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a  b  s  t  r  a  c  t

Studying  changes  to  the  shape,  size,  and  arrangement  of  patches  of  forest  habitat  remains  a  challenge  in
the  field  of  landscape  ecology.  A major  issue  is that  most  landscape  pattern  metrics  measure  both  the
amount  of  habitat  as well  as  habitat  configuration.  To  obtain  independent  measures  of habitat  configura-
tion,  the  established  approach  is a  detrending  analysis  using  regression  residuals  between  configuration
metrics  and habitat  abundance.  We  compared  this  detrending  approach  with  a new  set  of three  normal-
ized  configuration  metrics  and evaluated  their  suitability  to detect  changes  to  forest  fragmentation  in  the
Canadian  boreal  forest  as a result  of  fire disturbance.  We  found  that  the  combination  of  two  of the  three
normalized  configuration  metrics  responds  well  to  habitat  configuration  dynamics  after  fire,  whereas  the
classical  approach  provides  an  inferior  measure  of  changes  to  habitat  configuration.  Our  second  objec-
tive  was  to examine  whether  spatial  configuration  metrics  can  be  directly  predicted  from  non-spatial
surrogates  that  describe  the initial  habitat  structure  and  the  disturbance  regime.  This has  practical  value,
because  many  models  that guide  forest  management  and  conservation  are  non-spatial.  We found  that
normalized  configuration  metrics  were  predicted  with  moderate  accuracy  (average  adjusted  r2 = 0.53),
while  detrended  metrics  could  not  be predicted  (r2 =  0.16).

©  2011  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Studying changes in landscape configuration – or the shape,
size, and arrangement of patches of habitat – is an important chal-
lenge in the field of landscape ecology and forest management
(e.g. Euler et al., 2000; With, 2002). Change of landscape configura-
tion after disturbance has important implications for biodiversity,
conservation, and ecosystem management (e.g. Davis et al., 2001).
However, the validity of comparisons among different landscapes,
or the representation of landscape fragmentation depends largely
on whether the configuration measurements are appropriate. Habi-
tat fragmentation is a process that reduces habitat abundance (p),
increases the number of habitat patches, decreases habitat patch
sizes, and increases patch isolations (Fahrig, 2003). Habitat frag-
mentation, therefore, includes two components: habitat loss and
habitat configuration changes. We  wanted to focus on the latter
component and therefore define habitat fragmentation as config-
uration changes only, following Andren (1994), Fahrig (1997) and
Schmiegelow and Monkkonen (2002).

The shape, size, and arrangement of patches of habitat are mea-
sured using means of configuration metrics. These metrics can be

∗ Corresponding author. Tel.: +1 780 492 1978; fax: +1 780 492 4323.
E-mail address: xianli@ualberta.ca (X. Wang).

classified into two major categories that will be compared in this
paper: stand table metrics and landscape pattern metrics. Stand
table metrics, such as patch number, mean and standard devia-
tion of patch sizes, are the non-spatial measurements that can be
directly computed from attribute tables of forest inventory poly-
gons (Cumming and Vernier, 2002). Landscape pattern metrics, on
the other hand, were developed to measure patch shape, core area,
and spatial distribution of habitat (McGarigal and Marks, 1995).
Landscape pattern metrics derived from spatial data layers in a
geographic information system (GIS) are the preferred methods
for characterizing landscape composition and structure because
of the spatial elements they reflect (e.g. Jaeger, 2000; Wang and
Cumming, 2011). Nevertheless, many predictive models depend on
non-spatial stand table metrics (e.g. Cumming and Vernier, 2002;
Linke et al., 2008).

