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Abstract 

Accurately representing the spatial distribution and relative abundance of tree species is 

fundamental to forest inventory, regeneration planning, and climate-informed management. A 

wide range of species distribution models and spatial forest inventory products already exist, but 

leading inventory-based products are developed within national boundaries. Because climate-

driven shifts in suitable habitat are not constrained by political borders, there is value in 

modelling frameworks that integrate forest inventory data consistently across jurisdictions, while 

incorporating climate, topographic, and land-cover information at continental extents. 

In this study, I develop a deep learning framework to model tree species frequencies across North 

America by integrating forest inventory and ecological plot data with environmental predictors. 

Forest inventory data from the United States, Canada, and Mexico were harmonized to produce 

proportional species frequency estimates, which were paired with historical climate normals 

(1951–1980), derived topographic indices, and probabilistic land-cover predictions generated 

using a separate deep neural network trained remotely sensed land-cover data. 

To address the zero-inflated nature of species frequency data, a two-stage modelling approach 

was implemented, consisting of a presence–absence classifier followed by a conditional 

frequency regression model. Additional preprocessing steps, including spatial aggregation of 

plots, filtering of observations using buffered historical species ranges, and the introduction of 

pseudo-plots in non-forested regions, were applied to improve computational efficiency and 

ecological realism. 

Model performance was evaluated using withheld inventory data and spatial comparisons with 

historical species range maps for a regionally diverse subset of tree species. Results show that 

incorporating topographic variables and probabilistic land-cover information improves model 

performance relative to climate-only formulations, and produces spatially coherent, ecologically 

plausible species frequency patterns across different forest regions of the continent. 

The framework presented here provides a foundation for generating consistent, continent-wide 

species frequency surfaces that complement existing forest inventory products and support 

applications in forest inventory, regeneration planning, and future climate-informed analyses. 
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1. Introduction 

Forests occupy approximately 30% of the Earth’s land surface and play a central role in 

supporting terrestrial biodiversity, regulating climate, and providing ecosystem services to 

human societies. They function as major carbon sinks (Pan et al. 2011), influence energy and 

water exchanges between the land surface and atmosphere (Chapin et al. 2008), and underpin 

economic and cultural values associated with forestry and land management. As climate 

conditions continue to change, the ability to represent where tree species occur, and in what 

relative abundance, has become increasingly important for forest inventory, regeneration 

planning, and climate-informed decision-making (Booth 2018; Dar et al. 2022; Esquivel-

Muelbert et al. 2019; Massey et al. 2023).  

A wide range of spatial forest inventory products has been developed to extend plot-based 

measurements across landscapes using statistical imputation and environmental similarity 

approaches. In Canada, the National Forest Inventory has been used to generate continuous maps 

of forest attributes, including tree species composition and relative abundance, at approximately 

250 m resolution by linking ground plots with climate, topographic, and remotely sensed 

predictors using k-nearest neighbor methods (Beaudoin et al. 2014; National Forest Inventory 

2024). In the United States, comparable nearest-neighbor and gradient nearest-neighbor 

imputation approaches have been developed using Forest Inventory and Analysis (FIA) plots to 

produce spatially explicit maps of forest composition at similar spatial resolutions (Ohmann et al. 

2011; Wilson et al. 2012). These products provide robust and widely used representations of 

forest composition within their respective jurisdictions and form an important foundation for 

forest monitoring and management. 

Because these inventory-based products are developed independently within national boundaries, 

they necessarily represent continental species distributions only in part when species ranges 

extend across borders. This reflects differences in inventory design, data availability, and 

modelling frameworks across countries, rather than limitations of the underlying methods. 

Complementary to these existing efforts, there is value in developing a modeling framework that 

integrates forest inventory data consistently across jurisdictions, while incorporating 
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environmental predictors known to influence species distributions. Climate, topography, and land 

cover jointly shape where tree species can occur and how abundant they are within forested 

landscapes (Lee-Yaw et al. 2022). Because climatic conditions and associated habitat changes 

operate across biogeographic space rather than political boundaries, applications such as 

regeneration planning, seed transfer, and assisted migration under climate change benefit from 

continuous, continental-scale representations of species frequencies.  

