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Abstract

Accurately representing the spatial distributiod aglative abundance of tree species is
fundamental to forest inventory, regeneration piagnand climate-informed management. A
wide range of species distribution models and ap#tdrest inventory products already exist, but
leading inventory-based products are developedmatational boundaries. Because climate-
driven shifts in suitable habitat are not consediby political borders, there is value in
modelling frameworks that integrate forest inveptdata consistently across jurisdictions, while
incorporating climate, topographic, and land-canésrmation at continental extents.

In this study, | develop a deep learning frameworknodel tree species frequencies across North
America by integrating forest inventory and ecotadjiplot data with environmental predictors.
Forest inventory data from the United States, Canadd Mexico were harmonized to produce
proportional species frequency estimates, whiclewpaired with historical climate normals
(1951-1980), derived topographic indices, and grdiséc land-cover predictions generated
using a separate deep neural network trained réyrsdased land-cover data.

To address the zero-inflated nature of speciesiéegy data, a two-stage modelling approach
was implemented, consisting of a presence—absdaesfer followed by a conditional
frequency regression model. Additional preproceassteps, including spatial aggregation of
plots, filtering of observations using bufferedtbrgcal species ranges, and the introduction of
pseudo-plots in non-forested regions, were apptieéchprove computational efficiency and
ecological realism.

Model performance was evaluated using withheldntwey data and spatial comparisons with
historical species range maps for a regionallyrdwasubset of tree species. Results show that
incorporating topographic variables and probaldikind-cover information improves model
performance relative to climate-only formulatioasd produces spatially coherent, ecologically
plausible species frequency patterns across difféogest regions of the continent.

The framework presented here provides a found&tiogenerating consistent, continent-wide
species frequency surfaces that complement exi&inegt inventory products and support
applications in forest inventory, regeneration piag, and future climate-informed analyses.
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1. Introduction

Forests occupy approximately 30% of the Earth’d laurface and play a central role in
supporting terrestrial biodiversity, regulatingnéite, and providing ecosystem services to
human societies. They function as major carbonssfRlan et al. 2011), influence energy and
water exchanges between the land surface and atm@s(Chapin et al. 2008), and underpin
economic and cultural values associated with foyestd land management. As climate
conditions continue to change, the ability to repré where tree species occur, and in what
relative abundance, has become increasingly impioiba forest inventory, regeneration
planning, and climate-informed decision-making (Bo2018; Dar et al. 2022; Esquivel-
Muelbert et al. 2019; Massey et al. 2023).

A wide range of spatial forest inventory products been developed to extend plot-based
measurements across landscapes using statistjgatdation and environmental similarity
approaches. In Canada, the National Forest Invehtas been used to generate continuous maps
of forest attributes, including tree species contgmsand relative abundance, at approximately
250 m resolution by linking ground plots with cliteatopographic, and remotely sensed
predictors using k-nearest neighbor methods (Baawetal. 2014; National Forest Inventory
2024). In the United States, comparable nearegtiber and gradient nearest-neighbor
imputation approaches have been developed usireggHoventory and Analysis (FIA) plots to
produce spatially explicit maps of forest compasitat similar spatial resolutions (Ohmann et al.
2011; Wilson et al. 2012). These products provatrist and widely used representations of
forest compaosition within their respective jurigthas and form an important foundation for

forest monitoring and management.

Because these inventory-based products are devklogependently within national boundaries,
they necessarily represent continental specieshiiibns only in part when species ranges
extend across borders. This reflects differencésvientory design, data availability, and
modelling frameworks across countries, rather thmrtations of the underlying methods.
Complementary to these existing efforts, thereaisi@ in developing a modeling framework that

integrates forest inventory data consistently acjossdictions, while incorporating



environmental predictors known to influence spedistributions. Climate, topography, and land
cover jointly shape where tree species can ocalihaw abundant they are within forested
landscapes (Lee-Yaw et al. 2022). Because clincaticlitions and associated habitat changes
operate across biogeographic space rather tharcpbboundaries, applications such as
regeneration planning, seed transfer, and assisigg@tion under climate change benefit from

continuous, continental-scale representations etispg frequencies.

