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ABSTRACT

Aim We assess the realism of bioclimate envelope model projections for antici-
pated future climates by validating ecosystem reconstructions for the late Quater-
nary with fossil and pollen data. Specifically, we ask: (1) do climate conditions with
no modern analogue negatively affect the accuracy of ecosystem reconstructions?
(2) are bioclimate envelope model projections biased towards under-predicting
forested ecosystems? (3) given a palaeoecological perspective, are potential habitat
projections for the 21st century within model capabilities?

Location Western North America.

Methods We used an ensemble classifier modelling approach (RandomForest) to
spatially project the climate space of modern ecosystem classes throughout the
Holocene (at 6000, 9000, 11,000, 14,000, 16,000, and 21,000 YBP) using palaeocli-
mate surfaces generated by two general circulation models (GFDL and CCM1). The
degree of novel arrangement of climate variables was quantified with the multi-
variate Mahalanobis distance to the nearest modern climatic equivalent. Model
projections were validated against biome classifications inferred from 1460 palaeo-
ecological records.

Results Model accuracy assessed against independent palaeoecology data is gen-
erally low for the present day, increases for 6000 YBP, and then rapidly declines
towards the last glacial maximum, primarily due to the under-prediction of for-
ested biomes. Misclassifications were closely correlated with the degree of climate
dissimilarity from the present day. For future projections, no-analogue climates
unexpectedly emerged in the coastal Pacific Northwest but were absent throughout
the rest of the study area.

Main conclusions Bioclimate envelope models could approximately reconstruct
ecosystem distributions for the mid- to late-Holocene but proved unreliable in the
Late Pleistocene. We attribute this failure to a combination of no-analogue climates
and a potential lack of niche conservatism in tree species. However, climate dis-
similarities in future projections are comparatively minor (similar to those of the
mid-Holocene), and we conclude that no-analogue climates should not compro-
mise the accuracy of model predictions for the next century.

Keywords
Bioclimate envelope models, climate change, climate dissimilarity, ecological
niche models, extinction risk, Holocene, niche conservatism, no-analogue
climate, RandomForest, western North America.

*Correspondence: David R. Roberts,
Department of Renewable Resources, University
of Alberta, 751 General Services Building,
Edmonton, AB T6G 2H1, Canada.
E-mail: drr3@ualberta.ca

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2012) 21, 121–133

© 2011 Blackwell Publishing Ltd DOI: 10.1111/j.1466-8238.2011.00657.x
http://wileyonlinelibrary.com/journal/geb 121



INTRODUCTION

Natural fluctuations of global climate have occurred throughout

earth’s history, but in the coming centuries, anthropogenic

factors may force global climate into conditions unseen for mil-

lions of years (IPCC, 2007). It has also been suggested that

anticipated climatic conditions may include novel combinations

of climate variables that do not exist in the present day nor have

existed for millennia or longer (Crowley, 1990; Williams et al.,

2007; Salzmann et al., 2009). Such ‘no-analogue’ climates could

result in ecological communities that also lack modern ana-

logues (Overpeck et al., 1992; Williams et al., 2001). It has there-

fore been questioned whether it is possible to predict a biological

response (e.g. altered growth rates or demographic change) to

future climate conditions with modelling approaches that are

essentially correlative and based on currently observed spatial or

temporal climate variation (Jackson & Williams, 2004; Williams

& Jackson, 2007; Fitzpatrick & Hargrove, 2009; Van der Wal

et al., 2009).

A widely used class of models to predict potential species

habitat under projected climate changes are bioclimate enve-

lope models – also referred to as niche models or species dis-

tribution models. These models correlate environmental

predictor variables such as climate with species occurrence data

via statistical or machine learning procedures (e.g. Guisan &

Zimmermann, 2000). This class of models has a number of

important limitations that need to be considered when inter-

preting the results. For example, species interactions such as

competition are not modelled in a direct way, but they are indi-

rectly accounted for because bioclimate envelope models

predict the realised niche rather than the fundamental niche.

The models also rely on a number of assumptions such as the

constancy of species’ niches over time, genetic homogeneity

among populations within a species, and the assumption of

equilibrium of species distributions with current climate con-

ditions (see reviews by Pearson & Dawson, 2003; Guisan &

Thuiller, 2005; Araújo & Guisan, 2006).

