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                             Method selection for species distribution modelling: are temporally 
or spatially independent evaluations necessary?          

    David R.     Roberts    and        Andreas     Hamann           

 D. R. Roberts (drr3@ualberta.ca) and A. Hamann, Univ. of Alberta, Dept of Renewable Resources, 751 General Services Building, Edmonton, 
AB T6G 2H1, Canada.                             

 To assess the realism of habitat projections in the context of climate change, we conduct independent evaluations of twelve 
species distribution models, including three novel ecosystem-based modelling techniques. Habitat hindcasts for 24 western 
North American tree species were validated against 931 palaeoecological records from 6000, 11 000, 14 000, 16 000 and 
21 000 yr before present. In addition, we evaluate regional extrapolations based on geographic splits of  �  55 000 sample 
plots. Receiver operating characteristic analyses indicated excellent predictive accuracy for cross-validations (median AUC 
of 0.90) and fair accuracy for independent regional and palaeoecological validations (0.78 and 0.75). Surprisingly, we 
found little evidence for over-parameterisation in any method. Also, given high correlations found between model accura-
cies in non-independent and independent evaluations, we conclude that non-independent evaluations are eff ective model 
selection tools. Ecosystem-based modelling approaches performed below average with respect to model sensitivity but 
excelled in specifi city statistics and robustness against extrapolations far beyond training data, suggesting that they are well 
suited to reconstruct historical biogeographies and glacial refugia.   

 Species distribution models, also referred to as ecological 
niche models or bioclimate envelope models, are an impor-
tant group of modelling techniques to predict habitat suit-
ability, originally developed in the context of conservation 
biology (Ara ú jo and Williams 2000). Over the last decade, 
such models have been extensively applied to project fu  ture 
species habitat under anticipated climate change (reviewed 
by Elith and Leathwick 2009). A search with ISI Web of 
Knowledge for (species distribution models) AND (climate 
change) reveals that, between 1990 and 2010, the number 
of publications increased in exponential fashion, with 538 
papers published in 2010. While the amount of research 
addressing potential climate change issues is encouraging, 
it has also been noted that there is a lack of thorough and 
independent validation of the predictive accuracy for these 
models, and that some standard evaluation statistics may be 
fl awed (Botkin et al. 2007, Elith and Graham 2009). 

 While it is not possible to validate future projections 
directly, models can be evaluated by other means, with sta-
tistical accuracies inferred by some form of cross-validation 
where a subset of the data is used for model training and the 
remainder used for model validation. However, these cross-
validation methods are problematic: ecological data is often 
highly auto-correlated and random data-splitting methods 
do not result in truly independent validation datasets, which 
leads to overly optimistic assessments of model accuracy 
(Ara ú jo et al. 2005a, Segurado et al. 2006). Instead, inde-
pendent model validations should be performed with data 
sets sourced externally from the training data, which often 

include data from new geographic regions or new time peri-
ods (Ara ú jo et al. 2005a). 

 Several examples of independent model evaluations can 
be found in the recent literature. Projections into diff erent 
geographic regions have been employed by Randin et al. 
(2006), Fl ø jgaard et al. (2009), and Morueta-Holme et al. 
(2010) to better assess the accuracy of their projections 
into the future or past. Palaeoecological data has also been 
employed, either by training models with fossil and pollen 
records to predict current species distributions (Martinez-
Meyer and Peterson 2006), or by using modern census 
data for training and palaeoecological data for validation 
(Martinez-Meyer et al. 2004, Giesecke et al. 2007, Pearman 
et al. 2008, Rodr í guez-S á nchez and Arroyo 2008, Roberts 
and Hamann 2011). All of these studies, however, assess 
only one or two model techniques, and a comprehensive 
assessment of species distribution model accuracy against 
independent data is lacking. 

 In this study, we contribute independent regional and 
palaeoecological validations for 12 modelling techniques that 
represent four major approaches to modelling species distri-
butions (climate envelopes, machine learning techniques, 
regression-based techniques, and a novel ecosystem-based 
approach). We applied these techniques to predict habitat 
of 24 major tree species of western North America based 
on  �  55 000 present-day sample plots and  �  700 palaeoeco-
logical study sites. Our primary goal is to assess the predic-
tive accuracy of a variety of species distribution models and 
to assess their robustness when extrapolating spatially or 

Ecography 35: 792–802, 2012 
doi: 10.1111/j.1600-0587.2011.07147.x

© 2011 Th e Authors. Ecography © 2011 Nordic Society Oikos 
Subject Editor: David Nogues. Accepted 28 October 2011



793

temporally beyond data coverage. We further aim to identify 
model techniques that are prone to over-parameterisation by 
comparing independent and non-independent validations. 
We also assess, for the fi rst time, a new approach to habitat 
modelling that relies on projections of ecosystem classes, and 
that predicts the distribution of all species in a single model 
run, and we conclude by discussing the suitability of avail-
able techniques for diff erent objectives in ecological habitat 
modelling.  

 Methods  

 Species distribution models 

 Census data from 55 743 forest inventory plots, or a sub-
set thereof, was used to build predictive species distribution 
models for 24 western North American tree species. Two 
approaches to model validation were used. First, we hind-
casted suitable habitat based on climate parameters fo fi ve 
periods of the Holocene and Late Pleistocene (6000, 11 000, 
14 000, 16 000, 21 000 yr before present) and validated these 
projections against 931 fossil and pollen records from 737 
unique sites, where records from diff erent time periods from 
the same location were considered separate samples. Second, 

we split the dataset geographically at 49 °  latitude and used 
plot data from Canada and Alaska to train the species dis-
tribution model. Projections were subsequently made for 
the continental United States and Mexico, geographically 
extrapolating into areas with generally warmer climate (as 
a proxy to projections under anticipated future climate) and 
evaluated the results against forest plot data from south of 
49 °  latitude. 

 We employed a representative set of species distribu-
tion modelling techniques, including two climate envelope 
approaches, four machine learning methods, three modern 
regression techniques, and three ecosystem-based model-
ling techniques, one of them a novel method (described 
in Table 1). All techniques, except the ecosystem-based 
approaches and discriminant analysis were implemented 
using the BIOMOD package (Th uiller 2003) for the R 
programming environment (R Development Core Team). 
BIOMOD is a computational framework for multi-method 
modelling that generates probability of presence (PoP) 
outputs for multiple species for multiple methodologies 
while allowing the user control over each of the individual 
methods.   It can generate a variety of ensemble projections, 
based on the outputs of the individual models (Th uiller 
et al. 2009). Th e BIOMOD package has several options 
for addressing pseudo-absence records, of which we selected 

  Table 1. Descriptions of each of the species distribution modelling techniques evaluated in this study, grouped by similar methodological 
approaches (based on groups described by Elith and Leathwick 2009, Franklin 2009).  

Method Description

Ecosystem-based methods
Discriminant analysis A standard multivariate approach to classifi cation, using an ecosystem class as dependent class 

variable and climate data as predictor variables (Hamann and Wang 2006).
Minimum distance A new classifi cation approach based on the closest multivariate distance in climate variables to a 

ecosystem climate mean, using Euclidean distance of principal components that explain most 
of the variance in the climate dataset (essentially a modifi ed Mahalanobis distance).

Random forest ensemble A classifi cation tree implementation with an ecosystem class as dependent variable. Multiple 
classifi cation trees are built based on random subset of variables and the fi nal class prediction 
is obtained by majority vote from multiple classifi cation trees (Mbogga et al. 2010).

classifi er

 Envelope techniques 
Discriminant analysis A standard multivariate approach to classifi cation, using a binary response variable (presence or 

absence).
Surface range envelopes Data within the 5th and 95th percentile of the maximum and minimum range for each predictor 

variable is considered within the envelope and variable interactions are not considered 
(Beaumont and Hughes 2002).

 Machine learning techniques 
Artifi cial neural networks Networks are built of weighted hidden units (much like decision tree nodes) based largely on 

pattern recognition and are capable of incorporating feedback loops between the units 
(Segurado and Ara ú jo 2004).

Classifi cation tree analysis Recursive data-splitting technique, iteratively creating homogenous subgroups (with the goal of 
minimising variance within each group). Cross-validation is used to prune the decision tree by 
balancing the number of terminal nodes and the explained variance (De’ath and Fabricius 2000).

Generalised boosting model Iterative regression trees, where misclassifi ed data from one classifi cation tree is weighted 
heavier in subsequent classifi ers, so each iteration places more emphasis on misclassifi ed 
data (Leathwick et al. 2006).

Random forest ensemble classifi er Multiple classifi cation trees are built based on random subset of predictor variables and the fi nal 
predictions are derived by averaging probabilities over multiple classifi cation trees (Prasad et al. 
2006).

 Regression-based techniques 
Generalised additive model Generalised linear models for individual predictor variables are combined additively, using 

smoothing equations to generalise the data and fi t to local data subsets (Guisan and 
Zimmermann 2000).

Generalised linear model An extension of the general linear model for binomial data capable of capturing non-linear 
relationships (Guisan and Zimmermann 2000).