Machine learning methods have become increasingipment in species distribution modelling
due to their ability to capture nonlinear relatioips and interactions among environmental
predictors (Evans et al. 2011). Among these appresgdeep neural networks offer advantages
for large-scale applications, including scalabitiylarge datasets, flexibility in handling high-
dimensional predictors, and strong predictive pentmnce when sufficient training data are
available (Botella et al. 2018; LeCun et al. 200&avi et al. 2022). Rather than replacing
established modelling approaches, deep learningga® a complementary set of tools that can
be integrated into multi-stage workflows linkingvelenmental data, forest inventories, and

spatial prediction.

In this study, | develop a continental-scale degpriing framework to model tree species
frequencies across North America by integratinggbmventory and ecological plot data with
climate, topographic, and land-cover informatioardst inventory datasets from the United
States, Canada, and Mexico are harmonized to pegghaportional species frequency estimates,
which are paired with historical climate normalsrided topographic indices, and probabilistic
land-cover predictions generated using a sepaesp deural network. A two-stage modelling
approach is employed to address the zero-inflad#agre of species frequency data, separating
the prediction of species occurrence from the pteh of relative abundance where species are
present (Martin et al. 2005; Rozenberg 2010).

1. 1. Objectives

The primary objective of this work is to develofiexible and scalable framework for

generating consistent, continent-wide species #equy surfaces. These outputs are intended to



complement existing inventory-based products apgat applications in forest inventory,

regeneration planning, and future climate-inforraedlyses.

Specifically, this thesis addresses the followibggotives:

1. Harmonize forest inventory and ecological plot dateoss national datasets from the United
States, Canada, and Mexico, and derive consistepbional measures of tree species

frequency suitable for continental-scale modeling.

2. Develop a two-stage deep learning modeling framk\tat separately predicts species
occurrence and relative abundance, addressingtbelated nature of forest inventory

data and enabling spatially explicit frequency magp

3. Evaluate the contribution of climate, topograpmd @robabilistic land-cover predictors to
species frequency modeling, and assess how thesionl of these variables influences
model performance relative to climate-only formidas.

4. Generate and assess continent-wide species fregoeapus for a representative subset of
tree species, evaluating spatial coherence andgical plausibility through comparisons

with withheld inventory data and historical spedi@sge maps.

2. Methods

2.1. Forest inventory and ecological plot data

To develop species distribution models (SDMs) aidsrth America, | compiled a harmonized
dataset of georeferenced forest inventory and gamdbplot data from national and regional
databases spanning the United States, Canada, exidd{Fig. 1). The dataset includes both
permanent and temporary plots with species presamt@bundance information, linked to

standardized geographic coordinates for modelitrgiand evaluation.



For the United States, plot data were obtained fifuar~orest Invento and Analysis (FIA
database managed by the U.S. Forest S¢ (U. S. Forest Service 2023)he FIA prograrn
conducts continuous forest monitoring across atestand provides tr- and plo-level

measurements of species composition, tree heigtitdamete

Fig. 1 Forest inventory plots of U.S and Canada

In Canada, plot data were sourced from several Bmmgntary initiatives. The National Fort
Inventory (NFI), coordinated by Natural Resources&la, provides a systematic, -based
sampling of forest condities across the coun (NRCAN 2021). Additionaprovincia-level
data were obtained from the M-Agency Ground Plot (MAGPIlot) database, which aggtes
forest ground plot data from provincial forestryeagies into a harmonized, Can-wide system
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(National Forest Inventory 2024). MAGPIot includgandardized records of tree species,

diameter, crown attributes, and site conditions.