Due  to their complex nature, landscape configurations cannot
be measured with just one metric, and a group of landscape pat-
tern metrics are usually used in landscape pattern analysis (e.g.
Cumming and Vernier, 2002; Remmel and Csillag, 2003). Even
then, one important remaining problem is that many metrics are
highly correlated with habitat abundance (Andren, 1994; Fahrig,
1998; Neel et al., 2004). As a consequence, when comparing differ-
ent study sites, configuration metrics cannot be easily interpreted
if levels of habitat abundance are different. In order to reduce
correlation between landscape metrics and habitat abundance,
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Fig. 1. Study area in north central Alberta and an example township (∼10 km × 10 km)  at different stages of simulated fire disturbance used for calculating landscape
configuration metrics for old mesic forest.

various approaches have been employed. Li and Reynolds (1994)
and Riitters et al. (1995) recommend selection of independent
configuration metrics, based on a large set of candidate metrics.
McGarigal and McComb (1995) use principal component analysis to
remove multi-collinearity configuration metrics. Gustafson (1998)
builds on this idea and proposes the development of configuration
metrics that optimally measure these independent principal com-
ponents. Another common practice is to eliminate the impact of
habitat abundance, either by controlling the total amount of habi-
tat (McGarigal and Marks, 1995; With and King, 2001), or by taking
linear or quadratic regression model residuals of a metric versus
abundance as the real configuration measurements (Trzcinski et al.,
1999; Villard et al., 1999; Flather and Bevers, 2002), which we  here-
after call “detrended”. The approach, however, has been criticized
by Koper et al. (2007). They have shown that regression residu-
als cannot be used to differentiate the ecological effects of habitat
amount and fragmentation even within a fixed landscape popula-
tion.

A new set of normalized landscape configuration metrics was
recently developed by Wang and Cumming (2011). These normal-
ized configuration metrics were made largely independent from
habitat abundance by dividing a raw metric by its theoretical max-
imum value. For example, the configuration metric “total core area”
distinguishes between buffer and habitat core area (McGarigal and
Marks, 1995). Within a landscape, the theoretical maximum total
core area for a given amount of habitat would be a single circle. The
normalized core area metric can be thought of as a relative mea-
surement to this maximum, comparable across landscapes with
any amount of habitat.

We  use the above configuration metrics to evaluate fragmenta-
tion as a result of forest fires. Fire is the driving force of boreal forest
landscape dynamics. It alters species composition (Cammeraat
and Imeson, 1999), changes soil properties (Certini, 2005), affects
species dispersal and dynamics (Green, 1989; Parisien and Sirois,
2003), and fire also changes habitat amount and configuration
(McRae et al., 2001). To quantify what effect fire disturbance has
on landscape fragmentation, and by implication species habitat, we
need suitable configuration metrics.

In this paper we test the suitability of landscape configuration
metrics to quantify fragmentation. Our two primary objective are:
(1) to compare the widely used detrending approach with a new

set  of three normalized configuration metrics and evaluate their
suitability to detect changes to forest fragmentation as a result of
fire disturbance, and (2) to examine whether spatial configuration
metrics can be directly predicted from non-spatial surrogates that
describe the initial habitat structure and the disturbance regime.
This has practical value, because many models that guide forest
management and conservation are non-spatial. If spatial configu-
ration metrics are predictable from stand table metrics, they may be
used as criteria to evaluate different management options in such
models.

2. Methods

2.1. Study area and data preparation

Our study area is an approximately 80,588 km2 region in central
Alberta, Canada (Fig. 1). This section of the boreal forest is man-
aged by Alberta-Pacific Forest Industries Inc. (Al-Pac), who provided
digital Alberta Vegetation Inventory (AVI) data, containing stand
level information including land cover, species composition, and
soil attributes. We chose old mesic forest (≥90 years) as focal habi-
tat because of its importance in boreal song birds’ conservation
(Cumming, 2001). Old mesic forest stands in our study area mainly
consist of habitats with soils derived from glacial till or lacustrine
deposits, and are typically dominated by trembling aspen (Populus
tremuloides Michx.) and white spruce (Picea glauca (Moench) Voss).

