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Abstract
Citizen science involves public participation in research, usually through volunteer observation and reporting. Data collected by
citizen scientists are a valuable resource in many fields of research that require long-term observations at large geographic scales.
However, such data may be perceived as less accurate than those collected by trained professionals. Here, we analyze the quality
of data from a plant phenology network, which tracks biological response to climate change. We apply five algorithms designed
to detect outlier observations or inconsistent observers. These methods rely on different quantitative approaches, including
residuals of linear models, correlations among observers, deviations from multivariate clusters, and percentile-based outlier
removal. We evaluated these methods by comparing the resulting cleaned datasets in terms of time series means, spatial data
coverage, and spatial autocorrelations after outlier removal. Spatial autocorrelations were used to determine the efficacy of outlier
removal, as they are expected to increase if outliers and inconsistent observations are successfully removed. All data cleaning
methods resulted in better Moran’s I autocorrelation statistics, with percentile-based outlier removal and the clustering method
showing the greatest improvement. Methods based on residual analysis of linear models had the strongest impact on the final
bloom time mean estimates, but were among the weakest based on autocorrelation analysis. Removing entire sets of observations
from potentially unreliable observers proved least effective. In conclusion, percentile-based outlier removal emerges as a simple
and effective method to improve reliability of citizen science phenology observations.
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Introduction

Citizen science is broadly defined as scientific inquiry that
includes volunteers for data collection and/or processing
(Silvertown 2009). Citizen science has been documented as
early as 3500 years ago with citizens and officials recording
locust outbreaks in China (Miller-Rushing et al. 2012). Today,
volunteer observers contribute to various research fields, in-
cluding conservation science, population ecology, environ-
mental risk assessments, pollution detection, and monitoring
of the environment to detect change (e.g., Bonney et al. 2009;
Silvertown 2009; Dickinson et al. 2012). Citizen scientists

enable large-scale scientific data collection that would other-
wise not be possible. In general, any type of biological or
environmental monitoring over large geographic areas or long
time periods tends to benefit from citizen science networks.
For example, citizen science-driven projects have been used to
identify pollution sources (McKinley et al. 2017). The estab-
lishment, spread, and control of invasive species are regularly
supported by volunteer observation networks (Crall et al.
2015). In conservation biology, rare plant populations are
monitored, and potential threats to populations have been
identified through data collected by volunteers (Havens et al.
2012; Vander Stelt et al. 2017).

In the context of environmental monitoring, an important
citizen science contribution is the collection of compelling ev-
idence for biological response to global climate change, for
example through observing plant phenology, i.e., the seasonal
timing of life cycle events (Rathcke and Lacey 1985). Plant
phenology programs supported by citizen scientists include
the USA National Phenology Network, which monitors the
timing of flowering and leafing of approximately 878 plant
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species (USANPN 2017), and coordinates broader cooperation
of phenology networks throughout the world (Global Alliance
of Phenological Observation Networks, https://www.usanpn.
org/partner/gapon). In recent decades, data from such
phenology monitoring networks have emerged from relative
obscurity to the forefront of environmental monitoring. For
example, an analysis of published studies in plant phenology
within the International Journal of Biometeorology alone has
increased from approximately 350 papers per decade between
1957 and 2007 to over 1000 contributions between 2007 and
2016 (Donnelly and Yu 2017).

While the use of citizen science data in environmental
monitoring and other applications is well established and
widespread, questions have been raised regarding the reli-
ability and objectivity of citizen scientists’ data, which has
led to some programs reverting to the use of professional
scientists, or to limiting volunteer involvement (Silvertown
et al. 2013; MacKenzie et al. 2017). Lack of expertise,
limited training, and lack of commitment by volunteer ob-
servers have been cited as potential issues that may com-
promise the quality and completeness of data records gen-
erated by citizen science networks (e.g., Foster-Smith and
Evans 2003; Hunter et al. 2013). However, reviewing the
literature on validation and quality assessments of citizen
science data, Danielsen et al. (2014) and Kosmala et al.
(2016) conclude that citizen science data compare favor-
ably with data collected by professionals, given appropri-
ate training, spot checks to validate observations, and sta-
tistical analysis to detect anomalies and outliers.

