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Abstract
Maps of interpolated climate normals have recently become essential tools for many types of forestry research, such as

studying genetic adaptation of trees to local environments, modeling species ranges shifts, or forest productivity under climate

change scenarios. In this paper, we evaluate two widely used climate models for British Columbia with respect to their general

precision and regional bias. We discuss limitations due to the resolution of the current ‘‘state of the art’’ PRISM climate model

and provide new methodology for ‘‘intelligent’’ up-sampling of the PRISM model for studies that require spatially explicit

climate data. In order to stress the importance of choosing an adequate climate model and understanding its limitations, we

provide two examples where baseline climate models caused misleading predictions of how the climate envelope of ecosystems

shifts as a consequence of increased temperature, and how tree growth may respond to climate change.
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Keywords: Climate normals; PRISM model; Ecosystem
1. Introduction

Maps of interpolated climate normals have become

essential tools for many types of forestry research in

recent years. Climate normals are calculated from

weather station data and are defined as the arithmetic

mean of weather measurements over three consecutive

decades (WMO, 1989). They represent long-term

baseline information for various modeling purposes
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and have recently been used for ecosystem mapping

(Gould et al., 2002; Host et al., 1996; Masson et al.,

2003; Simpson et al., 2002), modeling of potential

habitat of tree species and species ranges shifts under

climate change scenarios (Dirnbock et al., 2003; Eeley

et al., 1999; Iverson and Prasad, 1998), assessing

forest productivity under current and potential future

climates (Lindner et al., 2002; McKenney and Pedlar,

2003; Rehfeldt et al., 2001) identifying sample

locations for in situ and ex situ conservation efforts

(Greene et al., 1999; Guarino et al., 2001; Jones et al.,

1997; Segura et al., 2003) assessing the risk of

establishment of invasive species (Welk et al., 2002)
.
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investigating adaptation of forest trees to local

climatic conditions (Rehfeldt, 1995; Rehfeldt et al.,

2002, 1999), and matching tree planting stock to their

optimal environment (McKenney et al., 1999; Parker

and vanNiejenhuis, 1996).

Until relatively recently many researchers used

climate normal information from nearby weather

stations for their area of interest or relied on hand

drawn climate maps (Custer et al., 1996; Sykes and

Prentice, 1995; Talkkari and Hypen, 1996). However,

a variety of statistical and other methods are now

available to obtain spatially explicit climate data in

digital format. Multiple regression has been used to

predict climate for a given latitude, longitude and

elevation (Goodale et al., 1998; Rehfeldt, 1995;

Rehfeldt et al., 2001). More complicated climate

surfaces were obtained with simple interpolation

techniques (Brown and Comrie, 2002; Nalder and

Wein, 1998; Price et al., 2000). Kriging, an optimal

interpolation technique for certain types of data, seems

to works well although climate data usually violates

certain assumptions of this method (Agnew and

Palutikof, 2000; Brown and Comrie, 2002; Nalder and

Wein, 1998). Also, spline interpolation, which is

similar to kriging, appears to be a suitable alternative

in many cases (Fleming et al., 2000; McKenney et al.,

2001; Price et al., 2000).

An advanced alternative is commercially available

gridded climate data for the United States and Canada

(Daly et al., 2000). These datasets are generated by an

expert method called PRISM (parameter-elevation

regressions on independent slopes model). Like all

interpolation techniques, PRISM calculates the value of

a target grid cell by assigning a combined weight to

each weather station observation, which is a function of

distance from the target, elevation difference to the

target, and other factors. However, PRISM also uses

‘‘facets’’ to identify local climate regimes delineated by

topographic and other terrain features (Daly et al.,

2002). For example, rain shadows can be identified

through leeward exposures of mountain ranges. Sta-

tions on the same facet as the target grid cell are given

highest weight in the interpolation. The authors call this

method ‘‘knowledge based’’ because it allows clima-

tologists to define ‘‘facets’’ to accommodate known

climatic anomalies in difficult mapping situations.