Fire disturbance in the simulated landscape was implied by
stand age recorded in the Alberta Vegetation Inventory database,
after removing harvesting. Harvesting is a major disturbance fac-
tor for this study area, but most harvesting occurred after the year
2000 in old mesic forests and occasionally in younger mesic and
pine forests over 60 years old (Cumming and Armstrong, 2001).
Following the rules of assigning closest-permitted alternative val-
ues, we  isolated the wildfire effect by applying a standard raster GIS
tool, nibble (ESRI, 2009), to refill the harvested blocks with their
surrounding major harvested forest classes. Hereafter, we  called
this restored landscape the “post-fire landscape”.

In order to obtain a realistic sequence of landscape config-
urations prior to fire disturbance, we  aged each stand of the
post-fire landscape in decadal intervals from 10 to 90 years, and
subsequently reclassified the landscapes after each aging step. After
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Table  1
Definitions, selected formulas, and unit of measurement (if applicable) for spatial configuration metrics used in this study. For more details refer to Wang and Cumming
(2011) for the normalized metrics and to McGarigal and Marks (1995) for all other metrics.

Code Description of metric Selected metric formulac

Shape indices
s Normalized  shape index s = msimax−msi

msimax−1 where msimax = 1
2 (

√
x̄ +  1)

lmsi  Log of mean shape indexa

msi =

n∑
j

pj/(�aj )

n

where pj is the perimeter of patch aj and n
is  the number of patchesmpf Area-weighted mean patch fractal dimension

dlf Double log patch fractal dimension
Core  area indices

c  Normalized core area index c = tca
tcamax

where tcamax = �(
√

A/� − b)
2

buffer
width  b

ltca  log of total core area (ha)a

tca =
n∑
j

ac
j

where ac
j

is the core area of patch aj and n

is  the number of patcheslmca log of mean disjunct core areaa

lcas Core  area standard deviation (casd)a

Spatial indices

d Normalized  inter-patch distance d = mnn
mnnmax

where mnnmax =
√

A0√
N−1

− (2/3)
√

x̄

lmnn  Log mean nearest neighbor distancea

mnn = (

n∑
j

hj)/n

where hj is the nearest distance to patch aj

and n is the number of patcheslmpi Log  mean proximity indexa

lnsd Log nearest neighbor standard deviation (nnsd)a

Matrix indices
cwe  Contrast weighted edge density (cwed)b

mec  Area-weighted mean edge contrast index (awmeci)b

Iji Interspersion and juxtaposition index
a Log transformation following to Cumming and Vernier (2002).
b Edge contrast matrix adapted from Vernier et al. (2001).
c A = habitat area (ha), A0 = total area of the landscape, N = number of patches, x̄ = Mean patch size (ha), tca = total core area (ha), mnn  = mean nearest neighborhood (m),

and  msi = mean shape index.

all mesic forests were converted to old forests in this simulation, we
referred to this landscape as the “pre-fire landscape”. Although we
referred to this landscape as pre-fire, forest stands were retrospec-
tively simulated to estimate pre-disturbance landscape conditions.
Configuration metrics were calculated for 573 townships (approxi-
mately 10 km × 10 km quadrats) within the study area. An example
for the simulated landscape of a township quadrat is shown in Fig. 1.

2.2. Configuration metrics

We  computed 12 landscape pattern metrics following Cumming
et al. (1996) and Cumming and Vernier (2002) to measure patch
shape, core area, spatial distribution, and matrix of the land-
scape, and refer to them as “raw metrics” (Table 1). Because most
metric–abundance relationships are non-linear, the residuals of
linear (Trzcinski et al., 1999) or quadratic (Flather and Bevers,
2002) regression models can introduce bias. We  therefore used
a generalized additive model (GAM, see Hastie and Tibshirani,
1990) to obtain unbiased abundance-independent configuration
metrics for the landscapes that we studied. We  refer to the resid-
uals of GAM as the measurements of landscape configurations
as “detrended metrics”. The individual detrended metrics were
denoted as gam(metrics), e.g. gam(ltca) for GAM residuals of total
core area (TCA) where “l” indicates log transformation in order
to reduce the positive skew in their distributions (Cumming and
Vernier, 2002). All metrics were computed from landscapes ras-
terized at 30 m resolution with FRAGSTATS v3.3 (McGarigal et al.,
2002).