Machine learning methods have become increasingly prominent in species distribution modelling 

due to their ability to capture nonlinear relationships and interactions among environmental 

predictors (Evans et al. 2011). Among these approaches, deep neural networks offer advantages 

for large-scale applications, including scalability to large datasets, flexibility in handling high-

dimensional predictors, and strong predictive performance when sufficient training data are 

available (Botella et al. 2018; LeCun et al. 2015; Valavi et al. 2022). Rather than replacing 

established modelling approaches, deep learning provides a complementary set of tools that can 

be integrated into multi-stage workflows linking environmental data, forest inventories, and 

spatial prediction. 

In this study, I develop a continental-scale deep learning framework to model tree species 

frequencies across North America by integrating forest inventory and ecological plot data with 

climate, topographic, and land-cover information. Forest inventory datasets from the United 

States, Canada, and Mexico are harmonized to produce proportional species frequency estimates, 

which are paired with historical climate normals, derived topographic indices, and probabilistic 

land-cover predictions generated using a separate deep neural network. A two-stage modelling 

approach is employed to address the zero-inflated nature of species frequency data, separating 

the prediction of species occurrence from the prediction of relative abundance where species are 

present (Martin et al. 2005; Rozenberg 2010). 

1. 1. Objectives 

The primary objective of this work is to develop a flexible and scalable framework for 

generating consistent, continent-wide species frequency surfaces. These outputs are intended to 
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complement existing inventory-based products and support applications in forest inventory, 

regeneration planning, and future climate-informed analyses. 

Specifically, this thesis addresses the following objectives: 

1. Harmonize forest inventory and ecological plot data across national datasets from the United 

States, Canada, and Mexico, and derive consistent proportional measures of tree species 

frequency suitable for continental-scale modeling. 

2. Develop a two-stage deep learning modeling framework that separately predicts species 

occurrence and relative abundance, addressing the zero-inflated nature of forest inventory 

data and enabling spatially explicit frequency mapping. 

3. Evaluate the contribution of climate, topographic and probabilistic land-cover predictors to 

species frequency modeling, and assess how the inclusion of these variables influences 

model performance relative to climate-only formulations. 

4. Generate and assess continent-wide species frequency maps for a representative subset of 

tree species, evaluating spatial coherence and ecological plausibility through comparisons 

with withheld inventory data and historical species range maps. 

 

2. Methods 

2.1. Forest inventory and ecological plot data  

To develop species distribution models (SDMs) across North America, I compiled a harmonized 

dataset of georeferenced forest inventory and ecological plot data from national and regional 

databases spanning the United States, Canada, and Mexico (Fig. 1). The dataset includes both 

permanent and temporary plots with species presence and abundance information, linked to 

standardized geographic coordinates for model training and evaluation.  



 

For the United States, plot data were obtained from the Forest Inventory

database managed by the U.S. Forest Service

conducts continuous forest monitoring across all states and provides tree

measurements of species composition, tree height, and diameter.

Fig. 1 Forest inventory plots of U.S. and Canada

In Canada, plot data were sourced from several complementary initiatives. The National Forest 

Inventory (NFI), coordinated by Natural Resources Canada, provides a systematic, grid

sampling of forest conditions across the country

data were obtained from the Multi

forest ground plot data from provincial forestry agencies into a harmonized, Canada

For the United States, plot data were obtained from the Forest Inventory and Analysis (FIA) 

database managed by the U.S. Forest Service (U. S. Forest Service 2023). The FIA program 

conducts continuous forest monitoring across all states and provides tree- and plot

measurements of species composition, tree height, and diameter. 

Forest inventory plots of U.S. and Canada 

In Canada, plot data were sourced from several complementary initiatives. The National Forest 

Inventory (NFI), coordinated by Natural Resources Canada, provides a systematic, grid

ns across the country (NRCAN 2021). Additional provincial

data were obtained from the Multi-Agency Ground Plot (MAGPlot) database, which aggregates 

forest ground plot data from provincial forestry agencies into a harmonized, Canada

4 

and Analysis (FIA) 

The FIA program 

and plot-level 

 

In Canada, plot data were sourced from several complementary initiatives. The National Forest 

Inventory (NFI), coordinated by Natural Resources Canada, provides a systematic, grid-based 

provincial-level 

Agency Ground Plot (MAGPlot) database, which aggregates 

forest ground plot data from provincial forestry agencies into a harmonized, Canada-wide system 
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(National Forest Inventory 2024). MAGPlot includes standardized records of tree species, 

diameter, crown attributes, and site conditions.  

