You Saved the Preflash Flowsheet Simulation Created in Chapter 2

- 1 In the **Aspen Plus Startup** dialog box, select the radio button next to Open an Existing Simulation.
- 2 In the list, select preflash.bkp and click **OK**.

If Your Saved File preflash.bkp Does Not Appear

- 1 In the list box, double-click More Files....
 - The **Open** dialog box appears.
- **2** Navigate to the directory containing your saved preflash.bkp.
- **3** Select preflash.bkp from the list of files, and click **Open**.

Note: If you did not create the assay data analysis simulation in Chapter 2, you can open the backup file preflash.bkp in the **Examples** folder.

Opening the Backup File preflash.bkp in the Examples Folder

- 1 From the **Aspen Plus Startup** dialog box, select Open an Existing Simulation.
- 2 Click OK.

The **Open** dialog box appears.

3 Click

Note: By default, the Favorites list contains five folders that are provided with Aspen Plus.

- 4 Double-click the **Examples** folder.
- **5** Select preflash.bkp and click **Open**.

Note: If the **Connect to Engine** dialog box appears, see Chapter 6.

The **Aspen Plus** window appears. Aspen Plus displays the graphical flowsheet for the PREFLASH run.

Saving a Run Under a New Name

Before creating a new run adding the atmospheric crude unit, create and save a copy of PREFLASH with a new Run ID, CRUDE. Then make modifications under this new Run ID.

- 1 From the Aspen Plus menu bar, select File | Save As.
 - The **Save As** dialog box appears.
- **2** Select the directory where you want to save the simulation.
- 3 In the **File name** field, enter CRUDE.
- 4 In the **Save as type** field, click and select *Aspen Plus Backup Files* (*.bkp).
- **5** Click **Save** to save the simulation and continue.
 - The **Aspen Plus** dialog box appears, asking if you want to save the simulation as an Aspen Plus Document file.
- 6 Click No.

The current Run ID, CRUDE now appears in the title bar.

To Update the Title for This Run

- **1** From the Aspen Plus menu bar, select Data | Setup.
 - The **Setup Specifications** sheet appears.
- **2** In the **Title** field, enter *Getting Started with Petroleum --Simulation 3*.
- **3** Close the Data Browser window.

The graphical workspace is now active and ready for you to add to the existing flowsheet.

Adding the Crude Distillation Unit to the Flowsheet

Add the crude distillation unit to the flowsheet.

To Make Space for the New Tower

- 1 Click and drag around the entire flowsheet.
 - This creates a region around the entire flowsheet.
- **2** Click and hold the left mouse button within the region and drag the flowsheet to the left.

This makes room for the crude distillation unit, as shown in Figure 3.1.

To Place and Connect the Distillation Unit on the Flowsheet

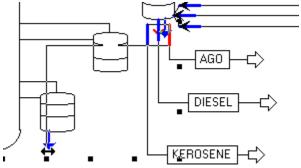
- 1 Click the left mouse button outside the region to deactivate it.
- **2** From the Model Library, select the **Columns** tab. The list of available distillation columns appears.
- 3 Click next to the PetroFrac block icon.
 - This displays all the icons available for the PetroFrac model.
- **4** Move the mouse over the list of icons to see a name (or label) for each. In this exercise, select the CDU10F PetroFrac icon.
- **5** Press the mouse button on the CDU10F PetroFrac icon, and drag the icon to the **Process Flowsheet** window.
- **6** Release the icon in the desired location.
 - The **Input** dialog box appears.
- 7 In the Enter the Block ID field, enter CRUDE and click **OK**.

To Connect to the Preflash Block Already on the Flowsheet

- 1 Select the CDU-FEED stream.
- **2** Right-click and from the menu select Reconnect Destination.

- **3** Point to the **Main Column Feed** port at the bottom of the column.
- **4** Click to connect the CDU-FEED stream to the bottom feed port and drag it to the desired location in front of the feed furnace before releasing the mouse button.

To Connect Other Streams


- 1 If necessary, select **View | Zoom | Zoom Full** from the Aspen Plus menu bar to display the entire flowsheet.
- **2** Connect, move, and name the streams as shown in Figure 3.1, using the names and ports in the table below.

Stream ID	Port Name	
CDU-FEED	Main Column Feed (already connected)	
CU-STEAM	Main Column Feed	
CU-STM1	Stripper Steam Feeds	
CU-STM2	Stripper Steam Feeds	
CU-STM3	Stripper Steam Feeds	
CU-WATER	Condenser Water Decant for Main Column	
HNAPHTHA		
KEROSENE		
DIESEL		
AGO Bottoms Product from Stripper		
RED-CRD Bottoms Product from Main Column		

Note: In order to make the streams appear as in Figure 3.1, rotate some feed icons and move some ports.

- To rotate an icon, select it, then right-click and select Rotate Icon from the menu. Then select the appropriate rotation from the submenu.
- To move a port, first connect the stream to the port in the port's current location. Then select the block. All the connected streams will show a blue or red highlighted line where they connect to the block. Click on this line for the stream you wish to move, and drag it to its new location. Zoom in (as above for selecting Zoom Full) if it is difficult to differentiate streams. In the figure below, the user is moving the port for stream AGO.

You have finished adding the distillation unit to the flowsheet.

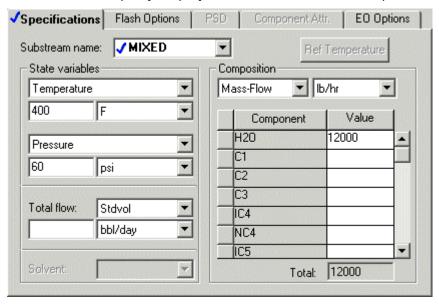
3 Click

The **Flowsheet Complete** dialog box appears.

4 Click OK.

The **Streams | CU-STEAM | Input | Specifications** sheet appears.

Specifying Steam Feeds to the Tower


Use the **CU-STEAM | Input | Specifications** sheet to enter the specifications for the steam feed to the main column.

1 Enter the following state variable and component flow specifications:

Temperature 400 F **Pressure** 60 psi

Composition Mass-Flow lb/hr **Value for H2O** 12000 lb/hr

The **CU-STEAM | Input | Specifications** sheet is complete.

2 Click №.

The **CU-STM1 Input** sheet appears.

3 Enter the following state variable and component flow specifications:

Temperature 400 F **Pressure** 60 psi

Composition Mass-Flow lb/hr

Value for H2O 3300 lb/hr

4 Click

The **CU-STM2 Input** sheet appears.

5 Enter the following state variable and component flow specifications:

Temperature 400 F **Pressure** 60 psi

Composition Mass-Flow lb/hr

Value for H2O 1000 lb/hr

6 Click .

The **CU-STM3 Input** sheet appears.

7 Enter the following state variable and component flow specifications:

Temperature 400 F **Pressure** 60 psi

Composition Mass-Flow lb/hr

Value for H2O 800 lb/hr

You have finished entering steam feed specifications.

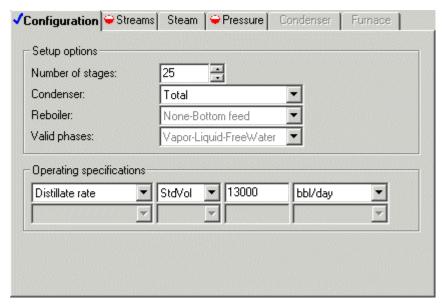
8 Click .

The **Blocks | CRUDE | Setup | Configuration** sheet appears.

Specifying the Atmospheric Tower

Specify the Main Column

Use the **CRUDE | Setup | Configuration** sheet to specify the main column configuration.

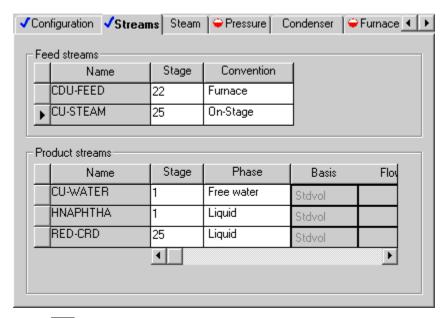

1 Enter the following block configuration information:

Number of stages 25 Condenser Total

Reboiler None-Bottom Feed

Distillate rate 13000 bbl/day

The distillate flow rate is an estimate. This value will be manipulated to achieve the desired ASTM 95% temperature for the heavy naphtha stream.


