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Tables of statistical tests are commonly analyzed in
evolutionary studies. These include analysis-of-vari-
ance and regression tables as well as tables of corre-
lation coefficients, chi-square values, G values, Stu-
dent’s ¢ values, etc. To see the prevalence of such tables,
one need only refer to a recent issue of Evolution (e.g.,
Evolution 41(6), November 1987, where such tables
appeared in 14 of 22 empirical articles). Here, I point
out that testing for the statistical significance of com-
ponent tests is routinely carried out in a biased fashion
that liberally judges far too many tests to be significant.
I then describe a nonparametric technique, originally
proposed by Holm (1979), to eliminate this bias.

So as not to single out any one person unfairly and
use his published results as a straw man, consider a
hypothetical correlation table examining five variables.
The procedure standardly used to evaluate such a table
is to carry out an individual significance test on each
of the ten correlation coefficients and then denote those
significant at the 5% level with an asterisk, those sig-
nificant at the 1% level with two asterisks, etc. Suppose
that two of the ten correlation coefficients were found
to be individually significant (P < 0.05). Using the
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“individual significance method,” a researcher might
spend several journal pages explaining the evolutionary
ramifications of the two individually significant cor-
relations observed in the table. Yet there may be in-
sufficient evidence to be 95% confident that there are
any nonzero correlations. Appropriate probability val-
ues must adjust for the number of simultaneous tests.

One can solve for the probability of observing at
least one individually significant correlation (P value
less than 0.05) in the above, hypothetical correlation
table on the composite null hypothesis (H,.) that all
the component correlations are zero. In computer sim-
ulations (Appendix), this probability is approximately
40%. Moreover, the probability of observing two or
more individual P values less than or equal to 0.05 is
about 7%. If a dozen variables were correlated, we
would be more than 95% certain, on H, ., that at least
one correlation would be judged individually signifi-
cant by chance alone. Even very small P values are
expected in moderately large correlation tables. With
a dozen variables, chance alone would produce a P
value less than or equal to 0.001 about 7% of the time.
The marking of component tests as statistically signif-
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icant based on their single-test significance values is
therefore clearly inappropriate, yielding far too many
significant results. Yet this is standard procedure in
articles published in Evolution and related journals.

The purpose of the proposed method of calculating
table-wide significance levels is to 1) control the prob-
ability of incorrectly rejecting one or more true null
hypotheses (component H, ), and 2) simultaneously
maintain substantial power in detecting one or more
component false Hy,. The rationale for the method is
that a researcher typically uses the minimum signifi-
cance levels (P values) of component tests to resolve
which among a group of H,, are false. Such a procedure
necessarily results in a posteriori significance testing.
If no adjustment is made for the number of tests in-
cluded in the group, then there is no control over the
group-wide type-I error rate.

It would appear that most evolutionary biologists
are aware, in principle, of the above problem, since
simultaneous inference techniques (i.e., multiple com-
parison techniques such as the Scheffe, Tukey, and
Student-Newman-Keuls methods) are routinely used
when comparing groups of means. My conjecture is
that simultaneous inference techniques are not used
when analyzing tables of test statistics because most
evolutionary biologists are unaware of a proper pro-
cedure. A nonparametric technique that can be used
in virtually all applications is the sequential Bonferroni
test, originally developed by Holm (1979). A general
treatment of simultaneous statistical inference is re-
viewed in Miller (1981).

The standard Bonferroni technique is described in
many general statistics texts. It can be readily shown
(e.g., see Miller, 1981) that, if a collection of k tests is
simultaneously carried out at the a/k significance level,
the probability, on H,_, that at least one component
H,, will be erroneously rejected is less than or equal
to a. This inequality does not require that component
tests be independent. A major disadvantage of the stan-
dard Bonferroni method, however, occurs when more
than one component H,, is false. For example, suppose
in the hypothetical correlation table described above
that four of the ten correlations were actually different
from zero. The standard Bonferroni test has substan-
tially reduced power in detecting more than one false
H,, (see Holm, 1979).

To increase power in detecting more than one false
H,,, Holm (1979) introduced the sequential Bonferroni
technique. To begin the test, select a significance level
(o). Next, replace each test statistic by its corresponding
P value and rank the P values from smallest (P,) to
largest (P,). First consider the smallest P value (P,). If
P, = a/k, then judge that the corresponding test in-
dicates significance at the “table-wide” « level; if the
inequality is not met, declare that all tests indicate
nonsignificance at the table-wide « level. If and only
if P, =< a/k, proceed to the second smallest P value
(P,). If P, = a/(k — 1), then judge this test also to
indicate statistical significance at the « table-wide level
of significance and proceed to the third smallest P value
(P3). If P, > a/(k — 1), then declare the corresponding
test and all other tests with larger P values to indicate
nonsignificance at the table-wide « level. Continue in
this fashion until the inequality P, < o/(1 + k — i) is
not met.

The sequential Bonferroni test does not require that

NOTES AND COMMENTS

component tests be independent. A small gain in power
can be achieved when the component tests can be as-
sumed to be independent. In this case, the test criterion
becomes, P, < (1 — [1 — o]VO+k-9),

One of the problems with reporting the results of
significance tests is that nonsignificance is frequently
reported by P > 0.05. This does not tell the reader
how closely significance was approached. A more in-
formative means of describing the results of a test is
to report the minimum significance level at which the
test would be judged significant i.e., the P value). A
minimum table-wide significance value can be calcu-
lated for the sequential Bonferroni test by iteration, but
the calculations can be tedious even for small tables.
To eliminate this problem, an interactive computer
program, written in standard Pascal, is available from
the author upon request. The program calculates the
minimum table-wide significance of component test
statistics.