Adaptive regression splines Fits splines to distinct but unequal intervals of the predictors before pruning excess spline 
connections through a stepwise analysis (Prasad et al. 2006).
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the  ‘ environmental envelope ’  option, an approach based 
on ranges of environmental predictors, shown to be eff ective
by Zarnetske et al. (2007). We also included a standard 
discriminant analysis, implemented with PROC DISCRIM 
of the SAS statistical software package (SAS Inst.), where the 
dependent class variable is species presence or absence and 
the TESTOUT option provided a probability of presence 
value for habitat predictions. 

 We included three methods based on a species distri-
bution modelling approach developed by Hamann and 
Wang (2006) and Roberts and Hamann (2011). Th e 
approach characterises the climate space of delineated eco-
system polygons, which represent a mapped area with rela-
tively homogeneous species communities, topoedaphic, and 
climatic characteristics. We used 768 mapped ecosystem 
classes compiled from various public sources for the western
continental US, western Canada, and Alaska using the 
fi nest scale mapped delineations available (for sources and 
detailed methodology, Roberts and Hamann 2011). In this 
ecosystem-based modelling approach, ecosystem classes 
serve as a dependent categorical variable that is predicted 
with climate variables using three diff erent methods. Th e 
maps of projected ecosystem classes were subsequently con-
verted to species habitat maps, where the probability of 
presence of a species was calculated as the proportion of the 
inventory plots within the ecosystem polygon where the spe-
cies was present. 

 Th is general ecosystem-based approach was implemented 
with three diff erent techniques that allow for a categorical 
response variable. Two methods have previously been used to 
project species distributions: discriminant analysis (Hamann 
and Wang 2006) and classifi cation tree analysis implemented 
with the random forest software package (Breiman 2001) 
for the R programming environment (R Development 
Core Team); for details see Mbogga et al. (2010). Th e third 
implementation of the ecosystem-based approach is an 
analogue-based inference method similar to those described 
by Overpeck et al. (1992) and Williams et al. (2001). Our 
implementation subjects average values of climate variables 
for each ecosystem to a principal component analysis imple-
mented with PROC PRINCOMP of the SAS statistical 
software package (SAS Inst.). Subsequently, we calculated a 
matrix of Euclidean distances between the climate scores of 
each ecosystem average (in columns) versus climate scores 
of predicted surfaces (in rows). Th e classifi cation was then 
carried out based on the minimum distance (i.e. the ecosys-
tem climatically most similar to the grid cell to be classifi ed). 
For the distance calculations, that are roughly equivalent 
to a Mahalanobis distance measure, the number of princi-
pal components was limited to those that explain a relevant 
amount of variance in the dataset, subjectively determined 
with a scree plot (the fi rst 5 components in this case). 

 From the output of all twelve species distribution models, 
we also generated ensemble projections based on the mean 
and median of predicted probabilities of presence.   

 Species and climate data 

 All individual species-based models directly predict prob-
ability of presence using presence/absence data from forest 

inventory plots as training data. In the case of ecosystem-
based habitat models that predict an ecosystem class, we 
derived a probability of presence value by substituting the 
ecosystem class with a ration of species ’  presences over the 
total number of plot samples that fall within the ecosystem 
delineation. Our 55 743 plot samples for western North 
America were compiled from the British Columbia Ministry 
of Forests (Hamann and Wang 2006), Sustainable Resources 
Development of the Government of Alberta (2004), and the 
United States Forest Service (Betchtold and Patterson 2005). 
Th e database also contained 3273 non-forested plot sites. 

 Predictor variables were interpolated climate data for the 
1961 – 1990 reference period, generated at 1 km resolution with
a software package that we make freely available   (� www.
ualberta.ca/ ∼ ahamann/climate.html �   or  � www.genetics.
forestry.ubc.ca/cfcg/climate-models.html �)  (Wang et al. 
2006, Mbogga et al. 2009). For a continental-scale modelling 
eff ort, we use relatively high-resolution climate grids to avoid 
over-estimating climate change eff ects in mountainous areas. 
With coarse-resolution grids, climate envelopes of species or 
ecosystems would be too narrowly defi ned with smaller tem-
perature ranges than in reality (Hamann and Wang 2005). 
From the available climate variables, we used a principal 
component analysis to select 10 variables with the lowest col-
linearity: mean annual precipitation, the mean temperature 
of the warmest month, the mean temperature of the coldest 
month, the diff erence between January and July temperature 
as a measure of continentality, May to September (grow-
ing season) precipitation, the number of frost-free days, the 
number of growing degree days above 5 ° C, and summer and 
annual dryness indices according to Hogg (1997). Past cli-
mate reconstructions for the periods 6000, 11 000, 14 000, 
16 000, and 21 000 calendar years before present were derived 
with previously-run simulations of the community climate 
model (CCM1) general circulation model (Kutzbach et al. 
1998). Th e coarse-resolution (7.5 °  longitude by 4.5 °  lati-
tude) CCM1 data were overlaid on high resolution modern 
climate data as deviations from the 1961 – 1990 reference 
period using the software package described above.   

 Model evaluation 

 Model projections were evaluated in four diff erent ways: 1) 
using all the sample plot data for training and for evalua-
tion (referred to as all-data); 2) with a random data-split, 
using 67% of the sample plots for training and the remain-
ing 33% for evaluation (out-of-bag); 3) using a regional 
extrapolation where models were trained with plot data 
from Canada and Alaska and projections were evaluated 
with plot data from the continental United States (north-
to-south); and 4) using all the present sample plot data 
for training and evaluation with fossil and pollen records 
from four time periods since the last glacial maximum 
(past-periods). For this past-periods model evaluation, we 
use palaeoecological data comprised of 931 fossil pollen 
and plant macrofossils records from 737 unique sampling 
sites compiled by the North American Pollen Database
(COHMAP 1988), Th ompson and Anderson (2000), 
and Dyke (2005). Of the 24 western North American 
tree species considered, six species were omitted from the 
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past-periods evaluation due to a lack of records in the fossil 
data (n  �  10) and fi ve species were omitted from the north-
to-south regional evaluation due to a lack of records in 
either the north or south data split (Table 2 for details) .

 We report model sensitivity (calculated as TP/(TP  �  FN), 
where TP  �  true positives and FN  �  false negatives), model 
specifi city (calculated as TN/(TN  �  FP), where TN  �  true 
negatives and FP  �  false positives). Sensitivity and speci-
fi city values represent an integrated measure for a range 
of thresholds between zero and one, calculated with the 
ROCR package (Sing et al. 2005) for the R programming 
environment (R Development Core Team). Th e area under 
the curve (AUC) of the receiver operating characteristic 
(Fawcett 2006), also calculated with the ROCR package 
(Sing et al. 2005), is a useful summary statistic of model 
accuracy as it is a threshold-independent evaluation of 
the rate of true presences vs false presences for all output 
probabilities simultaneously. Th e AUC of the receiver oper-
ating characteristic balances the ability of the model to detect 
a species when it is present (sensitivity) against its ability 
to not predict a species when it is absent (specifi city). AUC 
values range from 0 to 1, where 1 indicates perfect model 
accuracy, 0.5 represents a prediction expected by random 
chance, and 0 indicates that all predictions are false. 

 In order to quantify the relative contribution of model-
ling methods and species ’  ecological and biogeographic attri-
butes, we also carried out a variance partitioning analysis 
using AUC values as the dependent variable, implemented 
by PROC VARCOMP of the SAS Statistical software pack-
age (SAS Inst.), using the restricted maximum likelihood 
method (option REML).    

 Results  

 Independent model validation 

 We fi nd that model accuracy substantially declines across 
all techniques and all species when subjected to indepen-
dent validations (Fig. 1). Mean AUC values across all model 
techniques are represented by vertical lines in Fig. 1; median 
AUC values that are less infl uenced by outliers are 0.90, 
0.78, and 0.75 for out-of-bag, regional, and palaeoeco-
logical validations, respectively. Th is comparison excludes 
species that did not have suffi  cient palaeoecological 
records or sample plots north and south of 49 °  latitude, 
as indicated in Table 2. Considering that the expected 
AUC value for a random classifi er is 0.5, the reduction 
in accuracy is substantial. Th e individual AUC values for 
each species, model technique, and validation scenario 
are provided in the Supplementary material Appendix 1, 
Table A1 – A4. Standard errors of the mean AUC values 
represented as symbols in Fig. 1 were on average 0.01, 0.02, 
and 0.02 for out-of-bag, regional, and temporal validations, 
respectively. Standard deviations that provide a measure of 
variation among species (rather than statistical accuracy of 
the mean) were 0.04, 0.10, and 0.11, respectively. 

 Even though we fi nd substantial reductions in AUC 
values between non-independent and independent valida-
tion scenarios, these reductions are consistent in magnitude 
across all methods that we investigated. A completely non-

independent evaluation where all sample plots were used is 
virtually identical to out-of-bag validations. We further 
observe high correlations between the AUC values (inverse-
transformed for normality) of the non-independent out-of-bag 
and the independent regional validations (r  �  0.70, p  �  0.012) 
or palaeoecological validations (r  �  0.89, p  �  0.001). Notably, 
methods that have very high AUC values in non-independent 
validations, which could indicate over-parameterisation, also 
rank as most accurate in independent tests (Table 3). 

