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ClimateEU, scale-free climate 
normals, historical time series, and 
future projections for Europe
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Duncan Ray4 & annette Menzel5

Interpolated climate data have become essential for regional or local climate change impact 
assessments and the development of climate change adaptation strategies. Here, we contribute an 
accessible, comprehensive database of interpolated climate data for Europe that includes monthly, 
annual, decadal, and 30-year normal climate data for the last 119 years (1901 to 2019) as well as multi-
model CMIP5 climate change projections for the 21st century. the database also includes variables 
relevant for ecological research and infrastructure planning, comprising more than 20,000 climate 
grids that can be queried with a provided ClimateEU software package. In addition, 1 km and 2.5 km 
resolution gridded data generated by the software are available for download. the quality of ClimateEU 
estimates was evaluated against weather station data for a representative subset of climate variables. 
Dynamic environmental lapse rate algorithms employed by the software to generate scale-free climate 
variables for specific locations lead to improvements of 10 to 50% in accuracy compared to gridded 
data. We conclude with a discussion of applications and limitations of this database.

Background & Summary
Interpolated climate data have become an essential tool for researchers, natural resource managers, policy makers 
and analysts to assess climate change impacts and to develop climate change adaptation strategies1–3. Applications 
in research, natural resource management and infrastructure planning usually require long-term climate base-
line data with appropriate spatial and temporal resolution (often 30-year climate normal periods), records of 
past climate variability (historical time series data) and future predictions from Atmosphere-Ocean General 
Circulation Models (AOGCMs). However, such data are not readily available in consistent formats and require 
expert knowledge to efficiently subset, overlay, resample, reproject, or query to obtain climate estimates for loca-
tions or regions of interest4. There are some notable on-line resources that provide some of this functionality (e.g., 
www.worldclim.org, https://www.ncdc.noaa.gov, https://daymet.ornl.gov, www.prism.oregonstate.edu, http://
www.climatewizard.org), but these resources do not simultaneously provide raw data access and powerful query 
tools for researchers, while maintaining ease of access and convenient data extraction and visualization tools for 
resource managers and policy makers.

We have previously developed databases with software front-ends for North America that build on quality 
datasets generated by various research groups5–8. These original datasets are further enhanced by our software 
packages by using lapse rate adjustments that dynamically vary for each variable and each geographic location9, 
adjusting for the difference between the grid elevation and the elevation of the location of interest (i.e. obtained 
from a GPS position for a sample location, or through an elevation estimate from a high resolution digital eleva-
tion model). Previous work9–11 showed that this scale-free approach to estimating climate variables for specific 
locations significantly improved the statistical accuracy of climate estimates compared to the original grids. The 
European environment is amongst the most studied in many research fields, from agriculture to biology and 
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forestry12,13, and a similar software for this region of the world was missing. The ClimateEU software we are pre-
senting here aims to fill this gap.

Here, we aggregate and enhance several high-quality, publicly available databases that are integrated with a 
free, easy-to-use software frontend. This software package and database can be obtained from the figshare reposi-
tory14 with the latest version also available via anonymous download at http://tinyurl.com/ClimateEU. Our objec-
tive is to provide a comprehensive solution to: (1) generate climate grids for a wide range of climate variables and 
time periods at any resolution and in any projection for custom study areas; (2) accurately characterize climate 
conditions for a location and time period of interest, such as a study site, for which an on-site station data is not 
available or for which the station record is incomplete; (3) generate historical time series for one or many sample 
locations for time series analysis; and (4) provide simple access to future projections from 15 selected AOGCMs 
for climate change impact and adaptation planning that relies on comparing past 30-year climate normal condi-
tions with those that may be expected over the coming decades.

Another unique characteristic of our software solution is that the size of the total database of more than 20,000 
climate surfaces is kept manageable by storing only the 1961–1990 climate reference period at high resolution 
while expressing all other periods (historical monthly, seasonal, annual or decadal as well as future projections) 
as anomalies from this reference normal at lower resolution15,16. The statistical accuracy of climate estimates is 
partially recovered by overlaying the coarse resolution anomaly grids on the high-resolution reference baseline15.