The advantage of the sequential Bonferroni test over
the standard Bonferroni test is increased statistical
power. To illustrate, suppose that five allozymes were
measured and that each was tested for deviations from
Hardy-Weinberg ratios, resulting in P values of 0.4,
0.02, 0.015, 0.012, and 0.01. In this case, only one
component test would be judged to be significant at
the 5% significance level with the standard Bonferroni
test. With the sequential Bonferroni test, four of the
tests would be found to be significant. The standard
and sequential Bonferroni tests have identical power
in detecting a single false H,,, but the sequential tech-
nique improves power in detecting any additional false
H,,. The sequential Bonferroni test is more powerful
than the standard Bonferroni test for the same reason
that the Student-Newman-Keuls multiple-range test is
more powerful than the Tukey test, i.e., the rejection
criteria are less stringent for all tests other than the test
with the smallest P value. The increased power of the
sequential Bonferroni test is not due to this test being
in any way liberal, however, since the probability of a
type-I error for the entire test as well as each step of
the test is less than or equal to a. Power is gained in
the sequential Bonferroni test by eliminating much of
the conservativeness found in the standard Bonferroni
test when more than one null hypothesis is false. See
Miller (1981) for a general discussion of the increased
power of sequential tests when more than one H,, is
false.

The sequential Bonferroni method can be used in a
wide variety of applications, including all applications
in which the standard Bonferroni method has tradi-
tionally been used (see Holm [1979] for a discussion).
One of the most common situations where the need
for simultaneous statistical inference is neglected, be-
sides correlation tables and tables of independent tests,
is the evaluation of regression, ANOVA, and AN-
COVA coefficients. It is common for a researcher to
analyze many Student’s ¢ tests from a single regression
or ANOVA table. Just as one needs an a posteriori test
when carrying out multiple comparisons of the com-
ponent means in an ANOVA, one also needs an a
posteriori test in evaluating the individual significance
of variables in a regression, ANOVA, or ANCOVA
table. The sequential Bonferroni test can be used for
this purpose, although more complex parametric tests
are available in some cases.
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Many researchers choose not to use the standard
Bonferroni test because it is considered to be “overly
conservative.” It appears to me that many people ar-
rive at this view because they find, for example, that
a correlation with a corresponding P value of 0.01 is
not significant, on a table-wide basis, within a four-
variable correlation table. This is not a fault of the
Bonferroni method, however, since the exact proba-
bility, on H,, of observing a P value of 0.01 can be
shown to be about 6% (Appendix). Thus, it is not the
conservativeness of the Bonferroni method but the
number of correlation' tests within the table that re-
duces power. It is true, however, that in some appli-

cations a parametric alternative that has higher statis- .

tical power can be found. Obviously, these should be
used whenever appropriate. When no such alternative
is available, the sequential Bonferroni is a useful choice,
since much of the true conservativeness of the standard
Bonferroni test is eliminated (Holm, 1979).

A question that frequently arises when contemplat-
ing the use of a simultaneous-inference test is: what
constitutes a family of tests that needs to be analyzed
collectively? Should, for example, all the tests within
a manuscript be included, so that the reader can be
95% confident that not a single type-I error has been
made in the entire manuscript? I think that most would
agree that this is going too far. As pointed out by Miller
(1981), there is no clear criterion for deciding when a
simultaneous-inference significance test is required; it
simply depends on how tightly one wants to control
the group-wide type-I error rate. For example, suppose
a researcher collects a sample of plants and tests for
heritable variation for tolerance to three different
pathogens under five different environmental condi-
tions. Should the Bonferroni adjustment (k) be 5, for
the five environmental conditions applied to each type
of pathogen, or should it be 15 for all the tests com-
bined? The answer depends on the probability state-
ment desired. To control the type-I error rate for each
individual pathogen, k = 5 is appropriate; to control
it for all tests simultaneously, k = 15 is appropriate.
The choice simply depends upon the group-wide type-
I error rate desired. In this case it seems quite reason-
able to make a separate probability statement for each
pathogen.

I suggest that simultaneous inference be used when-
ever: 1) a group of two or more tests is scanned, and
the P values of component tests are used to determine
where significant differences occur (i.e., a posteriori
testing); or 2) two or more tests (that cannot be pooled)
address a common null hypothesis, and rejection of
the null hypothesis is possible when only some of the
tests are found to be individually significant. In these
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cases, if no adjustment is made for the number of tests
performed, then the probability of a type-I error in-
creases monotonically with the number of tests in the
group. If we continue to use nonsimultaneous inference
when analyzing data such as correlation tables, then
we will spend many journal pages discussing spurious
relationships that can be readily explained by chance
alone. Clearly, we have more important things to dis-
cuss.
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APPENDIX

All of the probability estimates based on computer
simulation were calculated as follows. The simulations
were carried out using a microcomputer with a Turbo
Pascal (version 3.0) compiler. A simulated k X k-
correlation table containing k(k — 1)/2 nonredundant
correlation coefficients was generated by first using
Turbo Pascal’s random number generator to produce
N(k[k — 1]) Uniform(0, 1) random variates, where k
is the number of variables in the correlation matrix
and N is the sample size for each of the variables. Next,
the Uniform(0, 1) variates were used to generate a
matrix of N(k[k — 1]/2) standard normal variates using
the Box-Muller technique (Cooke et al., 1982). These
calculations generated k ordered samples of indepen-
dent standard normal variates of size N each. Lastly,
the product-moment correlation coefficients () were
calculated between all k(k — 1)/2 pairwise combina-
tions of the normal samples.

To calculate the probability that one or more r values
exceeded a specified value, 20,000 tables were gener-
ated as described above, and the proportion of times
that one or more of the |r| values was greater than a
specified value was recorded.