Additionally, provincial ecological plot databasesre used where available. For Alberta, data
from the Ecological Site Information System (ESM&re included, providing detailed
vegetation and ecological site descriptions witltcget canopy cover projected to the ground for
multiple canopy layers (Alberta Environment & Pagk®1). In British Columbia, plot data
supporting the Biogeoclimatic Ecosystem Classiica{BEC) system were used; these data
similarly record percent canopy cover projectethioground across multiple canopy layers
(Meidinger and Pojar 1991).

For Mexico, plot data were incorporated from theeimtario Nacional Forestal y de Suelos
maintained by the National Forestry Commission (@an Nacional Forestal 2020). This
database includes systematic measurements of tamegtosition, structure, and biomass across
major vegetation zones, compiled over multiple moey cycles. Tree-level measurements

include height and diameter, and all available imiwey cycles were used in this study.

2.2. Predictor variables

2.2.1. Climatic predictors

Climate predictor variables were generated withGhmateNA software package (Wang et al.,
2016), which provides high-resolution climate soefsfor North America based on interpolated
weather station data, digital elevation models, amdronmental lapse rate based downscaling.
Here, we use historical climate normals for theIt9®80 period, representing climate
conditions that largely predates anthropogenicat@mwarming, while still being represented
with a good weather station network to infer highalution climate grids (Fig. 2). A period that
predates major anthropogenic climate warming wase as a baseline to satisfy the
assumption that tree species distributions ar@maximate equilibrium with those climate

conditions.



A total of 16 climate variables representing terapge, precipitation, and moisture bala
were included as predictors. These comprised meamahtemperature (MAT), mean warm
month tenperature (MWMT), mean coldest month temperatur€M), temperature differenc
between MWMT and MCMT (TD), mean annual precipgat(MAP), mean summe
precipitation (MSP), degree days below 0 °C (DRiggree days above 5 °C (DD
precipitation as sno{PAS), extreme minimum temperature over -year period (EMT)
Hargreaves’ climatic moisture deficit (CMD), meamaal relative humidity (RH), annual h—
moisture index (AHM), summer h«moisture index (SHM), and Hogg'’s climate moisturdax
(CMI).

Fig. 2. Mean annual temperature of North America from ClimateNA



Prior to model training, all climate variables wstandardized to a mean of zero and unit
variance so that each predictor entered the madelabmparable scale, allowing the network to
initially treat all variables as having potentiafigjual influence during training. Temperature-
based variables (MAT, MWMT, MCMT, TD, EMT, DDO, DD&H) were standardized without
prior transformation. In contrast, precipitatiomdamoisture-related variables (MAP, MSP, PAS,
CMD, AHM, SHM, CMI) exhibited strong positive skeand were log-transformed prior to
standardization. A generalized log(x + k) transfation was applied, where k is a variable-
specific constant selected to adjust the strenfgtheotransformation and improve approximation
to normality. The value of k was chosen individyddir each variable, with negative values
permitted for stronger transformations provided #ibtransformed values remained within the
domain of the logarithmic function. This approaeduced skewness, stabilized variance, and

improved numerical behavior during neural netwaoakning.

2.2.2. Topographic predictors

Additional predictor variables describing landscapracture were included to improve model
accuracy and better characterize habitat suitablldpographic predictors were derived from the
MERIT digital elevation model, resampled to a 1 &patial resolution to match the target

resolution of the species frequency predictions@imdate predictor grids.

A total of 14 topographic variables were generatechpture terrain position, exposure, and the
influence of major water bodies. These variabletuohed measures of terrain exposure,
weighted by prevailing wind direction (see detadtow) and calculated at multiple spatial
scales (1km, 2km and 4km), hillshade calculateceubdth south-facing solar angle, distance to
lakes weighted by prevailing wind direction with xiraum distances of 100 and 250 km,
distance to ocean weighted by prevailing wind dicgcwith maximum distances 1000 and 2500
km, a Compound Topographic Index (CTI) calculatesicales of 1km, 2km and 4km (Fig. 3),

and the Topographic Position Index (TPI) calculatthe same three spatial scales.