Statistical outlier detection or other data pre-processing are,
in fact, common scientific approaches that do not only benefit
volunteer data, but are routinely applied to any professionally
collected data or instrument measurements that are prone to
inaccuracies (DataONE 2017). Here, we evaluate different
algorithms designed to detect outlier observations and incon-
sistent observers from a citizen science network that monitors
the timing of bloom for 30 plant species in Alberta, Canada.
The Alberta PlantWatch program is one of the longest current-
ly running citizen-science observation networks in North
America (Schwartz et al. 2013). The data has been used to
document the impact of climate change at northern latitudes
(Beaubien and Freeland 2000; Beaubien and Hamann 2011a).
Data from Beaubien and Freeland 2000 has been featured in
the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change as evidence for the impacts of climate
change (IPCC 2007).

The network consists of about 700 observers that have
reported more than 57,000 bloom dates from 1987 to 2016.
Observers are trained through organized nature walks, book-
lets, and online resources that provide illustrated guides for
identification of species and bloom phases (http://plantwatch.
naturealberta.ca). Data are recorded and submitted by
observers on data entry sheets, which are then manually

transcribed to an electronic database, with both steps
potentially leading to accidental errors. Additional errors
may result from incorrect species identification or
misclassification of bloom phases and leaf-out phases
(Beaubien and Hamann 2011b; Crall et al. 2011; Fuccillo
et al. 2014). As typical for phenology networks, the data
covers a large geographic extent and a variety of climates
and ecosystems, which makes outlier detection challenging.

One approach to assess data accuracy is to evaluate the
internal consistency of observations, based on the general
principle expressed by Tobler’s first law of geography:
“Everything is related to everything else, but near things
are more related than distant things” (Tobler 1970). Plant
blooming and budburst during the spring in temperate re-
gions are predominantly driven by spring temperatures
(e.g., reviewed by Rathcke and Lacey 1985), which is in-
herently related to location and elevation and highly spa-
tially autocorrelated (Schwartz et al. 2014). This study
contributes a comparison of five data cleaning methods
that rely on different quantitative approaches, including
residuals of linear models, correlations among observers,
and deviations from multivariate clusters, and percentile-
based outlier removal. As a metric for determining the best
method for detecting unreliable observations, we evaluate
improvements to spatial autocorrelation in accordance with
Tobler’s first law of geography.

Materials and methods

Study area and data

The study area encompasses the province of Alberta,
Canada, and is bound by the 49th and 60th parallel, the
110th meridian to the east, and the 120th meridian and
the Rocky Mountains to the west. Alberta is divided into
six natural regions and 21 natural subregions based on
topography, climate, vegetation, and soils (Fig. 1), which
includes grasslands, montane forests, and boreal and sub-
boreal forests, as well as alpine and arctic tundra (Natural
Regions Committee 2006). We use this landscape classifi-
cation system to delineate areas that are expected to have
similar phenological responses.

Phenological data from the Alberta PlantWatch database
covers observations from 1987 to 2016 with a total of
57,745 observations for 30 species. Observation locations
are primarily where human population is greater i.e., within
areas around large cities and extensive road networks (Fig. 1).
We selected four species that are wide-ranging across Alberta,
and phenological phases that had long time series of data
available for observation locations. The species used in this
study were a common deciduous tree, aspen (Populus
tremuloidesMichx.), the herbaceous species: early blue violet
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(Viola adunca J.E. Smith), and two shrub species: chokecher-
ry (Prunus virginiana L.) and saskatoon (Amelanchier
alnifolia Nutt.). For these species, “first bloom” is reported
when the first flowers are open, or when male catkins or cones
first start shedding pollen. In addition, “mid bloom” was re-
ported either when 50% of flowers are open or when 50% of
male catkins or cones are shedding pollen (Beaubien and
Hamann 2011b).

For one of the outlier detection techniques (Mehdipoor
et al. 2015), we make use of daily climate data. For this pur-
pose, 1-km resolution gridded climatic data was obtained from
the National Aeronautics and Space Administration,
DAYMET project for each phenology observation point
(Thornton et al. 2016; Hufkens 2017). Following Mehdipoor
et al.’s (2015) methodology, climatic variables were summed
from January 1 up to the day of the year that each phenological
observation was made, and included the cumulative maxi-
mum daily temperature, cumulative minimum daily tempera-
ture, cumulative average daily temperature (calculated by the
average of the maximum and minimum temperatures), cumu-
lative daily day length, cumulative daily precipitation, cumu-
lative daily solar radiation, cumulative daily snow water
equivalent, and cumulative daily water vapor pressure.