For continental-scale studies that cover Europe, we also provide a useful subset of 5,200 grids at 1 km and 
2.5 km resolution in Albers equal area projection. These grids include 48 monthly variables (monthly precipi-
tation, minimum, maximum, and average temperature), as well as 36 bioclimatic variables that are relevant in 
ecology, agriculture, or infrastructure planning (e.g. growing and chilling degree days, heating and cooling degree 
days, Hargreave’s moisture deficit and reference evaporation, beginning and end of the frost-free period, etc.). 
This paper describes the database in detail and discusses the strengths and limitations of this database for use by 
natural resource managers, policy makers and researchers. We further evaluated a representative subset of climate 
variables against observed station data, and we report error estimates for climate normals and historical data.

Methods
Baseline climate period 1961–1990. ClimateEU uses climate data for the normal period 1961–1990 as a 
baseline (or reference) dataset, which consists of 36 gridded data layers of monthly minimum temperature, max-
imum temperature, and precipitation, as well as an average elevation for each grid cell. The baseline dataset was 
compiled from different sources, resampled, and aggregated to a common 2.5 arcmin grid (approximately 5 km) 
and adjusted to 1961–1990 normal period. The sources include WorldClim v1.45 for the temperature grids, an 
unpublished dataset developed with PRISM methodology7,14 for the European Alps region, provided Chris Daly 
and Manfred Schwaab, and ANUSplin interpolations for precipitation for the remainder of Europe.

The original data sources were developed at different resolutions for different time periods, and were there-
fore modified before aggregation into the ClimateEU data package. WorldClim v1.4 data was developed for the 
1950–2000 period at 30 arcsec resolution, and was therefore adjusted to match the 1961–1990 normal period of 
the other datasets. To implement the adjustment, we first developed anomaly layers for 1950–2000 period relative 
to 1961–1990 using CRU data (described below), and used bilinearly interpolation to match this anomaly layer 
to the WorldClim v1.4 dataset. The anomalies were then subtracted from the 1950–2000 data and aggregated to 
the same 2.5 arcmin grid.

For the European Alps region, we used precipitation layers developed with PRISM methodology because this 
method is specifically designed to model rain shadows and orographic precipitation in mountainous terrain. 
PRISM-based interpolations cover the European Alps region between 43°–49°N latitude and 2°–17°E longitude. 
Precipitation grids for the remainder of Europe were developed using the smoothing spline software ANUSplin17 
to interpolate station observations. The PRISM dataset for the European Alps region was seamlessly integrated by 
including the peripheral grid cells of the PRISM dataset in the training data for ANUSplin interpolation.

We use the standard normal period from 1961–1990 as baseline data as it presents several advantages. Spatial 
climate station coverage is excellent for this period and allows for the development of a reliable interpolated 
baseline data. The 1961–1990 period represents climate conditions at the start of a major anthropogenic warm-
ing signal. A period of global dimming due to particulate and sulphate pollution in the 1950s to 1980s may have 
masked a small anthropogenic warming signal in this period18. Also, the period from 1961 to 1990 has been used 
as a reference period for long-term climate change assessments by the World Meteorological Organisation.

Historical climate estimates 1901–2019. Monthly historical data from 1901 to 2019 are based on inter-
polated time series grids, CRU-TS 4.04, developed by Harris et al.19 at 0.5 degrees resolution (approximately 
50 km). In order to overlay CRU-TS 4.04 historical data on our 1961–1990 baseline dataset, described in the 
previous section, we first calculated a CRU-TS 4.04 average for the same 1961–1990 time period. By subtracting 
the CRU-TS 1961–1990 average from individual years and months, we derived monthly CRU anomaly surfaces 
(deviations from the 1961–1990 normals). These anomalies were downscaled to 2.5 arcmin using bilinear inter-
polation and overlaid on ClimateEU baseline grids. This anomaly approach, also referred to as change factor 
or delta method20 preserves spatial variation due to topographic effects (temperature gradients along elevation 
gradients, or orographic precipitation on windward facing slopes or rain shadows on leeward slopes of mountain 
ranges), without the need to model these effects at high resolution for individual years and months of the entire 
historical period from 1901 to 2019.