 In Table 3, we also report AUC values for ensemble 
projections, where the predicted probabilities of presence 
for species are represented by the mean or median across 
multiple model techniques. Ensemble projections outper-
formed all individual methods in independent evaluations. 
While more complex ensemble methods are available that 
weigh contributions of individual techniques by various sta-
tistics (for methodologies, Th uiller et al. 2009), we found 
that the simplest methods based on measures of central 
tendency (mean and median) yielded amongst the highest 
AUC values in both dependent and independent evalua-
tions (Supplementary material Appendix 1). Removing the 
poor-performing individual models from the ensemble 
calculations did not improve the ensemble projections. 
Even the inclusion in the ensembles of the surface range 
envelope outputs (with AUC values only slightly above ran-
dom chance) served to either increase or not aff ect the AUC 
values of the ensembles (Table 3).   

 Biogeographic and ecological characteristics 

 Th e infl uence of biogeographic and ecological characteristics 
of western North American trees species on model accuracy 
is summarised in Fig. 2. Th is comparison is based on average 
values from the two independent evaluations (regional and 
palaeoecological validations), and we aggregate the results 
further by groups of modelling techniques used in Fig. 1 
and described in Table 1. Standard deviations for the mean 
AUC values represented by symbols in Fig. 2 ranged between 
0.01 and 0.08 (mean of 0.04). Th e individual AUC value for 
each species, modelling technique, and validation scenario is 
provided in Supplementary material Appendix 1. In general, 
modelling techniques do not show interactions with biogeo-
graphic or ecological characteristics of species, but perform 
consistently well or consistently poorly across all ecological 
or biogeographic criteria. Th ere are, however, some moder-
ate main eff ects of biogeographic or ecological characteristics 
on overall model accuracy. 

 Among the biogeographic and ecological characteris-
tics, the continentality of the distribution of western North 
American tree species accounts for most variation in model 
accuracy (Table 4), with interior species having generally 
lower accuracies than coastal species (Fig. 2). An ANOVA 
using the classes  ‘ Coast ’ ,  ‘ Interior ’ , or  ‘ Both ’  as predictor vari-
able and AUC values across all modelling techniques as res-
ponse variable confi rms a signifi cant main eff ect (p  �  0.002). 
While common but range restricted species appear to have
higher model accuracies (Fig. 2), this eff ect is not signifi -
cant in an equivalent ANOVA (p  �  0.775) and does not 
account for any meaningful amount of the variance in AUC 
(Table 4). Mean AUC values declined from species that are 
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both sensitivity and specifi city with the exception of the ran-
dom forest ensemble classifi er, which appears to have higher 
specifi city than sensitivity values in both the ecosystem- and 
species-based implementations. For the independent evalu-
ations, ecosystem-based methods have signifi cantly higher 
model specifi city values (p  �  0.002) and generally, but not 
signifi cantly, lower sensitivities (p  �  0.09) when compared 
to species-based approaches. Unlike AUC values, sensitivity 
and specifi city values for the out-of-bag versus independent 
evaluations were not signifi cantly correlated. Only sensitivity 
values for the out-of-bag versus regional extrapolations were 
signifi cantly correlated (r  �  0.89, p  �  0.001). 

 Th e ability of ecosystem-based models to better predict 
species absence is apparent in an example for  Pseudotsuga 
meziesii  (Douglas-fi r) (Fig. 3). Here, we compared the 
ecosystem- and species-based modelling approach relying 
on the same technique, the random forest ensemble   classi-
fi er. Th e ecosystem-based model run (Fig. 3, bottom row) 
has better defi ned species absences in the two extrapola-
tions, whereas the species-based models (Fig. 3, top row) 
show large areas of high probability values well outside the 
species range. Another notable observation is that the 

highly restricted in their elevation range to species that we 
classifi ed as unrestricted (p  �  0.001). However, the overall 
variance in AUC explained by elevation category, despite this 
apparent linear relationship was minimal (Table 4). It should 
be noted that this elevation relationship does not depend on 
absolute values: range restricted species may be found at high 
elevations (e.g.  Pinus edulis ) as well as at low elevations (e.g. 
 Picea sitchensis ). We also observe a weaker trend toward higher 
model accuracies for shade tolerant species (p  �  0.041). In 
total, 29.7% of the variance in AUC was explained by the 
ecological and biogeographic traits of species, as compared to 
16.4% explained by the modelling method: together explain-
ing just less than half of the total variance in AUC (Table 4).   

 Model sensitivity versus specifi city 

 Beyond the AUC statistic we also considered model sensi-
tivity (the ability to detect a species when it is present) and 
model specifi city (the ability not to predict a species when it is 
absent) for evaluation. Across all species and methods, model 
specifi city is generally higher than model sensitivity (Table 3). 
Th e best performing techniques tend to have high values for 

Adaptive regression splines

Generalised linear models

Generalised additive models

Past periods
North-to-south
Out-of-bag
All points

Random forest

Generalised boosting models

Classification tree analysis

Artificial neural networks

Surface range envelopes

Discriminant analysis

Random forest

Minimum distance

Discriminant analysis

Ecosystem-based

Climate envelope

Machine learning

Regression-based

Median (all models)
Median (no SRE model)

Mean (no SRE model)

Mean (all methods)

Ensemble

0.5 0.6 0.7 0.8 0.9 1.0
Mean AUC for all species

  Figure 1.     Model accuracy for 12 individual and 4 simple ensemble techniques, evaluated by the area under the curve (AUC) of the receiver 
operating characteristic. Non-independent evaluations include training and validation data being the same (all points), a random data split of 
67% for training and 33% for evaluation (out-of-bag). Independent validations include a 49 °  latitude data split, extrapolating south for vali-
dation (north-to-south) and projections based on palaeoclimate data using fossil data from 6000, 11 000, 14 000, 16 000, and 21 000 yr before 
present for validation (past periods). Vertical lines represent the mean AUC value across all species and methods (excluding ensembles).  
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  Table 3. Mean AUC values (AUC), mean sensitivity (Sens.), and mean specifi city (Spec.) across all species for 1) the non-independent out-
of-bag evaluation; 2) the independent north-to-south regional evaluation; and 3) the independent past-periods temporal evaluation. The rank 
of each modelling technique within the independent evaluation scenarios and the sum of these ranks (Sum) is given. Ecosystem-based 
methods are shown in italics. The results of the mean and median of all methods as ensemble projections are also included, as are values of 
the ensembles with the worst-performing model (SRE) and ecosystem-based methods (Eco) removed.  

Out-of-bag (OOB) North-to-south (N2S) Past periods (TMP) Method rank

Modelling method AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. N2S TMP Sum

Random forest (Sp) 0.95 0.59 0.94 0.84 0.57 0.76 0.78 0.46 0.83 2 2 4
Generalised additive models 0.94 0.85 0.82 0.83 0.74 0.68 0.78 0.38 0.89 4 1 5
Generalised boosting models 0.94 0.88 0.83 0.84 0.75 0.70 0.74 0.36 0.86 3 3 6
Discriminant analysis (Sp) 0.90 0.88 0.54 0.78 0.78 0.52 0.74 0.73 0.51 5 4 9
 Random forest (Eco)  0.89  0.61  0.90  0.84  0.56  0.85  0.66  0.27  0.90  1  9  10 
Generalised linear models 0.94 0.85 0.84 0.78 0.66 0.72 0.73 0.34 0.90 7 5 12
Adaptive regression splines 0.92 0.46 0.93 0.77 0.46 0.79 0.73 0.39 0.82 9 6 15
Artifi cial neural networks 0.90 0.58 0.90 0.78 0.40 0.86 0.70 0.35 0.87 8 7 15
 Minimum distance (Eco)  0.83  0.53  0.90  0.78  0.46  0.88  0.66  0.28  0.90  6  10  16 
Classifi cation trees 0.91 0.79 0.72 0.74 0.64 0.68 0.66 0.31 0.84 10 8 18
 Discriminant analysis (Eco)  0.87  0.59  0.90  0.71  0.46  0.79  0.65  0.28  0.90  11  11  22 
Surface range envelopes 0.76 0.54 0.63 0.55 0.37 0.66 0.56 0.39 0.65 12 12 24
Ensemble: mean 0.95 0.92 0.59 0.89 0.86 0.58 0.80 0.78 0.52 – – –
Ensemble: median 0.95 0.76 0.83 0.90 0.81 0.59 0.80 0.53 0.79 – – –
Mean (SRE and Eco removed) 0.95 0.92 0.59 0.89 0.86 0.58 0.79 0.78 0.52 – – –
Median (SRE and Eco removed) 0.95 0.74 0.81 0.90 0.82 0.56 0.80 0.53 0.78 – – –

for Douglas-fi r are typical for other species and modelling 
methods also, where individual-species based techniques reg-
ularly show relatively high probability of presence values in 
spatial and temporal extrapolations beyond validation data 
coverage (maps not shown).    

species-based model run often indicates high probability 
of presence outside the area of available validation points 
(Mexico in the north-to-south extrapolation and in the areas 
of continental ice cover in the run for 16 000 yr ago). Th ese 
diff erences between ecosystem- and species-based approaches 

Very tolerant (4)
Tolerant (6)
Intermediate (4)
Intolerant (4)
Very intolerant (3)

Unrestricted (6)
Intermediate (6)
Restricted (5)
Highly restricted (4)

Rare (3)
Restricted (4) 
Widespread common (14)

Both (6)
Interior (10)
Coastal (5)

Continentality

Distribution

Elevation

Shade tolerance 

0.5 0.6 0.7 0.8 0.9 1.0
Mean AUC for all species

Regression
Machine learning
Envelope
Ecosystem

Ensemble

  Figure 2.     Model accuracy as a function of biogeographic and ecological characteristics of species, evaluated by the area under the curve 
(AUC) of the receiver operating characteristic. Th e values represent an average of the two independent validations (regional and temporal 
extrapolations), and are aggregated by the fi ve model categories used in Fig. 1 and explained in Table 1. Th e number of species in each
category is noted in parentheses (Table 2). Individual AUC values for all species, methods, and validation techniques are provided in 
Supplementary material Appendix 1.  
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  Table 4. The variance in model accuracy (AUC) explained by the 
modelling method as well as by the various biogeographic and 
ecological characteristics of species (as listed in Table 2).  