Additionally, provincial ecological plot databases were used where available. For Alberta, data 

from the Ecological Site Information System (ESIS) were included, providing detailed 

vegetation and ecological site descriptions with percent canopy cover projected to the ground for 

multiple canopy layers (Alberta Environment & Parks 2021). In British Columbia, plot data 

supporting the Biogeoclimatic Ecosystem Classification (BEC) system were used; these data 

similarly record percent canopy cover projected to the ground across multiple canopy layers 

(Meidinger and Pojar 1991).  

For Mexico, plot data were incorporated from the Inventario Nacional Forestal y de Suelos 

maintained by the National Forestry Commission (Comisión Nacional Forestal 2020). This 

database includes systematic measurements of forest composition, structure, and biomass across 

major vegetation zones, compiled over multiple inventory cycles. Tree-level measurements 

include height and diameter, and all available inventory cycles were used in this study. 

2.2. Predictor variables 

2.2.1. Climatic predictors 

Climate predictor variables were generated with the ClimateNA software package (Wang et al., 

2016), which provides high-resolution climate surfaces for North America based on interpolated 

weather station data, digital elevation models, and environmental lapse rate based downscaling. 

Here, we use historical climate normals for the 1951–1980 period, representing climate 

conditions that largely predates anthropogenic climate warming, while still being represented 

with a good weather station network to infer high resolution climate grids (Fig. 2). A period that 

predates major anthropogenic climate warming was chosen as a baseline to satisfy the 

assumption that tree species distributions are in approximate equilibrium with those climate 

conditions. 



 

A total of 16 climate variables representing temperature, precipitation, and moisture balance 

were included as predictors. These comprised mean annual temperature (MAT), mean warmest 

month temperature (MWMT), mean coldest month temperature (MCMT), temperature difference 

between MWMT and MCMT (TD), mean annual precipitation (MAP), mean summer 

precipitation (MSP), degree days below 0 °C (DD0), degree days above 5 °C (DD5), 

precipitation as snow (PAS), extreme minimum temperature over a 30

Hargreaves’ climatic moisture deficit (CMD), mean annual relative humidity (RH), annual heat

moisture index (AHM), summer heat

(CMI). 

Fig. 2. Mean annual temperature of North America from ClimateNA

 

A total of 16 climate variables representing temperature, precipitation, and moisture balance 

were included as predictors. These comprised mean annual temperature (MAT), mean warmest 

mperature (MWMT), mean coldest month temperature (MCMT), temperature difference 

between MWMT and MCMT (TD), mean annual precipitation (MAP), mean summer 

precipitation (MSP), degree days below 0 °C (DD0), degree days above 5 °C (DD5), 

(PAS), extreme minimum temperature over a 30-year period (EMT), 

Hargreaves’ climatic moisture deficit (CMD), mean annual relative humidity (RH), annual heat

moisture index (AHM), summer heat–moisture index (SHM), and Hogg’s climate moisture index 

ean annual temperature of North America from ClimateNA
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moisture index (SHM), and Hogg’s climate moisture index 

 

ean annual temperature of North America from ClimateNA 



7 
 

Prior to model training, all climate variables were standardized to a mean of zero and unit 

variance so that each predictor entered the model on a comparable scale, allowing the network to 

initially treat all variables as having potentially equal influence during training. Temperature-

based variables (MAT, MWMT, MCMT, TD, EMT, DD0, DD5, RH) were standardized without 

prior transformation. In contrast, precipitation- and moisture-related variables (MAP, MSP, PAS, 

CMD, AHM, SHM, CMI) exhibited strong positive skew and were log-transformed prior to 

standardization. A generalized log(x + k) transformation was applied, where k is a variable-

specific constant selected to adjust the strength of the transformation and improve approximation 

to normality. The value of k was chosen individually for each variable, with negative values 

permitted for stronger transformations provided that all transformed values remained within the 

domain of the logarithmic function. This approach reduced skewness, stabilized variance, and 

improved numerical behavior during neural network training.  

2.2.2. Topographic predictors 

Additional predictor variables describing landscape structure were included to improve model 

accuracy and better characterize habitat suitability. Topographic predictors were derived from the 

MERIT digital elevation model, resampled to a 1 km spatial resolution to match the target 

resolution of the species frequency predictions and climate predictor grids. 