CMIP5-based future projections. For future projections, we applied the same anomaly approach, as 
described above for historical data, to the CMIP5 multimodel dataset corresponding to the IPCC Assessment 
Report 521. We summarized annual AOGCM projections into 30-year time periods, hereafter referred to as 2020 s 
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(2011–2040), 2050 s (2041–2070), and 2080 s (2071–2100). As AOGCMs data are available at various spatial res-
olutions, ranging from 0.75 × 0.75° through 2.85 × 2.85°, we interpolated the grids to a common resolution of 
1 × 1° using bilinear interpolation for simpler integration into the ClimateEU software package. This common 
resolution was chosen as to not lose spatial information for most AOGCM models. To apply the delta method, we 
converted AOGCM projections to anomalies for each normal period by subtracting their 1961–1990 predictions.

We selected 15 AOGCMs to represent all major clusters of similar AOGCMs by Knutti et al.22. Within clus-
ters, we selected models that had the highest validation statistics in their CMIP3 equivalents, leading to the fol-
lowing selection: CanESM2, ACCESS1.0, IPSL-CM5A-MR, MIROC5, MPI-ESM-LR, CCSM4, HadGEM2-ES, 
CNRM-CM5, CSIRO Mk 3.6, GFDL-CM3, INM-CM4, MRI-CGCM3, MIROC-ESM, CESM1-CAM5, 
GISS-E2R. For each of these models, we selected two Representative Concentration Pathways (RCPs) scenar-
ios with a radiative forcing value of + 4.5 and + 8.5 W/m2 expected in 2100 relative to pre-industrial values. For 
the chosen AOGCMs, these forcing values would result in projected global warming increase (and ranges) of 
approximately + 1.4 °C ( ± 0.5) by the 2050 s and + 1.8 °C ( ± 0.7) by the 2080 s for RCP4.5. For RCP8.5, the 
average global climate change projections for mean annual temperature would be + 2.0 °C ( ± 0.6) by the 2050 s 
and + 3.7 °C ( ± 0.9) by the 2080 s. We aggregated all available individual runs from each of 15 AOGCMs × three 
future normal periods (2020 s, 2050 s, 2080 s) × two RCPs (4.5 and 8.5) to arrive at 90 future projections that can 
be used to assess uncertainty in the near, medium, and long term. Additionally, we derived average ensemble 
projections across all 15 models listed above.

Scale-free dynamic downscaling. The main feature of the ClimateEU software tool presented here is the 
ability to apply a dynamic downscaling approach to the gridded baseline data to generate scale-free climate data 
for any location in Europe between 34.26°and 71.24° degrees latitude and –10 .74° and 44.24° longitude. The sys-
tem works using lapse-rate based elevation adjustments that vary with each variable, elevation, and geographic 
location, providing a set of 84 scale-free climatic variables (annual, seasonal or monthly). The empirical local 
lapse rates were described as polynomial functions for each monthly temperature variable based on geographic 
coordinates (latitude, longitude, and elevation). Taking the partial derivative of the function with respect to ele-
vation, the rate of change in a variable in response to a change in elevation is obtained for any given latitude, 
longitude, and elevation23.

The elevation adjustment for a requested location or grid cell is calculated with these partial differential equa-
tions by the ClimateEU software on demand. Normally, a point of interest queried by a user has a different ele-
vation value than the elevation of the corresponding ClimateEU grid cell. The partial differential equations are 
then applied to the elevation difference between a grid cell elevation and the elevation of a location of interest. 
After elevation adjustments had been carried out for monthly variables, the full set of biologically relevant climate 
variables were either calculated (seasonal and annual summaries) or estimated (e.g. growing degree days, frost 
free period) using a correlative approach with values derived from daily weather station data (see Wang et al.9 for 
details).

Data quality assessments. Data quality assessments were carried out by comparing the observations from 
weather stations with climate variables generated by the ClimateEU software for station locations. We assume 
that most or all of the climate station data that we use for quality assessments8,24,25 were also used for the develop-
ment of interpolated climate grids (PRISM, CRU-TS, WorldClim, ANUSplin). Therefore, our quality assessment 
is not an independent validation using withheld data. Therefore, in addition to evaluating the ClimateEU esti-
mates directly to observations from stations, we also compared the ClimateEU output against the baseline dataset 
to evaluate the benefits of the environmental lapse rate adjustments and the effectiveness of delta downscaling 
approach.