While some of these assumptions may be violated, it is also

widely understood that ‘all models are wrong’ (Box & Draper,

1987) and that their value lies in capturing relevant predictor

variables and ignoring factors that have minor or no influence

on the results at the scale of interest, which is often continental

or global. To evaluate the potential realism of bioclimate enve-

lope models, various statistical techniques exist for assessing

accuracy and robustness of predictions. Most of these accuracy

statistics rely on some form of cross-validation, where a subset

of the data is used to build the predictive model and the remain-

ing data is used to evaluate model accuracy. However, spatial

autocorrelations in biological census data can substantially

inflate the apparent accuracy of species distribution models that

rely on cross-validation techniques (Segurado et al., 2006). For

this reason, model evaluation with truly independent data – for

example, validation of species back-predictions using fossil and

pollen data – has been proposed (Araújo et al., 2005; Botkin

et al., 2007a). Back-predictions can also be used to test the valid-

ity of various assumptions underlying bioclimate envelope

model projections (Araújo et al., 2005; Botkin et al., 2007b;

Nogués-Bravo, 2009).

While back-predicting species with climate envelopes is not a

new idea (e.g. Prentice et al., 1991), the field has seen rapid

recent developments to identify causes of extinction (e.g.

Rodríguez-Sánchez & Arroyo, 2008), to reconstruct migration

routes and glacial refugia (e.g. Svenning et al., 2008; Van der Wal

et al., 2009), and to help understand the evolutionary processes

of geographic isolation, genetic differentiation, and speciation

(e.g. Yesson & Culham, 2006; Carstens & Richards, 2007). In this

paper, we contribute a new approach that projects ecosystem

climate envelopes to more generally assess bioclimate envelope

model capabilities at a continental scale. We focus on indepen-

dent model validation and the issue of no-analogue climates.

Additionally, we address the issue that bioclimate envelope

models may over-estimate climate change threats to tree species,

which tend to have large fundamental niches when mature and

high within- and among-population genetic diversity (Hamrick,

2004). This could lead to underestimating either tree species’

adaptability or their capability to persist in micro sites (e.g.

Loehle & Leblanc, 1996; Morin et al., 2008; Morin & Thuiller,

2009; Chen et al., 2010).

Here, we carry out bioclimate envelope model-based back-

predictions of ecosystems between the present and the last

glacial maximum, for the periods 6000, 9000, 11,000, 14,000,

16,000, and 21,000 years before present (YBP). We evaluate the

results with biome reconstructions based on fossil and pollen

data at 1460 western North American study sites. Novel arrange-

ment of climate variables is quantified with the multivariate

Mahalanobis distance to the nearest modern equivalent. Our

working hypothesis is that the emergence of no-analogue cli-

mates will increase model misclassification rates for palaeoeco-

logical records. We expect the predictive model to misclassify

many fossil and pollen sites that represent forested ecosystems

with high species diversity as too cold to sustain such commu-

nities. Lastly we aim at providing a palaeoecological perspective

on whether ecosystem and species habitat projections for the

21st century are generally within model capabilities.

METHODS

To address these objectives in a broad way, we have carried out a

relatively general analysis: rather than modelling individual

species distributions, we used a bioclimate envelope model tech-

nique that uses ecosystem classes as the dependent variable. The

model predicts several hundred fine-scale ecosystem classes

which we summarise for broader ecosystem classifications. For

these summaries we adopt the same biome classification that

was used by Dyke (2005) to characterise fossil and pollen

records (Table 1). For concise reporting at an even higher level,

ecosystem projections were summarised into three categories:

those which support forest communities (Forested) and those

which do not support forest communities either due to heat/

moisture constraints (Dry) or low temperature constraints

(Cold) (also indicated in Table 1).
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Bioclimate envelope modelling

Ecosystem projections were carried out with a classification tree

analysis, which can use a class variable as the dependent variable.

This approach has been shown to be effective even for the pre-

diction of species distributions, which can subsequently be

inferred from known species frequencies for projected ecosys-

tem classes (Hamann & Wang, 2006; Mbogga et al., 2010). For

the dependent variable we used 770 mapped ecosystem classes

covering western North America to 100°W longitude. The eco-

system delineations were compiled using six sources: the ‘Eco-

systems of Alaska’ (Joint Federal-State Land Use Planning

Commission for Alaska, 1991), the ‘Biogeoclimatic Ecosystem

Classification System’ of British Columbia (Pojar & Meidinger,

1991), ‘Natural Regions and Subregions’ of Alberta (Govt. of

Alberta, 2005), the ‘National Ecological Framework’ for the

remaining western Canadian provinces (Govt. of Canada, 1999),

‘Potential Natural Vegetation Maps’ for California and Arizona

(Kuchler, 1993, 1996), and ‘Ecoregions of the Continental

United States’ for the remaining western states (Omernik, 2003).