Component Variance explained

Modelling method 16.4%
Distribution range 14.7%
Shade tolerance 6.5%
Taxon/group 5.8%
Elevation range 2.7%
Distribution type 0.0%
Total  46.1% 
Error  53.9% 

 Discussion  

 Are species distribution models accurate? 

 Measured by area under the curve of the receiver operating 
characteristic, the species distribution models we evaluated in 
this paper performed reasonably well with the exception of 
the surface range envelope method, which we exclude from all 
subsequent discussion and summary statistics (Fig. 1). In gen-
eral terms, an AUC  �  0.90 is considered excellent, between 
0.80 and 0.90 good, between 0.70 to 0.80 fair, and  �  0.70 
poor (Muller et al. 2010). On this scale, ecosystem-based 
methods showed a good model fi t in out-of-bag validations 
with a mean AUC of 0.86, while individual species-based 
models showed excellent predictive accuracy. For the indepen-
dent evaluations (regional and temporal), both species-based 
models and ecosystem-based techniques had fair predictive 
capabilities with mean AUC values of 0.74 and 0.72, respec-
tively, values which are slightly lower than some hindcast 
studies for plant species (Ara ú jo et al. 2005a, Rodr í guez-
S á nchez and Arroyo 2008, Dobrowski et al. 2011), while 
closely comparable or higher than others (Giesecke et al. 
2007, Pearman et al. 2008). We should note, however, that 
our independent model evaluations are demanding in that 
they extrapolate spatially up to 2500 km, and temporally up 
to 21 000 yr into the past. We have previously shown that 
climate change expected for western North America would 
not include climates as novel as observed during the late 
Quaternary (Roberts and Hamann 2011). 

 Th e somewhat poorer performance of ecosystem-based 
approach may be due to the constraint of modelling fi xed 
species communities, where species assemblages are limited to 
compositions represented on the modern landscape. Th is is 
conceptually problematic for reconstructions from past time 
periods and spatial extrapolations far beyond data coverage 
that may require species assemblages without analogues in 
the training data (Williams and Jackson 2007, Roberts and 
Hamann 2011). From a methodological standpoint, the 
area under the curve of the receiver operating characteristic 
has limitations as an evaluative metric, as outlined by Lobo 
et al. (2008). As with all single statistics that summarise a 
model ’ s accuracy, it is important to also closely investigate 
the model projections in detail (Lobo et al. 2008). As illus-
trated in Fig. 3, we often fi nd large, obvious errors in the 
model output (e.g. extensive projected presences under the 
continental ice or extensive Douglas-fi r habitat in Mexico) 
that go largely undetected by the AUC calculation due to a 
lack validation points in these locations. While conceptually 

problematic, we fi nd that ecosystem-based techniques are 
less prone to produce false positives for habitat projections 
in areas that lack data coverage for statistical evaluations.   

 How should we select techniques? 

 Our results show little evidence of model over-parameterisation 
(model over-fi t) among the techniques. Methods with high 
AUC values based on non-independent validations, such as 
the random forest ensemble classifi er, generalised boosting 
models, and generalised additive models also performed well 
in independent tests (Fig. 1, Table 3). Somewhat surpris-
ingly, relatively high correlations in AUC values between 
non-independent and independent validations suggests that 
simple, out-of-bag evaluations can be used for comparing 
and selecting modelling techniques. Th is also suggests that 
the relative quality of model projections into new geographic 
space or diff erent time periods can reasonably be inferred 
from a non-independent evaluation, even though the abso-
lute values may imply over-optimistic accuracies, as has been 
shown previously (Ara ú jo et al. 2005a). However, we should 
note that a recent study by Dobrowski et al. (2011), incorpo-
rating a broader range of trees and shrub species, did not fi nd 
strong relationship among independent and non-dependent 
evaluations. 

 Like others (Guisan et al. 2007, Dobrowski et al. 2011), 
we found that ecological and biogeographic traits had an 
infl uence on accuracy (Fig. 2). For example, habitat of 
elevation-restricted species appears more accurately mod-
elled. A straight-forward explanation is that elevation limi-
tations refl ect a temperature optimum where a species is 
most competitive. Other types of habitat specialisations may 
not be described well by our available predictor variables. 
However, despite fi nding greater variation explained by our 
suite of ecological and biogeographic attributes of species 
as compared to modelling methods (Table 4), we did not 
fi nd that any of these attributes favour certain modelling 
methods for trees (Fig. 2). We are inclined to conclude that, 
at least for trees, model selection based on life history or 
biogeographic traits is not necessary .

 Th at said, with the development of software packages 
like BIOMOD, there is little reason to select individual 
techniques rather than relying on ensemble (or consensus) 
projections (Ara ú jo et al. 2005b, Marmion et al. 2009). We 
fi nd that the highest AUC, sensitivity, and specifi city sta-
tistics could be consistently achieved with simple mean or 
median probability of presences from all techniques, which 
confi rm other recent fi ndings (Grenouillet et al. 2011). 
Unexpectedly, including even the poorest performing indi-
vidual technique, surface range envelope, served to increase 
the predictive accuracy of the ensemble projections.   

 Ecosystem-based models 

 Modelling approaches that incorporate community data 
or species assemblages have been implemented and evalu-
ated before (review by Ferrier and Guisan 2006). Th ese 
approaches use a species composition (a collection of species 
and their particular frequencies) as the dependent variable 
in the model (Elith et al. 2006, Baselga and Ara ú jo 2009), 
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Species-based random
 forest

Ecosystem
-based random

 forest

All points Out-of-bag North-to-south 16 000 years ago
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Sens=0.66
Spec=0.88
AUC=0.94

Thr=0.62
Sens=0.63
Spec=0.53
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Thr=0.70
Sens=0.56
Spec=0.82
AUC=0.83

Thr=0.52
Sens=0.60
Spec=0.86
AUC=0.88

Thr=0.62
Sens=0.67
Spec=0.72
AUC=0.78

Thr=0.70
Sens=0.30
Spec=0.94
AUC=0.69

  Figure 3.     Projected probability of presence (PoP) for  Pseudotsuga meziesii  (Douglas-fi r) using the species- and ecosystem-based random for-
est ensemble classifi er under four model training and validation scenarios: training and validation based on the entire dataset (all points), a 
random data split of 67% for training and 33% for evaluation (out-of-bag), a 49 °  latitude data split, extrapolating south for validation 
(north-to-south) and projections based on palaeoclimate data using pollen and fossil data from the end of the last ice age. Th e area under 
the curve (AUC), model sensitivity (Sens) and model specifi city (Spec) represent the accuracy of projections. Th reshold probabilities (Th r) 
are determined by the AUC calculation and represent the PoP for which the evaluation error rate is minimal.  

which is diff erent to our approach of predicting a class 
variable that represents delineated ecological regions with a 
known species composition. We fi nd that predictive accu-
racy of our ecosystem-based approach is somewhat inferior 
to individual species models, which is similar to an equiva-
lent evaluation of community-based models by Baselga and 
Ara ú jo (2009). It is further notable that the ecosystem-based 
methods behave poorly for the hindcasts toward the last 
glacial maximum, when diff erent climate conditions drove 
major changes in species communities. 

 However, maps based on ecosystem-based models gener-
ally appear to produce better defi ned species range limits, 

refl ected by high specifi city statistics, with probability of 
presence values rapidly approaching zero outside the actual 
species range. In spatial or temporal extrapolations far beyond 
training data, the ecosystem-based models may be more 
robust because the entire multivariate climate space of the 
study area is well defi ned by sampling all delineated ecosys-
tems without bias. In fact, the example that we included for 
 Pseudotsuga meziesii  for 16 000 yr ago (Fig. 3) corresponds 
well to phylogeography studies based on genetic data. Li and 
Adams (1989) identify three genetically distinct populations 
of the species from Mexico, the interior Rocky Mountains, 
and the coast of western North America from which they 
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postulate three glacial refugia based on genetic data, which 
appear well-defi ned in the model projections. It therefore 
appears that in this example better robustness and specifi city 
of ecosystem-based models outweigh the inferred benefi ts of 
higher statistical accuracy of individual species models. 