In order to make PRISM data available to other

researchers, grids of climate variables that are
compatible with geographical information systems

are generated. These are commercially available at

1.25 arcmin resolution, and some data is provided free

of charge on the Internet at a 2.5 arcmin resolution. In

British Columbia, there has been some reluctance to

use this gridded data because of its low resolution in

mountainous terrain. A 2.5 arcmin tile corresponds to

an area of approximately 4.6 km � 3.0 km in southern

BC, which can easily span an elevation range of

1000 m or more. For studies that investigate adapta-

tion of trees to climates over elevational gradients of a

few 100 m, this data appears to be unusable, and it has

been argued that climate data at about 50 m � 50 m

grid size would be necessary. Province-wide datasets

at this resolution would, however, be excessively large

(380 million tiles) and it has been suggested that

simple regression equations derived by Rehfeldt et al.

(1999) will be more suitable than PRISM data for

mountainous regions in British Columbia.

In this paper we compare one of the simplest climate

models with PRISM methodology and explore both

model’s limitations by calculating regional bias, error

of the estimate, and the amount of variance they explain

in original weather station data. Further, we provide two

solutions for using PRISM data in mountainous terrain:

(1) by using a PRISM derived equation based on

latitude, longitude and elevation (2) by using an

elevation adjustment for PRISM data based on the

difference between the PRISM tile elevation and the

observed elevation. In order to stress the importance of

using good spatial climate data, we provide two

examples of common climate change impact studies,

where inadequate climate models caused misleading

results. The first example is a bioclimate envelope

study, where insufficient resolution of climate data in

mountainous terrain leads to over-estimates of climate

change impacts. The second case study provides a

rather counter-intuitive example of how inadequate

climate models caused misleading results regarding

adaptation of a tree species to local climatic conditions.
2. Methods

2.1. Climatic data and variables

We used PRISM datasets at 1.25 and 2.5 arcmin

resolution including average monthly temperatures,
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average minimum and average maximum monthly

temperatures, and monthly precipitation data. For this

study we selected eight biologically relevant variables

that Rehfeldt et al. (1999) previously used, and that

could also be calculated from PRISM data: mean

annual temperature (MAT), mean warmest month

temperature (MWMT), mean coldest month tempera-

ture (MCMT), mean annual precipitation (MAP) and

mean summer precipitation (MSP). Three additional

variables describing aridity and continentality are

derived: summer heat:moisture index (SH:M) was

calculated as mean temperature of the warmest month

divided by summer precipitation in units of meters.

Annual heat:moisture index (AH:M) was calculated as

mean annual temperature plus 10 8C (to obtain

positive values) divided by mean annual precipitation

in meters. Continentality or temperature difference

(TD) was calculated by subtracting the mean

temperature of the coldest month from the mean

temperature of the warmest month. Note that MAT,

MCMT and MWMT are based on the average monthly

maximum and minimum values of the PRISM dataset.

Mean summer precipitation was calculated as the sum

of monthly precipitation from May to September.

2.2. Elevation adjustment for PRISM data

PRISM provides predictions of climate variables

for the average elevation of a 1.25 or 2.5 arcmin tile

derived from 30 arcsec elevation data (LPDAAC,

2003). If there is a considerable difference between the

average tile elevation and the location of interest (e.g.,

a sampling location or a test site), PRISM data will not

give a good estimate of temperature variables for this

particular location. We used the same regression

approach as Rehfeldt et al. (1999) to estimate climate

variables as a function of latitude, longitude and

elevation except using PRISM climate data as

independent observations instead of weather station

data (of course these approximately 80,000 inter-

polated observations are not independent). Then, we

took the first derivative of this equation to obtain the

rate of change in a temperature variable in response to

a change in elevation for any given latitude, longitude

and elevation. This formula was then re-arranged to

obtain an adjustment for a temperature variable as a

function of the difference between the observed

elevation and the PRISM tile elevation.
2.3. Testing models and adjustments with weather