Topographic Position Index (TPI) describes thetnetgposition of a location within the
surrounding terrain, distinguishing ridge tops {pws values), valley bottoms (negative values),
and flat or mid-slope positions (values near zammependent of absolute elevation. The



Compound Topographic Index (CTI), also referredga topographic wetness index, estim
the potential for water accumulation based on ygskontributing areand local slope, an

provides an index of sitievel moisture availability relevant to vegetatjatterns

Fig. 3. Compound Topographic Index with landscape level resolution of North America.



To account for the fact that topographic influenoe<limate and atmospheric processes act
across multiple spatial scales, several topogrgmi@dictors were generated at different
resolutions and spatial extents. These multi-segleesentations allow the modelling framework
to evaluate the relative importance of fine-scaesus broader-scale topographic controls on
species frequency during training. All topograp¥aciables were transformed and scaled prior to
modelling to ensure comparable numerical rangesstatile neural network training, following

the same general preprocessing principles apmietimate predictors.

2.2.3. Land cover probabilities

As additional predictor variables, | incorporatedigbilistic estimates of land cover derived
from a predictive land cover model developed by &of2025, unpublished). These predictors
represent the likelihood of different natural lasaVer types based on climate and topographic
conditions, rather than observed contemporary lesgd This distinction allows species
frequency models to reflect climatically and phgsaphically suitable habitat while drawing on
remotely sensed land cover data with complete gental coverage, thereby providing a
substantially broader spatial foundation than plated observations alone, except in areas
where land cover has been altered by human cooversi

The land cover model was trained using MODIS laowkc classification data, in which land
cover classes served as the dependent variableuitgral and urban classes were excluded
from the training process, but their spatial lomasi were retained as prediction targets. Predictor
variables included a subset of the climate anddogguhic variables described above, capturing
broad-scale climatic gradients as well as terrasitppn, exposure, and proximity to water
bodies. A deep neural network classifier was tihiteepredict the probability of natural land
cover classes for each grid cell, following genenathodological principles described in

previous work (Namiiro et al. 202Bpyce (2025, unpublishg¢d

After training, the land cover model was applietbas the study area using the same set of
predictor variables. For grid cells currently clsd as agriculture or urban, the model predicted

the most probable natural land cover class baseatimmate and topography (Fig. 4).



Fig. 4 MODISremote sensed land cover classes (left) backfilled land cover classifications with

urban and agricultural land removed from training and output (right).

Rather than using a single categorical land cossigament, the resulting class probabili
were retained and used as continuous predictoalas in the trespecies frequency mode
For example, the predicted probability of decidufmusst cover (Fig. 5) was included as

input variable for modelling species associatedhw#ciduou-dominated ecosysten

Incorporating probabilistic land cover predictallows the species frequency model:

condition predictions on the likelihood of forestver under natural conditions, improvi

ecological realism in regions where contemporanyg lase obscures climatic suitability for ti

species. This approach supiscapplications focused on climate suitabilitygdsourcing, an
regeneration planning, where potential habitaf igreater relevance than realized land |

However, because the resulting species frequentgcas represent climatically suitableest

cover rather than current land cover, they mustdmbined with observed remotely sensed |

cover data when used for applications requiringeggntation of prese-day forest extent ¢
land use.
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Fig. 5 Probability of deciduous forest asland cover class across North America

2.3 Forest inventory harmonization and training data preparation

To ensure consistency across heterogeneous fouesttory datasets and to provide an
ecologically meaningful response variable for modgla series of harmonization, scaling, and
data preparation steps were applied prior to mwdeling. These steps define how species
frequency was quantified and address known sowfdeigs and imbalance in large-scale forest
inventory data.