The second approach for obtaining configuration metrics that
are independent of habitat abundance was through normalization
(Wang and Cumming, 2011): normalized total core area (c), nor-
malized mean nearest neighbor distance (d), and normalized mean
shape index (s) (Table 1). These metrics were calculated by divid-
ing their raw metric measurements, the total core area (tca), mean
nearest neighbor distance (mnn) and mean shape index (msi), by
a theoretical maximum and then were further scaled to the val-
ues ranging from 0 to 1. Following Wang and Cumming’s (2011)
convention, the core area value c approaching 1 implies a less frag-
mented landscape with respect to core area, a distance value d

increasing towards 1 implies patches becoming increasingly iso-
lated, and a shape value s approaching 1 indicates that habitat
patches are maximally compact.

2.3. Evaluation of metrics

Our  criteria for a good configuration metric include: (1) the met-
rics should be independent of habitat abundance; (2) the metrics
should clearly distinguish between the different simulated land-
scapes; (3) the metrics should reflect the non-spatial stand table
metrics, such as mean patch size or number of patches. Since there
are only three normalized configuration metrics, three equivalent
detrended metrics were used in the comparisons: for core area we
compared c versus the detrended ltca, for nearest neighbor distance
we compared d versus the detrended lmnn, and for a measure of
patch shape we  compared s versus the detrended lmsi (see Table 1
for explanation of these metrics).

To test whether a configuration metric meets the first criterion,
independence from habitat abundance, we  computed the adjusted
coefficient of determination (r2

adj) of the GAMs that model the
relationship between each configuration metric and the habitat
abundance p. Between each pair of the configuration metrics, the
core area (c and gam(ltca), distance (d and gam(lmnn), and shape
metrics (s and gam(lmsi), the lower r2

adj indicates the weaker depen-
dency on p and thus is a better configuration metric.

Secondly, we quantified the difference in configuration metrics
between the landscapes with increasing amount of simulated fire
disturbance (larger differences in metrics indicate more statistical
power in detecting fragmentation). For the detrended metrics, we
collated all the simulated landscapes to represent a full sample set
of the natural landscapes. We  then fitted the GAM models between
the 12 raw configuration metrics and p respectively, and computed
the detrended metric values. Configuration metrics that show sig-
nificant differences between landscapes of a disturbance sequence
were considered superior.

The  third criterion, correlation with non-spatial stand table met-
rics, was  tested by fitting the GAMs between each of the spatial
configuration metrics and number of patches (Np), patch size (z̄),
and standard deviation of patch size (sz). We  also used a multiple
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Table 2
Definition of the non-spatial stand table variables used to evaluate configuration
metric  and to predict spatial configuration metrics post-fire.

Symbols Descriptions

Initial stand configuration
xi Patch sizes
x̄ Mean patch size
zi log(xi)
z̄ Mean of zi

sz Standard deviation of zi

Np Log of number of patches of pre-fire focal habitat
Disturbance parameters

fi Log of burned focal habitat patch sizes (e.g. log of young
mesic  forest patch sizes)

f̄ Mean  of fi
sf Standard deviation of fi
Nf Log of number of patches for burned focal habitat
pf Proportion of burned focal habitat to the total area of the

landscape
mi The initial metric values for the pre-fire focal habitat

linear regression model between each configuration metric and the
stand table metrics collectively (Np, z̄  and sz). Adjusted coefficient
of determination (r2

adj) for single and multiple predictor variables
were used again to evaluate the strength of correlation between
the dependent and independent variables. A regression model with
a higher r2

adj value indicates a stronger relationship and a better
configuration metric.

2.4.  Predictive models for configuration metrics

Finally, we applied multiple linear regression models (MLM)
with every detrended and normalized configuration metric as
dependent variable (Table 1) and a set of stand table metrics
representing initial stand configuration and a set of disturbance
parameters as predictor variables (Table 2). We  built multiple lin-
ear regression models to predict the post-fire habitat configurations
based on the pre-fire habitat patch structure and the non-spatial
quantification of fire disturbance. Fire disturbance was measured
by taking current young mesic patches as the burned focal habitats
(see definitions in Table 2). The pre-fire configuration metric cor-
responding to the dependent variable was included as a predictor
variable denoted as mi following Linke et al. (2008). To evaluate its
contribution to the regression model, we calculated partial coeffi-
cients of determination for each predictor variable.