station data

Climate normals for the period 1961–1990 from

440 weather stations in British Columbia (Environ-

ment Canada 1994) were used to investigate how well

models with and without elevation adjustment predict

actually observed climate. While no statistical

methodology exists to obtain an error estimate of

predicted climate variables for regions of British

Columbia that are not covered by weather stations, we

attempted an ‘‘educated guess’’ how large the error of

predictions might be by investigating the difference

between actual and predicted climate at weather

stations summarized for different climate regions. For

this purpose, we used the biogeoclimatic ecological

classification (BEC) system, which delineates the

extent of different forest ecosystems in British

Columbia (Meidinger and Pojar, 1991). The classifica-

tion system is thought to delineate relatively homo-

geneous climatic conditions at the sub-zone level.

2.4. Example 1: Climate envelope modeling

Bioclimate envelope studies are a popular method

to assess climate change impacts. Usually, biological

sample data is used to generate a predictive model for

a species distribution based on climate variables

(Thuiller, 2003). Alternatively, mapped species ranges

or ecosystems can be characterized with respect to

their climatic envelope using geographical informa-

tion systems (GIS). Here, we compare the climate

envelopes of British Columbia’s ecosystems using a

spatial coverage of the biogeoclimatic ecological

classification system rasterized at 1.25 arcmin as well

as 400 m resolution according to the zone found at the

tile center. The low resolution (1.25 arcmin) coverage

is characterized with original PRISM data at matching

resolution, and for the high resolution (400 m) model

we use elevation adjusted PRISM data employing the

methodology described above. Then, standard dis-

criminant analysis (SAS Institute and Inc., 2000) was

used as a predictive model, where observations (tiles

with eight climate variables) are assigned to groups

(BEC zones) based on the Mahalanobis distance

between an observation and the mean vector of the

closest group (which may not necessarily be the

original BEC zone).
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Fig. 1. Count of weather stations in sub-zones of the biogeoclimatic

ecological classification system of British Columbia, representing

climatically relatively homogeneous regions.
2.5. Example 2: Productivity of lodgepole pine

As a second example of how different climate

models might affect research results, we investigated

productivity of lodgepole pine seed sources from one

of the commercially most important seed planning

zones, Prince George—low elevation. These seed

sources are the most comprehensively tested group of

provenances in the lodgepole pine genotype–environ-

ment interaction study of Illingworth (1978). We used

20-year height data of trees grown at 32 test

environments and regress them over model derived

climatic normals for these test sites using a second-

degree polynomial function. The resulting response

function of growth variables to environmental vari-

ables is commonly used to find the optimal planting

environment for a genotype or seed source or to

predict the impact of climate change on productivity

of forest plantations. This example was based on the

same data and methodology as (Rehfeldt et al., 2001,

1999) to which the reader should refer for more

experimental detail and complete data analysis.
Table 1

Average deviation and maximum deviation (in parethesis) of pre-

dicted climate variables from observed weather station data (as in

Fig. 2)

Climate

variable

Rehfeldt

equations

PRISM

data

Elevation

adjusted

MAT (8C) 0.5 (2.7) 0.8 (4.0) 0.6 (3.5)

MWMT (8C) 0.8 (5.9) 1.1 (13.9) 0.8 (6.9)

MCMT (8C) 1.1 (7.5) 1.3 (10.2) 1.2 (7.6)

TD (8C) 1.4 (8.4) 1.6 (10.9) 1.2 (7.8)

MAP (mm) 403 (1927) 99 (945) n/a

MSP (mm) 87 (653) 38 (321) n/a

AH:M 8 (68) 3 (28) 2 (26)

SH:M 23 (179) 11 (84) 9 (77)
3. Results and discussion

3.1. Expected error or bias of climate models

When a count of weather stations is mapped for

each of 96 sub-zones of the biogeoclimatic ecological

classification system, it becomes apparent that a large

portion of the land base is not adequately covered

(Fig. 1). Almost, two-third of the total area is

represented by less than three stations per BEC sub-

zone. Most of the 440 available stations are located on

the coast and in the interior valleys. An unbalanced

distribution of sample points can be problematic. For

example, an equation based on 30 sample points for

region A and three sample points for region B may

lead to a considerable bias when predicting values for

region B. For a portion of the land base (high elevation

and northern regions) spatial climate models even

predict variables completely outside their sampling

range, where errors of the estimate cannot be

calculated.