Prior to the quality assessment, we combined and filtered the climate station databases, retaining only sta-
tions with records that exceeded 30 years, and with less than 5% missing values. We also applied a spatial filter, 
removing nearby duplicate stations by retaining only the highest quality station record in a 20 arcmin grid cell 
and a 100 m elevation interval (Fig. 1); see Castellanos-Acuña and Hamann26 for details on the quality assessment 
and filtering procedures. For these stations, we evaluated how well historical estimates from ClimateEU account 
for variance explained in original climate station data, measured as the R2 of a simple linear model between pre-
dicted and observed climate value. To provide another metric describing the magnitude of errors in units of °C 
and millimeters precipitation, we report Mean Absolute Error (MAE), i.e. the mean absolute difference between 
ClimateEU estimates and observed station data.

Data Records
We make our climate datasets available in two formats, the ClimateEU software package and climate grids. The 
ClimateEU software package includes the climate grids of the 1961–1990 normal period, historical and future 
anomalies, performs local downscaling, and generates many climate variables on demand for any location of 
interest (single or multiple). It can also process custom digital elevation models (DEMs) at any resolution or 
geographic projection with an input file in text format (.csv or.txt). In total, approximately 20,000 data layers 
that represent different variables for different historical and future time periods can be queried with the software 
package. The ClimateEU software package can be obtained from the figshare repository14, with the latest version 
also available via anonymous download without registration requirements at http://tinyurl.com/ClimateEU. The 
current version 4.71 includes monthly, annual, decadal, and 30-year normal climate data for the last 119 years 
(1901 to 2019), as well as multi-model CMIP5 climate change projections for the 21st century.

Secondly, we provide climate grids generated by the ClimateEU software package. The figshare data repository14 
includes a set of 5,200 climate grids at 1 km and 2.5 km resolution for all of Europe west of 44°E longitude in Albers equal 
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area projection (Fig. 2). The latest versions of these grids can also be downloaded at http://tinyurl.com/ClimateEU.  
The grids are available for a 1961–1990 normal reference period and various future projections from AOGCMs. 
Climate variables include 48 monthly variables for precipitation, maximum temperature, minimum temperature 
and average temperature for 12 months the year, as well as 36 bioclimatic variables.

The bioclimatic variables provided in both the software package and climate grids include mean annual tem-
perature (MAT), seasonal means for precipitation, maximum temperature, minimum temperature and aver-
age temperature (e.g. PrecDJF, PrecMAM, etc.), mean warmest month temperature (MWMT), mean coldest 
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Fig. 1 European climate stations used for quality assessments of gridded data and historical time series from 
the ClimateEU software package, which carries out data overlays and environmental lapse rate adjustments for 
spatial downscaling.

Fig. 2 Example climate grid for mean annual temperature, showing the extent of gridded climate surfaces for 
Europe, west of 44°E latitude at 1 km resolution in Albers equal area projection. A set of 4,800 grids are available 
at http://tinyurl.com/ClimateEU, comprising monthly and bioclimatic variables for historical periods and future 
projections.
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month temperature (MCMT), temperature difference (TD = MWMT-MCMT), mean annual precipitation 
(MAP), mean growing season (May to September) precipitation (MSP), annual heat:moisture index calculated as 
(AHM = MAT + 10)/(MAP/ 1000)), summer heat:moisture index (SHM = (MWMT)/(MSP/1000)), degree-days 
below 0 °C or chilling degree-days (DD < 0), degree-days above 5 °C or growing degree-days (DD > 5), 
degree-days below 18 °C or heating degree-days (DD < 18), degree-days above 18 °C or cooling degree-days 
(DD > 18), the number of frost-free days (NFFD), frost-free period (FFP), the Julian date on which FFP begins 
(bFFP), the Julian date on which FFP ends (eFFP), precipitation as snow between August of the previous year 
and July of the current year (PAS), extreme minimum temperature over 30 years (EMT), Hargreave’s reference 
evaporation (Eref), and Hargreave’s climatic moisture deficit (CMD).