Data cleaning methods

Five data cleaning methods for improvement of quality for
phenological data were evaluated, where each of the methods
was allowed to remove 5% of data points:

Method 1 – Standardized difference: Natural subre-
gions generally have similar environmental condi-
tions, so that the expectation is that observations of
the same species flowering stage are expected to occur
at approximately the same time within nearby areas. A
good indication for a potential error would therefore
be the deviation of an observation from the mean value
of flowering dates for natural subregion, years, and
flowering phases. In order to compare outliers across
different natural subregions, the scale of observations
was standardized to express each observation in units
of standard deviations from the natural subregion
mean (Fig. 2a).
Method 2 – Linear model 1 with geographic coordinates:
This method of data cleaning is based on developing a
linear model for the purposes of data cleaning. We follow
the methodology of Ranjitkar (2013), where flowering
dates were predicted with a linear model based on the
continuous predictor variable’s latitude, longitude, and
elevation. Here, a categorical variable “year” was includ-
ed as a predictor class variable to account for interannual
climatic variability. The records for removal were
assessed by calculating the residual difference between
the predicted and observed day of the year of the pheno-
logical event (Fig. 2b).
Method 3 – Linear model 2 with natural subregion:
This is a combination of methods 1 and 2, where nat-
ural subregion and year are used as predictor class
variable in a linear model for the removal of outliers
based on residual error.
Method 4 – Observer correlation: This method targets
inconsistent or unreliable observers by identifying low
correlations of data reported by individual observers
versus the mean of all other observers in the same
region (Fig. 2c). Correlations were calculated within
subsets for different species, bloom phases, and natu-
ral subregions.
Method 5 – Dimensionality reduction and clustering:
This method includes contextual environmental informa-
tion to identify inconsistencies in phenology data. We
follow Mehdipoor et al.’s (2015) method, where phenol-
ogy data, latitude, longitude, elevation, and climatic var-
iables and a number of cumulative daily climate vari-
ables were ordinated in fewer dimensions. Briefly, di-
mensionality reduction was implemented with tsne pack-
age (van der Maaten and Hinton 2008; Donaldson 2012)
for the R programming environment (R Development
Core Team 2018). The ordination was conducted by op-
timizing the Bayesian information criterion (BIC) within
the mclust package in R (Fraley et al. 2012). Outliers
were removed based on the Euclidean distance in re-
duced dimensions of each observation from the center
of its respective cluster (Fig. 2d).

Fig. 1 Observations made by citizen scientists for the Alberta PlantWatch
program from 1987 to 2016. The size of the circles represents the number
of observations from a single location over this time period
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Evaluation of data cleaning methods

The degree of improvement in data cleaning provided by the
five cleaning methods was quantified by Moran’s I (Moran
1950) implemented using the ape package (Paradis et al.
2004) for the R programming environment. Moran’s I ranges
from − 1 to 1, where 0 indicates no spatial autocorrelations,
positive values indicate positive spatial autocorrelation (i.e.,
nearby observations are similar), and negative values indicate
negative spatial autocorrelation (nearby observations show
stronger differences than expected by random chance).
Moran’s I statistics were calculated for data subsets by year,
species, and phase and then averaged. In order to test if im-
provements in Moran’s I values among the data cleaning
methods differed among species or bloom phases, we tested
for interaction effects among the model effects “method and
species” and “method and bloom phase” with a linear mixed
model. The effects year, species, and phase were specified as
fixed effects, and year was specified as a random effect. The
model was implemented by the asreml package (Butler et al.
2009) for the R programming environment (R Development
Core Team 2018).

In addition to the effect of different cleaning methods on
spatial autocorrelations, the effects of the data cleaning ap-
proaches were assessed by comparing regional means of the
resulting time series, and through comparing maps of obser-
vations that were removed by different methods. Regional
means by year were estimated with a linear mixed model
using the best linear unbiased prediction function of the
asreml package (Butler et al. 2009) for the R programming
environment (R Development Core Team 2018). In this mod-
el, the bloom phase was set as the predictor, and year, species,
and natural subregion were random effects. As a final visual
evaluation of the five data cleaning methods, detected outliers
were mapped and examined for similarities and differences
across outlier detection methods.