As an indicator of the overall error and regional

bias of models, we investigate the absolute difference

between predicted and observed climate at weather
stations (Table 1). These deviations are then regressed

over regional weather station coverage (Fig. 2). The

intersection with the y-axis indicates an approximate

error for regions that are not covered by weather

stations, and the slope of the regression indicates how

much the model’s precision depends on good weather

station coverage. We find that for temperature related

variables and Rehfeldt’s equations perform surpris-

ingly well. The average and maximum errors are

smaller (Table 1) and the slope of the regression line is

always closer to zero (Fig. 2) indicating more precise

predictions for areas with sparse weather station
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Fig. 2. Deviation of predicted MAT from observed values at weather stations (see also Table 1). Deviations are regressed as a function of regional

weather station coverage. The intersection with the y-axis is used to derive an ‘‘educated guess’’ for the magnitude of errors for regions not

covered by weather stations (as shown in Fig. 3).

1 A program performing these calculations can be obtained at:

http://www.genetics.forestry.ubc.ca/cfgc/climate-models.html.
coverage. The PRISM model, however, outperforms

Rehfeldt’s equations for precipitation related variables

by a large margin.

In order to investigate if a portion of these

deviations is actually spatial bias we displayed them

on a map (Fig. 3). A random error should show a

random pattern of over- and under-estimates, while

bias could be detected by geographic patterns in the

values for the 96 sub-zones. It appears that Rehfeldt

equations provide unbiased temperature estimates for

most of the province (Fig. 3a) whereas the PRISM

model under-estimates temperature at lower eleva-

tions in montane regions (Fig. 3b). This, and

presumably an over-estimate of temperatures at high

elevations, is due to the tile size of PRISM data, which

fails to accurately represent mountainous terrain.

PRISM also somewhat over-estimates precipitation at

higher elevation (Fig. 3d) but performs better than the

Rehfeldt model, which severely under-estimates

precipitation at high elevations and on the coast,

while over-estimating it in the interior plateau of

British Columbia (Fig. 3c).

3.2. Elevation adjustment and explained variance

In order to eliminate regional bias in PRISM

predictions that arises from tile size as shown above,

we developed formulas from original PRISM data to

adjust temperature predictions for specific locations

with known elevation. The independent variables

latitude (Lat), longitude (Long) and elevation (Elev)

and their various combinations were retained in the
model if they contributed at least 1% to the variance

explained. It should be noted that there is no danger in

retaining too many variables because the objective is

to obtain a close match to a continuous surface of

samples that are not independent. The equations and

their first derivatives are given below, where dElev is the

actual elevation minus the PRISM tile elevation in

meters, and latitude and longitude are entered as

positive values in decimal degrees.1

MAT ¼ 49:216 þ 5:59 � 10�4 � Lat � Elev

� 0:958 � Lat � 0:0183 � Elev þ 4:19

� 10�6 � Long3 � 2:29 � 10�6 � Lat

� Long � Elev (1)

MWMT ¼ 78:3 � 0:691 � Long � 0:0121
� Elev þ 2:946 � 10�11 � ðLat

� LongÞ3 þ 6:661 � 10�5 � Long

� Elev þ 357 � Long � Lat�2 (2)

MCMT ¼ �264:32 þ 0:0515 � Elev þ 6:584
� Lat þ 2:254 � Long � 0:072

� Lat � Long � 0:0233 � Lat�1

� Long � Elev þ 5:444 � 10�5

� Long3 (3)

http://lpdaac.usgs.gov/main.html
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Fig. 3. Over- and under-estimates of mean annual temperature (MAT) and mean annual precipitation (MAP) for BEC sub-zones. White areas are

unbiased. Grey areas lack weather stations and an estimated bias derived from Fig. 2 is indicated instead.
dMAT ¼ dElev � ð�0:0183 þ 5:59 � 10�4 � Lat
Table 2