2 Click N

The **Blocks | CRUDE | Setup | Streams** sheet appears.

3 Enter the following feed locations and conventions:

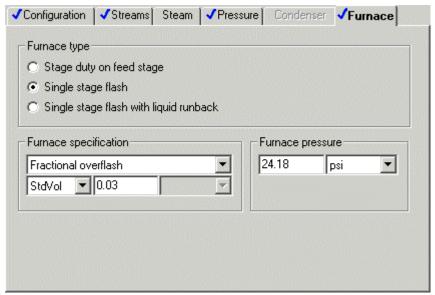
	Stage	Convention
CDU-FEED	22	Furnace
CU-STEAM	25	On-Stage

The Furnace feed convention attaches a furnace to stage 22. This furnace is solved simultaneously with the main fractionation column and strippers.

4 Click

The Blocks | CRUDE | Setup | Pressure sheet appears.

5 Enter the following pressures using the *Top/Bottom* View:


Stage 1 / Condenser pressure15.7 psiStage 2 Pressure20.7 psiBottom stage pressure24.7 psi

6 Click N

The **Blocks | CRUDE | Setup | Furnace** sheet appears.

- **7** Select the **Single stage flash** option.
- **8** From the **Furnace specification** list , select Fractional overflash.
- **9** Enter a StdVol **Fractional overflash** of 0.03 and a Furnace pressure of 24.18 psi.

The **Blocks | CRUDE | Setup | Furnace** sheet is now complete:

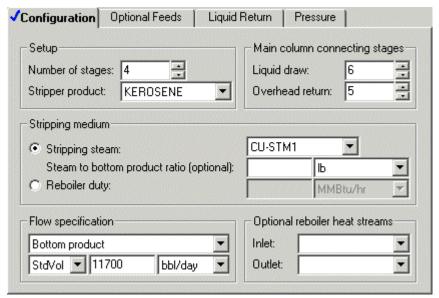
You have completed specifications for the main column.

10 Click

Note: Because you attached feed and product streams for three side strippers in the graphical flowsheet, Aspen Plus automatically configured this block with three side strippers: S-1, S-2, and S-3.

Specify the Side Strippers

The Blocks | CRUDE | Strippers | S-1 | Setup | Configuration sheet appears.


11700 bbl/day

1 Enter the following specifications:

Bottom product flow

Number of stages4Stripper productKEROSENELiquid draw6Overhead return5Stripping steamCU-STM1

The **S-1 | Setup | Configuration** sheet is complete:

2 Click

The S-2 | Setup | Configuration sheet appears.

3 Enter the following specifications:

Number of stages 3
Stripper product DIESEL
Liquid draw 13
Overhead return 12
Stripping steam CU-STM2
Bottom product flow 16500 bbl/day

The **Blocks | CRUDE | Strippers | S-2 | Setup** sheet is complete:

4 Click .

The **Blocks | CRUDE | Strippers | S-3 | Setup** sheet appears.

5 Enter the following specifications:

Number of stages2Stripper productAGOLiquid draw18Overhead return17Stripping steamCU-STM3

Bottom product flow 8500 bbl/day

The **Blocks | CRUDE | Strippers | S-3 | Setup** sheet is complete:

6 Click

The **Required Input Complete** dialog box appears.

7 Click Cancel.

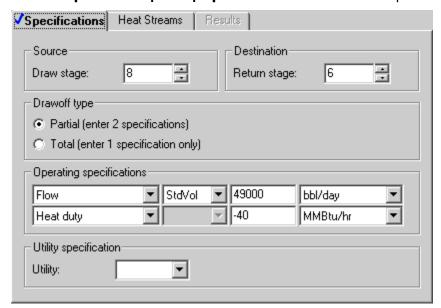
Specify the Pumparounds

Now supply specifications for Pumparound 1 and Pumparound 2.

- 1 In the Data Browser, select the Blocks | CRUDE | Pumparounds folder.
 The Pumparounds object manager appears.
- 2 Click New.
- 3 In the **Create new ID** dialog box, click **OK** to accept the default ID, P-1. The **Pumparounds | P-1 | Specifications** sheet appears.
- **4** Enter the following specifications for P-1:

Draw stage 8

Return stage 6


Drawoff type Partial

StdVol Flow 49000 bbl/day

Heat duty -40.0 MMBtu/hr

To specify the heat duty, you will need to change *Temperature* to *Heat duty* for the second operating specification.

The **Pumparounds | P-1 | Specifications** sheet is complete:

- **5** Select the **Blocks | CRUDE | Pumparounds** folder to reopen the Pumparounds object manager.
- 6 Click New.
- 7 In the **Create new ID** dialog box, click **OK** to accept the default ID, P-2. The **Pumparounds | P-2 | Specifications** sheet appears.

8 Enter the following specifications for P-2:

Draw stage 14
Return stage 13
Drawoff type Partial

StdVol Flow 11000 bbl/day
Heat duty -15.0 MMBtu/hr

9 Click

The **Required Input Complete** dialog box appears.

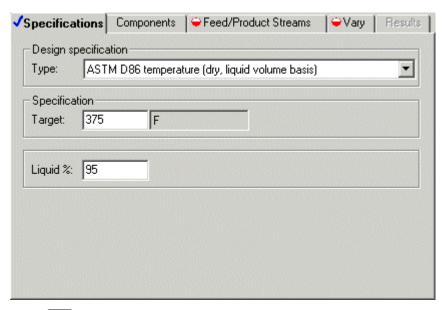
10 Click Cancel.

Enter Design Specifications

You have completed all required PetroFrac specifications. However, in this simulation, specify two design specifications, the ASTM 95% temperature for HNAPHTHA and for DIESEL.

1 From the Data Browser, select the **Blocks | CRUDE | Design Specs** folder.

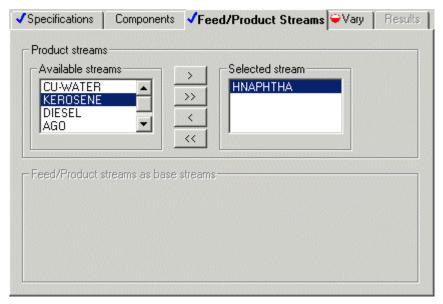
The **Design Specs** object manager appears.


- 2 Click New.
- 3 In the Create new ID dialog box, click OK to accept the default ID, 1.

The **Blocks | CRUDE | Design Specs | 1 | Specifications** sheet appears.

Enter specifications to have PetroFrac manipulate the distillate rate to achieve an ASTM 95% temperature of 375 F for HNAPHTHA:

- 4 In the **Type** field, click and select *ASTM D86 temperature (dry, liquid volume basis).*
- **5** Enter the following specifications:


Target 375 F **Liquid %** 95

6 Click N

The Blocks | CRUDE | Design Specs | 1 | Feed/Product Streams sheet appears.

7 From the **Available streams** column, select the HNAPHTHA stream and click to move the stream to the **Selected stream** column.

8 Click N

The **Blocks | CRUDE | Design Specs | 1 | Vary** sheet appears.

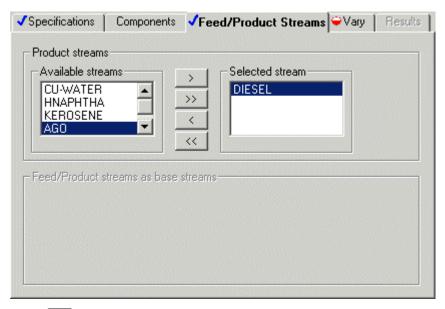
- **9** In the **Type** field, click and select *Distillate flow rate*.
- **10** From the Data Browser, select the **Blocks | CRUDE | Design Specs** folder to reopen the object manager.

For the second design specification, enter specifications to have PetroFrac manipulate the DIESEL flow rate to reach an ASTM 95% temperature of 640 F.

The **Design Specs Object Manager** appears.

- 11 Click New.
- **12** In the **Create new ID** dialog box, click **OK** to accept the default ID, 2.