Although we selected the highest resolution datasets available,

we had to refine some delineations in mountainous areas so that

certain ecosystem classes were characterised by a narrower

climate envelope. The alpine ecosystem delineations for British

Columbia and Alaska were subdivided by major mountain

ranges and classified as ‘Alpine Tundra’, ‘Barren/Rock’, and

‘Glacier/Ice’ within each mountain range using 30 m resolution

remotely sensed landcover data for the US (Homer et al., 2007)

and Canada (Wulder et al., 2008). In addition, lower-montane

ecosystem classes in the Yukon Territory, Northwest Territories,

and Washington were removed from the dataset because their

delineations were too coarse to be useful. Nearby finer-scale

delineations in Alaska and British Columbia with similar clima-

tology were available to accurately describe these climate

envelopes.

Predictions were made for a 1km resolution digital elevation

model of North America that we generated in Lambert Confor-

mal Conic projection from 90 m resolution data of the Shuttle

Topographic Mission (Farr et al., 2007). North of 60°N latitude,

where these data were not available, we used re-projected

etopo30 elevation data (Verdin & Greenlee, 1996). To build clas-

sification trees, we randomly sampled 100 grid cells within each

of the 770 ecosystem delineations (i.e. 77,000 grid cells from a

total of approximately 10 million grid cells of the digital eleva-

tion model). These sample points were climatically character-

ised and used as ‘training data’ for classification tree analysis

implemented with the RandomForest software package v.4.5

(Breiman, 2001) for the open-source R programming environ-

ment (R Development Core Team, 2009). RandomForest has

been shown to be a robust ensemble classifier and a useful

technique for bioclimate envelope modelling (e.g. Lawler et al.,

2006).

Past and future climate data

For past and future climatic characterisation we used General

Circulation Model (GCM) projections overlaid as anomalies

Table 1 List of western North American biome classes used in
predictive modelling and inferred from pollen and fossil data by
Dyke (2005). The dominant tree species or genera for each
forested biome are described in parentheses.

Biome Description

Non-forested dry

Desert (DES) Hot and dry areas with poor soil

development, mainly devoid of

vegetation.

Steppe (STE) Bunchgrass with sagebrush and some

woody shrubs.

Grassland (GRA) Tall grasslands dominated by graminoid

species.

Forested

Savannah (SAV) Open coniferous canopy with steppe, grass

and shrub components (juniper and

pinion pine with some lodgepole pine,

Douglas-fir, and oaks).

Deciduous Parkland

(DPK)

Transition between boreal forest and

grasslands; large tracts of grasses with

localised forest stands (aspen, poplar).

Interior Conifer

Forest (DCO)

Almost exclusively conifer forest with

semi-open or open canopies; includes

extensive steppe, grass or shrublands

(Douglas-fir, ponderosa pine).

Sub-Boreal

Mixedwood

(SBM)

Conifer-dominated mixedwood (white

spruce, Douglas-fir, subalpine fir,

lodgepole pine, aspen, poplars and

birches).

Coastal Dry

Mixedwood

(CDM)

Mixed forest cover, largely non-boreal

species; includes chaparral communities

(Douglas-fir, redcedar, oak, grand fir,

arbutus, red alder, maple).

Wet Temperate

Forest (WTF)

Wet, diverse, and largely conifer-dominated;

confined to coastal and areas of heavy

orographic precipitation (hemlock,

redcedar, Douglas-fir, grand fir).

Sub-Alpine Forest

(SAF)

Transition zone between denser,

lower-elevation forests and treeless alpine

(Engelmann spruce, subalpine fir,

mountain hemlock, larch, lodgepole pine,

Douglas-fir).

Boreal Forest (BOR) Cover of conifer and mixedwood forest;

coldest and driest forest ecosystem in

North America (white & black spruce,

lodgepole pine, aspen, tamarack, poplar,

birch).

Boreal Sub-Arctic

(BSA)

Transition between boreal and arctic;

stunted and widely spaced boreal trees;

includes grass and shrublands (stunted

white spuce, black spruce, birch and

aspen).

Non-forested cold

Alpine Tundra (ALT) Treeless alpine meadows, barren land.

Arctic Tundra (ARC) High-latitude tundra, largely devoid of trees

and dominated by shrubs and lichens.

Glaciers / Ice (ICE) Climate conditions favourable for

year-round ice coverage.