Variance explained by climate models and adjustments in weather

station data
� 2:29 � 10�6 � Lat � LongÞ (4)

dMWMT ¼ dElev � ð�0:0121 þ 6:661 � 10�5
Climate

variable

Rehfeldt

equations

PRISM

equations

PRISM

data

Elevation

adjusted

MAT (8C) 0.96 0.92 0.88 0.95
� LongÞ (5)

d ¼ d � ð0:0515 � 0:02325 � Lat�1

MWMT (8C) 0.81 0.64 0.71 0.86

MCMT (8C) 0.95 0.89 0.93 0.95

TD (8C) 0.91 0.86 0.95 0.95

MAP (mm) 0.59 n/a 0.94 n/a

MSP (mm) 0.42 n/a 0.87 n/a

AH:M 0.34 0.93 0.93 0.93

SH:M 0.36 0.87 0.90 0.91
MCMT Elev

� LongÞ (6)

The first three formulas may be used as an alternative

to Rehfeld’s equations, although they are not opti-

mized to explain the maximum variance in weather

station data (Table 2). Eqs. (4)–(6) should be used to
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Fig. 4. Models of mean annual temperature for a 50 km � 50 km tile of the Vancouver area based on polynomial equations (a), 2.5 arcmin

PRISM data (b), and PRISM data adjusted for elevation (c).
adjust PRISM climate data for a sample point when its

elevation is known. The same formulas may be used to

perform ‘‘intelligent’’ up-sampling of PRISM data

using a high resolution digital elevation model

(DEM). An illustration of regional up-sampling is

given in Fig. 4. The left panel applies the mean annual

temperature equation to a digital elevation model with

a grid size of 400 m. The middle section depicts the

original 2.5 arcmin PRISM data, and the right panel

shows the PRISM data after elevation adjustment. The

elevation adjusted surface (c) is not as smooth as the

equation derived surface (a) and sometimes the bound-

ary of tiles can still be seen. This cannot be avoided

because there is no simple mathematical relationship

how temperature changes from one tile to the next as a

function of their difference in elevation. On the other

hand, the equation-derived surface generally under-

estimates the temperature by 0.4 8C for this particular

region compared to PRISM (temperature predicted by

Rehfeld’s equations is on average 0.9 8C lower for this

region than PRISM data). Unless the study area is very

small and the absolute value is not important, we

recommend using the elevation adjustments

Eqs. (4)–(6) rather than the Eqs. (1)–(3).

3.3. Variance explained in weather station data

All models explained temperature related variables

observed at weather stations rather well, but PRISM

was clearly superior to Rehfeld’s equations in

explaining precipitation related variables (Table 2).

Surprisingly, the four times higher resolution 1.25 arc-

min PRISM dataset resulted in r2-values identical to

those of the 2.5 arcmin PRISM model (data not
shown). After careful investigation of the 1.25 arcmin

PRISM dataset it appears that this is an interpolated

version of the 2.5 arcmin dataset, thus providing no

additional information. The temperature adjustment

using for the PRISM model had a noticeable effect on

the explained variance in mean annual temperature

and mean warmest month temperatures (last column

in Tables 1 and 2, last panel in Fig. 2). Furthermore,

bias for montane regions observed in Fig. 3 is removed

(maps not shown). One should note that the

importance of the elevation adjustment is not well

reflected in the amount of variance explained because

weather stations are not typically located on steep

slopes but in areas where PRISM tile elevation

matches actual elevation well (for example, airports

and cities). Furthermore, one should keep in mind that

this is not an independent test since the same weather

station data has been used to develop each model.

Note that various attempts using regional models

covering partial areas or various groups of ecosystems

in British Columbia did not significantly change or

improve elevation adjustment formulas as indicated by

r2-values in Table 2. This suggests that the polynomial

models can be developed for relatively large regions.

Further, we did not find elevation adjustment models

that resulted in significant improvements of PRISM

precipitation variables for selected regions, ecosys-

tems, or full models for British Columbia.