The Blocks | CRUDE | Design Specs | 2 | Specifications sheet appears.

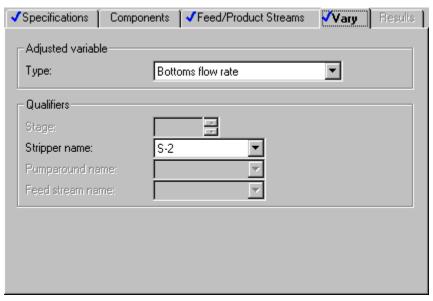

13 Enter the following specifications:

ASTM D86 temperature (dry, liquid volume basis) **Target** 640 F 95 Liquid % √Specifications | Components | ← Feed/Product Streams | ⇒ Vary Results Design specification ASTM D86 temperature (dry, liquid volume basis) Type: • Specification: 640 F Target: Liquid %: 95

14 Click .

The Blocks | CRUDE | Design Specs | 2 | Feed/Product Streams sheet appears.

15 From the **Available streams** column, select the DIESEL stream and click to move the stream to the **Selected stream** column.



16 Click .

The Blocks | CRUDE | Design Specs | 2 | Vary sheet appears.

- **17** In the **Type** field, click and select *Bottoms flow rate*.
- **18** In the **Stripper name** field, click and select S-2.

The **Block | CRUDE | Design Specs |2 | Vary** sheet is complete:

You have entered all the specifications for the atmospheric crude tower, without any initial profile estimates for tower temperatures, flow rates, or compositions. Aspen Plus can converge the column without estimates for these variables.

19 In the Aspen Plus window, click

Running the Simulation

1 In the **Required Input Complete** dialog box, click **OK**.

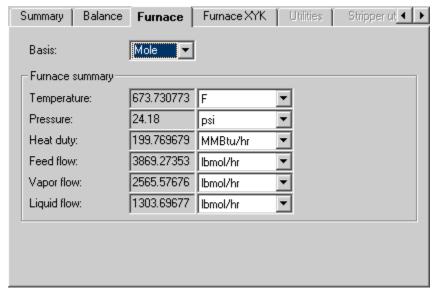
The **Control Panel** appears.

As the run proceeds, status messages appear in the Control Panel. It takes several seconds for Aspen Plus to process input specifications and perform the simulation. When the calculations finish, the message Results Available appears in the status bar at the bottom of the main window.

- **2** Use the vertical scrollbar to see the messages.
- **3** When the Results Available message appears in the toolbar, click Available message appears in the toolbar, click the top right corner of the Control Panel to close it.
- **4** Click at the top right corner of the Data Browser to close it.
- **5** Examine the results of your run.

Examining Simulation Results

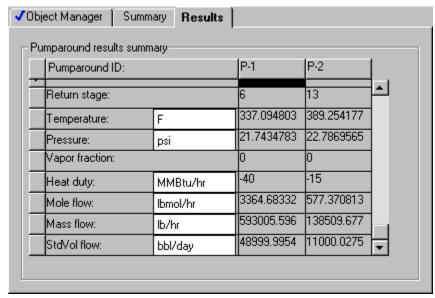
This run produces a wide variety of simulation results. In this simulation examine:


- Furnace duty.
- Pumparound return temperatures.
- Stream results for the atmospheric tower products.
- ASTM curves for the tower products.

Furnace duty results appear on the CRUDE | Results Summary | Furnace sheet.

To Examine Furnace Duty Results

- **1** From the **Process Flowsheet** window, select the CRUDE icon.
- **2** Right-click to display the menu and select **Results**. The **Blocks | CRUDE | Results Summary | Summary** sheet appears.
- **3** Select the **Furnace** sheet.


A summary of important furnace results appears:

To Examine Pumparound Return Temperatures

- **4** From the Data Browser, select the **CRUDE | Pumparounds** folder.
- **5** Select the **Results** sheet.

The **Pumparounds | Results** sheet appears:

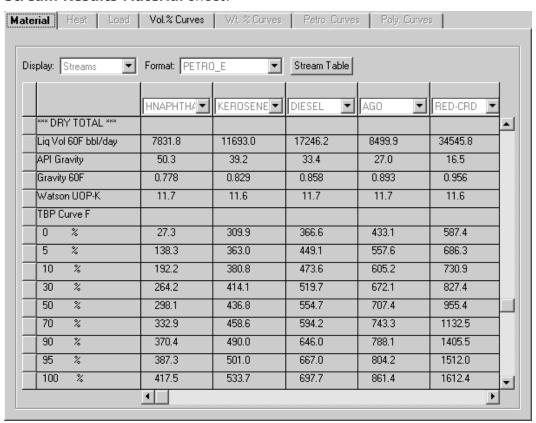
Examining the Product Streams

To Review the Stream Results for the **Crude Tower Products**

1 From the Data Browser, select the **Blocks | CRUDE | Stream Results** form.

The Blocks | CRUDE | Stream Results | Material sheet appears.

To Examine the Results for the Five **Product Streams**


- 2 In the first column of results, click and select HNAPHTHA.
- 3 In the next four columns, click and select KEROSENE, DIESEL, AGO, and RED-CRD.

To Examine the 5% and 95% **Cutpoints and Product Yields**

4 Use the vertical scrollbar to locate *** DRY TOTAL*** and have it display in the top line.

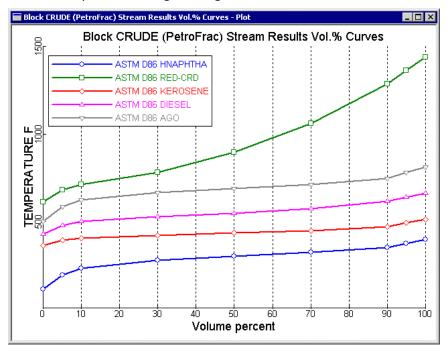
From these results, you can see that the tower produces a large quantity of the diesel cut. By specifying a high ASTM 95% temperature (375 F), you also maximize the amount of heavy naphtha produced.

Stream results for the crude tower products appear on the **Blocks CRUDE Stream Results Material** sheet:

5 Scroll and examine stream information for different products.

Plotting Distillation Curves

Next, examine and plot the ASTM curves for the products. The ASTM curves are on the **Stream Results | Vol.% Curves** sheet.


To Plot the Curves for the Product Streams

- 6 Select the Vol.% Curves sheet.
 The CRUDE | Stream Results | Vol.% Curves sheet appears.
- 7 In the **Curve view** field, click and select *ASTM D86 curve*.
- 8 Select the Volume % column.
- **9** From the Aspen Plus menu bar, select **Plot | X-Axis Variable**.
- 10 Select the HNAPHTHA column.
- **11** At the same time, press Ctrl and select the RED-CRD, KEROSENE, DIESEL, and AGO columns to select the columns.

Note: At this time, the HNAPHTHA, RED-CRD, KEROSENE, DIESEL, and AGO columns should be highlighted.

- **12** From the Aspen Plus menu bar, select **Plot | Y-Axis Variable**.
- **13** From the Aspen Plus menu bar, select **Plot | Display Plot**.
- **14** Resize the plot and drag the legend box as desired.

15 When finished viewing the plot, close the plot window.

At this point, simulate other modes of operation, such as maximizing kerosene production to satisfy a higher demand for jet fuel. Do this by:

- Decreasing the ASTM 95% temperature for heavy naphtha to 325 F
- Increasing the ASTM 95% temperature for kerosene to about 520 F
- Introduce another design specification by manipulating the kerosene flow rate

The product flow rates resulting from these specifications are:

	ASTM-D86 5% Temperature F	ASTM-D86 95% Temperature F	Product Flow- Rate (m bbl/day)
HNAPHTHA	166	325	4.7
KEROSENE	374	520	20.0
DIESEL	502	640	10.9
AGO	578	772	8.5
RED-CRD	674	1358	35.6

The results show that the kerosene production goes up at the expense of heavy naphtha and diesel.

Exiting Aspen Plus

1 From the Aspen Plus menu bar, select File | Exit.

The **Aspen Plus** dialog box appears.

2 Click **Yes** to save the simulation.

The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.