A total of 14 topographic variables were generated to capture terrain position, exposure, and the 

influence of major water bodies. These variables included measures of terrain exposure, 

weighted by prevailing wind direction (see details below) and calculated at multiple spatial 

scales (1km, 2km and 4km), hillshade calculated under both south-facing solar angle, distance to 

lakes weighted by prevailing wind direction with maximum distances of 100 and 250 km, 

distance to ocean weighted by prevailing wind direction with maximum distances 1000 and 2500 

km, a Compound Topographic Index (CTI) calculated at scales of 1km, 2km and 4km (Fig. 3), 

and the Topographic Position Index (TPI) calculated at the same three spatial scales. 

Topographic Position Index (TPI) describes the relative position of a location within the 

surrounding terrain, distinguishing ridge tops (positive values), valley bottoms (negative values), 

and flat or mid-slope positions (values near zero), independent of absolute elevation. The 



 

Compound Topographic Index (CTI), also referred to as a topographic wetness index, estimates 

the potential for water accumulation based on upslope contributing area 

provides an index of site-level moisture availability relevant to vegetation patterns.

Fig. 3. Compound Topographic Index with landscape level resolution of North America.

 

Compound Topographic Index (CTI), also referred to as a topographic wetness index, estimates 

the potential for water accumulation based on upslope contributing area and local slope, and 

level moisture availability relevant to vegetation patterns.

Compound Topographic Index with landscape level resolution of North America.
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Compound Topographic Index (CTI), also referred to as a topographic wetness index, estimates 

and local slope, and 

level moisture availability relevant to vegetation patterns. 

 

Compound Topographic Index with landscape level resolution of North America. 
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To account for the fact that topographic influences on climate and atmospheric processes act 

across multiple spatial scales, several topographic predictors were generated at different 

resolutions and spatial extents. These multi-scale representations allow the modelling framework 

to evaluate the relative importance of fine-scale versus broader-scale topographic controls on 

species frequency during training. All topographic variables were transformed and scaled prior to 

modelling to ensure comparable numerical ranges and stable neural network training, following 

the same general preprocessing principles applied to climate predictors. 

2.2.3. Land cover probabilities 

As additional predictor variables, I incorporated probabilistic estimates of land cover derived 

from a predictive land cover model developed by Boyce (2025, unpublished). These predictors 

represent the likelihood of different natural land cover types based on climate and topographic 

conditions, rather than observed contemporary land use. This distinction allows species 

frequency models to reflect climatically and physiographically suitable habitat while drawing on 

remotely sensed land cover data with complete continental coverage, thereby providing a 

substantially broader spatial foundation than plot-based observations alone, except in areas 

where land cover has been altered by human conversion. 

The land cover model was trained using MODIS land cover classification data, in which land 

cover classes served as the dependent variable. Agricultural and urban classes were excluded 

from the training process, but their spatial locations were retained as prediction targets. Predictor 

variables included a subset of the climate and topographic variables described above, capturing 

broad-scale climatic gradients as well as terrain position, exposure, and proximity to water 

bodies. A deep neural network classifier was trained to predict the probability of natural land 

cover classes for each grid cell, following general methodological principles described in 

previous work (Namiiro et al. 2025; Boyce (2025, unpublished). 

After training, the land cover model was applied across the study area using the same set of 

predictor variables. For grid cells currently classified as agriculture or urban, the model predicted 

the most probable natural land cover class based on climate and topography (Fig. 4).  



 

Fig. 4 MODIS remote sensed land cover classes (left) backfilled land

urban and agricultural land removed from training and output (right).

Rather than using a single categorical land cover assignment, the resulting class probabilities 

were retained and used as continuous predictor variables in the tree 

For example, the predicted probability of deciduous forest cover (Fig. 5) was included as an 

input variable for modelling species associated with deciduous

Incorporating probabilistic land cover predictors 

condition predictions on the likelihood of forest cover under natural conditions, improving 

ecological realism in regions where contemporary land use obscures climatic suitability for tree 

species. This approach supports applications focused on climate suitability, seed sourcing, and 

regeneration planning, where potential habitat is of greater relevance than realized land use. 

However, because the resulting species frequency surfaces represent climatically suitable for

cover rather than current land cover, they must be combined with observed remotely sensed land 

cover data when used for applications requiring representation of present

land use. 

MODIS remote sensed land cover classes (left) backfilled land cover classifications with 

urban and agricultural land removed from training and output (right). 