Results

All data cleaning methods resulted an increase in Moran’s I
when compared with the full datasets prior to data cleaning
(Fig. 3). The two methods with the greatest increase in
Moran’s I value were method 1 (standardized difference)
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Fig. 2 Visualization of how
outlier detection methods work in
principle, with the 5% of data that
received the highest scores as
potentially being an outlier
highlighted in red, and the 95% of
data remaining indicated in blue.
a Method 1 – standardized dif-
ference. b Methods 2 and 3 –
linear model residuals. cMethod
4 – observer correlations. d
Method 5 – dimensionality
reduction and clustering
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and method 5 (dimensionality reduction and clustering). They
were followed by method 2 (linear model with geographic
predictor variables), method 3 (linear model with natural re-
gions), and method 4 (observer correlations). The degree of
improvement in Moran’s I varied among species and bloom
phases, as indicated by error bars in Fig. 3.

A statistical analysis did not yield significant main effects
or significant interactions for Moran’s I values between the
five data cleaning methods and species and bloom phases at
an α-level of 0.05, indicating that there is no strong evidence
that a particular method is working better overall, or that any
method is preferable for a specific bloom phase or species
subset. Our sample size is small (four species and three bloom
phases) relative to the variability in how the methods affect
different species and their bloom phases. Nevertheless, we can
state that a difference as large or larger than the observed
differences between the control and the two best methods
(Fig. 3) would only be expected due to random chance with
a probability of 0.11 (method 1, standardized difference) and
0.12 (dimensionality reduction) if the statistical null hypothe-
sis was true.

Regional mean dates showed relatively small shifts in
mean dates after the five data cleaning methods have been
applied. Ninety-five percent of all mean date estimates for
species-region-year combinations shift by 1.1–4.4 days, de-
pending on the cleaning method (Table 1). The largest chang-
es in mean phenology dates (both the 95th percentiles as well
as maximum and minimum changes) occurred after two linear
models method 2 (linear model with geographic predictor var-
iables) and method 3 (linear model with natural regions) were

applied (Table 1). However, with the linear models, the stan-
dard error of the phenological occurrences within natural sub-
regions was most effectively reduced, while the other methods
resulted in increases of standard errors of the estimates within
natural subregions.

Records that were removedwith each data cleaningmethod
were mapped for evaluating differences in spatial patterns of
observations that were removed (Fig. 4). The degree of cer-
tainty of outlier detection is represented by the size of the
circles in Fig. 4. According to the data cleaning method, the
metric to scale the circles was the standardized difference, the
magnitude of the residuals, the inverse of the correlation to the
time series mean, or the linear distance to a cluster mean.
While all data cleaning methods removed records in high-
density areas (in the south-central region of Alberta), the in-
fluence of data cleaning methods varied in low-density areas,
in particular the northeast and southeast portions of the prov-
ince. Method 1 (standardized difference) and method 4 (ob-
server correlation) appear to remove more records in high-
density observation areas in south-central Alberta, and retain
records in low sample density areas in both the north and the
western mountains when compared with any of the other
cleaning methods. Method 5 (dimensionality reduction and
clustering) appeared to remove more records in the northeast
portion of the province. Methods 2 and 3 (linear models) and 4
(observer correlation) did not appear to preferentially remove
records in high or low-density sample areas.

Discussion

True validation of citizen science data is usually not possible,
unless experts carry out spot checks at the time when data is
collected and recorded by volunteers (e.g., Foster-Smith and
Evans 2003; Feldman et al. 2018). Generally, citizen science
data compares well with professional data given appropriate
training, spot checks, and statistical analysis to detect anoma-
lies and outliers (Danielsen et al. 2014; Kosmala et al. 2016).
Our study conforms to these assessments, given the relatively
small changes to mean observed versus predicted phenologi-
cal occurrence dates.