technical Validation
Evaluation of historical time series data. Climate variable estimates for individual years generated by 
the ClimateEU software package for the historical period from 1901 to 2019 generally compare favorably with 
the 1961–1990 normal average (Fig. 3). This validates the anomaly approach, where we only store the 1961–1990 
baseline grids at high resolution, and historical data is reconstructed by overlaying 0.5° resolution anomaly grids 
to estimate historical data for individual years. Both metrics that we use for quality evaluations are generally high, 
with variance explained in climate station data largely above 0.9. Mean absolute errors were mostly below 0.5 °C 
for temperature variables and less than 10 mm for monthly precipitation variables, although there was more var-
iation among individual yearsfor precipitation (Fig. 3). Estimates increase in precision for longer seasonal and 
annual periods. Note that the errors for precipitation sums over longer periods need to be evaluated relative to 
the larger precipitation values. In general, precision of climate estimates increases with the length of time that the 
variables represent, i.e., mean annual temperature estimates are more precise than seasonal variables, which are in 
turn are more precise than monthly variables. Also, estimates of precipitation variables are generally less precise 
than estimates for temperature variables.

Monthly historical climate layers from the CRU-TS dataset were developed at a 0.5° grid size, corresponding 
to approximately 50 km resolution. Climate variables at this relatively coarse resolution are expected to be less 
accurate, especially in mountainous terrain. However, by converting the CRU-TS climate estimates to anomalies 
and downscaled the ClimateEU software package, historical data can be generated with precision comparable to 
to high-resolution climate normal layers (Fig. 3, compare monthly estimates with 1961–1990 normal indicated 
by bar). Storing only one high resolution baseline climate grid, and 119 annual low resolution anomaly layers 
(1901–2019) reduces the total database size by two orders of magnitude, with minimal sacrifice to spatial resolu-
tion in complex terrain.

Effectiveness of lapse rate adjustments. Breaking down the evaluation for climate stations located 
below and above 1,000 m reveals the difficulty of estimating climate variables in mountainous terrain and the 
effectiveness of the ClimateEU algorithms in carrying out environmental lapse-rate adjustments (Table 1). Mean 
absolute errors of climate estimates are highest for climate values directly obtained from a grid for montane areas 
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Fig. 3 Evaluation of historical estimates from ClimateEU showing the variance explained in original climate 
station data over time for two monthly, two seasonal, and two annual climate variables. The horizontal bars 
represent the R² values for the 1961–1990 normal estimates. In addition, the Mean Absolute Errors (MAE) 
represents another metric describing the magnitude of errors in units of °C and millimeters precipitation, i.e. 
the average absolute difference between ClimateEU estimates from observed station data.
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(Table 1, lower left quarter), often exceeding 1 °C. In contrast, unadjusted climate values obtained directly from 
gridded data for stations below 1000 m elevation are more precise with MAE values around 0.5 °C (Table 1, upper 
right quarter).

Lapse rate adjustments for temperature variables substantially improve the quality of climate estimates for 
montane regions, resulting in MAE values ranging from 0.5 °C to 0.8 °C. The adjustment is most effective for 
maximum and average temperature estimates, while improvements are relatively minor for minimum tempera-
ture estimates (Table 1, lower left quarter). The reduced improvement for minimum temperature was also found 
in other regions of the world10,27. We suspect that the reason for the limited effectiveness of environmental lapse 
rate adjustments for monthly minimum temperatures in mountainous terrain is caused by temperature inversions 
that make it difficult to derive lapse rate adjustments that generally apply for a geographic area. Lapse-rate adjust-
ments are less important for stations located below 1,000 elevation but still yield approximately a 20% reduction 
in error for temperature variables (Table 1, lower left quarter).

Error estimate for precipitation variables suggests that also these variables are more difficult to estimate in 
mountainous terrain, with mean absolute errors almost twice as large for weather station locations above 1,000 m 
than those located below (Table 1). Since variation in precipitation is generally smaller across an altitudinal range 
than temperature and does not vary linearly7,28,29, the ClimateEU software does not carry out lapse rate adjust-
ments. For this reason, the errors of ClimateEU estimates are identical or near-identical to estimates when que-
rying gridded climate data directly. For estimates of precipitation variables at high resolution, the ClimateEU 
software will carry out a simple bilinear interpolation for mapping and display purposes, so that the resulting 
grids do not show tile artifacts of the underlying coarser original climate grids. However, this interpolation does 
not result in any improvements in precision. In fact, for mountainous areas the estimates are very slightly inferior 
compared to the original gridded data, about 3% increase in mean absolute errors (Table 1).