3 Click No.

The Chapter 4 simulation uses this run as the starting point.

4 Adding A Vacuum Unit

In this simulation, build on the simulation from the previous simulation and install a vacuum unit to complete the process model.

You will:

- Add a vacuum tower, steam feed, and product streams to the flowsheet.
- Specify the steam feed.
- Specify the vacuum unit.
- Run the simulation.
- Examine the results.

Allow about 30 minutes to complete this simulation.

Vacuum Unit Flowsheet

Figure 4.1 shows the process flowsheet for this simulation. It contains a vacuum unit that separates the reduced crude from the atmospheric tower into:

- Off-gas.
- · Light vacuum gas oil.
- Heavy vacuum gas oil.
- · Residual vacuum oil.

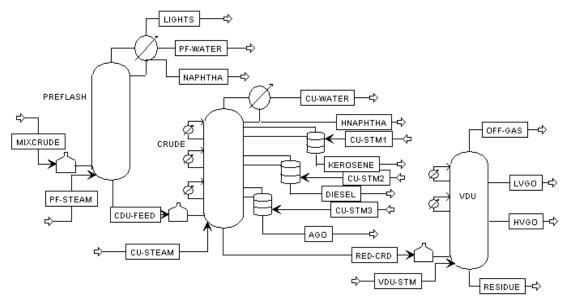


Figure 4.1 Process Flowsheet Adding a Vacuum Unit

The vacuum tower has no condenser or reboiler. Stripping steam is fed to the bottom of the tower in stream VDU-STM at 400 F, 60 psia, 20,000 lb/hr.

The furnace operates at a pressure of 2.03 psia, and provides an overflash of 0.6%. The overflash is bypassed to the tower furnace.

The tower has two pumparound circuits. The following table shows their locations and specifications:

Pumparound	Location	Specifications
1	From stage 2 to 1	Flow: 20,000 bbl/day Duty: -28 MMBtu/hr (estimated)
2	From stage 4 to 3	Flow: 49,000 bbl/day Duty: -80 MMBtu/hr

The duty for the first pumparound is adjusted so that the top of the tower is at 150 F.

You will model the tower with six equilibrium stages. The light vacuum gas oil is taken out from stage 2 as a total draw. The flow is estimated at 8,000 bbl/day.

The second pumparound provides all the necessary reflux for the lower section of the tower. The heavy vacuum gas oil is withdrawn from stage 4 at 17,000 bbl/day.

Starting Aspen Plus

- 1 From your desktop, select **Start** and then select **Programs**.
- 2 Select AspenTech | Aspen Engineering Suite | Aspen Plus 2004.1 | Aspen Plus User Interface.

The **Aspen Plus Startup** dialog box appears.

Opening an Existing Run

If You Saved the Crude Flowsheet from Chapter 3

- 1 Select Open an Existing Simulation.
- **2** In the list, select crude.bkp and click **OK**.

If Your Saved File crude.bkp Does Not Appear

- 1 In the list box, double-click **More Files**.
 - The **Open** dialog box appears.
- **2** Navigate to the directory containing your saved crude.bkp.
- **3** Select crude.bkp from the list of files, and click **Open**.

Note: If you did not create the assay data analysis simulation in Chapter 3, you can open the backup file crude.bkp in the **Examples** folder.

Opening the Backup File preflash.bkp in the Examples Folder

- 1 In the list box, double-click More Files.
- 2 Click OK.

The **Open** dialog box appears.

3 Click .

- **4** Double-click the **Examples** folder.
- **5** Select crude.bkp and click **Open**.

Note: If the **Connect to Engine** dialog box appears, see Chapter 6.

The **Aspen Plus** window appears. Aspen Plus displays the graphical flowsheet for the CRUDE run.

Saving a Run Under a New Name

Before you create a new run adding the vacuum unit, create and save a copy of CRUDE with a new Run ID, VACUUM. Then make modifications under this new Run ID.

- 1 From the Aspen Plus menu bar, select File | Save As.
 - The **Save As** dialog box appears.
- **2** Select the directory where you want to save the simulation.
- 3 In the File name field, enter VACUUM.
- 4 In the **Save as type** field, click and select *Aspen Plus Backup Files* (*.bkp).
- **5** Click **Save** to save the simulation and continue.
 - The **Aspen Plus** dialog box appears, asking if you want to save the simulation as an Aspen Plus Document file.
- 6 Click No.

The current Run ID, VACUUM now appears in the title bar.

To Update the Title for This Run

- **1** From the Aspen Plus menu bar, select Data | Setup.
 - The **Setup | Specifications | Global** sheet appears.
- 2 In the **Title** field, enter Getting Started with Petroleum --Simulation 4.
- **3** Close the Data Browser window.
 - The graphical workspace is now active and ready for you to add to the existing flowsheet.

Adding a Vacuum Tower to the Flowsheet

You are ready to add the vacuum tower and steam feed to the flowsheet.

To Make Space for the New Tower

- 1 From the Aspen Plus menu bar, select View | Zoom | Zoom Full.
- 2 Click and drag a region around the entire flowsheet.
- 3 Press and hold the left mouse button within the region and drag the flowsheet to the left.

Next, place and connect the vacuum unit on the flowsheet to create the process flowsheet in Figure 4.1. If you need to review how to create a graphical simulation flowsheet, see Getting Started Building and Running a Process Model, Chapter 2.

To Place and Connect the Distillation **Unit on the Flowsheet**

1 From the Model Library, select the **Columns** tab.

The list of available distillation columns appears.

- **2** Click Inext to the PetroFrac block icon.
- **3** Move the mouse over the list of icons to see a name (or label) for each.
- 4 Select the VACUUM1F PetroFrac icon, and drag the icon to the **Process** Flowsheet window as shown in Figure 4.1.
- **5** Release the icon in the desired location.
 - The **Input** dialog box appears.
- **6** In the **Enter the Block ID** field, enter VDU and click **OK**.

To Connect the Distillation Unit to the **Crude Block**

- **7** Select the RED-CRD stream.
- 8 Right-click and from the menu select Reconnect Destination.
- **9** Point to the **Main Column Feed** port at the bottom of the new column.
- 10 Click to connect the RED-CRD stream to the bottom feed port and drag it to the desired location in front of the feed furnace before releasing the mouse button.

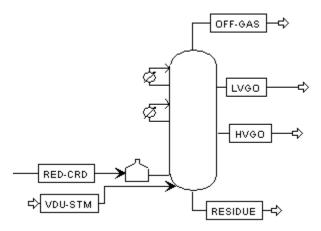


Figure 4.2 The Vacuum Unit

11 Connect, move, and name the other streams as shown in Figure 4.2. Use the table below to help you connect to the appropriate port.

Stream ID	Port Name
RED-CRD	Main Column Feed (already connected)
VDU-STM	Main Column Feed
OFF-GAS	Vapor Distillate from Main Column
LVGO	Side Product from Main Column
HVGO	Side Product from Main Column
RESIDUE	Bottoms Product from Main Column

You have finished adding the distillation unit to the flowsheet.

12 Click ...

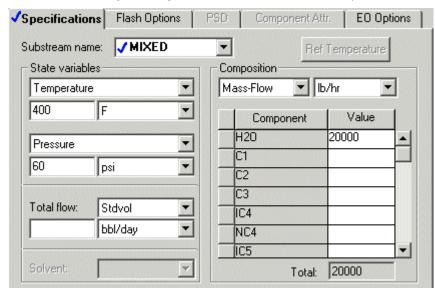
The **Flowsheet Complete** dialog box appears.

13 Click OK.

The **VDU-STM | Input | Specifications** sheet appears.

Specifying the Steam Feed

Use the **VDU-STM | Input | Specifications** sheet to enter the specifications for the steam feed to the main column.


1 Enter the following state variable and component flow specifications:

Temperature 400 F

Pressure 60 psi

Composition Mass-Flow lb/hr

Value for H2O 20000 lb/hr

The **VDU-STM | Input | Specifications** sheet is complete:

2 Click N>

The **Blocks | VDU | Setup | Configuration** sheet appears.

Specifying the Vacuum Unit

Specify the Basic Column Configuration

Use the **VDU | Setup | Configuration** sheet to specify the main column configuration.