While the removal of an individual outlying observation
can yield a large change to a particular mean for a species-
region-year combination (Table 1), large corrections are quite
rare, and 95% of corrections due to data cleaning are small in
magnitude (Table 1). This result is similar to observations by
Mehdipoor et al. (2015), who worked with a comparable phe-
nology dataset. In their analysis, 97% of the observations were
flagged as consistent, indicating that volunteers generally pro-
vided reliable information. Yet, if sample sizes for particular
species-region-year combination are small, data cleaning can
yield substantial corrections, as observed here and also by
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Fig. 3 Effectiveness of data cleaning methods as measured by Moran’s I
statistic (± SE) before and after data cleaning. N = 240 groups of datasets
per cleaning method (4 species × 2 phases × 30 years). A total of 5% of
the records were removed during data cleaning for each data cleaning
method. The “full dataset” represents the Moran’s I statistic for the
original records prior to data cleaning
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Mehdipoor et al. (2015), where the apparent rate of change of
bloom dates was corrected by up to 2 days per decade.

After the citizen science observations have been recorded
and the data has been digitized, the only indications of prob-
lematic data entries are inconsistencies with nearby observa-
tions. Some unusual records may actually be accurate,
resulting from local climate anomalies that occur in some
years, variation in microclimate, or natural genetic variation
in the date of flowering among plants. The goal of data
cleaning is to remove observations that would exceed this

natural statistical variability. Potential sources of inconsis-
tencies in the Alberta PlantWatch dataset may be incorrect
identification of plants, incorrect assessment of bloom phases,
and data entry and transcription errors, either at the time of
observation or at the time of database entry, and other factors
(Beaubien and Johnson 1994). The frequency of such errors
may vary with volunteer training and experience of the ob-
servers. The dataset has also strong spatial biases with many
more observations near denser human habitation in the south-
central part of the province. This is not an error per se, but

Method 1:
Standardized
difference

Method 2
Linear model

Method 3:
Linear model
by natural
subregion

Method 4:
Observer
correlation

Method 5
Dimensionality
reduction and
clustering

Removed Records by
Data Cleaning Method

¯
0 240 480120

Kilometers

Size of Circle Represents
Relative strength of
record removal

Low
High

Fig. 4 Spatial locations of
removed records for assessed data
cleaning methods. The size of the
circle represents the confidence
that the removed observation is an
outlier. For method 1, circle size is
the standardized difference. For
methods 2 and 3, the size of the
circle represents the magnitude of
the residuals. For method 4, the
size of the circle represents the
inverse of the correlation to the
time series mean, and for method
5, the size indicates the distance to
the nearest cluster mean

Table 1 Change in predicted date for phenological occurrence date for natural subregions after data cleaning compared with the original predicted date
for phenological occurrence

Method Maximum change (days)1 95th percentile of magnitude
of change (days)2

Change in standard error
of the estimate compared
with control (days)Earliest Latest

Method 1 (standardized difference) − 6.6 4.7 ± 1.5 0.29

Method 2 (linear model) − 13.1 15.2 ± 4.4 − 0.92
Method 3 (linear model by natural subregion) − 13.0 14.7 ± 4.0 − 0.84
Method 4 (observer correlation) − 4.3 5.9 ± 1.1 0.16

Method 5 (dimensionality reduction and clustering) − 6.2 6.7 ± 2.0 0.16

1Maximum change represents the largest changes observed in predicted phenological occurrence date. Best linear unbiased prediction was used to
predict the phenological occurrence date in each natural subregion using the asreml package in R (Butler et al. 2009). Phase was the predictor, and year,
species, and natural subregion were random effects
2 Difference in days to the mean, estimated using two standard deviations of the differences between the original and post-cleaning occurrence date
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uneven sampling patterns may still have an effect on how data
cleaning methods perform.

Three of the five methods are expected to be unaffected by
spatial sampling bias, because they make use of the natural
subregion classification system, which captures sampling den-
sity well. For example, the Central Parkland natural subregion
is a prime agricultural area, where many towns and conse-
quently a high observer density can be found (Fig. 1).
Method 1 (standardized difference) and method 4 (observer
correlation) made the most direct use of this spatial variable
through calculating outlier statistics by natural subregions,
before removal of the 5% with the highest outlier scores from
the total dataset. In method 3 (linear model 2), one of the
model terms was natural subregions.

As a result, all of these methods removed records preferen-
tially within natural subregions with many observations, i.e.,
proportionate to sampling density especially methods 1 and 4
(Fig. 4). Although method 3 (linear model 2) included natural
subregion as model effect, the parameterization of any linear
model is still driven by the most common type of data as the
algorithm tries to minimize the overall unexplained residual
variance across the entire dataset. As a consequence, residual
errors of data from sparsely sampled regions are allowed to be
larger, and are more likely flagged as outliers.