The second metric that we use for evaluation, Variance explained (R²) also shows that climate variables in 
mountainous terrain are more difficult to estimate (Table 2). The metric also allows for a direct comparison of 
temperature and precipitation estimates. For locations below 1,000 m, there is a clear difference in quality of 
monthly precipitation (R² of 0.94) and temperature estimates (R² around 0.98). However, in mountainous areas 
the quality of precipitation estimates is comparable to estimates of minimum monthly temperature, both with rel-
atively low R² values around 0.85. Non-adjusted average temperature (Tave) and maximum temperature (Tmax) 
values obtained directly from grids have the lowest R² values, dropping below 0.8 (Table 2, lower right quarter). 
That said, after lapse-rate adjustment, Tave and Tmax estimates are substantially improved, Tmin values show 
only minor improvements (Table 2, lower left quarter).

Breaking down the evaluation further to individual months, for climate stations located in mountainous ter-
rain, reveals that lapse-rate adjustments are most effective during the summer months. The largest errors for data 
obtained directly from original climate grids are for average monthly temperature between April and August, 
with error values around 1.4 °C (Table 3 left side), and here the lapse-rate elevation adjustments by the ClimateEU 
software are also most effective, reducing errors by 70%. The adjustments are least effective for minimum tem-
peratures in winter with error reductions around 10%, again pointing to temperature inversions that are more 
frequent in mountainous terrain in winter, compromising the generality of empirical environmental lapse rate 
calculations.

Usage Notes
The ClimateEU software package we provide is based on an equivalent methodology that were previously devel-
oped for North America, where our data products are widely used in engineering applications, environmental 
impact assessments, natural resource management, research in historical ecology, conservation biology, tree ring 
research, and climate change impact assessments. Compared to our North American datasets, the MAE and R² 
metrics for the European dataset are generally better, reflecting the higher density and longer history of climate 

Variable

ClimateEU - elevation adjusted Without adjustment

Monthly Seasonal Annual Monthly Seasonal Annual

Stations <1000 m

Tmin (°C) 0.52 0.48 0.44 0.64 0.61 0.60

Tmax (°C) 0.41 0.37 0.33 0.53 0.49 0.46

Tave (°C) 0.36 0.33 0.26 0.46 0.44 0.38

Prec (mm) 5.0 13.0 44.0 5.0 13.0 44.0

Stations >  = 1000 m

Tmin (°C) 0.78 0.75 0.71 0.92 0.89 0.81

Tmax (°C) 0.57 0.53 0.45 1.01 0.98 0.94

Tave (°C) 0.58 0.54 0.44 1.29 1.27 1.21

Prec (mm) 8.3 23.3 81.1 8.0 22.6 78.0

Table 1. Data quality assessment of the ClimateEU 1961–1990 baseline dataset with and without lapse-rate based 
elevation adjustments, based on mean absolute errors (MAE) between weather station data and interpolated 
grids. The statistics without adjustment refer to climate values for weather station locations directly extracted 
from the 1961–1990 baseline grid. In addition, the ClimateEU software can carry out lapse-rate based adjustment 
based on the elevation difference of the climate grid cell versus the recorded elevation of the climate station.
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station records. A selection of these applications have been reviewed by Mbogga et al.15 and Wang et al.10,11. 
Nevertheless, users of our climate databases should keep in mind that climatic features such as rain shadows or 
temperature inversions are modeled at a scale of kilometers, suitable to broadly represent mountainous terrain. 
Lapse-rate driven differences in temperature related variables along elevation gradients are accurately repre-
sented at a much finer scale, informative at a resolution of hundreds of meters. We should note, however, that all 
interpolated climate surfaces of this dataset are ultimately based on standard climate stations and consequently, 
microclimates that are driven by vegetation, water bodies, or topography at a scale of tens of meters are not are 
not represented.