Rather than using a single categorical land cover assignment, the resulting class probabilities 

were retained and used as continuous predictor variables in the tree species frequency models. 

For example, the predicted probability of deciduous forest cover (Fig. 5) was included as an 

input variable for modelling species associated with deciduous-dominated ecosystems.

Incorporating probabilistic land cover predictors allows the species frequency models to 

condition predictions on the likelihood of forest cover under natural conditions, improving 

ecological realism in regions where contemporary land use obscures climatic suitability for tree 

rts applications focused on climate suitability, seed sourcing, and 

regeneration planning, where potential habitat is of greater relevance than realized land use. 

However, because the resulting species frequency surfaces represent climatically suitable for

cover rather than current land cover, they must be combined with observed remotely sensed land 

cover data when used for applications requiring representation of present-day forest extent or 
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Rather than using a single categorical land cover assignment, the resulting class probabilities 

species frequency models. 

For example, the predicted probability of deciduous forest cover (Fig. 5) was included as an 

dominated ecosystems. 

allows the species frequency models to 

condition predictions on the likelihood of forest cover under natural conditions, improving 

ecological realism in regions where contemporary land use obscures climatic suitability for tree 

rts applications focused on climate suitability, seed sourcing, and 

regeneration planning, where potential habitat is of greater relevance than realized land use. 

However, because the resulting species frequency surfaces represent climatically suitable forest 

cover rather than current land cover, they must be combined with observed remotely sensed land 

day forest extent or 
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Fig. 5 Probability of deciduous forest as land cover class across North America 

 

2.3 Forest inventory harmonization and training data preparation 

To ensure consistency across heterogeneous forest inventory datasets and to provide an 

ecologically meaningful response variable for modeling, a series of harmonization, scaling, and 

data preparation steps were applied prior to model training. These steps define how species 

frequency was quantified and address known sources of bias and imbalance in large-scale forest 

inventory data. 
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2.3.1 Plot data harmonization and definition of species frequency 

Species frequency was quantified using proportional measures of species dominance derived 

from forest inventory plot data. Depending on data availability and measurement protocols of 

each source dataset, species dominance was calculated as either the percentage of basal area or 

the percentage of crown cover projected to the ground. This approach allowed the use of multiple 

national and regional inventory datasets while maintaining a consistent response variable suitable 

for modelling. When multiple measurements were available for a given plot, either from different 

canopy layers or from repeated sampling events, species-level values were pooled and rescaled 

so that total tree species frequency summed to 100% within each plot. To further standardize 

species frequency estimates across ecosystems, proportional basal area or canopy cover values 

were scaled using modeled land cover class probabilities as described above. 

Specifically, predicted probabilities of forest land cover types were used to scale tree species 

frequencies such that the sum of forest species frequencies plus the proportion of non-forested 

land equalled 100% of the ecosystem land base. Because agricultural and urban land cover 

classes were excluded from the training of the land cover model and subsequently reclassified to 

the most probable natural land cover type, this procedure yields proportional estimates of forest 

tree species frequencies expected under undisturbed conditions. The resulting response variable 

therefore represents relative species frequency within climatically and physiographically suitable 

forest habitat, rather than realized contemporary land use. 

2.3.2 Plot Aggregation 

The modelling dataset initially comprised approximately 800,000 individual forest inventory 

plots distributed across North America. To reduce potential bias arising from highly uneven 

sampling intensity among regions and inventories, plot aggregation was applied prior to model 

training. Without aggregation, areas with dense inventory coverage could disproportionately 

influence model fitting, potentially overshadowing rarer but ecologically important observations 

from sparsely sampled regions. 



13 
 

Plots were aggregated based on spatial proximity, elevation similarity, and ecosystem context. 

Specifically, only plots falling within defined horizontal distance and elevation windows and 

within the same Level-4 ecoregion (ecosystem variant) were eligible for aggregation. This 

constraint ensured that aggregation occurred only among plots sharing comparable ecological 

settings. Predictor variables were first extracted at the original plot locations and subsequently 

aggregated alongside species frequency data, so that environmental information reflected the 

same spatial, elevational, and ecological context as the response variable. Mean species 

frequencies and predictor values were calculated for each aggregated unit. 