1 Enter the following block configuration information:

Number of stages 6

Condenser None-Top pumparound

Reboiler None-Bottom feed

2 Click

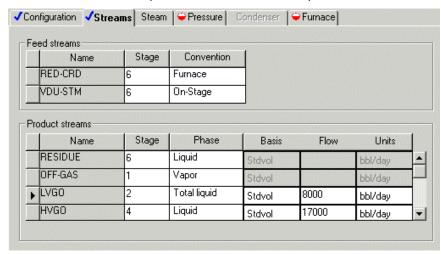
The Blocks VDU Setup Streams sheet appears.

3 Enter the following feed locations and connections:

	State	Convention
RED-CRD	6	Furnace
VDU-STM	6	On-Stage

The Furnace feed convention attaches a furnace to stage 6. This furnace is solved simultaneously with the vacuum tower.

4 Enter the following product location, phase, and rate specifications:


	Stage	Phase	Flow
LVGO	2	Total liquid	8000 bbl/day (estimate)
HVGO	4	Liquid	17000 bbl/day

LVGO is a total liquid draw from stage 2.

Note: The flow rate you enter for LVGO is an estimate only.

The Blocks VDU Setup Streams sheet is complete:

5 Click

The Blocks | VDU | Setup | Pressure sheet appears.

- 6 In the **View** field, click and select *Pressure profile*.

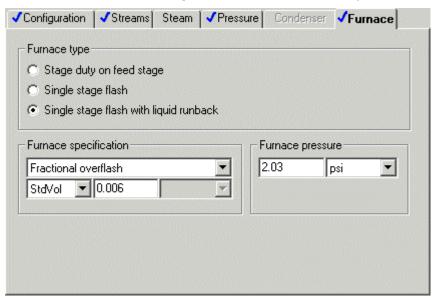
 Specify the pressure profile by entering stage numbers and corresponding
- 7 In the **Pressure profile** section, change the pressure units to *mmHg*.
- **8** Enter the following values:

pressures on this sheet.

Stage	Pressure (mmHg)
1	60
6	70

The **Blocks | VDU | Setup | Pressure** sheet is complete.

9 Click


The **Blocks | VDU | Setup | Furnace** sheet appears.

- **10** In the **Furnace type** section, select the *Single stage flash with liquid runback* option.
- **11** In the **Furnace specification** section, click and select *Fractional overflash*.

- **12** In the **Fractional overflash** field, enter a StdVol of 0.006.
- **13** In the **Furnace pressure** field, enter 2.03 psi.

The single stage flash with liquid runback option models the furnace as a single-stage flash with the overflash from the flash zone now bypassed to the furnace.

The **Blocks | VDU | Setup | Furnace** sheet is complete:

14 Click .

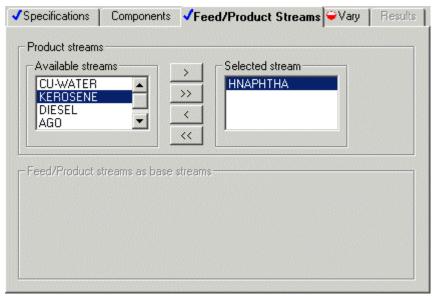
Specify the Pumparounds

The **VDU | Pumparounds** object manager appears.

- 1 Click New.
- 2 In the **Create new ID** dialog box, click **OK** to accept the default ID P-1. The **VDU | Pumparounds | P-1 | Specifications** sheet appears.
- **3** Enter the following specifications for P-1:

Draw stage 2

Return stage 1

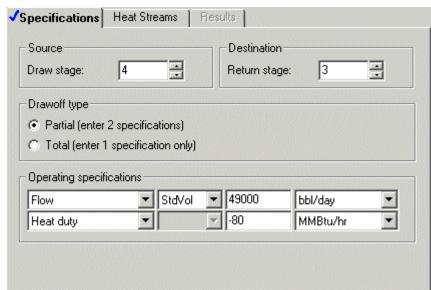

Drawoff type Partial

StdVol Flow 20000 bbl/day

Heat duty -28.6 MMBtu/hr

Change *Temperature* to *Heat duty* in the second **Operating Specification** field to enter the heat duty.

4 From the Data Browser, select the **Pumparounds** folder.


The **VDU | Pumparounds** object manager appears.

- 5 Click New.
- **6** In the **Create new ID** dialog box, click **OK** to accept the default ID P-2.
- **7** Enter the following specifications for P-2:

Draw stage 4
Return stage 3

Drawoff type Partial (enter 2 specifications)

StdVol Flow 49000 bbl/day **Heat duty** -80.0 MMBtu/hr

The **VDU | Pumparounds | P-2 | Specifications** sheet is complete:

8 Click

The **Required Input Complete** dialog box appears.

Enter Design Specification

You have completed all required PetroFrac specifications. However, in this simulation you have a design specification—the temperature specification for the top of the tower.

- 1 Click Cancel.
- 2 From the Data Browser, select the Blocks | VDU | Design Specs folder.
 The Blocks | VDU | Design Specs object manager appears.
- 3 Click New.
- 4 In the Create new ID dialog box, click OK to accept the default ID 1.

 The Blocks | VDU | Design Specs | 1 | Specifications sheet appears.
- **5** Enter the following specifications:

Type Stage temperature
Target 150 F
Stage 1

6 Click

The Blocks | VDU | Design Specs | 1 | Vary sheet appears.

- 7 In the **Type** field, click and select *Pumparound duty*.
- 8 In the Pumparound name field, select P-1.The Blocks | VDU | Design Specs | 1 | Vary sheet is complete.

- **9** Close the **Data Browser** window.
- **10** In the **Aspen Plus** window, click №.

The **Required Input Complete** dialog box appears.

Running the Simulation

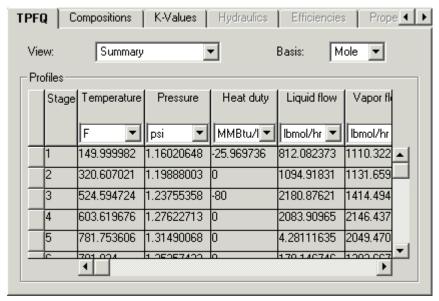
1 In the Required Input Complete dialog box, click OK.

The **Control Panel** appears.

As the run proceeds, status messages appear in the Control Panel. It takes several seconds for Aspen Plus to process input specifications and perform the simulation. When the calculations finish, the message Results Available in the status bar at the bottom of the main window.

- **2** Use the vertical scrollbar to see the messages.
- **3** When the *Results Available* message appears in the toolbar, click **⋈** at the top right corner of the Control Panel to close it.
- **4** Examine the results of your run.

Examining Simulation Results


This run produces a wide variety of simulation results. Examine simulation results for the vacuum tower that include:

- Column profiles.
- Pumparound results.
- TBP curves.
- Stream results.

Column profiles are on the **VDU | Profiles** form.

To Examine Column Profiles

- 1 From the **Process Flowsheet** window, select the VDU icon.
- 2 Right-click to display the menu and select Results.
 The Blocks | VDU | Results Summary | Summary sheet appears.
- **3** From the Data Browser, select the **Blocks | VDU | Profiles** form.

This sheet shows that the simulation calculated a bottoms temperature above 790 F. If this is higher than you want, you can reduce the tower pressure in a later simulation case. Lowering the tower pressure also affects the gas oil yield.

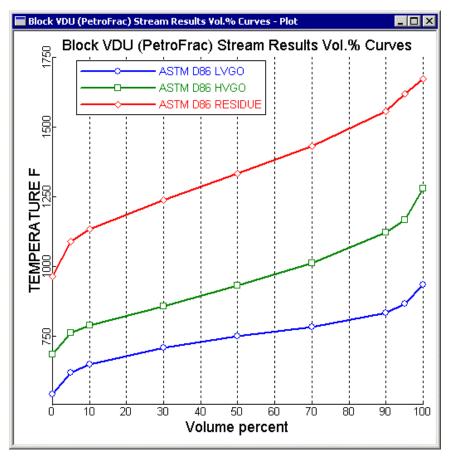
The pumparound results are on the **VDU | Pumparounds | Results** sheet.