 A fi nal desirable characteristic of the ecosystem-based 
modelling approach is that within-population genetic di -
versity can be integrated into species distribution models, 
which has been previously proposed (Botkin et al. 2007, 
Th uiller et al. 2008). Th e use of delineated ecoregions as 
training units within the model allows for the division of 
a species range into small, genetically homogenous popula-
tions, which in turn facilitates the subsequent tracking of 
individual populations under climate change projections 
(Gray and Hamann 2011). Simply, it is possible to deter-
mine the geographic location where the habitat (climate 
niche, in this case) of a species in a future model projec-
tion originated in the present day. If genetic data on adaptive 
diff erentiation of populations is available, ecosystem-based 
models can guide assisted migration eff orts at the population 
level, rather than at the species level (for a detailed discus-
sion, Gray and Hamann 2011, Gray et al. 2011, Hamann 
et al. 2011). Furthermore, in addition to species frequencies, 
any other ecosystem attribute, including those applicable to 
management prescriptions and conservation objectives (e.g. 
disturbance regimes), can potentially be matched to antici-
pated future climates. Th is makes ecosystem-based methods 
useful as eff ective decision-making tools for climate-informed 
conservation and resource management applications. 

              Acknowledgements   –  We kindly thank the custodians of the exten-
sive data we have used, in particular Art Dyke for making his fossil 
and pollen databases available to us. Funding for this study was 
provided by the NSERC Discovery Grant RGPIN-330527-07 
through the Government of Canada and the Alberta Ingenuity 
Grant no. 200500661 through the Government of Alberta.   

 References 

  Ara ú jo, M. B. and Williams, P. H. 2000. Selecting areas for 
species persistence using occurrence data.  –  Biol. Conserv. 
96: 331 – 345.  

  Ara ú jo, M. B. et al. 2005a. Validation of species-climate impact 
models under climate change.  –  Global Change Biol. 11: 
1504 – 1513.  

  Ara ú jo, M. B. et al. 2005b. Reducing uncertainty in projections of 
extinction risk from climate     change.  –  Global Ecol. Biogeogr. 
14: 529–538.  

  Baselga, A. and Ara ú jo, M. B. 2009. Individualistic vs community 
modelling of species distributions under climate change. 
 –  Ecography 32: 55 – 65.  

  Beaumont, L. J. and Hughes, L. 2002. Potential changes in the 
distributions of latitudinally     restricted Australian butterfl y 
species in response to climate change.  –  Global Change Biol. 
8: 954 – 971.  

  Betchtold, W. A. and Patterson, P. L. 2005. Th e enhanced forest 
inventory and analysis national sample design and estimation 
procedures.  –  Gen. Tech. Rep. SRS - 80 ,  United States Dept of 
Agriculture, Forest Service, Southern Research Station, Ashe-
ville, NC.  

  Botkin, D. B. et al. 2007. Forecasting the eff ects of global warming 
on biodiversity.  –  Bioscience 57: 227 – 236.  

  Breiman, L. 2001. Random forests.  –  Machine Learn. 45: 5–32.  
  Burns, R. M. et al. 1990. Silvics of North America: 1. conifers; 

2. hardwoods.  –  Agricultural Handbook 654, U.S. Dept of 
Agriculture, Forest Service.  

  COHMAP 1988. Climatic changes of the last 18,000 years  –  
observations and model simulations.  –  Science 241: 
1043 – 1052.  

  De’ath, G. and Fabricius, K. E. 2000. Classifi cation and regression 
trees: a powerful yet simple technique for ecological data 
analysis.  –  Ecology 81: 3178 – 3192.  

  Dobrowski, B. et al. 2011. Modeling plant ranges over 75 years of 
climate change in California, USA: temporal transferability 
and species traits.  –  Ecol. Monogr. 81: 241 – 257.  

  Dyke, A. S. 2005. Late Quaternary vegetation history of northern 
North America based on pollen, macrofossil, and faunal 
remains.  –  Geogr. Phys. Quat. 59: 52.  

  Elith, J. and Graham, C. H. 2009. Do they? How do they? WHY 
do they diff er? On fi nding reasons for diff ering performances 
of species distribution models.  –  Ecography 32: 66 – 77.  

  Elith, J. and Leathwick, J. R. 2009. Species distribution models: 
ecological explanation and prediction across space and time. 
 –  Annu. Rev. Ecol. Evol. Syst. 40: 677 – 697.  

  Elith, J. et al. 2006. Novel methods improve prediction of 
species ’  distributions from occurrence data.  –  Ecography 29: 
129 – 151.  

  Fawcett, T. 2006. An introduction to ROC analysis.  –  Pattern 
Recognit. Lett. 27: 861 – 874.  

  Ferrier, S. and Guisan, A. 2006. Spatial modelling of biodiversity 
at the community level.  –  J. Appl. Ecol. 43: 393 – 404.  

  Fl ø jgaard, C. et al. 2009. Ice age distributions of European small 
mammals: insights from species distribution modelling.  –  J. 
Biogeogr. 36: 1152 – 1163  .

  Franklin, J. 2009. Mapping species distributions.  –  Cambridge 
Univ. Press.  

  Giesecke, T. et al. 2007. Towards an understanding of the 
Holocene distribution of  Fagus sylvatica  L.  –  J. Biogeogr. 34: 
118 – 131.  

  Govt. of Alberta 2004. Ecological Site Information System (ESIS). 
 –  Sustainable Resource Development, Edmonton, AB  .

  Gray, L. K. and Hamann, A. 2011. Strategies for reforestation 
under uncertain future climates: guidelines for Alberta, 
Canada.  –  PLoS One 6: e22977.  

  Gray, L. K. et al. 2011. Assisted migration to address climate 
change: recommendations for aspen reforestation in western 
Canada.  –  Ecol. Appl. 21: 1591 – 1603.  

  Grenouillet, G. et al. 2011. Ensemble modelling of species distri-
bution: the eff ects of geographical and environmental ranges. 
 –  Ecography 34: 9 – 17.  

  Guisan, A. and Zimmermann, N. E. 2000. Predictive habitat dis-
tribution models in ecology.  –  Ecol. Model. 135: 147 – 186.  

  Guisan, A. et al. 2007. What matters for predicting the occur-
rences of trees: techniques, data, or species ’  characteristics? 
 –  Ecol. Monogr. 77: 615 – 630.  

  Hamann, A. and Wang, T. L. 2005. Models of climatic normals 
for genecology and climate     change studies in British Columbia. 
 –  Agric. For. Meteorol. 128: 211 – 221.  

  Hamann, A. and Wang, T. L. 2006. Potential eff ects of climate 
change on ecosystem and tree species distribution in British 
Columbia.  –  Ecology 87: 2773 – 2786.  

  Hamann, A. et al. 2011. Developing seed zones and transfer guide-
lines with multivariate regression trees.  –  Tree Genet. Genom. 
7: 399 – 408.  

  Hogg, E. H. 1997. Temporal scaling of moisture and the forest-
grassland boundary in western Canada.  –  Agric. For. Meteorol. 
84: 115–122.  

  Kutzbach, J. et al. 1998. Climate and biome simulations for the 
past 21,000 years.  –  Quat. Sci. Rev. 17: 473 – 506.  



802

  Leathwick, J. R. et al. 2006. Variation in demersal fi sh species rich-
ness in the oceans     surrounding New Zealand: an analysis using 
boosted regression trees.  –  Mar. Ecol. Prog. Ser. 321: 267 – 281.  

  Li, P. and Adams, W. T. 1989. Range-wide patterns of allozyme 
variation in Douglas-fi r ( Pseudotsuga menziesii ).  –  Can. J. For. 
Res. 19: 149 – 161.  

  Lobo, J. M. et al. 2008. AUC: a misleading measure of the per-
formance of predictive distribution models.  –  Global Ecol. 
Biogeogr. 17: 145 – 151.  

  Marmion, M. et al. 2009. Evaluation of consensus methods in 
predictive species distribution modelling.  –  Divers. Distrib. 15: 
59 – 69.  

  Martinez-Meyer, E. and Peterson, A. T. 2006. Conservatism of 
ecological niche characteristics in North American plant species 
over the Pleistocene-to-Recent transition.  –  J. Biogeogr. 33: 
1779 – 1789.  

  Martinez-Meyer, E. et al. 2004. Ecological niches as stable distri-
butional constraints on mammal species, with implications for 
Pleistocene extinctions and climate change projections for bio-
diversity.  –  Global Ecol. Biogeogr. 13: 305 – 314.  

  Mbogga, M. S. et al. 2009. Historical and projected climate data 
for natural resource management in western Canada.  –  Agric. 
For. Meteorol. 149: 881 – 890.  

  Mbogga, M. S. et al. 2010. Bioclimate envelope model predictions 
for natural resource management: dealing with uncertainty.  
–  J. Appl. Ecol. 47: 731 – 740.  

  Morueta-Holme, N. et al. 2010. Climate change risks and conser-
vation implications for a threatened small-range mammal spe-
cies.  –  PLoS One 5: e10360.  

  Muller, M. P. et al. 2010. Evaluation of pneumonia severity and 
acute physiology scores to predict ICU admission and mortality 
in patients hospitalized for infl uenza.  –  PLoS One 5: e9563.  

  Overpeck, J. T. et al. 1992. Mapping eastern North-American veg-
etation change of the past 18 Ka: no-analogs and the future. 
 –  Geology 20: 1071 – 1074.  

  Pearman, P. B. et al. 2008. Prediction of plant species distributions 
across six millennia.  –  Ecol. Lett. 11: 357 – 369.  