Multiple aggregation schemes were evaluated to assess their influence on model behaviour and 

ecological realism. No meaningful degradation in predictive performance was observed under 

increasingly coarse aggregation, indicating that dominant species–environment relationships 

were preserved. Based on these tests, a final aggregation threshold of 50 km horizontal distance 

and 250 m elevation difference within the same Level-4 ecoregion was selected, reducing the 

dataset from approximately 800,000 individual plots to approximately 29,000 aggregated 

observations while mitigating sampling-density bias across the continent. 

2.3.3 Filtering for Potential Misidentification 

To reduce the influence of potential species misidentifications, recent introductions, or non-

native occurrences on model training, species occurrence data were filtered using digitized 

historical species range maps published by (Little 1971). Three filtering strategies were 

evaluated: (1) no filtering, in which all observations were retained; (2) strict filtering, in which 

all plot records falling outside the historical range of a species were removed; and (3) buffered 

filtering, in which a 200 km buffer was applied around each species’ historical range to account 

for spatial uncertainty in the range maps and limited natural dispersal beyond recorded 

boundaries. For each strategy, models were retrained and evaluated to assess impacts on 

predictive performance and ecological realism. Buffered filtering provided the best balance 

between retaining sufficient training data and excluding ecologically implausible occurrences. 

Consequently, observations falling outside the 200 km buffered historical range were excluded 

from model training (Fig. 6, Douglas-fir example). 
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Fig. 6 Map of historic range, range expanded by 200km, and observations of Douglas fir, with 

red plots being excluded 

2.3.4 Introduction of pseudo-plots in non-forested regions 

Forest inventory data are inherently limited to forested regions and therefore lack observations in 

treeless environments such as tundra, deserts, and alpine areas. Early model iterations trained 

exclusively on inventory plots exhibited a tendency to overpredict species presence in such 

regions. To address this bias, pseudo-plots representing true absences were introduced into non-

forested areas. Non-forested regions were identified using remotely sensed MODIS vegetation 

cover data in combination with probabilistic land cover predictions. Grid cells were classified as 

treeless if they exhibited no observed tree or shrub cover in MODIS data and had a predicted 

probability of tree or shrub cover below 5% based on the land cover model. Within these regions, 

100,000 pseudo-plots were generated and assigned a species frequency of zero for all tree 

species. The inclusion of pseudo-plots provided explicit training information on unsuitable 

habitat and improved the model’s ability to discriminate between forested and non-forested 



 

environments across the continent (

and improved ecological plausibility of species frequency maps.

 

Fig. 7 Introduced pseudo

 

2.4. Modeling framework 

Tree species frequency across North America was modelled

framework that integrates climate, topographic, and land cover predictors with harmonized forest 

inventory data. The modeling workflow is summarized in 

steps from data preparation to spatial prediction.

environments across the continent (Fig. 7). This step substantially reduced spatial overprediction 

and improved ecological plausibility of species frequency maps. 

Introduced pseudo-plots in non-forested areas. 

Tree species frequency across North America was modelled using a deep neural network (DNN) 

framework that integrates climate, topographic, and land cover predictors with harmonized forest 

workflow is summarized in Fig. 8, which illustrates the sequential 

to spatial prediction. 
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Fig. 8

Aggregated forest inventory plot data were paired with corresponding predictor variables, 

including interpolated climate data from ClimateNA, topographic metrics deri

elevation models, and probabilistic land cover estimates. These data formed the training dataset 

used to develop species-specific models capable of predicting relative species frequency across 

continuous geographic space. 

To address the strongly zero-inflated nature of species frequency data, a two

strategy was implemented using a hurdle

2010). Zero values arise both from true absences and from limited sampling coverage, and 

modeling occurrence and abundance as a single process can lead to biased predictions. The 

hurdle framework separates these processes into two seque

and relative abundance to be modeled

For each species, two neural networks were trained. The first network (

binary classifier predicting species presence or absence (frequency >

feedforward architecture with a single hidden layer (64 rectified linear units, ReLU), dropout 

8 Overview of the modeling framework 

Aggregated forest inventory plot data were paired with corresponding predictor variables, 

including interpolated climate data from ClimateNA, topographic metrics derived from digital 

elevation models, and probabilistic land cover estimates. These data formed the training dataset 

specific models capable of predicting relative species frequency across 

inflated nature of species frequency data, a two-part 

strategy was implemented using a hurdle-model framework (Martin et al. 2005; Rozenberg 

. Zero values arise both from true absences and from limited sampling coverage, and 

occurrence and abundance as a single process can lead to biased predictions. The 

hurdle framework separates these processes into two sequential components, allowing presence 

modeled independently.  