To Examine Pumparound Results

- 4 From the Data Browser, select the **Blocks | VDU | Pumparounds** folder.
- **5** Select the **Results** sheet.

√Object Manager ∫ Summary Results Pumparound results summary P-2 Pumparound ID: Draw stage: Return stage: 128.287024 419.360728 Temperature: 1.19888003 1.27622713 Pressure: psi Vapor fraction: -25.972014 -80 Heat duty: MMBtu/hr 790.905173 1449.23391 Mole flow: lbmol/hr 263664.418 675834.017 Mass flow: lb/hr 19999.9636 49000.087 StdVol flow: bbl/day

The **Blocks VDU Pumparounds Results** sheet appears:


6 Close the window.

Plotting Distillation Curves

Next, plot the TBP curve for streams LVGO, HVGO, and RESIDUE. The True Boiling Point curves appear on the **Stream Results | Vol.% Curves** sheet.

To Plot TBP Curves

- 1 From the Data Browser, select the VDU | Stream Results form.
 The VDU | Stream Results | Material sheet appears.
- 2 Select the Vol.% Curves sheet.
- **3** Plot the ASTM curves for streams LVGO, HVGO, and RESIDUE following the same steps as in *Chapter 3, Plotting Distillation Curves*.

The simulation shows a good separation between the gas oils and residue. However, the separation between the light and heavy gas oils is rather sloppy.

4 When finished viewing the plot, close the plot window.

Examining Stream Results

- 1 From the Data Browser, select the **VDU | Stream Results | Material** sheet.
- **2** Use the horizontal scrollbar to locate the RESIDUE stream and review the information accordingly.
- **3** Use the vertical scrollbar to locate **API Gravity**.
- **4** Use the horizontal scrollbar to locate the LVGO stream and review the API Gravity information.

The calculated value for LVGO product rate is different from the specified value of 8000 bbl/day. Since you specified a total draw, Aspen Plus treated the specified value as an initial guess. The final value is the one corresponding to the total draw from the stage.

Exiting Aspen Plus

1 From the Aspen Plus menu bar, select File | Exit.

The **Aspen Plus** dialog box appears.

2 Click **Yes** to save the simulation.

The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.

3 Click No.

The Chapter 5 simulation uses this run as the starting point.

5 Displaying Petroleum Stream Properties

It is important to monitor certain petroleum properties such as sulfur content, PNA composition, octane number, flash point, metals content, and pour point when modeling refinery operations. Frequently, operating parameters are adjusted in order to achieve a desired product quality, expressed in terms of these petroleum properties.

These properties are often available as part of the assay data for a crude feed. Aspen Plus enables you to enter these data as property curves. Once you enter these curves, Aspen Plus can calculate these properties for any flowsheet stream.

Use the calculated stream properties as column specifications, access them in Fortran blocks, use them in optimization constraints, and so on.

In this simulation, as an example, include sulfur content in your model.

You will:

- Add a sulfur curve for each of the two crude oils.
- Select options for the property sulfur.
- Define a property set for the sulfur content.
- Run the simulation.
- Examine simulation results.

Allow about 30 minutes to complete this simulation.

Starting Aspen Plus

- **1** From your desktop, select **Start** and then select **Programs**.
- 2 Select AspenTech | Aspen Engineering Suite | Aspen Plus 2004.1 | Aspen Plus User Interface.

The **Aspen Plus Startup** dialog box appears.

Opening an Existing Run

If You Saved the Simulation Created in Chapter 4

- 1 In the Aspen Plus Startup dialog box, select Open an Existing Simulation.
- 2 In the list, select vacuum.bkp and click **OK**.

If Your Saved File vacuum.bkp Does Not Appear

- 1 In the list box, double-click More Files.
 - The **Open** dialog box appears.
- **2** Navigate to the directory containing your saved vacuum.bkp.
- **3** Select vacuum.bkp from the list of files, and click **Open**.

The **Aspen Plus** window appears.

Note: If you did not create the assay data analysis simulation in Chapter 4, you can open the backup file crude.bkp in the **Examples** folder.

Opening the Backup File preflash.bkp in the Examples Folder

- 1 From the Aspen Plus Startup dialog box, select Open an Existing Simulation.
- 2 Click OK.

The **Open** dialog box appears.

3 Click

- **4** Double-click the **Examples** folder.
- **5** Select vacuum.bkp and click **Open**.

Note: If the **Connect to Engine** dialog box appears, see Chapter 6.

The **Aspen Plus** window appears. Aspen Plus displays the graphical flowsheet for the VACUUM run.

Saving a Run Under a New Name

Before you create a new run adding sulfur content specifications, create and save a copy of VACUUM with a new Run ID, PPROP. Then make modifications under this new Run ID.

- 1 From the Aspen Plus menu bar, select File | Save As.
 - The **Save As** dialog box appears.
- **2** Select the directory where you want to save the simulation.
- 3 In the **File name** field, enter PPROP.
- 4 In the **Save as type** field, click and select *Aspen Plus Backup Files* (*.bkp).
- **5** Click **Save** to save the simulation and continue.
 - The **Aspen Plus** dialog box appears, asking if you want to save the simulation as an Aspen Plus Document file.
- 6 Click No.

The current Run ID, PPROP now appears in the title bar.

To Update the Title for This Run

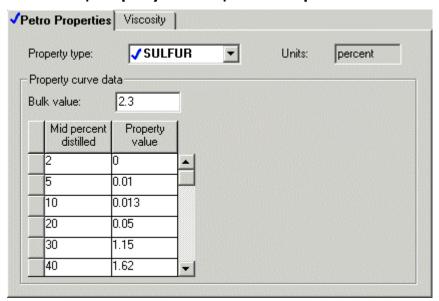
- 1 From the Aspen Plus menu bar, select **Data | Setup**.
 - The **Setup | Specifications | Global** sheet appears.
- **2** In the **Title** field, enter *Getting Started with Petroleum --Simulation 5*.
- **3** Close the Data Browser window.

The graphical workspace is now active. However, you will not modify the flowsheet in this simulation.

Adding Sulfur Content Data

In Chapter 1 you defined and blended two crude oils, OIL-1 and OIL-2. Now enter the sulfur content (in weight percent) of these oils into your simulation.

To Enter Sulfur Content for OIL-1


- 1 From the Aspen Plus menu bar, select Data | Components.
 The Data Browser appears, with the Components folder open.
- 2 Double-click the Components | Assay/Blend folder.
- 3 Double-click the OIL-1 folder.
- 4 Select Property Curves.

The Assay/Blend | OIL-1 | Property Curves | Petro Properties sheet appears.

- 5 In the **Property type** field, click and select SULFUR.
- 6 In the **Bulk value** field, enter 2.3.
- 7 In the **Mid percent distilled** and **Property value** fields, enter the following sulfur content percentage values:

Mid percent distilled	Property value (wt% sulfur)
2.0	0.0
5.0	0.01
10.0	0.013
20.0	0.05
30.0	1.15
40.0	1.62
45.0	1.90
50.0	2.15
60.0	2.54
70.0	3.0
80.0	3.7

The **OIL-1 | Property Curves | Petro Properties** sheet is complete:

To Enter Sulfur Content for OIL-2

- 1 Double-click the Assay/Blend | OIL-2 folder.
- 2 Select Property Curves.

The Assay/Blend | OIL-2 | Property Curves | Petro Properties sheet appears.

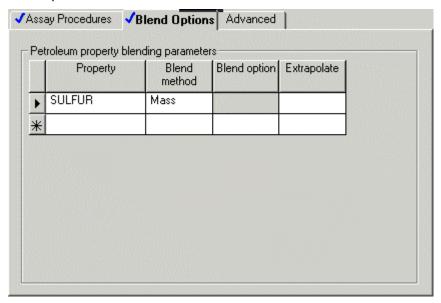
- 3 In the **Property type** field, click and select SULFUR.
- 4 In the **Bulk value** field, enter 2.5.
- **5** Enter the following sulfur content percentage values:

Mid percent distilled	Property value (wt% sulfur)
2.0	0.0
5.0	0.01
10.0	0.015
20.0	0.056
30.0	1.3
40.0	1.7
45.0	2.0
50.0	2.3
60.0	2.7
70.0	3.2
80.0	3.8

The **OIL-2** | **Property Curves** | **Petro Properties** sheet is complete.