  Prasad, A. M. et al. 2006. Newer classifi cation and regression tree 
techniques: bagging and random forests for ecological predic-
tion.  –  Ecosystems 9: 181 – 199.  

  Randin, C. F. et al. 2006. Are niche-based species distribution 
models transferable in space?  –  J. Biogeogr. 33: 1689 – 1703.  

  Roberts, D. R. and Hamann, A. 2011. Predicting potential climate 
change impacts with bioclimate envelope models: a palaeoeco-
logical perspective.  –  Global Ecol. Biogeogr. in press.  

  Rodr í guez-S á nchez, F. and Arroyo, J. 2008. Reconstructing the 
demise of Tethyan plants: climate-driven range dynamics 
of  Laurus  since the Pliocene.  –  Global Ecol. Biogeogr. 17: 
685 – 695.  

  Segurado, P. and Ara ú jo, M. B. 2004. An evaluation of 
methods for modelling species distributions.  –  J. Biogeogr. 
31: 1555 – 1568.  

  Segurado, P. et al. 2006. Consequences of spatial autocorrelation 
for niche-based models.  –  J. Appl. Ecol. 43: 433 – 444.  

  Sing, T. et al. 2005. ROCR: visualizing classifi er performance in 
R.  –  Bioinformatics 21: 3940 – 3941.  

  Th ompson, R. S. and Anderson, K. H. 2000. Biomes of western 
North America at 18,000, 6000 and 0 C-14 yr BP recon-
structed from pollen and packrat midden data.  –  J. Biogeogr. 
27: 555 – 584.  

  Th uiller, W. 2003. BIOMOD  –  optimizing predictions of 
species distributions and projecting potential future shifts 
under global change.  –  Global Change Biol. 9: 1353 – 1362.  

  Th uiller, W. et al. 2008. Predicting global change impacts on plant 
species ’  distributions: future challenges.  –  Perspect. Plant Ecol. 
Evol. Syst. 9: 137 – 152.  

  Th uiller, W. et al. 2009. BIOMOD  –  a platform for ensemble fore-
casting of species distributions.  –  Ecography 32: 369 – 373.  

  Wang, T. et al. 2006. Development of scale-free climate data 
for western Canada for use in resource management.  –  Int. J. 
Climatol. 26: 383 – 397.  

  Williams, J. W. and Jackson, S. T. 2007. Novel climates, no-analog 
communities, and ecological surprises.  –  Front. Ecol. Environ. 
5: 475 – 482.  

  Williams, J. W. et al. 2001. Dissimilarity analyses of late-Quaternary 
vegetation and climate in eastern North America.  –  Ecology 82: 
3346 – 3362.  

  Zarnetske, P. L. et al. 2007. Habitat classifi cation modeling with 
incomplete data: pushing the habitat envelope.  –  Ecol. Appl. 
17: 1714 – 1726.    

Supplementary material (Appendix E7147 at  �  www.
oikosoffi  ce.lu.se/appendix  � ). Appendix 1.



Validating species distribution models with fossil, pollen, and modern 
census data 
 
David R. Roberts* & Andreas Hamann 

Department of Renewable Resources, University of Alberta. 751 General Services Building, University of 

Alberta, Edmonton, Alberta, Canada, T6G2H1. 

 

* Email: drr3@ualberta.ca, Tel: (780) 492-2540, Fax: (780) 492-4323 

 

 

Appendix 1: 

Each table contains AUC values for all species and all methods for one of the four evaluation methods: 

all-points (Table S1), out-of-bag data split (Table S2), north-to-south regional evaluation (Table S3), and 
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method (across all species) and for each individual species (across all methods, excluding the ensembles) 

for each evaluation scenario. Total average AUC for all species and all methods is shown in bold. 

 

 

Table A1: AUC values by species and modelling method for the all-points evaluation. Averages are given 

for each species and each modelling methods. The overall average for all models and all species is shown 

in bold. 

 

Table A2: AUC values by species and modelling method for the out-of-bag data split evaluation. 

Averages are given for each species and each modelling methods. The overall average for all models and 
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Table A3: AUC values by species and modelling method for the north-to-south regional evaluation. 

Averages are given for each species and each modelling method. The overall average for all models and 
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with dashes (-) and were excluded from the analysis.  
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Table A1: AUC values by species and modelling method for the all-points evaluation. Averages are given for each species and each modelling 

methods. The overall average for all models and all species is shown in bold. 
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Abies amabilis  (pacific silver fir)  0.97 0.95 0.98 0.97 0.98 0.96 0.97 1.00 0.79  0.95  0.99 0.99 0.99 0.99 0.99 1.00  0.99 0.99 

Abies lasiocarpa  (subalpine fir)  0.84 0.82 0.89 0.90 0.89 0.85 0.89 1.00 0.71  0.86  0.94 0.91 0.93 0.93 0.95 0.99  0.93 0.92 

Abies procera  (noble fir)  0.96 0.96 0.99 0.99 0.98 0.96 0.87 1.00 0.79  0.94  1.00 1.00 0.99 1.00 1.00 1.00  1.00 1.00 

Acer macrophyllum  (bigleaf maple)  0.98 0.97 0.98 0.98 0.98 0.98 0.50 1.00 0.81  0.91  1.00 0.99 0.99 0.99 0.99 1.00  0.99 0.99 

Alnus rubra  (red alder)  0.97 0.97 0.98 0.98 0.98 0.97 0.96 1.00 0.82  0.96  0.99 0.98 0.99 0.99 0.99 1.00  0.99 0.99 

Betula papyrifera  (paper birch)  0.90 0.83 0.90 0.88 0.89 0.89 0.88 0.98 0.73  0.88  0.97 0.93 0.95 0.94 0.95 0.99  0.94 0.93 

Calocedrus decurrens  (incense cedar)  0.98 0.97 0.99 0.99 0.99 0.98 0.99 1.00 0.80  0.97  1.00 0.99 1.00 1.00 1.00 1.00  1.00 0.99 

Chamaecyparis nootkatensis  (yellow cedar)  0.98 0.98 0.99 0.98 0.99 0.99 0.97 1.00 0.81  0.96  1.00 0.99 0.99 1.00 1.00 1.00  0.99 0.99 

Larix occidentalis  (western larch)  0.94 0.85 0.95 0.94 0.95 0.80 0.95 1.00 0.79  0.91  0.99 0.96 0.97 0.97 0.97 1.00  0.98 0.97 

Picea engelmannii  (Engelman spruce)  0.88 0.86 0.91 0.88 0.91 0.89 0.90 0.99 0.70  0.88  0.96 0.93 0.95 0.95 0.96 0.99  0.94 0.94 

Picea glauca  (white spruce)  0.89 0.86 0.90 0.89 0.90 0.83 0.89 0.98 0.74  0.88  0.95 0.92 0.94 0.94 0.95 0.99  0.94 0.93 

Picea mariana  (black spruce)  0.91 0.85 0.90 0.89 0.91 0.86 0.92 0.98 0.73  0.88  0.97 0.94 0.94 0.94 0.95 0.99  0.95 0.94 

Picea sitchensis  (sitka spruce)  0.97 0.98 0.99 0.98 0.99 0.98 0.97 1.00 0.83  0.97  1.00 0.99 0.99 1.00 1.00 1.00  0.99 0.99 

Pinus albicaulis  (whitebark pine)  0.93 0.91 0.95 0.93 0.95 0.90 0.93 1.00 0.74  0.91  0.99 0.96 0.98 0.97 0.97 1.00  0.97 0.96 

Pinus contorta  (lodgepole pine)  0.79 0.74 0.79 0.78 0.78 0.79 0.80 0.97 0.70  0.79  0.92 0.85 0.88 0.88 0.90 0.99  0.89 0.86 

Pinus edulis  (pinyon pine)  0.97 0.96 0.98 0.98 0.98 0.97 0.99 1.00 0.81  0.96  0.99 0.99 0.99 0.99 1.00 1.00  0.99 0.99 

Pinus monticola  (western white pine)  0.94 0.87 0.94 0.93 0.93 0.93 0.84 1.00 0.77  0.90  0.99 0.96 0.98 0.96 0.96 1.00  0.97 0.96 

Pinus ponderosa  (ponderosa pine)  0.93 0.88 0.95 0.92 0.94 0.89 0.89 1.00 0.76  0.91  0.98 0.97 0.97 0.97 0.98 1.00  0.97 0.97 

Populus tremuloides  (trembling aspen)  0.83 0.76 0.83 0.83 0.84 0.83 0.85 0.98 0.69  0.82  0.94 0.87 0.91 0.90 0.91 0.99  0.90 0.88 

Pseudotsuga menziesii  (Douglas-fir)  0.88 0.81 0.90 0.88 0.90 0.90 0.83 0.99 0.72  0.87  0.96 0.93 0.94 0.94 0.95 0.99  0.94 0.93 

Sequoia sempervirens  (giant sequoia)  0.99 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.79  0.97  1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 

Thuja plicata  (western redcedar)  0.94 0.90 0.94 0.92 0.94 0.94 0.94 1.00 0.76  0.92  0.98 0.96 0.98 0.97 0.98 0.99  0.97 0.96 

Tsuga heterophylla  (western hemlock)  0.96 0.94 0.97 0.96 0.97 0.96 0.96 1.00 0.77  0.94  0.99 0.98 0.98 0.98 0.98 0.99  0.98 0.98 