3.4. Example 1: Climate envelope modeling

The climate envelope of ecosystems or species

ranges can be described by simple summary statistics

of the climate observations they include. For example,



A. Hamann, T.L. Wang / Agricultural and Forest Meteorology 128 (2005) 211–221218

Fig. 5. Ecological zones for a 50 km � 50 km tile of the coast mountains of British Columbia (IDF, interior Douglas-Fir; ESSF, Engelmann

Spruce—Subalpine Fir; AT, Alpine Tundra). Mapped zones (a), modeled zones based on 1.25 arcmin PRISM climate data (b), and based on

PRISM data adjusted for elevation at 400 m resolution (c).
the interior Douglas-Fir ecosystem, usually located in

valleys (Fig. 5a, IDF), has a range of mean annual

temperature from 2.7 to 6.9 8C based on original

PRISM data, but has a climate envelope of 2.6–8.1 8C
using high resolution elevation adjusted data. The

corresponding climate envelope for Alpine Tundra

ecosystems, covering mountaintops (Fig. 5a, AT) is

�3.3 to 1.3 8C before, and �5.3 to 1.2 8C after

adjustment. For the mid-slope ecosystem Engelmann

Spruce—Subalpine Fir (Fig. 5a, ESSF) the envelope

changes from an original �2.2 to 3.1 8C to �2.9 to

3.8 8C after adjustment.

Because PRISM climate variables are based on a

considerably smoothed elevation surface, the derived

climatic envelopes for ecosystems appear narrower,

especially for mountaintop and valley ecosystems. As

a consequence, the impact of climate change would

generally be over-estimated with insufficient resolu-

tion. Using original PRISM data, a predicted increase

of 2 8C MAT would imply that 48, 41, and 44% of the

future IDF, ESSF, and AT climate envelope would no

longer overlap with the current envelope (e.g., IDF:

2 8C � (6.9 � 2.7 8C)�1 � 100 = 48%). With the

high-resolution model and elevation adjustment, the

estimated shift would only be 36, 30, and 32% for IDF,

ESSF, and AT, respectively.

High- and low-resolution climate data also differs

in their suitability to generate multivariate predictive

models of BEC zones. Using discriminant analysis to

assign observations to BEC zones based on eight

climate variables leads to more misclassification

errors with 1.25 arcmin PRISM data (Fig. 5b) than

with 400 m elevation adjusted data (Fig. 5c). The
obvious reason for the poor model fit using original

PRISM data is insufficient spatial resolution in

mountainous terrain, especially since the commer-

cially available 1.25 arcmin PRISM dataset appears to

be an interpolated version of the 2.5 arcmin dataset for

British Columbia. Tree species ranges in British

Columbia closely follow BEC zone delineations; so

similar problems would arise when trying to model

species ranges directly from sample data. Results from

applying climate change scenarios with this predictive

model will be published separately.

3.5. Example 2: Productivity of lodgepole pine

A comparison of elevation adjusted PRISM data

and polynomial climate models with respect to

modeling productivity of lodgepole pine showed

minimal differences with respect to temperature

related climate variables (Table 3). Both climate

models yield very similar surfaces of temperature

variables for British Columbia. However, we expected

that significantly improved estimates of precipitation

variables of the PRISM model would lead to a better

model fit of response functions that describe height

growth of lodgepole pine as a result of climate

variables at the test site. Surprisingly, the opposite was

the case (Table 3). Rehfeldt et al. (1999, 2001) noted

that polynomial equations predict precipitation poorly,

and we have previously shown that these estimates

have indeed a large error of the estimate and strong

regional bias (Fig. 2; Table 1). Nonetheless, response

functions based on this model show an excellent fit and

such models are used to predict performance of
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Table 3

The amount of variation explained (r2) by a single climate variable

using a second-order polynomial response function to predict 20-

year height (as in Fig. 5)