3. Results

3.1. Configuration metrics compared

Our criteria for a good configuration metric in this study were
independence from habitat abundance, sensitivity to simulated
landscapes, and correspondence to non-spatial stand table metrics,
such as mean patch size or number of patches. With respect to the
first criterion the detrended metrics are ideal simply because they
are the regression residuals between the raw configuration metrics
and p (Table 3). The normalized configuration metrics, on the other
hand, were still correlated with p but the variance explained (r2

adj)
was reduced compared to their raw versions (ltca, lmnn, and lmsi)
except for the normalized shape index s.

With respect to the second criterion, all normalized configu-
ration metrics were able to differentiate landscape configurations
when the extent of fire disturbance increases (Fig. 2). The response
of normalized metrics over the disturbance sequence was  largely
linear and monotonic, whereas this was not the case for detrended
metrics. Further, the power to detect significant differences
between landscapes with different disturbance regimes was  much

Table 3
Variance explained (r2

adj
) in configuration metrics through non-linear regression

models  (GAM) with non-spatial stand table metrics (predictor variables): habitat
abundance  (p), number of patches (Np), patch size (z̄), and standard deviation of
patch size (sz). The last column gives the r2

adj
for the multiple linear regression mod-

els  (MLM) between the configuration metrics and all patch structural variables (Np ,
z̄, and sz).

Metric GAM MLM

p Np z̄ sz

Detrended
gam(ltca) 0.00 0.16 0.08 0.14 0.38
gam(lmnn) 0.00 0.17 0.03 0.06 0.20
gam(lmsi) 0.00 0.11 0.26 0.13 0.33

Normalized
c 0.69 0.04 0.11 0.67 0.67
d 0.18 0.74 0.19 0.09 0.74
s 0.45 0.04 0.17 0.41 0.45

Raw
ltca 0.92 0.19 0.11 0.66 0.82
lmnn 0.60 0.42 0.02 0.22 0.63
lmsi  0.43 0.03 0.28 0.54 0.65

larger for the normalized metrics (compare 95% confidence inter-
vals, Fig. 2). Comparing the pre- and post-fire values of normalized
metrics (Fig. 3, top row), in the majority of samples the post-fire
landscapes were more fragmented in core area and shape, and
less isolated in patch spatial distances. The detrended metric coun-
terparts (Fig. 3, bottom row), on the other hand, showed a much
weaker ability in differentiating landscapes before and after the
fire disturbance for the core area and shape changes.

Evaluating the third criterion, correspondence to non-spatial
stand table metrics, r2

adj values of the multiple linear regres-
sion models indicated that the three normalized metrics reflected
changes of the testing covariates better than their detrended equiv-
alents (variance explained by MLM,  Table 3). In fact, detrended
metrics did not strongly correlate with any of the testing covari-
ates individually (variance explained by GAMs, Table 3). Detrended
metrics are therefore less sensitive to landscape fragmentation. The
normalized metrics, c and s primarily represent patch size standard
deviation (sz), and d primarily represents the number of patches
(Np). In contrast, none of the three detrended metrics were corre-
lated well with any of the testing covariates (Table 3). With respect
to the third criterion, normalized metrics also better characterized
landscape changes due to simulated fires.

3.2. Habitat fragmentation predicted by the normalized metrics

All  three normalized metrics were moderately predictable based
on initial configuration and disturbance regime according to the
regression model results (Table 4). Among all the predictor vari-
ables, the initial (pre-fire) value of the configuration measure (mi)
and habitat abundance (p) of the pre-fire landscapes, and the pro-
portion of habitat lost to fires (pf) were consistently significant in all
three regression models. For the normalized core area and shape
metrics (c and s), these three variables were the only significant
predictor variables. For the normalized distance metric (d), a num-
ber of stand table metrics (Np, Nf, f̄ , and sf) were also significant,
indicating that spatial distribution of patches could be altered not
only by habitat loss but also by the way  habitat was  lost. Evaluated
by the overall variance explained (r2

adj), the predictive power for
core area as dependent variable c was notably higher than that of
d and s, respectively (Table 4).