No-analogue climates in bioclimate envelope modelling
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(deviation from the 1961–90 reference climate) on high resolu-

tion interpolated climate normal data. The first set of back-

predictions is based on the coupled oceanic-atmospheric GCM

developed by the Geophysical Fluid Dynamics Laboratory

(Anderson et al., 2004) at Princeton University (Bush & Philan-

der, 1999) for 6000, 9000, 16,000, and 21,000 Years Before

Present (YBP). The second GCM is the Community Climate

Model version 1 (CCM1) developed by the National Center for

Atmospheric Research (NCAR) (Kutzbach et al., 1998) for 6000,

11,000, 14,000, 16,000, and 21,000 YBP. For future climate pro-

jections we used individual and ensemble projections for four

main emission scenario families A1FI, B1, A2, and B2 imple-

mented by the following GCMs: CGCM2, HADCM3, ECHAM4,

and CSIRO2 (Mitchell et al., 2004).

All spatial climate data processing was carried out with a

custom software package that we make freely available (Wang

et al., 2006; Mbogga et al., 2009)1, which uses 1961–90 climate

normal grids for Canada and the United States generated by

Daly et al. (2008) as present day climate representation. In addi-

tion, this software package estimates biologically-relevant

climate variables according to Wang et al. (2006). Of all the

available climate variables, ten of the least correlated variables

were identified with a principal component analysis and selected

as predictors: mean annual temperature, mean annual precipi-

tation, the mean temperature of the warmest month, mean tem-

perature of the coldest month, the difference between January

and July temperature as a measure of continentality, May to

September (growing season) precipitation, the number of frost-

free days, the number of growing degree days above 5°C, and

two dryness indices according to Hogg (1997): an annual

climate moisture index and a summer climate moisture index.

Analysis

Novel combinations of these climate variables based on past or

future GCM projections were determined with the multivariate

Mahalanobis distance measure (Mahalanobis, 1936). This dis-

tance measure is a normalised Euclidean distance that weighs

individual variables according to their collinearity with all other

variables. Variables that are perfectly correlated are weighted as

a single variable in distance calculations, while the Mahalanobis

distance for completely independent variables would equal the

Euclidean distance. The Mahalanobis distance to the closest

modern equivalent was determined with a distance matrix

between all past and current climate grid cells. Since it is not

feasible to calculate a distance matrix that large (approximately

1014 values), we calculated a reduced distance matrix. We

retained all projected grid cells for past and future projections,

but we summarised current climate conditions as 770 ecosystem

climate averages (resulting in a distance matrix with just 7.7 ¥
109 values). The smallest Mahalanobis distance in each row of

this matrix therefore reflects the distance to the nearest modern

ecosystem climate average, which we displayed on maps to iden-

tify no-analogue climate conditions in the future and past. All

distance calculations were performed with PROC DISTANCE

and PROC PRINCOMP in the SAS statistical software package

(Example 30,662 in SAS Institute, 2007).

For model evaluation, we used palaeoecological data com-

prised of fossil pollen and plant macrofossils (compiled by

Thompson & Anderson, 2000; Dyke, 2005). Duplicates as well as

mammal records were removed (to retain purely vegetation-

based data) for a total of 1460 sites used in this analysis. Modern

classifications from the last 1000 years were available for most

sites. Approximately 500 sites had records for 6000 YBP, which

declined to 300 sites for 9000 YBP. For time periods approaching

the last glacial maximum, records become fairly scarce with 150

sites for 16,000 YBP and 100 sites for 21,000 YBP for western

North America. The palaeoecological records were already clas-

sified into biomes and we adopted the same classification system

for predicted ecosystems. Minor differences arise because we

model ice and barren landcover (for which there are no pollen

and fossil records). We also lacked climate data for the very

northern herb-tundra biome of Dyke (2005). Lastly, we sepa-

rated Dyke’s ‘Interior Forest’ into Dry Coastal Mixedwood, Sub-

Boreal Mixedwood, and Dry Interior Conifer Forest because

we perceived those as climatically and ecologically distinct

ecosystems.

Because we evaluate the accuracy of a multi-level classifier, we

use error-of-confusion matrices and report the numbers and

ratios of correct and incorrect classifications at the biome level

as well as for forested and non-forested classes. To maintain the

highest possible data accuracy, modelled biome classifications

were made based on climate values for the location and eleva-

tion of the palaeoecological records, estimated by our software

package described above, rather than using a classification made

for a nearby 1 km grid cell.