This is particularly prevalent for method 2 (linear model 1),
which does not include natural subregions as a predictor var-
iable. Here, sparsely sampled regions (the Rocky Mountain
ecosystems in the southwest and less populated boreal forest
areas in the northwest) lose the most records through outlier
detection (Fig. 4). These observations are often removed with
high confidence (e.g., Fig. 4, large circles for methods 2 and 3
in the Rocky Mountains), but they are not at all flagged by
other methods. As a consequence, the residual-based methods
2 and 3 also have the largest effects on regional time series
estimates as they remove data points where coverage is al-
ready sparse (Table 1). Overall, we consider this attribute of
excessive outlier removal in sparsely sampled areas as unde-
sirable. It removes potentially valuable data because it does
not fit a model that tries to minimize overall variance. Most
notably, this also does not improve Moran’s I statistics for the
overall dataset. As they are spatially remote, the Moran’s I-
based method evaluation correctly allows these observations
to be different (Fig. 3).

Our statistical analysis is restricted by a small sample size of
only four species that leads to non-significant results. In other
word, the variability in how the methods affect different species
and their bloom phases is too large, and a species sample size of
four is too small to draw general inferences on how the data
cleaning methods would work for other species with high con-
fidence. With that caveat in mind, we describe the effects of
data cleaning on this database: The method that improved
Moran’s I the most was method 5 (dimensionality reduction
and clustering), which is conceptually the most complicated

technique, relying on multivariate clustering and dimensionali-
ty reduction of a large number of environmental descriptors to
provide context to evaluate the consistency phenology obser-
vations. This method results in intermediate behavior, with rel-
atively small impacts on regional time series means (Table 1),
yet the spatial removal is not focused exclusively on high-
density observation areas.

Outliers can generally be classified as point outliers, contex-
tual outliers, or collective outliers (e.g., Aggarwal 2013). The
methods that we evaluated have different sensitivities to these
outlier types. All of our methods both identify point outliers and
use contextual variables. However, the techniques differ in what
they use for context. An effective context variable has been the
ecoregion delineation used by methods 1 and 3. As an alterna-
tive, a high dimensional multivariate approach to provide con-
text proved equally effective (method 5). The only approach that
specifically looks for collective outliers—a set of observations
from an individual observer—is method 4. Because the latter
uses a qualitatively different outlier detection approach, it may
be used in complement to one of the other methods.

The removal of inconsistent observers (method 4) also aligns
with recommendations by Feldman et al. (2018), based on the
observation that trained citizen scientists produced the most
precise data. The detection of inconsistent observers is further
a means to identify where additional training may be required.
We want to emphasize that the use of models to detect incon-
sistent records should not replace appropriate training, as well
as spot checks by trained professionals to assess the overall
quality of citizen science data. Nevertheless, model-based data
cleaning methods have been widely applied to professional
databases, including biodiversity data (e.g., Mathew et al.
2014), genetic data (e.g., Gajer et al. 2004), and ecological
databases (e.g., Gueta and Carmel 2016). Similarly, they can
and should be used to improve citizen science data.

Conclusions

In summary, bothmethods 1 and 5 emerged as the best options
for outlier removal in citizen science datasets that exhibit spa-
tial sampling biases. It should be noted, however, that the
dimensionality reduction (method 5) had very high computa-
tional time requirements and is quite complex to execute with
several parameter options that need to be optimized. In con-
trast, method 1 (standardized difference) was computationally
and conceptually the simplest approach that could even be
carried out with simple spreadsheet-based software. In con-
clusion, calculating standardized differences for regional data
subsets emerges as a simple and effective method to improve
reliability of citizen science phenology observations.
However, method 1 does require a delineation of ecoregions
that also captures differences in sampling density. If such a
delineation is not available, method 5 is the best alternative
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option. Finally, we should note that while method 4 (observer
correlation) had the weakest performance overall, the ap-
proach is still conceptually sound. Although unable to detect
most errors, the method is unlikely to produce false positives
in longer time series. Method 4 could therefore be used to
remove unreliable observers before applying methods 1 or 5.
Lastly, we note that this evaluation of data cleaning methods
should be applicable to any large dataset with similar attri-
butes, including datasets compiled by professionally trained
research staff.
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