For each species, two neural networks were trained. The first network (Fig. 8, DNN 2a

binary classifier predicting species presence or absence (frequency > 0). This model used a 

feedforward architecture with a single hidden layer (64 rectified linear units, ReLU), dropout 
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ved from digital 

elevation models, and probabilistic land cover estimates. These data formed the training dataset 

specific models capable of predicting relative species frequency across 

part modeling 

Rozenberg 

. Zero values arise both from true absences and from limited sampling coverage, and 

occurrence and abundance as a single process can lead to biased predictions. The 

ntial components, allowing presence 

DNN 2a) was a 

0). This model used a 

feedforward architecture with a single hidden layer (64 rectified linear units, ReLU), dropout 
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regularization, and a sigmoid output layer. The model was trained using binary cross-entropy 

loss. The second network (Fig. 5, DNN 2b) was a conditional regression model trained only on 

plots where the species was present. This network predicted relative species frequency using a 

deeper feedforward architecture with three hidden layers (256, 128, and 64 units), batch 

normalization, dropout regularization, and a linear output layer. The log-cosh loss function was 

used to reduce sensitivity to outliers while retaining stability during optimization. 

After training, predictions from the presence and conditional frequency models were combined 

to generate final species frequency estimates. The probability of presence from the classifier was 

multiplied by the predicted conditional frequency to yield expected species frequency at each 

location. This combined output produced spatially continuous, continent-wide predictions of 

relative species frequency under historical environmental conditions. Model predictions were 

generated on a regular grid across North America at 1 km spatial resolution using interpolated 

ClimateNA variables and the corresponding topographic and land cover predictors. The resulting 

outputs were rasterized to produce continuous species frequency surfaces suitable for spatial 

analysis and visualization. 

2.5. Model evaluation 

For each species, the aggregated plot dataset was randomly partitioned into training and testing 

subsets, with 70% of observations used for model fitting and the remaining 30% withheld for 

independent evaluation. This split was applied consistently across both components of the hurdle 

model to ensure comparable evaluation of presence and frequency predictions. 

Model performance was assessed using multiple complementary metrics. For the conditional 

frequency models, predictive accuracy was evaluated using mean absolute error (MAE), root 

mean square error (RMSE), coefficient of determination (R²), and bias calculated from 

predictions on the withheld test data. Presence–absence models were evaluated using standard 

classification diagnostics, including accuracy and inspection of predicted probability surfaces. 

These metrics were used to assess both overall model performance and potential systematic bias 

across environmental gradients. 
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To evaluate the ecological realism and generality of the modeling framework, additional 

sensitivity analyses were conducted using a subset of ecologically and economically important 

tree species representing a range of life histories, climatic tolerances, and geographic 

distributions. These species included black spruce (Picea mariana), Douglas-fir (Pseudotsuga 

menziesii), trembling aspen (Populus tremuloides), subalpine fir (Abies lasiocarpa), and sugar 

maple (Acer saccharum). These species were selected due to their broad distributions across 

North America, high representation in forest inventories, and importance to forest management 

and ecological function. 

Model outputs were further evaluated qualitatively by comparing predicted species frequency 

maps with historical species range maps (Little 1971) and known biogeographic patterns. Visual 

inspection was used to identify unrealistic spatial extrapolations, national boundary artefacts, or 

systematic overprediction, particularly near range margins and in climatically marginal regions. 

These qualitative assessments complemented quantitative metrics and informed refinement of 

data preparation steps described above. 

 

3. Results & Discussion 

3.1. Species distribution maps and ecological plausibility 

Predicted species frequency maps showed strong agreement with known biogeographic patterns 

for the species examined, providing qualitative support for the ecological plausibility of the 

modelling framework. For western North American species, predicted frequency patterns aligned 

closely with major climatic gradients, elevation zones, and ecosystem delineations.  

 

 



 

Douglas-fir provides an example (Fig. 9). The model captured the broad distribution of coastal 

Douglas-fir in low-elevation regions of the Pacific Northwest, as well as the more spatially 

constrained distribution of interior 

topography, and rain-shadow effects. Predicted frequencies varied systematically across Level 4 

ecosystem delineations, reflecting known differences in forest composition and site conditions. 