RESULTS

Independent model evaluation

The model outputs for the present, based on the modern day

1961–90 reference climate, visually conform to both the mapped

ecosystem distributions that were used to train the model and

also to the approximate delineations by Dyke (2005) (Fig. 1).

Misclassification error rates of predicted biomes against inde-

pendent fossil and pollen data are shown in Table 2. The per-

centage of correct classifications tends to be quite low with rates

per biome ranging from 0 to 67%. Some of the low match rates

can be attributed to small sample sizes, but nevertheless the

overall percentage of correct classifications with independent

data is just 46%. Misclassifications often occur among adjacent

biomes and often in spatially complex landscapes (e.g. high-

resolution inset in Fig. 1). In addition, we find misclassification

rates for pollen and fossil data representing the boreal forest

ecosystem as the adjacent boreal subarctic, which has essentially

the same species composition (Table 2).

For conciseness, we do not report full misclassification matri-

ces for 14 biomes for ecosystem predictions based on past

1Download at: http://www.ualberta.ca/~ahamann/climate.html or at:
http://www.genetics.forestry.ubc.ca/cfcg/climate-models.html.
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climates. Rather, we provide a higher level summary using the

afore-mentioned three categories of ecosystems: Forested,

moisture-restricted Dry, and temperature-restricted Cold. Rates

of misclassification are generally very similar for projections

based on CCM1 and GDFL climate reconstructions (Table 3).

Misclassifications increase abruptly for pollen and fossil sites

that are classified as Forested and Dry during the cooler early-

Holocene between 9000 to 14,000 YBP (Table 3, Fig. 2). In

Figure 1 Present day mapped biomes, modelled biomes, and biome classes inferred from pollen (circles), macrofossil (stars) and mammal
(triangles) records according to Dyke (2005), reproduced with permission. We did not model Dyke’s herb tundra biome but we distinguish
three types of interior forest (yellow). The inset map provides a detailed comparison between the modelled ecosystems and the fossil/pollen
sites for a mountainous area of southern British Columbia. Note that mammal points (triangles) were not used in the model evaluation
calculations.

No-analogue climates in bioclimate envelope modelling
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contrast, near the last glacial maximum (16,000 to 21,000 YBP),

pollen and fossil points representing Cold ecosystems are almost

always predicted correctly, indicating an increasing bias towards

under-predicting Forested and Dry ecosystem (Fig. 2). This is

reflected in Table 3, as most errors are located on the upper right

side of the diagonal for these time periods. Interestingly, overall

model accuracy is higher for the mid-Holocene warm period at

6000 YBP than for the present day. This is driven by increased

accuracy in the prediction of pollen and fossil sites that repre-

sent Forested and Dry ecosystem classes (Fig. 2), which holds

true for both CCM1 and GFDL based predictions.

No-analogue climates in the past

Climatic reconstructions based on the general circulation

models CCM1 and GFDL reveal novel combinations of climate

variables in western North America for all time periods (Table 4,

Fig. 3). For example, high climate dissimilarities emerge in the

United States Rocky Mountains during the mid-Holocene warm

period at 6000 YBP. These climates are characterised by drier,

cooler summers and warmer winters (data not shown), condi-

tions that have no modern equivalent. Fossil and pollen records

for these areas indicate forested ecosystems, but they were clas-

sified as steppe or grassland by the bioclimate envelope model.

Climates without modern equivalents also appear in the area

immediately south of the ice sheets at 21,000 YBP (Fig. 3). These

areas were characterised in the data by notably colder annual

and mean warmest month temperatures, resulting in a short-

ened frost-free period while farther south in eastern Oregon and

northern Nevada, no-analogue climates were driven less by

overall cooling than by differences in seasonal temperature vari-

ables (data not shown). The climatology in both areas was clas-

sified by the bioclimate envelope model as supporting alpine or

arctic tundra, although there is no modern climatic equivalent.

Summary statistics for the study area, broken down by For-

ested, Dry, and Cold biomes show associations between novel

climates and erroneous classifications as well (Table 4). For for-

ested biomes, misclassification rates increase as average climate

dissimilarity increases towards the last glacial maximum (e.g.

0.44 toward 1.3 distance units versus 74% toward 13% correct

classifications for CCM1) (Table 4). In contrast, biomes that are

classified as too cold to support forested ecosystems have lower

misclassification rates (e.g. 0.17 toward 4.84 distance units

versus 55% toward 100% correct classifications for CCM1).

However, this latter association simply reflects, with increasing

confidence, that extremely cold (and therefore novel) environ-

ments are correctly classified as too cold to support forested

ecosystems.