For all three detrended metrics (gam(ltca), gam(lmnn), and
gam(lmsi)) corresponding to the normalized metrics (c, d, and s),
the predictive models were very weak, with r2

adj ≤ 0.25 (Table 4).
However, the other detrended matrix indices (for which we could
not develop a normalized equivalent) were moderately high, and
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Fig. 2. Power of detrended versus normalized configuration metrics to distinguish landscape configurations under simulated levels of fire disturbance. The graphs show
means and 95% confidence intervals of all townships within the study area.

appear to be as useful in configuration predictions as the nor-
malized metrics. For all these three detrended metrics, the initial
configuration measures (mi) were the major predictors to the
models. However, the number of disturbance patches (Nf) and pro-
portion of habitat lost to fires (pf) also played contributing roles in
these predictive models.

4. Discussion

4.1. Use of detrended metrics

Detrended  metrics can differentiate the pre-fire landscapes
from the post-fire landscapes in terms of core area and patch shape,

Fig. 3. Changes between pre- and post-fire configuration metrics for all townships of the study area (represented by dots). The null model of no effect (y = x) is shown by the
dashed diagonal line.
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Table 4
Multiple linear regression models to predict post-fire spatial configuration metrics based on the pre-fire landscapes and non-spatial measurement of the levels of fire
disturbance. Partial r2 represent the contribution of each independent variable to the regression model. “–” = no entry. Significant codes: 0 ‘***’, 0.001 ‘**’, and 0.01 ‘*’. r2

adj
=

adjusted coefficient of determination values for each regression model.

Metrics mi z̄ sz Np p f̄ sf Nf pf r2
adj

Shape indices
s  0.162*** – – – 0.062*** – – – 0.092*** 0.454
gam(lmsi) 0.062*** – – 0.019** – 0.011* – 0.009* – 0.251
gam(mpf) 0.094*** 0.007* – 0.016** – 0.017** – – 0.024*** 0.153
gam(dlf) 0.180*** – – – – 0.010* – – 0.009* 0.193

Core  area indices
c  0.248*** – – – 0.159*** – – – 0.280*** 0.697
gam(ltca)  0.113*** – – – – – – – – 0.178
gam(lmca) 0.142*** – – – – – – – – 0.227
gam(lcas) 0.160*** – – – – – – – – 0.240

Spatial  indices
d 0.027*** – – 0.034*** 0.114*** 0.010* 0.009* 0.025*** 0.033*** 0.439
gam(lmnn)  0.055*** 0.008* – – – – – – – 0.054
gam(lmpi)  0.090*** 0.007* – 0.021*** – 0.008* – 0.008* 0.011* 0.212
gam(Lnsd)  0.047*** – – – – – – – – 0.052

Matrix  indices
gam(cwe) 0.270*** – – 0.020** 0.008* – – 0.045*** 0.063*** 0.418
gam(mec)  0.647*** 0.008* – 0.040*** 0.014** 0.008* – 0.044*** 0.056*** 0.687
gam(iji) 0.417*** 0.031*** – – – 0.014** – 0.074*** 0.053*** 0.493

but normalized metrics performed better in distinguishing lev-
els of fragmentation (Figs. 2 and 3). Our results confirm that the
detrending method is not an ideal solution to measure landscape
configuration as pointed out by Koper et al. (2007). It should be
noted that the detrending approach is still valid when p is held
constant and when the sampled landscapes cover the full range
of configuration variation at all levels of p. A critical requirement
for detrending is that the regression model needs to be properly
fitted. If the sampled landscapes are biased i.e. either very frag-
mented or compacted at different p levels, the fitted regression
models between the raw metrics and p would be biased.