Selecting Options for the Sulfur Property

For a petroleum property, select calculation options such as the blending and extrapolation methods.


- 1 From the Data Browser, double-click the **Components | Petro Characterization** folder.
- **2** Select the **Analysis Options** sheet.

The Petro Characterization | Analysis Options | Assay Procedures sheet appears.

- **3** Select the **Blend Options** sheet.
- **4** In the first **Property** field select *SULFUR*.
- **5** In the first **Blend method** field select *Mass*.

By default, Aspen Plus extrapolates to the 0 and 100% points if these values are missing from the curve.

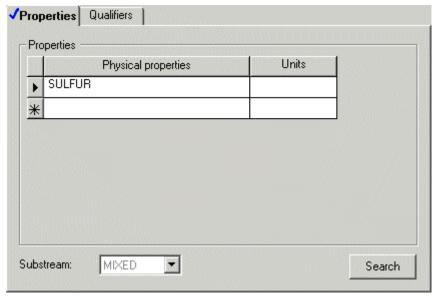
The **Petro Characterization | Analysis Options | Blend Options** sheet is complete:

6 Close the **Data Browser** window.

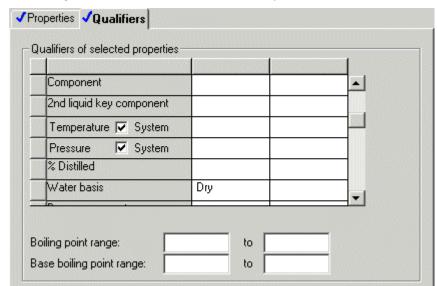
Adding the Sulfur Property

In order to include in the report the sulfur property you just defined, create a property set.

To Create the Property Set


- 1 From the Aspen Plus menu bar, select **Data | Properties**.
- **2** From the **Properties** folder, double-click the **Prop-Sets** folder. The **Prop-Sets** object manager appears.
- 3 Click New.
- 4 In the Create new ID dialog box, click OK to accept the default ID PS-1.
- 5 Click Search.
- **6** In the **Search Physical Properties** dialog box, enter *Sulfur* in the first field and click **Search**.
 - A list now appears in step 2 of the dialog box.
- **7** From the list of physical property names, select *Sulfur content*.
- 8 Click Add.

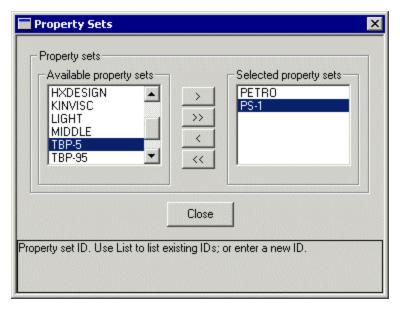
Search Physical Properties 1 Type physical property you want to find and then click Search Search pure components only 2 Click one or more properties you want, and then click Add. Alias Physical property name MASSFRS Mass fraction of sulfur atoms MOLEFLS Mole flow of sulfur atoms Mole fraction of sulfur atoms **MOLEFRS** Sulfur content SULFUR SULFCRV Sulfur content curve 3 Click OK to accept the selection. Alias Physical property name SULFUR Sulfur content Remove ΟK Cancel Help


Sulfur content now appears under the third section.

9 Click OK.

SULFUR now appears as a selected physical property on the Prop-Set Properties sheet:

- 10 Select the Qualifiers sheet.
- **11** In the **Water basis** field, click and select *Dry*.



The **Prop-Sets PS-1** sheet is now complete:

12 Close the Data Browser window.

To Add the Property Set to the Stream Property List

- 1 From the Aspen Plus menu bar, select **Data | Setup**.
- **2** From the **Setup** folder, select the **Report Options** form and then select the **Stream** sheet.
- 3 Click Property Sets.The Property Sets dialog box appears.
- 4 From the **Available Property Sets** column, select PS-1 and click to move it to the **Selected Property Sets** column.

5 Click Close.

The **Setup Report Options** sheet is now complete.

- 6 Close the **Data Browser** window.
- 7 Click .

The **Required Input Complete** dialog box appears.

Running the Simulation

1 In the **Required Input Complete** dialog box, click **OK**.

The **Control Panel** appears.

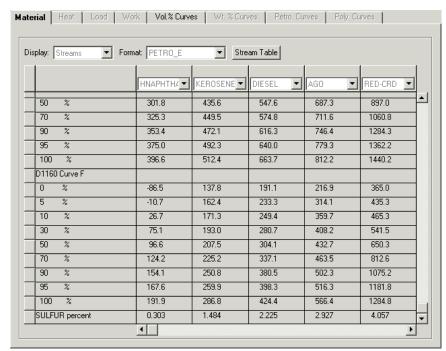
As the run proceeds, status messages appear in the Control Panel. It takes several seconds for Aspen Plus to process input specifications and perform the simulation. When the calculations finish, the message *Results Available* in the status bar at the bottom of the main window.

- **2** Use the vertical scrollbar to see the messages.
- **3** When the *Results Available* message appears in the toolbar, click at the top right corner of the Control Panel to close it.

Examining Results

Review the stream results for the crude tower products.

1 Click


The **Results Summary | Run-Status** form appears and indicates that the calculations were completed normally.

2 In the Data Browser, click .

The **Results Summary | Streams | Material** sheet appears.

- 3 In the first column heading, click and select HNAPHTHA.
- 4 In the next four columns, click and select KEROSENE, DIESEL, AGO, and RED-CRD.
- **5** Use the vertical scrollbar to locate **SULFUR percent**.

The **Results Summary | Streams | Material** sheet displays sulfur content:

As expected, the sulfur content of the heavier products, such as RED-CRD, is higher than the sulfur content for the lighter products, such as HNAPHTHA. By following the same procedure described in this simulation, incorporate other petroleum stream properties into your model and track their distribution throughout the flowsheet.

Leaving Aspen Plus

1 From the **Aspen Plus** menu bar, select File | Exit.

The **Aspen Plus** dialog box appears.

2 Click **Yes** to save the simulation.

The **Aspen Plus** dialog box appears and offers you the opportunity to save the simulation as an Aspen Plus Document file.

3 Click No.

6 Connecting to the Aspen Plus Simulation Engine

If either of the following conditions exist, you will be prompted to specify the host computer for the Aspen Plus simulation engine after you start the Aspen Plus User Interface:

- The simulation engine is not installed on your PC.
- The simulation engine is installed on your PC, but the Activator security device is not connected to your PC.

In these cases, the **Connect to Engine** dialog box appears.

- 1 In the **Server type** field, click and select the type of host computer for the simulation engine.
- **2** If you choose *Local PC* as the server for the simulation engine, you do not need to enter any more information into the dialog box. Click **OK** to continue.

If you choose *Windows 2000 or XP server* as the server for the simulation engine, specify additional options.

- **3** In the **Node name** field, enter the name of the computer on which the Aspen Plus simulation engine will execute.
- **4** In the other fields, enter the following information:

User name Your user name for the specified host/server.

Password Your password for the above user name.

Working The associated working directory. **directory**

5 Click OK.

When the network connection is established, the message *Connection Established* appears in the message box.

Note: If the *Connection Established* message does not appear, see your Aspen Plus system administrator for more information on network protocols and host computers for the Aspen Plus simulation engine.

General Information

This section provides Copyright details and lists any other documentation related to this release.

Copyright

Version Number: 2004.1

April 2005

Copyright © 1981 - 2005 Aspen Technology, Inc. All rights reserved.