11



2.3.1 Plot data harmonization and definition of species frequency

Species frequency was quantified using proportiomedsures of species dominance derived
from forest inventory plot data. Depending on datailability and measurement protocols of
each source dataset, species dominance was cattakeither the percentage of basal area or
the percentage of crown cover projected to thergtolihis approach allowed the use of multiple
national and regional inventory datasets while ita@iing a consistent response variable suitable
for modelling. When multiple measurements werelatée for a given plot, either from different
canopy layers or from repeated sampling eventgiaspdevel values were pooled and rescaled
so that total tree species frequency summed to MidBin each plot. To further standardize
species frequency estimates across ecosystemgrpoopl basal area or canopy cover values

were scaled using modeled land cover class prababids described above.

Specifically, predicted probabilities of forest thoover types were used to scale tree species
frequencies such that the sum of forest specigsiémcies plus the proportion of non-forested
land equalled 100% of the ecosystem land base.uBecagricultural and urban land cover
classes were excluded from the training of the @ner model and subsequently reclassified to
the most probable natural land cover type, thie@dare yields proportional estimates of forest
tree species frequencies expected under undistedyetitions. The resulting response variable
therefore represents relative species frequendymaimatically and physiographically suitable

forest habitat, rather than realized contemporaing luse.

2.3.2 Plot Aggregation

The modelling dataset initially comprised approxietya800,000 individual forest inventory
plots distributed across North America. To redustptial bias arising from highly uneven
sampling intensity among regions and inventoriés, gggregation was applied prior to model
training. Without aggregation, areas with denseimory coverage could disproportionately
influence model fitting, potentially overshadowirager but ecologically important observations

from sparsely sampled regions.

12



Plots were aggregated based on spatial proxiniéyagon similarity, and ecosystem context.
Specifically, only plots falling within defined haontal distance and elevation windows and
within the same Level-4 ecoregion (ecosystem vriaare eligible for aggregation. This
constraint ensured that aggregation occurred anlyng plots sharing comparable ecological
settings. Predictor variables were first extra@ethe original plot locations and subsequently
aggregated alongside species frequency data, serthimsonmental information reflected the
same spatial, elevational, and ecological contexha response variable. Mean species
frequencies and predictor values were calculateddoh aggregated unit.

Multiple aggregation schemes were evaluated tosadbeir influence on model behaviour and
ecological realism. No meaningful degradation iedictive performance was observed under
increasingly coarse aggregation, indicating thamit@ant species—environment relationships
were preserved. Based on these tests, a final gatipe threshold of 50 km horizontal distance
and 250 m elevation difference within the same L-dvecoregion was selected, reducing the
dataset from approximately 800,000 individual plotapproximately 29,000 aggregated
observations while mitigating sampling-density aasoss the continent.

2.3.3 Filtering for Potential Misidentification

To reduce the influence of potential species midifieations, recent introductions, or non-
native occurrences on model training, species oenae data were filtered using digitized
historical species range maps published by (Lit8ié1). Three filtering strategies were
evaluated: (1) no filtering, in which all obsenaats were retained; (2) strict filtering, in which
all plot records falling outside the historical ggnof a species were removed; and (3) buffered
filtering, in which a 200 km buffer was applied anal each species’ historical range to account
for spatial uncertainty in the range maps and &dhinatural dispersal beyond recorded
boundaries. For each strategy, models were rettand evaluated to assess impacts on
predictive performance and ecological realism. 8 filtering provided the best balance
between retaining sufficient training data and edirig ecologically implausible occurrences.
Consequently, observations falling outside the R@Qouffered historical range were excluded
from model training (Fig. 6, Douglas-fir example).

13



Fig. 6 Map of historic range, range expanded by 200km, and observations of Douglas fir, with

red plots being excluded

2.3.4 Introduction of pseudo-plots in non-forested regions

Forest inventory data are inherently limited tcefded regions and therefore lack observations in
treeless environments such as tundra, desertslping areas. Early model iterations trained
exclusively on inventory plots exhibited a tendetwpverpredict species presence in such
regions. To address this bias, pseudo-plots repiiegetrue absences were introduced into non-
forested areas. Non-forested regions were idedtif&2ng remotely sensed MODIS vegetation
cover data in combination with probabilistic laraer predictions. Grid cells were classified as
treeless if they exhibited no observed tree orlslenyver in MODIS data and had a predicted
probability of tree or shrub cover below 5% basedie land cover model. Within these regions,
100,000 pseudo-plots were generated and assigs@ecees frequency of zero for all tree
species. The inclusion of pseudo-plots providediexpraining information on unsuitable

habitat and improved the model’s ability to disdnate between forested and non-forested

14



environments across the contineFig. 7). This step substantially nezkd spatial overpredictic

and improved ecological plausibility of speciegjirency map

Fig. 7 Introduced pseudo-plots in non-forested areas.