Climate

variable

Rehfeldt equations Elevation adjusted

r2 P-value r2 P-value

MAT (8C) 0.76 <0.0001 0.74 <0.0001

MWMT (8C) 0.26 0.0003 0.16 0.0101

MCMT (8C) 0.66 <0.0001 0.63 <0.0001

TD (8C) 0.70 <0.0001 0.53 <0.0001

MAP (mm) 0.57 <0.0001 0.21 0.0020

MSP (mm) 0.68 <0.0001 0.12 0.0498

AH:M 0.23 0.0008 0.05 0.2626

SH:M 0.45 <0.0001 0.18 0.0040
populations as a function of climate change. However,

we suspect that these response functions are artifacts

and we use the most pronounced example from

Table 3 MSP to investigate this in more detail (Fig. 6).

First, marginal planting environments where

lodgepole pine grows poorly (the two ends of the

response function) are also environments that have the

least coverage by weather stations and the largest

errors. Given an expected error or bias of 87 mm,

which may sometimes be as high as 653 mm (Table 1),

it is obvious that the high and low estimates of MSP on

the marginal sites could be entirely due to regional

over- and under-estimates of this variable. This creates

a highly significant relationship between growth and

an environmental variable that looks like a typical

response function when there is in fact no relationship
Fig. 6. Response function of height growth for Prince George low elevation

and 95% confidence intervals are given. The arrow indicates the average lo

collected.
at all (this can easily be modeled starting with a

random scatter plot and then applying a larger error to

the climate variable for the low performance test sites

and a smaller error for the test sites with good

performance). When using PRISM climate estimates

to analyze the same data, the relationship is barely

significant because errors and bias in PRISM data for

MSP is only about half as severe (Table 1). This

artifact may be a problem for any study where the

organism under investigation has its optimal habitat

where weather station coverage is best. Also, custom

climate models for a geographically restricted study

site may create this artifact because it is a common

weakness of interpolation and regression methods to

become unreliable near the edges of an area for which

they have been developed.

The second mechanism where a poor climate

model may create a superior model fit relates to the

way some organisms, such as lodgepole pine and other

widespread tree species, adapt to local environments.

Genetic variation of growth and adaptive traits in tree

species is usually the result of adaptation to local

environments and gene flow from surrounding

populations. As a consequence, broad geographic

patterns of genetic variation, or clines, are often found

in tree species that have a continuous distribution over

a large geographic area. Using a global polynomial

approach to predict climate normals usually fails to

account for local climate variation (such as rain

shadows) and only predicts broad geographic patterns

of climate variables that may match clines of genetic
seed sources to mean summer precipitation (MSP). Predicted mean

cal MSP where Prince George low elevation seed sources have been
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variation rather well. The resulting significant

correlation between predicted climate and genetic

variation is obviously due to spatial autocorrelations in

both datasets, which quite easily may result in false

positives (Epperson, 2003).
4. Conclusions

For temperature related variables, Rehfeldt’s

equations explained more variance in weather station

data and had less regional bias than PRISM data. We

developed an elevation adjustment, which resulted in

an equal or larger amount of variance explained in

weather station data than Rehfeldt’s equations and

also removed bias in montane regions. These

equations are also useful for up-sampling of the

PRISM model with a high resolution digital elevation

model for studies that require spatially explicit climate

data. For precipitation related variables, PRISM

clearly proved to be the superior model. Rehfeldt’s

polynomial equations severely under-estimated pre-

cipitation on the coast and at high elevations, while

over-estimating precipitation in the interior plateau.

For modeling studies that attempt to predict

response of organisms to changes in environmental

conditions (such as global warming) we suggest

including a sensitivity analysis of how predictions

change based on the provided error and bias estimates

of climate models. All investigated models typically

over- or under-estimate temperature related variables

by 0.5–1 8C and regional deviations may be as high as

2–4 8C where weather station coverage is poor.

Deviations of predicted mean annual precipitation is

typically 100 mm for the PRISM model and 400 mm

for the Rehfeldt model. We have shown that this

magnitude of error may result in severe artifacts in

studies that investigate adaptation and response of

organisms to climate change. Caution should be used

to interpret results of those studies if sufficiently

accurate baseline climate data is not available.
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