For subsequent interpretation of the causes of biome misclas-

sifications, it is also important to point out that the bioclimate

envelope model predicts the southern extent of the continental

ice sheets with remarkable accuracy, even though the northern

portion of the ice sheet is not correctly represented (Fig. 3). This

also holds true for predictions based on the GFDL general cir-

culation model (data not shown).

Future projections

Climate projections for future periods result in dissimilarities

roughly on par with those observed for the 6000 to 11,000 YBP

Table 2 Misclassification rates between biomes predicted with climate envelope models for the 1961–90 climate normal period and biome
reconstructions from fossil and pollen samples for the last millennium. Correct classifications are highlighted in bold, and also reported as
percentage of fossil and pollen points correctly classified. Cohen’s Kappa statistic representing correct classifications minus randomly
expected matches is also reported.

Observed

Predicted

Dry Forested Cold

n
Match
rate

Cohen’s
KappaDES STE GRA SAV DPK DCO SBM CDM WTF SAF BOR BSA ALT ARC

Non-Forested Dry

Desert (DES) 4 7 0 0 0 0 0 0 0 0 0 0 0 0 11 36% 0.29

Steppe (STE) 1 13 3 2 0 2 0 0 0 2 0 0 0 0 23 57% 0.49

Grassland (GRA) 0 7 54 3 7 3 0 0 0 6 1 0 0 0 81 67% 0.59

Forested

Savannah (SAV) 0 2 0 0 0 0 0 0 0 1 0 0 0 0 3 0% 0.00

Deciduous Parkland (DPK) 0 0 1 0 3 0 0 0 0 1 4 4 1 2 16 19% 0.11

Interior Forest (DCO, SBM, CDM) 2 7 0 0 0 8 2 0 3 6 1 1 2 2 34 29% 0.22

Wet Temperate Forest (WTF) 0 1 0 0 0 7 2 12 68 7 0 2 12 2 113 60% 0.52

Sub-Alpine Forest (SAF) 0 2 2 2 0 2 3 3 4 32 0 0 16 0 66 48% 0.41

Boreal Forest (BOR) 0 1 12 0 6 7 10 0 0 31 136 105 69 67 444 31% 0.23

Boreal Sub-Arctic (BSA) 0 0 0 0 0 0 0 0 0 1 2 5 2 2 12 42% 0.34

Non-Forested Cold

Alpine Tundra (ALT) 0 1 0 0 0 0 0 0 0 4 0 2 9 2 18 50% 0.42

Arctic Tundra (ARC) 0 0 0 0 0 0 0 1 0 7 21 83 59 234 405 58% 0.50
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back-predictions (Table 4). Areas of high dissimilarity are pri-

marily restricted to the coast mountains of the Pacific North-

west, where combinations of very high precipitation and high

summer temperatures emerge that have no modern equivalent

(Fig. 4). The most pessimistic ‘business as usual’ CO2 emission

scenario (A1FI) also results in a prediction of hot and dry cli-

matic conditions in the southern United States that have no

equivalent in the present day study area (maps not shown, but

reflected in high average dissimilarities for the Dry biome type

in Table 4). The most optimistic emission scenarios assume less

resource intensive service economies (B1) and environmentally

sustainable economic and population growth (B2). These yield

climate dissimilarities roughly equivalent to values of the mid-

Holocene warm period, which had the highest accuracy of all

time periods in the independent model evaluation above

(Table 4). The intermediate scenario that assumes slow popula-

tion growth and regionally fragmented economic growth (A2)

has larger climate dissimilarity values equivalent to 6000 to 9000

YBP, which still do not imply very high misclassification rates

due to no-analogue climates (Fig. 2).

According to this intermediate emission scenario (A2), biome

climate envelopes for the 2080s change most notably in the

higher latitudes, where the warming signal is strongest (IPCC,

2007) (Figs 1 and 4). Alaska gains landscape level diversity of

habitat conditions, comparable to British Columbia at present

(Fig. 4, inset). Changes in British Columbia are driven by

increased precipitation leading to climate envelopes that

support wet temperate forest types. The Canadian Plains of

Alberta and Saskatchewan lose substantial area with climate

conditions suitable for boreal forests. Areas of minimal change

at biome-level climate conditions are projected for the southern

latitudes, with some expansion of desert and steppe climate

envelopes. It should be noted that the projection in Fig. 4 is

based on an ensemble of multiple individual GCM implemen-

tations of the A2 scenario. Notable differences in projections

arise from model runs of individual GCMs (Hamann & Wang,

2006; Mbogga et al., 2010).