To  predict detrended metric changes, the sampled landscapes on
which the regression models were built must be sufficient to cover
the full range of configuration variations at all levels of p and the
metrics must be highly predictable. While the three detrended met-
ric prediction models for the matrix indices are strong (Table 4), the
predictive power depends greatly on the processes (e.g. fire or har-
vesting) that shaped the landscapes. Consequently, these models
may not be easily applicable to landscapes with different harvesting
and fire regimes.

4.2.  Evaluation of normalized metrics

The normalized metrics are independent from the sampling
methods and sample size because their values do not rely on
regression models. These metrics accurately reflect changes in
patch number, mean patch size, and spatial arrangement of habi-
tat patches associated with simulated fire disturbance (Table 3).
Although it is probably not possible to have a metric that measures
all aspects of landscape configuration, we consider spatial metrics
that are clearly related to one or more stand table metrics as supe-
rior. Results in our study showed that among the three normalized
configuration metrics, d responds well to patch numbers, and c
is best represents variation in patch size. Their combination cov-
ers configuration dynamics very well. For example, a high d value
indicates high number of more isolated patches, and if c is low,
together they indicate more small patches in the landscape after
disturbance. Habitat fragmentation (leading to smaller, more iso-
lated, and increased numbers of habitat patches) is therefore well
described with these two normalized metrics.

For the purpose of predicting spatial configuration metrics after
disturbance, non-spatial models are widely used in forest man-

agement  and land use planning. These models use stand table
metrics, such as number of polygons or mean and standard devia-
tion of polygon size, that are widely available from forest inventory
databases to predict spatial configuration metrics that charac-
terize critical wildlife habitat (e.g. Cumming and Vernier, 2002;
Linke et al., 2008). We  found that normalized metrics were always
more predictable than their detrended equivalents. Nevertheless,
between 30 and 55% of the variance remains unexplained and
a large portion of the variance explained by the initial (pre-fire)
configuration metric itself (Table 4). We  conclude that random or
spatial elements within the normalized metrics cannot be com-
prehensively captured by the non-spatial predictor variables, and
therefore configuration metrics cannot be completely replaced by
stand table metrics.

Lastly,  we  point out that even though the normalized metrics
are conceptually independent measurements of landscape config-
urations, they still showed correlations with habitat abundance in
a real-world landscape (Table 3).

4.3. Habitat fragmentation after fire

Concepts of “pre-fire habitat structure” and “pre-fire landscape”
allowed us to compare habitat configurations after disturbance
to their initial undisturbed state. Habitat configuration changes
depend on how the disturbance agent acts. For example, under
different fire conditions fires may  indiscriminately burn different
types of forest patches, or propagate only selectively through vul-
nerable stand types. Landscape configurations can become more
compacted after small residual patches were eliminated, or they
may become more fragmented when bigger patches are split.
Comparing configurations of pre- and post-fire landscapes, both
approaches indicated that fires changed the core area and shape
of the old mesic forest patches. Normalized metrics also detected
that habitat patches became spatially more aggregated, while
detrended metrics did not find significant differences in patch dis-
tribution. Moreover, normalized metrics changed monotonically
with levels of fragmentation, and have a constrained value range
that allows comparisons of spatial landscape configurations among
different areas.

In  this paper, we contributed a new set of configuration metrics
that provide a more consistent measure of habitat fragmenta-
tion, and that are largely independent of measures of habitat loss.
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Normalization also showed improvement over other widely used
detrending methods in accurately reflecting changes in patch num-
ber, mean patch size, and spatial arrangement of habitat patches.
Habitat fragmentation is an important cause of decline or extirpa-
tion of species populations (Rosenzweig, 1995), and an accurate
assessment and monitoring of habitat fragmentation is important
for wildlife management and conservation planning. Our case study
of simulated fire disturbance in a boreal forest environment indi-
cates that normalized configuration metrics are a promising new
tool to monitor and predict habitat fragmentation under different
disturbance regimes.
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