2.4. Modeling framework

Tree species frequency across North America washae using a deep neural network (DN
framework that integrates climate, topographic, kand cover predictors with harmonized for
inventory data. The modelingorkflow is summarized iFig. 8 which illustrates the sequent

steps from data preparatiomspatial predictiol
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MODIS land cover

Climate variables Topo variables

Forest inventory and
forest plot databases

Landcover l X B PIA moy
model
Deep neural
Deep neural
network 1
Deep neural
l network 2b

Freq model
Agric & urban classes Backfilled land
removed from training cover

Species frequencies

Fig. 8 Overview of the modeling framework

Aggregated forest inventory plot data were pairét worresponding predictor variable
including interpolated climate data from ClimateN#&pographic metrics deved from digital
elevation models, and probabilistic land covemeates. These data formed the training da
used to develop specispecific models capable of predicting relative sgefrequency acros

continuous geographic space.

To address the strongly zerdtated nature of species frequency data, e-partmodeling
strategy was implemented using a hu-model framework (Martin et al. 200R0zenbert
2010) Zero values arise both from true absences amd firnited sampling coverage, a
modelingoccurrence and abundance as a single processathtolbiased predictions. T
hurdle framework separates these processes intedgquntial components, allowing preser

and relative abundance to tm®delecindependently.

For each species, two neural networks were traiflee first network Fig. 8, DNN 2¢) was a
binary classifier predicting species presence seabe (frequency 0). This model used
feedforward architecture with a single hidden lair rectified linear units, ReLU), dropc

16



regularization, and a sigmoid output layer. The elodhs trained using binary cross-entropy
loss. The second network (Fig. 5, DNN 2b) was atmmnal regression model trained only on
plots where the species was present. This netwedigied relative species frequency using a
deeper feedforward architecture with three hiddgers (256, 128, and 64 units), batch
normalization, dropout regularization, and a lineatput layer. The log-cosh loss function was

used to reduce sensitivity to outliers while retagnstability during optimization.

After training, predictions from the presence aondditional frequency models were combined
to generate final species frequency estimatespittgability of presence from the classifier was
multiplied by the predicted conditional frequenoyyteld expected species frequency at each
location. This combined output produced spatiatigt;muous, continent-wide predictions of
relative species frequency under historical envitental conditions. Model predictions were
generated on a regular grid across North Ameridaka spatial resolution using interpolated
ClimateNA variables and the corresponding topogaahd land cover predictors. The resulting
outputs were rasterized to produce continuous spdiequency surfaces suitable for spatial

analysis and visualization.

2.5. Model evaluation

For each species, the aggregated plot datasetandemly partitioned into training and testing
subsets, with 70% of observations used for motteidi and the remaining 30% withheld for
independent evaluation. This split was applied =bastly across both components of the hurdle
model to ensure comparable evaluation of presemd¢draquency predictions.

Model performance was assessed using multiple camgattary metrics. For the conditional
frequency models, predictive accuracy was evaluasath mean absolute error (MAE), root
mean square error (RMSE), coefficient of determamafR?), and bias calculated from
predictions on the withheld test data. Presenceraiesmodels were evaluated using standard
classification diagnostics, including accuracy argpection of predicted probability surfaces.
These metrics were used to assess both overalllppedermance and potential systematic bias

across environmental gradients.