DISCUSSION

Model accuracy and no-analogue climates

For back-predictions towards the last glacial maximum our

results confirm that no-analogue climates are indeed pre-

valent. We further demonstrated that no-analogue climates

compromise accuracy of biome classifications based on palaeo-

climatic predictions, which has been previously discussed as a

potential limitation of bioclimate envelope models (Jackson &

Williams, 2004; Williams & Jackson, 2007; Fitzpatrick &

Hargrove, 2009; Van der Wal et al., 2009). At the same time, we

provide a perspective for the magnitude of novel climates

expected under projected anthropogenic climate change

(Table 4). The degree of climate dissimilarity expected for the

coming century would not imply significant effects on misclas-

sification rates, except perhaps for isolated areas in the Pacific

Northwest Cordillera, where high precipitation and temperature

Table 3 Misclassifications between biome groups inferred from
fossil and pollen samples and biome groups independently
predicted with bioclimate envelope modelling for the same
periods, based on the general circulation models CCM1 and
GFDL. Correct classifications are highlighted in bold and the total
number of pollen and fossil samples available for each time
period is given in parentheses (n).

Observed

Predicted

Present Day (n = 1226)

Dry Forested Cold

Dry 89 26 0

Forested 30 481 177

Cold 1 118 304

CCM1 Model GFDL Model

6,000 YBP (n = 554) 6,000 YBP (n = 554)

Dry Forested Cold Dry Forested Cold

Dry 58 7 0 55 10 0

Forested 53 285 46 21 323 40

Cold 1 46 58 1 38 66

11,000 YBP (n = 275) 9,000 YBP (n = 376)

Dry Forested Cold Dry Forested Cold

Dry 27 6 0 19 16 6

Forested 26 103 8 16 147 85

Cold 2 67 36 1 24 62

14,000 YBP (n = 179)

Dry Forested Cold

Dry 9 6 3

Forested 7 33 24

Cold 5 32 60

16,000 YBP (n = 129) 16,000 YBP (n = 129)

Dry Forested Cold Dry Forested Cold

Dry 5 4 1 0 0 10

Forested 5 8 21 2 3 29

Cold 3 8 74 1 1 83

21,000 YBP (n = 89) 21,000 YBP (n = 89)

Dry Forested Cold Dry Forested Cold

Dry 1 2 13 0 5 11

Forested 1 3 20 0 9 15

Cold 0 0 49 0 4 45
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anomalies with no modern analogue emerge (Fig. 4). Even

though we use a different spatial resolution, a different set of

climate variables, and a different similarity metric, our results

generally coincide with those of Williams et al. (2007) who also

found a low risk of novel climates at high latitudes of North

America.

The common notion that we are headed towards unknown

climatic futures caused by greenhouse gas emissions may be true

at a local scale, but at the sub-continental scale of this study,

truly novel combinations of climate conditions in this region are

the exception, as this and other studies have shown. Sub-

continental scales are typically used for the development of

species distribution models; therefore, we conclude that their

projections should not be generally compromised by extrapo-

lating into no-analogue climate space. Conversely it is clear that

regional-scale bioclimate envelope projections are less useful.

For example, if we had developed a model just for Alaska, we

would find high rates of no-analogue climates for ‘unknown’

biomes that are currently only found in British Columbia.

Our results are broadly applicable, not only for the classifica-

tion tree approach that we use to project ecosystems, but to any

species distribution model. The measure of climate dissimilarity

is independent of any particular model technique. It is the

correlational nature of the niche modelling approach in general,

rather than any specific mathematical or statistical procedure,

that is susceptible to confounding by no-analogue climates.

Violation of bioclimate envelope model assumptions

In addition to misclassifications, we also showed bias in biocli-

mate envelope model results toward the last glacial maximum.

We find that at the height of the last ice age and in early degla-

ciation, forested biomes are under-predicted by the model. We

reject the possible alternate explanation that we have bias due to

migrational lag (i.e. that a lack of ecosystem-climate equilibrium

at this time promotes model misclassification). If this were the

case, this discrepancy would be manifested as forested ecosystem

over-prediction. Secondly, inaccurate paleoclimatic reconstruc-

ions (too cold) could be responsible for the bias. However, both

GFDL and CCM1 predict the southern extent of the continental

ice sheets with remarkable accuracy. It would therefore appear to

be an unlikely explanation for the under-prediction of forested

ecosystems. A third factor that might account for differences

between observed and predicted ecosystem distribution is the

effect of CO2, due to lower concentrations of around 200 parts

per million during the last glacial maximum. However, not

accounting for CO2 in our model should lead to an over-

prediction of forests in the past (Cowling, 1999), which is also

contrary to the under-prediction reported here.