Tsuga mertensiana  (mountain hemlock)  0.97 0.95 0.97 0.97 0.98 0.97 0.96 1.00 0.80  0.95  0.99 0.98 0.99 0.99 0.99 1.00  0.99 0.98 

Average  0.93 0.90 0.94 0.93 0.94 0.92 0.90 0.99 0.76  0.91  0.98 0.96 0.97 0.97 0.97 1.00  0.97 0.96 



Table A2: AUC values by species and modelling method for the out-of-bag data split evaluation. Averages are given for each species and each 

modelling methods. The overall average for all models and all species is shown in bold. 
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Abies amabilis  (pacific silver fir)  0.93 0.88 0.93  0.95 0.95 0.98 0.98 0.98 0.96 0.96 0.99 0.80  0.94  0.97 0.98 0.98 0.96 0.97 0.98 0.99  0.98 0.98 

Abies lasiocarpa  (subalpine fir)  0.82 0.78 0.82  0.83 0.82 0.88 0.89 0.88 0.88 0.89 0.92 0.71  0.84  0.86 0.91 0.90 0.87 0.88 0.88 0.92  0.91 0.90 

Abies procera  (noble fir)  0.83 0.70 0.85  0.86 0.96 0.98 0.98 0.97 0.95 0.91 0.94 0.81  0.90  0.91 0.99 0.97 0.96 0.97 0.97 0.99  0.99 0.98 

Acer macrophyllum  (bigleaf maple)  0.95 0.93 0.96  0.96 0.97 0.98 0.98 0.98 0.97 0.85 0.99 0.78  0.94  0.97 0.99 0.98 0.98 0.98 0.98 0.99  0.98 0.98 

Alnus rubra  (red alder)  0.96 0.93 0.96  0.93 0.97 0.97 0.97 0.97 0.94 0.95 0.97 0.81  0.94  0.97 0.98 0.97 0.94 0.96 0.96 0.98  0.97 0.97 

Betula papyrifera  (paper birch)  0.87 0.83 0.89  0.88 0.83 0.89 0.89 0.90 0.89 0.90 0.93 0.73  0.87  0.90 0.91 0.90 0.88 0.89 0.90 0.92  0.91 0.91 

Calocedrus decurrens  (incense cedar)  0.96 0.93 0.98  0.96 0.97 0.99 0.99 0.99 0.97 0.96 0.99 0.79  0.96  0.99 0.99 0.99 0.97 0.99 0.99 0.99  0.99 0.99 

Chamaecyparis nootkatensis  (yellow cedar)  0.94 0.93 0.94  0.96 0.98 0.99 0.99 0.99 0.99 0.97 0.99 0.80  0.95  0.97 0.99 0.99 0.97 0.99 0.99 0.99  0.99 0.99 

Larix occidentalis  (western larch)  0.86 0.77 0.87  0.87 0.85 0.95 0.95 0.95 0.93 0.94 0.97 0.78  0.89  0.92 0.96 0.95 0.88 0.95 0.95 0.96  0.96 0.97 

Picea engelmannii  (Engelman spruce)  0.81 0.74 0.81  0.88 0.86 0.91 0.90 0.90 0.90 0.91 0.93 0.69  0.85  0.86 0.92 0.91 0.89 0.90 0.91 0.93  0.92 0.92 

Picea glauca  (white spruce)  0.87 0.85 0.88  0.86 0.86 0.90 0.90 0.90 0.83 0.90 0.93 0.74  0.87  0.90 0.91 0.90 0.88 0.89 0.89 0.92  0.91 0.91 

Picea mariana  (black spruce)  0.88 0.86 0.89  0.88 0.85 0.91 0.91 0.91 0.84 0.88 0.94 0.73  0.87  0.90 0.93 0.92 0.88 0.92 0.92 0.94  0.93 0.92 

Picea sitchensis  (sitka spruce)  0.94 0.91 0.95  0.97 0.98 0.99 0.99 0.99 0.98 0.50 0.99 0.81  0.92  0.97 0.99 0.99 0.97 0.98 0.99 0.99  0.99 0.99 

Pinus albicaulis  (whitebark pine)  0.78 0.78 0.77  0.89 0.92 0.95 0.94 0.94 0.92 0.92 0.95 0.74  0.87  0.85 0.95 0.94 0.88 0.94 0.94 0.96  0.95 0.95 

Pinus contorta  (lodgepole pine)  0.81 0.78 0.82  0.80 0.74 0.79 0.81 0.79 0.79 0.79 0.87 0.70  0.79  0.84 0.84 0.82 0.82 0.81 0.82 0.86  0.85 0.83 

Pinus edulis  (pinyon pine)  0.80 0.74 0.83  0.97 0.96 0.98 0.98 0.98 0.98 0.98 0.99 0.81  0.92  0.91 0.99 0.98 0.97 0.98 0.98 0.99  0.99 0.99 

Pinus monticola  (western white pine)  0.87 0.79 0.89  0.89 0.89 0.94 0.94 0.94 0.93 0.94 0.95 0.77  0.89  0.93 0.95 0.94 0.89 0.93 0.94 0.95  0.95 0.95 

Pinus ponderosa  (ponderosa pine)  0.83 0.80 0.88  0.92 0.87 0.94 0.95 0.94 0.93 0.95 0.96 0.75  0.89  0.92 0.95 0.95 0.93 0.94 0.95 0.96  0.96 0.96 

Populus tremuloides  (trembling aspen)  0.82 0.79 0.83  0.82 0.75 0.83 0.84 0.84 0.83 0.84 0.88 0.69  0.81  0.85 0.86 0.85 0.82 0.83 0.84 0.88  0.86 0.86 

Pseudotsuga menziesii  (Douglas-fir)  0.85 0.84 0.88  0.86 0.81 0.90 0.91 0.91 0.90 0.91 0.94 0.72  0.87  0.90 0.92 0.92 0.89 0.89 0.90 0.93  0.92 0.92 

Sequoia sempervirens  (giant sequoia)  0.80 0.76 0.96  0.99 1.00 1.00 1.00 1.00 0.98 0.95 1.00 0.80  0.94  0.96 1.00 1.00 1.00 1.00 1.00 1.00  1.00 1.00 

Thuja plicata  (western redcedar)  0.93 0.87 0.94  0.93 0.90 0.94 0.95 0.94 0.93 0.93 0.97 0.76  0.92  0.95 0.96 0.95 0.91 0.94 0.95 0.96  0.96 0.96 

Tsuga heterophylla  (western hemlock)  0.94 0.90 0.95  0.95 0.94 0.97 0.97 0.97 0.96 0.96 0.98 0.76  0.94  0.97 0.97 0.97 0.94 0.96 0.96 0.98  0.97 0.98 

Tsuga mertensiana  (mountain hemlock)  0.90 0.87 0.86  0.93 0.95 0.97 0.97 0.97 0.96 0.92 0.97 0.78  0.92  0.94 0.97 0.97 0.93 0.96 0.96 0.98  0.97 0.98 

Average  0.87 0.83 0.89  0.91 0.90 0.94 0.94 0.94 0.92 0.90 0.95 0.76  0.90  0.92 0.95 0.94 0.92 0.94 0.94 0.96  0.95 0.95 



Table A3: AUC values by species and modelling method for the north-to-south regional evaluation. Averages are given for each species and each 

modelling method. The overall average for all models and all species is shown in bold. Species without records in both the north and south data sets 

are denoted with dashes (-) and were excluded from the analysis.  
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Abies amabilis  (pacific silver fir)  0.92 0.91 0.95  0.69 0.94 0.98 0.96 0.97 0.86 0.96 0.97 0.67  0.90  0.97 0.98 0.98 0.95 0.97 0.98 0.98  0.98 0.98 

Abies lasiocarpa  (subalpine fir)  0.83 0.88 0.92  0.84 0.93 0.95 0.87 0.85 0.78 0.92 0.93 0.54  0.85  0.93 0.91 0.93 0.86 0.84 0.88 0.91  0.93 0.95 

Abies procera  (noble fir)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Acer macrophyllum  (bigleaf maple)  0.76 0.86 0.93  0.80 0.89 0.75 0.94 0.75 0.90 0.74 0.90 0.50  0.81  0.94 0.91 0.90 0.92 0.91 0.91 0.90  0.92 0.92 

Alnus rubra  (red alder)  0.94 0.95 0.94  0.91 0.94 0.96 0.96 0.96 0.75 0.85 0.88 0.54  0.88  0.96 0.96 0.97 0.94 0.96 0.96 0.97  0.97 0.96 

Betula papyrifera  (paper birch)  0.49 0.63 0.83  0.88 0.87 0.93 0.90 0.94 0.89 0.79 0.69 0.51  0.78  0.80 0.92 0.90 0.83 0.86 0.89 0.88  0.93 0.93 

Calocedrus decurrens  (incense cedar)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Chamaecyparis nootkatensis  (yellow cedar)  0.95 0.87 0.88  0.72 0.95 0.98 0.95 0.98 0.85 0.85 0.86 0.54  0.86  0.95 0.96 0.94 0.77 0.90 0.94 0.96  0.97 0.96 

Larix occidentalis  (western larch)  0.67 0.60 0.65  0.67 0.21 0.48 0.63 0.63 0.43 0.54 0.67 0.56  0.56  0.76 0.64 0.64 0.65 0.71 0.68 0.69  0.67 0.71 