Aspen ACOL™, Aspen Adsim®, Aspen Advisor™, Aspen Aerotran®, Aspen Alarm & Event™, Aspen APLE™, Aspen Apollo Desktop™, Aspen Apollo Online™, Aspen AssetBuilder™, Aspen ATOMS™, Aspen Automated Stock Replenishment™, Aspen Batch Plus®, Aspen Batch.21™, Aspen BatchCAD™, Aspen BatchSep™, Aspen Calc™, Aspen Capable-to-Promise®, Aspen CatRef®, Aspen Chromatography®, Aspen Cim-IO for ACS™, Aspen Cim-IO for Csi VXL™, Aspen Cim-IO for Dow MIF™, Aspen Cim-IO for G2™, Aspen Cim-IO for GSE D/3™, Aspen Cim-IO for Hewlett-Packard RTAP™, Aspen Cim-IO for Hitachi PLC (H04E)™, Aspen Cim-IO for Intellution Fix™, Aspen Cim-IO for Melsec™, Aspen Cim-IO for WonderWare InTouch™, Aspen Cim-IO for Yokogawa Centum CS™, Aspen Cim-IO for Yokogawa Centum XL™, Aspen Cim-IO for Yokogawa EW3™, Aspen Cim-IO Interfaces™, Aspen Cim-IO Monitor™, Aspen Cim-IO™, Aspen Collaborative Demand Management™, Aspen Collaborative Forecasting™, Aspen Compliance.21™, Aspen COMThermo TRC Database™, Aspen COMThermo®, Aspen Cost Factor Manual™, Aspen Crude Manager™, Aspen Crude Margin Evaluation™, Aspen Custom Modeler®, Aspen Data Source Architecture™, Aspen Decision Analyzer™, Aspen Demand Manager™, Aspen DISTIL™, Aspen Distribution Scheduler™, Aspen DMCplus® Composite, Aspen DMCplus® Desktop, Aspen DMCplus® Desktop, Aspen DMCplus® Online, Aspen DPO™, Aspen Dynamics®, Aspen eBRS™, Aspen Enterprise Model™, Aspen ERP Connect™, Aspen FCC®, Aspen FIHR™, Aspen FLARENET™, Aspen Fleet Operations Management™, Aspen Framework™, Aspen FRAN™, Aspen Fuel Gas Optimizer Desktop™, Aspen Fuel Gas Optimizer Online™, Aspen General Construction Standards™, Aspen Hetran®, Aspen HX-Net®, Aspen Hydrocracker®, Aspen Hydrotreater™, Aspen HYSYS Amines™, Aspen HYSYS Crude™, Aspen HYSYS Dynamics™, Aspen HYSYS OLGAS 3-Phase™, Aspen HYSYS OLGAS™, Aspen HYSYS OLI Interface™, Aspen HYSYS Tacite™, Aspen HYSYS Upstream Dynamics™, Aspen HYSYS Upstream™, Aspen HYSYS®, Aspen Icarus Process Evaluator®, Aspen Icarus Project Manager®, Aspen InfoPlus.21®, Aspen Inventory Balancing™, Aspen IQ Desktop™, Aspen IQ Online™, Aspen IQmodel Powertools™, Aspen Kbase®, Aspen LIMS Interface™, Aspen Local Security™, Aspen LPIMS™, Aspen MBO™, Aspen MIMI®, Aspen MPIMS™, Aspen Multivariate Server™, Aspen MUSE™, Aspen NPIMS™, Aspen OnLine®, Aspen Operations Manager - Event Management™, Aspen Operations Manager Integration Infrastructure™, Aspen Operations Manager - Peformance Scorecarding™, Aspen Operations Manager - Role Based Visualization™, Aspen Order Credit Management™, Aspen Orion Planning™, Aspen Orion™, Aspen PEP Process Library™, Aspen PIMS Blend Model Library™, Aspen PIMS Distributed Processing™ Aspen PIMS Enterprise Edition™, Aspen PIMS Mixed Integer Programming™, Aspen PIMS Simulator Interface™, Aspen PIMS Solution Ranging™, Aspen PIMS Submodel Calculator™, Aspen PIMS XNLP Optimizer™, Aspen PIMS™, Aspen PIPESYS™, Aspen PIPE™, Aspen Planning Accuracy™, Aspen Plant Planner & Scheduler™, Aspen Plant Scheduler Lite[™], Aspen Plant Scheduler[™], Aspen Plus OLI Interface[™], Aspen Plus®, Aspen Plymers Plus®, Aspen PPIMS[™], Aspen Process Data[™], Aspen Process Explorer[™], Aspen Process Manual[™], Aspen Process Order™, Aspen Process Plant Construction Standards™, Aspen Process Recipe®, Aspen Process Tools™, Aspen Product Margin & Blending Evaluation™, Aspen Production Control Web Server™, Aspen ProFES® 2P Tran, Aspen ProFES® 2P Wax, Aspen ProFES® 3P Tran, Aspen ProFES® Tranflo, Aspen Properties®, Aspen Pumper Log™, Aspen Q Server™, Aspen RateSep™, Aspen RefSYS CatCracker™, Aspen RefSYS Spiral™, Aspen RefSYS™, Aspen Report Writer™, Aspen Resource Scheduling Optimization™, Aspen RTO Watch Cim-IO Server™, Aspen RTO Watch Server™, Aspen Scheduling & Inventory Management™, Aspen SmartStep Desktop™, Aspen SmartStep Online™, Aspen SQLplus™, Aspen Supply Chain Analytics™, Aspen Supply Chain Connect™, Aspen Supply Planner™, Aspen Tank Management™, Aspen TASC-Mechanical™, Aspen TASC™, Aspen Teams®, Aspen Terminals Management™, Aspen TICP™, Aspen Transition Manager™, Aspen Turbo PIMS™, Aspen Utilities™, Aspen Voice Fulfillment Management™, Aspen Watch Desktop™, Aspen Watch

Server™, Aspen Water™, Aspen Web Fulfillment Management™, Aspen WinRace Database™, Aspen XPIMS™, Aspen Zyqad Development Version™, Aspen Zyqad™, SLM™, SLM Commute™, SLM Config Wizard™, the aspen leaf logo, and Plantelligence are trademarks or registered trademarks of Aspen Technology, Inc., Cambridge, MA.

All other brand and product names are trademarks or registered trademarks of their respective companies.

This document is intended as a guide to using AspenTech's software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license.

Corporate

Aspen Technology, Inc. Ten Canal Park Cambridge, MA 02141-2201 USA

Phone: (1) (617) 949-1000 Toll Free: (1) (888) 996-7001 Fax: (1) (617) 949-1030

URL: http://www.aspentech.com/

Related Documentation

Title	Content
Aspen Plus Getting Started Building and Running a Process Model	Tutorials covering basic use of Aspen Plus. A prerequisite for the other Getting Started guides
Aspen Plus Getting Started Modeling Processes with Solids	Tutorials covering the Aspen Plus features designed to handle solids
Aspen Plus Getting Started Modeling Processes with Electrolytes	Tutorials covering the Aspen Plus features designed to handle electrolytes
Aspen Plus Getting Started Using Equation- Oriented Modeling	Tutorials covering the use of equation- oriented models in Aspen Plus
Aspen Plus Getting Started Customizing Unit Operation Models	Tutorials covering the development of custom unit operation models in Aspen Plus
Aspen Engineering Suite Installation Manual	Instructions for installing Aspen Plus and other Aspen Engineering Suite products
Aspen Plus User Guide	Procedures for using Aspen Plus

Technical Support

Online Technical Support Center

AspenTech customers with a valid license and software maintenance agreement can register to access the Online Technical Support Center at:

http://support.aspentech.com

You use the Online Technical Support Center to:

- Access current product documentation.
- Search for technical tips, solutions, and frequently asked questions (FAQs).
- Search for and download application examples.
- Search for and download service packs and product updates.
- Submit and track technical issues.
- Search for and review known limitations.
- Send suggestions.

Registered users can also subscribe to our Technical Support e-Bulletins. These e-Bulletins proactively alert you to important technical support information such as:

- · Technical advisories.
- Product updates.
- Service Pack announcements.
- Product release announcements.

Phone and E-mail

Customer support is also available by phone, fax, and e-mail for customers who have a current support contract for their product(s). Toll-free charges are listed where available; otherwise local and international rates apply.

For the most up-to-date phone listings, please see the Online Technical Support Center at:

http://support.aspentech.com

Support Centers	Operating Hours
North America	8:00 – 20:00 Eastern time
South America	9:00 - 17:00 Local time
Europe	8:30 - 18:00 Central European time
Asia and Pacific Region	9:00 – 17:30 Local time