Although the software described in this paper could be further enhanced by statistical downscaling to daily 
temporal resolution, our contribution does not provide climate variables with a temporal resolution of less than 
one month. Rather, our software and datasets are optimized for applications that require high spatial resolution 
(i.e. resolutions of hundreds of meters to a few kilometers). At those spatial scales, the simulation of weather 
events at a daily scale, or the estimation of the probability of weather events is not reliable enough (i.e. those esti-
mates would hardly vary among adjacent cells). Therefore, our lowest temporal resolutions for historical data are 
monthly precipitation sums and temperature averages. For future projections, we only provide very low temporal 
resolution averages for 30-year normal periods (2011–2040, 2041–2070, and 2071–2100). High-resolution spatial 
data with coarse temporal scales still have a wide range of applications, particularly in climate niche or bioclimatic 
envelope modeling30–32. For example, in mountainous areas species communities can change in response to tem-
perature gradients along elevation gradients at scales of hundreds of meters, and orographic precipitation and 
rain shadows drive local climatology at the scale of a few kilometers.

Variable

ClimateEU - elevation adjusted Without adjustment

Monthly Seasonal Annual Monthly Seasonal Annual

Stations <1000 m

Tmin 0.97 0.98 0.98 0.96 0.97 0.97

Tmax 0.99 0.99 0.99 0.98 0.98 0.99

Tave 0.99 0.99 0.99 0.98 0.98 0.98

Prec 0.94 0.94 0.94 0.94 0.94 0.94

Stations >  = 1000 m

Tmin 0.84 0.84 0.83 0.79 0.78 0.78

Tmax 0.90 0.90 0.90 0.76 0.75 0.72

Tave 0.97 0.97 0.98 0.86 0.87 0.86

Prec 0.84 0.84 0.87 0.85 0.85 0.89

Table 2. Data quality assessment of the ClimateEU 1961–1990 baseline dataset with and without lapse-rate 
based elevation adjustments, based on variance explained (R2) in climate station data by estimates from 
interpolated grids. The statistics without adjustment refer to climate values for weather station locations directly 
extracted from the 1961–1990 baseline grid. In addition, the ClimateEU software can carry out lapse-rate based 
adjustment based on the elevation difference of the climate grid cell versus the recorded elevation of the climate 
station.

Month

MAE without adjustment Change in MAE due to adjustment

Tmin (°C) Tmax (°C) Tave (°C) Tmin (°C) Tmax (°C) Tave (°C)

Jan 0.93 0.94 1.10 −0.04 −0.44 −0.59

Feb 0.93 1.00 1.28 −0.05 −0.55 −0.78

Mar 0.84 1.01 1.39 −0.12 −0.71 −0.93

Apr 0.88 1.05 1.44 −0.20 −0.99 −0.97

May 0.88 1.04 1.40 −0.18 −0.91 −0.98

Jun 0.92 1.05 1.41 −0.19 −0.87 −0.97

Jul 0.93 1.04 1.36 −0.16 −0.78 −0.93

Aug 1.01 1.08 1.37 −0.19 −0.79 −0.93

Sep 1.02 0.99 1.28 −0.14 −0.75 −0.83

Oct 0.95 1.10 1.26 −0.19 −0.75 −0.78

Nov 0.83 0.89 1.15 −0.11 −0.58 −0.67

Dec 0.86 0.89 1.07 −0.08 −0.48 −0.60

Table 3. Mean Absolute Error (MAE) of estimates from climate grids, and changes in MAE broken down by 
month and variable after lapse-rate adjustment with the ClimateEU software, based on the elevation difference 
of the climate grid cell versus the recorded climate station. The evaluation was restricted to stations above 
1000 m as the lapse-rate adjustment is primarily expected to yield benefits in mountainous regions.
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Code availability
The code used to carry out lapse-rate based elevation adjustments is publicly available under a Creative Commons 
Attribution 4.0 International license (CC BY 4.0). The ClimateEU software package can be obtained from the 
figshare repository14, with the latest version of this software and gidded database also available via anonymous 
download without registration requirements at http://tinyurl.com/ClimateEU.
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