17



To evaluate the ecological realism and generafith® modeling framework, additional
sensitivity analyses were conducted using a sudjsstologically and economically important
tree species representing a range of life histociewatic tolerances, and geographic
distributions. These species included black sp(Boma mariana), Douglas-fir Pseudotsuga
menziesii), trembling aspenRopulus tremuloides), subalpine fir Abies lasiocarpa), and sugar
maple Acer saccharum). These species were selected due to their brigaitbdtions across
North America, high representation in forest inegigs, and importance to forest management
and ecological function.

Model outputs were further evaluated qualitativieyycomparing predicted species frequency
maps with historical species range maps (Little1}@&hd known biogeographic patterns. Visual
inspection was used to identify unrealistic spaidrapolations, national boundary artefacts, or
systematic overprediction, particularly near rangegins and in climatically marginal regions.
These qualitative assessments complemented qumetitaetrics and informed refinement of

data preparation steps described above.

3. Results & Discussion

3.1. Species distribution maps and ecological plausibility

Predicted species frequency maps showed strongragré with known biogeographic patterns
for the species examined, providing qualitativepgrpfor the ecological plausibility of the
modelling framework. For western North American@ps, predicted frequency patterns aligned

closely with major climatic gradients, elevatiomes, and ecosystem delineations.

18



Douglas-fir provides aexample (Fig. 9). The model captured the broadildigion of coasta
Douglas-fir in lowelevation regions of the Pacific Northwest, as \aslthe more spatial
constrained distribution of interiDouglasfir associated with higher elevations, comg
topography, and raishadow effects. Predicted frequencies varied systeally across Level
ecosystem delineations, reflecting known differenioeforest composition and site conditio
Comparisa between the 250 m and 1 km resolution maps itedaat spatial aggregati

preserved dominant ecological gradients while redyfine-scale noise.

Fig. 9 Species distribution map of Douglasfir at 1 km resolution (right) 250m resolution (left)
and level 4 ecosystem delineations.
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As another exampldlack spruce predictions wereoncentrated in northern and wet boi
environments (Fig. 10).redicted frequency surfaces showed smooth spediaitions ant

respected knowrange limits, supporting the use of the framewarkrépresenting relativ

species dominance at continental sc

Fig. 10 Species frequency maps of black spruce at 1km Resol ution.

20



3.2. Predictor importance and ecological inter pretation

Permutatiorbased variable importance analyses further supiperecological realism of tt
models. For Dougla8r, the presenc—absence model (DNN 2a) identified the probabilit
needleleaf forest cover as the most influential precr, followed by climatic constraints relat:
to moisture balance and cold tolerance (Fig. 1 frominence of variables such as-
transformed annual heateisture index and extreme minimum temperaturensistent witr

established climatic controls @ouglas«fir distribution.

Feature Importance
created for the pseumenz (Presence) model

prob1
Latitude
logAHM
EMT
Elevation
Longitude
TD
ti2501p7
logMSP
MWMT
logDD5
prob8
CMD
logDDO
ocean2500km
RH
logPAS
MCMT
MAT
tpi2500r
prob16e
CMI
prob14
logSHM
lakes250km

tpi2o0r
hs180d
prob2

0.18 0.21 0.24 0.2
Root mean square error (RMSE) loss after permutations

Fig. 11 Variable importance of predictor variables (y-axis) by root mean square error loss after

removal of variable for presence absence model (DNN 2a) of Douglas fir.
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In contrast, the conditional frequency model (DN, 2rained only on plots where Douc-fir
was present, emphasized predictors associatedogdhabundance rather than broad occurr
limits (Fig. 12). Elevation, topographic orientatjalistance 1 the ocean, and terrain expos
emerged as dominant predictors, with additionatrdoutions from sno\-related variables
summer moisture conditions, and shrubland covedvabitity. This contrast between the t
modelling stages illustrates the utilof the hurdle framework for separating factors tjatern
species occurrence from those influencing reladimminance within suitable habit

