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Reponse Function Lab
By Vinicius Manvailer
For a visual explanation go to the video of this class here
INTRODUCTION

Response Function analysis is a multivariate technique based on Principal Components Analysis that was
introduced in the field of dendrochronology by Fritz in 1971. This technique was implemented to overcome
the issues associated with dealing with a great number of predictor variables (monthly precipitation (PPT) and
temperature (TMP) data) in correlation analysis. With many variables, multiple correlation tests are necessary
which in turn increases your chances of type-I error (finding a false positive). Although this confidence intervals
can be adjusted for multiple testing this often reduces your power of detecting climate signals in the analysis.

Another issue related to simple correlation analysis is dealing with time series data. Auto-correlation between
adjacent months can often hinder correct interpretation of climate patterns. Furthermore, precipitation and
temperature are variables that are correlated as well.

Although simple correlation can still be informative, all these issues make it hard to untangle the effect of
climate on tree growth. Thus, Fritz addressed those issues by doing a regression analysis of the TRW on the
principal components of the climate data. So instead of performing a multiple regression on TRW to PPT of
January, February and so on, we regress TRW on PC1, PC2 and etc.

The advantage of doing this is that Principal Components are, by definition, not correlated to each other thus
solving the issue related to auto-correlation and inter-correlation between temperature and precipitation.

DOING YOUR OWN RESPONSE FUNCTION ANALYSIS
Start by importing your tree ring and climate data and standardizing it using the scale() function.
Tree ring data:
tr <- read.csv(“chr_spruce.csv”)
tr_scaled <- scale(tr$mucstd)
tr_scaled <- as.data.frame(tr_scaled)
Climate data:
clim <- read.csv(“clim_spruce.csv”)
clim_scaled <- scale(clim[2:25])
clim_scaled <- as.data.frame(clim_scaled)
Now run a principal component analysis on the scaled climate data
pca_clim <- princomp(clim_scaled)

Ok now we will regress the tree ring data on the principal components, but we do not need all of them so we
will select the ones that accounts for the largest variation in climate. Note: there are different ways to do this,
but we will use the PVP criterion (CITATION) which is the most used.


https://drive.google.com/file/d/1cGoXx8vUjUuEPY4QJZ1h2mS7txiLGoqL/view

To do this we will calculate the product of eigenvalues until they get below 1. So, eigenl*eigen2, then
eigenl*eigen2*eigen3 and so on. Start with the first 15 and keep adding eigenvalues until the results drops
below one.

Our eigenvalues are stored in:
pca_clim[["sdev"]]

Now, extract the first 15 and do the product. What is the result? How many do you need?
prod(pca_clim[["sdev"]][1:15])

Found it? Awesome! Now we know which PCs are most important. The rest is probably random variability. We
will now regress the tree ring data on the principal components that matter.

First get the principal components scores.
scores <- as.data.frame(pca_clim$scores)

Those scores represent almost all our climate data — minus some noise we removed — but, unlike our original
data, each column (PC) is a variable completely independent from each other. This is important part of this
technique. Now get only the columns (scores) related to the PCs that you chose in the previous step and let’s
regress the standardized tree ring data on those scores.

Im rf <- 1lm(tr_scale$vl ~ Comp.1 + Comp.2 + Comp.3 + Comp.4 + Comp.5 + Comp.6
+ Comp.7 + Comp.8 + Comp.9 + Comp.10 + Comp.11 + Comp.12 + Comp.13 + Comp.1l4 +
Comp.15 + ..)

Great! You now have a linear model that uses principal components instead of original variables. Usually, we
would look at the coefficients for each variable and calculate the R2 to understand how much variation is
explain by each variable, but since principal components do not represent a direct measure of the real world
the coefficients don’t mean much to us. So, to make this meaningful we will get those coefficients and multiply
by the original principal components loadings. This part is not at all intuitive, but it will yield our response
function coefficients which are interpretable. Basically, we are trying to revert these principal components
coefficients back to coefficients of our original variables.

Extract the coefficients from the linear model and transform it into a data frame:
coef <- as.data.frame(lm rf$coefficients)
coef2 <- coef[,1] #extract just the coefficients

Now, because we are about to perform a matrix multiplication in both of our matrices the number of rows in
one must match the number of columns on the other one. They are different because we removed some
components in the previous step. So let’s just add some zeros at the end.

coef3 <- as.matrix (c(coef2, c(0,0,0,0)))

Now multiple the loadings (original variable weights) by the coefficients we calculated in our linear model (I
think we can call these our “new weights”). We basically want to find a single set of weights for our original
variables that will best describe the variability in our tree ring data.

loadings <- pca_clim$loadings

rf_coef <- as.data.frame (loadings%*%coef3)



Let’s retrieve the variable names:
rf_coef <- rownames_to_column(rf_coef, "varnames"
Congratulations, you are done! You calculated your own response coefficients! Now let’s plot our work.

barplot(rf_coef$Vvl, col = c(rep("blue", 12), rep("red", 12)), names.arg =
rf_coef$varnames)

abline(h = @)
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The last step would be to calculate the confidence intervals for our weight estimates by repeating this 1000
times using cross-validation. We could do this manually but, luckily, we have a nice package that will do this
for us.

3. RESPONSE FUNCTION ANALYSIS WITH THE TREECLIM PACKAGE.
library(treeclim)
Let’s import our data again
tr <- read.csv(“chr_spruce.csv”)
clim <- read.csv(“clim_spruce.csv”)

This packages is rather straight forward and does everything simply by calling the function dcc (). The only
thing you must check is the format of the data. The tree ring data needs to have the years as row names. This
is easily done with the command below.

tr <- column_to_rownames(tr, "year")
Now let’s adjust the climate data, we will use gather() to transform from wide to long format.
library(tidyr)
Split the dataset in two according to the variables.
al <- muc_clim_spread[1:13]
a2 <- muc_clim _spread[,c(1,14:25)]

Use gather() to putitinthe long format. Then use separate() to extract the numbers regarding the months.



Coefficients

al <- gather(al, key = "month", value = "temp", 2:13)

al <- separate(al, col = 2, into = c("d", "month")) %>% select(year, month,
temp)

a2 <- gather(a2, key = "month", value = "prec", 2:13)

a2 <- separate(a2, col = 2, into = c("d", "month")) %>% select(year, month,
prec)

Merge both datasets and make the month variable an integer so we can properly order this dataset.
a <- merge(al, a2)
a$month <- as.integer(a$month)
clim_long <- arrange(a, year, month)
Done! No you are ready to go. This package does everything for you, you just have to call the function dcc().
rf_treeclim <- dcc(tr, clim_long)
To visualize your coefficients simply call.
rf_treeclim$coef

You can extract the information from there and make your own custom plots. However, the function already
uses ggplot style to plot everything for you. To plot the coefficients, just call the plot command.

plot(rf_treeclim)
To adjust colors, you can use the ggplot syntax, just try:

plot(rf_treeclim) + scale_color_manual(values = c("steelblue", "tomato3"))
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There you go!