Figure 2 Match rates marked as bold in Table 4 expressed as percentage and plotted over time for paleoclimate projections of two general
circulation models CCM1 (left) and GFDL (right).

Table 4 Mean climate dissimilarity values for forested (Forested),
non-forested cold (Cold), and non-forested dry (Dry) biome
groups. Climate dissimilarity is quantified as the Mahalanobis
distance to the nearest present-day equivalent found in the
study area. The corresponding percentages of correct model
classifications of fossil and pollen data are shown in parentheses.

Period

Biome Type

Dry Forested Cold

Present Day 0 (77%) 0 (70%) 0 (72%)

GFDL Model

6,000 YBP 0.23 (85%) 0.20 (84%) 0.19 (63%)

9,000 YBP 0.27 (46%) 0.32 (59%) 0.45 (71%)

16,000 YBP 0.26 (0%) 1.27 (9%) 2.79 (98%)

21,000 YBP 0.30 (0%) 1.35 (38%) 2.91 (92%)

CCM1 Model

6,000 YBP 0.62 (89%) 0.44 (74%) 0.17 (55%)

11,000 YBP 1.15 (82%) 0.46 (75%) 0.44 (34%)

14,000 YBP 0.66 (50%) 0.55 (52%) 0.76 (62%)

16,000 YBP 0.73 (50%) 1.01 (24%) 2.42 (87%)

21,000 YBP 0.46 (6%) 1.30 (13%) 4.84 (100%)

Future Projections

2080-A1FI 0.63 0.53 0.42

2080-A2 0.42 0.37 0.30

2080-B1 0.28 0.26 0.23

2080-B2 0.31 0.26 0.23
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Figure 3 Predicted biome classes, biome reconstructions from pollen and fossil data, and climate dissimilarities measured as multivariate
Mahalanobis distance to the nearest modern climate space. Green indicates climate arrangements analogous to those witnessed in the
present day and red indicates increasing diversion from any modern climate conditions in the study. Summary statistics for additional
model runs are given in Tables 3 and 4.
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Misclassifications due to no-analogue climates should not

introduce bias as there is an equal probability of misclassifica-

tion into all classes (in our case individual biomes or Forested,

Dry, or Cold groups). However, if new niche space emerges on

the landscape, species may genetically adapt and occupy newly

available environmental space, which bioclimate envelope

models cannot anticipate. Davis & Shaw (2001) have shown that

the ecological niche space of tree species may not be constant

over time. Adaptive traits with high genetic variability and heri-

tability, which are common in tree species, may allow for occu-

pation of new realised niche space (Hamrick, 2004), providing a

potential explanation for the under-predictions of forested

biomes observed in this study.

The relevance of evolutionary changes to the niche space of

species is powerfully illustrated by palaeoecological studies that

look beyond the Holocene. For example, fossil forest dating to

the Eocene consisting of Pseudotsuga, Larix, Sequoia, and

Chamaecyparis were found in the Canadian high arctic

(Basinger, 1991). This fossil evidence includes giant stems that

suggest temperate forest communities of similar appearance and

composition to today’s Pacific Northwest coastal forests. Trees

must have adapted not only to a different climate but to the

vastly different diurnal cycle of the arctic latitudes with 24 h of

daylight during the summer and complete darkness in winter, as

there were only minor continental shifts relative to the North

Pole for this area at this time.

While niche constancy and no-analogue climates must have

played an important role at evolutionary time scales, we do not

think that these factors should effect bioclimate envelope model

projections for the immediate future and we consider model

Figure 4 Predicted biome classes and climate dissimilarity according to an ensemble projection of the A2 emissions scenario from five
general circulation models for the 2080s. The inset map provides a more detailed image of the modelled ecosystems in Alaska and the
Yukon Territory.
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projections useful, if correctly interpreted. Projected ecosystems

simply represent new equilibrium targets for ecological commu-

nities. Because of the long generation time of trees, forest com-

munities that are resilient or resistant may not change at all over

periods that are measured in decades. Nevertheless, discrepan-

cies between current ecosystems and projected future habitat are

of great concern. For example, we do not interpret Alaska’s

emerging landscape diversity as a cause for optimism. Rather, it

is a cause for concern, as climatic stresses on locally adapted

populations may compromise forest productivity and forest

health (Allen et al., 2010).
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