Picea engelmannii  (Engelman spruce)  0.60 0.73 0.80  0.83 0.83 0.49 0.87 0.25 0.33 0.82 0.89 0.54  0.67  0.87 0.80 0.75 0.84 0.88 0.88 0.86  0.86 0.89 

Picea glauca  (white spruce)  0.34 0.55 0.79  0.34 0.90 0.95 0.53 0.90 0.95 0.82 0.90 0.50  0.71  0.42 0.90 0.88 0.45 0.45 0.48 0.90  0.89 0.98 

Picea mariana  (black spruce)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Picea sitchensis  (sitka spruce)  0.74 0.85 0.97  0.89 0.99 0.99 0.91 0.98 0.72 0.56 0.99 0.50  0.84  0.97 0.99 0.99 0.92 0.98 0.97 0.99  0.99 0.99 

Pinus albicaulis  (whitebark pine)  0.48 0.83 0.81  0.72 0.93 0.86 0.93 0.35 0.90 0.91 0.89 0.63  0.77  0.84 0.88 0.89 0.82 0.92 0.91 0.87  0.91 0.93 

Pinus contorta  (lodgepole pine)  0.79 0.84 0.84  0.85 0.84 0.85 0.89 0.66 0.86 0.79 0.82 0.53  0.80  0.89 0.86 0.87 0.83 0.78 0.85 0.87  0.88 0.89 

Pinus edulis  (pinyon pine)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Pinus monticola  (western white pine)  0.70 0.75 0.70  0.44 0.51 0.73 0.82 0.80 0.79 0.71 0.85 0.56  0.70  0.83 0.81 0.81 0.78 0.84 0.85 0.80  0.83 0.83 

Pinus ponderosa  (ponderosa pine)  0.63 0.56 0.65  0.61 0.50 0.58 0.57 0.66 0.67 0.61 0.58 0.51  0.60  0.71 0.66 0.65 0.68 0.70 0.70 0.67  0.68 0.67 

Populus tremuloides  (trembling aspen)  0.53 0.69 0.82  0.78 0.61 0.88 0.87 0.75 0.84 0.74 0.64 0.50  0.72  0.85 0.83 0.84 0.56 0.63 0.61 0.77  0.86 0.88 

Pseudotsuga menziesii  (Douglas-fir)  0.67 0.73 0.78  0.53 0.38 0.52 0.54 0.69 0.55 0.64 0.77 0.57  0.61  0.81 0.71 0.69 0.64 0.64 0.65 0.77  0.78 0.79 

Sequoia sempervirens  (giant sequoia)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Thuja plicata  (western redcedar)  0.84 0.88 0.90  0.85 0.74 0.94 0.86 0.88 0.80 0.90 0.84 0.61  0.84  0.92 0.94 0.95 0.94 0.93 0.93 0.94  0.95 0.94 

Tsuga heterophylla  (western hemlock)  0.92 0.93 0.94  0.93 0.96 0.95 0.97 0.87 0.77 0.88 0.94 0.59  0.89  0.96 0.96 0.94 0.95 0.95 0.95 0.96  0.97 0.97 

Tsuga mertensiana  (mountain hemlock)  0.71 0.78 0.86  0.81 0.92 0.96 0.96 0.94 0.94 0.75 0.94 0.54  0.84  0.89 0.97 0.96 0.77 0.90 0.92 0.97  0.96 0.95 

Average  0.71 0.78 0.84  0.74 0.78 0.83 0.84 0.78 0.77 0.78 0.84 0.55  0.77  0.86 0.87 0.87 0.80 0.83 0.84 0.88  0.89 0.90 



Table A4: AUC values by species and modelling method for the fossil/pollen temporal evaluation for all records from 6000, 11000, 14000, 16000, and 

21000 years before the present. Averages are given for each species and each modelling methods. Species with fewer than 10 observations in the 

record are denoted with dashes (-) and were excluded from the analysis. 
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Abies amabilis  (pacific silver fir)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Abies lasiocarpa  (subalpine fir)  0.58 0.63 0.57  0.67 0.54 0.73 0.72 0.63 0.71 0.69 0.74 0.52  0.64  0.61 0.71 0.73 0.70 0.71 0.70 0.73  0.68 0.72 

Abies procera  (noble fir)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Acer macrophyllum  (bigleaf maple)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Alnus rubra  (red alder)  0.79 0.78 0.75  0.52 0.87 0.89 0.87 0.84 0.92 0.85 0.84 0.62  0.79  0.82 0.89 0.91 0.70 0.88 0.85 0.88  0.89 0.91 

Betula papyrifera  (paper birch)  0.48 0.56 0.78  0.74 0.71 0.85 0.75 0.79 0.80 0.70 0.78 0.62  0.71  0.75 0.82 0.84 0.81 0.83 0.82 0.81  0.83 0.83 

Calocedrus decurrens  (incense cedar)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Chamaecyparis nootkatensis  (yellow cedar)  0.56 0.73 0.62  0.56 0.85 0.58 0.59 0.52 0.39 0.54 0.74 0.49  0.60  0.77 0.58 0.71 0.50 0.60 0.57 0.67  0.84 0.73 

Larix occidentalis  (western larch)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Picea engelmannii  (Engelman spruce)  0.57 0.57 0.52  0.68 0.43 0.64 0.74 0.61 0.54 0.62 0.78 0.49  0.60  0.56 0.67 0.70 0.53 0.65 0.65 0.73  0.61 0.69 

Picea glauca  (white spruce)  0.63 0.64 0.68  0.66 0.63 0.80 0.73 0.81 0.67 0.71 0.73 0.55  0.69  0.72 0.76 0.78 0.75 0.78 0.78 0.76  0.77 0.78 

Picea mariana  (black spruce)  0.63 0.64 0.73  0.72 0.65 0.82 0.79 0.76 0.75 0.72 0.79 0.55  0.71  0.75 0.79 0.83 0.66 0.77 0.78 0.81  0.81 0.85 

Picea sitchensis  (sitka spruce)  0.78 0.76 0.77  0.83 0.83 0.90 0.94 0.87 0.84 0.91 0.94 0.73  0.84  0.81 0.93 0.93 0.85 0.92 0.92 0.94  0.93 0.92 

Pinus albicaulis  (whitebark pine)  0.56 0.56 0.54  0.46 0.58 0.67 0.56 0.53 0.66 0.38 0.68 0.50  0.56  0.65 0.64 0.61 0.51 0.61 0.61 0.67  0.61 0.68 

Pinus contorta  (lodgepole pine)  0.62 0.57 0.59  0.50 0.68 0.71 0.67 0.66 0.72 0.72 0.69 0.50  0.64  0.63 0.69 0.71 0.66 0.66 0.68 0.69  0.70 0.72 

Pinus edulis  (pinyon pine)  0.61 0.50 0.54  0.47 0.91 0.74 0.54 0.65 0.82 0.30 0.78 0.50  0.61  0.65 0.78 0.75 0.59 0.63 0.76 0.75  0.90 0.78 

Pinus monticola  (western white pine)  0.63 0.64 0.56  0.45 0.81 0.79 0.72 0.81 0.73 0.78 0.78 0.57  0.69  0.66 0.83 0.82 0.67 0.82 0.81 0.82  0.83 0.82 

Pinus ponderosa  (ponderosa pine)  0.57 0.54 0.64  0.82 0.68 0.87 0.87 0.85 0.52 0.81 0.86 0.58  0.72  0.64 0.82 0.84 0.79 0.78 0.79 0.85  0.79 0.86 

Populus tremuloides  (trembling aspen)  0.54 0.54 0.50  0.45 0.65 0.51 0.40 0.47 0.63 0.54 0.43 0.48  0.51  0.58 0.46 0.48 0.49 0.44 0.44 0.43  0.55 0.53 

Pseudotsuga menziesii  (Douglas-fir)  0.66 0.68 0.69  0.70 0.79 0.82 0.81 0.75 0.80 0.77 0.83 0.59  0.74  0.71 0.83 0.83 0.78 0.77 0.81 0.83  0.83 0.83 

Sequoia sempervirens  (giant sequoia)  - - -  - - - - - - - - -  -  - - - - - - -  - - 

Thuja plicata  (western redcedar)  0.85 0.88 0.82  0.91 0.90 0.95 0.90 0.93 0.89 0.87 0.92 0.52  0.86  0.88 0.93 0.93 0.89 0.93 0.93 0.94  0.93 0.94 

Tsuga heterophylla  (western hemlock)  0.82 0.79 0.79  0.87 0.91 0.92 0.88 0.88 0.89 0.90 0.89 0.58  0.84  0.84 0.92 0.91 0.89 0.91 0.91 0.92  0.92 0.91 

Tsuga mertensiana  (mountain hemlock)  0.76 0.79 0.71  0.82 0.88 0.89 0.86 0.80 0.79 0.81 0.86 0.61  0.80  0.82 0.89 0.89 0.68 0.89 0.86 0.88  0.90 0.90 

Average  0.65 0.66 0.66  0.66 0.74 0.78 0.74 0.73 0.73 0.70 0.78 0.56  0.70  0.71 0.77 0.79 0.69 0.75 0.76 0.78  0.80 0.80 

 