Feature Importance
created for the pseumenz (Frequency) model

Elevation
hs90d
prob10
ocean1000km
exp1250m
exp2500m
logPAS
logSHM
tpi750r
hs180d
expd5000m
tpi2500r
EMT
prob6
tpi250r
probd
ti2201p3
logMSP
ti250Ip7

prob9 :
prob3
logAHM
0.14 0.15 0.16
Root mean square error (RMSE) loss after permutations

Fig. 12 Variable importance of predictor variables (y-axis) by root mean square error loss after
removal of variable for frequency model (DNN 2a) of Douglas fir.
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3.3. Model performance metrics and effects of predictor inclusion

Quantitative performance metrics confirm that thausion of additional predictor groups
improved model performance across species. Measiuabsrror (MAE) values calculated on
withheld data decreased consistently as topograainiables and land cover probabilities were
added to climate-only models (Table 1). Acrossfthe species evaluated, inclusion of
topographic predictors reduced MAE by 21-31%, Viuttther error reductions of 25-37% when
probabilistic land cover variables were included.

Table 1 Mean Absolute Error scores (percent improvement from climate only) of four modelled

species as variables were added to model training.

0.67 (28%) 0.59 (37%)
0.59 (21%) 0.56 (25%)
0.75 (24%) 0.70 (29%)
1.11 (31%) 1.03 (35%)

Absolute MAE values remain relatively high duehie zero-inflated nature of the response
variable, as most plots contain no observatiorsgf/en species. As a result, errors reflect both
incorrect predictions of presence and errors inipted frequency where species are present.
The primary purpose of these metrics is thereforepgarative rather than absolute: to
demonstrate that successive additions of ecoldginaaningful predictors systematically
improved model performance. These improvementsamsistent with the variable importance
results (Figs. 11-12) and the spatial patternsrgbdan the species distribution maps (Figs. 9—
10).
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3.4. Training behaviour and model stability

Model training dynamics further indicate stablerteag behaviour. Across species, loss values
declined smoothly over training epochs and platéauéin approximately 15 epochs (Fig. 13).
Early stopping at this point prevented overfittimgile retaining predictive performance. The
absence of erratic loss behaviour or divergencgesig that the preprocessing, scaling, and data
preparation steps described earlier were effeatiweipporting stable neural network training at

continental scales.

094 -

092 -

accuracy

2= ftraining

0.90 - -
=2=validation

5 10 15 20
epoch

Fig. 13 DNN model performance over time

3.5. Limitations and future improvements

Several aspects of the framework warrant furthgeigment to strengthen its applicability and
generality. First, although the modelling approectiesigned to scale to a large number of
species, detailed evaluation in this study focused limited set of representative taxa.
Extending systematic evaluation to a broader rarigpecies spanning different functional
types, range sizes, and inventory representatiaridymovide a more comprehensive

assessment of model behaviour and robustness.
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Second, model validation relied primarily on int@rrandom data partitioning and qualitative
comparison with known biogeographic patterns. Adddl validation strategies, such as
spatially stratified cross-validation across ecareg or climatic gradients, would provide
stronger tests of spatial transferability and lgglpntify uncertainty in extrapolation beyond

well-sampled regions.

Third, future development of the framework couldarporate soil variables to better represent
edaphic constraints on species distributions, ussngntly available gridded soil datasets at
appropriate spatial scales, such as the 250 m Badd@roducts (Hengl et al. 2017; Poggio et al.
2021). Because climate, topography, land covet,sail predictor layers are often derived from
overlapping environmental covariates and spatfakmation, partial autocorrelation among
predictor groups is expected. Post hoc analysépénation shared and unique contributions to
model accuracy, such as variance partitioning arraonality analysis, could therefore help
clarify the relative influence of different predictgroups and improve interpretability of model

outcomes.

Together, these future directions reflect oppottesito extend and strengthen the framework
presented here. The results of this study alreadyodistrate that integrating harmonized forest
inventory data with climate, topographic, and pialistic land cover predictors in a deep

learning framework is a viable and promising bésidarge-scale species frequency modelling.
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