Comparison between the 250 m and 1 km resolution maps indicates that spatial aggregation 

preserved dominant ecological gradients while reducing fine

 

Fig. 9 Species distribution map of Douglas fir at 1 km resolution (right) 250

and level 4 ecosystem delineations.

 

example (Fig. 9). The model captured the broad distribution of coastal 

elevation regions of the Pacific Northwest, as well as the more spatially 

constrained distribution of interior Douglas-fir associated with higher elevations, complex 

shadow effects. Predicted frequencies varied systematically across Level 4 

ecosystem delineations, reflecting known differences in forest composition and site conditions. 

n between the 250 m and 1 km resolution maps indicates that spatial aggregation 

preserved dominant ecological gradients while reducing fine-scale noise. 

Species distribution map of Douglas fir at 1 km resolution (right) 250m resolution (left), 

and level 4 ecosystem delineations. 
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elevation regions of the Pacific Northwest, as well as the more spatially 

fir associated with higher elevations, complex 

shadow effects. Predicted frequencies varied systematically across Level 4 

ecosystem delineations, reflecting known differences in forest composition and site conditions. 

n between the 250 m and 1 km resolution maps indicates that spatial aggregation 

 

m resolution (left), 



 

As another example, black spruce 

environments (Fig. 10). Predicted frequency surfaces showed smooth spatial transitions and 

respected known range limits, supporting the use of the framework for representing relative 

species dominance at continental scales.

Fig. 10 Species frequency map

  

black spruce  predictions were concentrated in northern and wet boreal 

redicted frequency surfaces showed smooth spatial transitions and 

range limits, supporting the use of the framework for representing relative 

species dominance at continental scales.  

Species frequency maps of black spruce  at 1km Resolution
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concentrated in northern and wet boreal 

redicted frequency surfaces showed smooth spatial transitions and 

range limits, supporting the use of the framework for representing relative 

 

esolution. 



 

3.2. Predictor importance and ecological 

Permutation-based variable importance analyses further support the ecological realism of the 

models. For Douglas-fir, the presence

needle-leaf forest cover as the most influential predicto

to moisture balance and cold tolerance (Fig. 11). The prominence of variables such as log

transformed annual heat–moisture index and extreme minimum temperature is consistent with 

established climatic controls on Douglas

Fig. 11 Variable importance of predictor variables (y

removal of variable for presence absence model (DNN 2a) of Douglas fir.

 

Predictor importance and ecological interpretation 

based variable importance analyses further support the ecological realism of the 

fir, the presence–absence model (DNN 2a) identified the probability of 

leaf forest cover as the most influential predictor, followed by climatic constraints related 

to moisture balance and cold tolerance (Fig. 11). The prominence of variables such as log

moisture index and extreme minimum temperature is consistent with 

Douglas-fir distribution. 

Variable importance of predictor variables (y-axis) by root mean square error loss after 

removal of variable for presence absence model (DNN 2a) of Douglas fir.
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absence model (DNN 2a) identified the probability of 
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to moisture balance and cold tolerance (Fig. 11). The prominence of variables such as log-

moisture index and extreme minimum temperature is consistent with 

 

axis) by root mean square error loss after 

removal of variable for presence absence model (DNN 2a) of Douglas fir. 



 

In contrast, the conditional frequency model (DNN 2b), trained only on plots where Douglas
was present, emphasized predictors associated with local abundance rather than broad occurrence 
limits (Fig. 12). Elevation, topographic orientation, distance to
emerged as dominant predictors, with additional contributions from snow
summer moisture conditions, and shrubland cover probability. This contrast between the two 
modelling stages illustrates the utility 
species occurrence from those influencing relative dominance within suitable habitat.

 

Fig. 12 Variable importance of predictor variables (y

removal of variable for frequency model (DNN 2a) of Douglas fir.

. 

 

In contrast, the conditional frequency model (DNN 2b), trained only on plots where Douglas
was present, emphasized predictors associated with local abundance rather than broad occurrence 
limits (Fig. 12). Elevation, topographic orientation, distance to the ocean, and terrain exposure 
emerged as dominant predictors, with additional contributions from snow-related variables, 
summer moisture conditions, and shrubland cover probability. This contrast between the two 
modelling stages illustrates the utility of the hurdle framework for separating factors that govern 
species occurrence from those influencing relative dominance within suitable habitat.

of predictor variables (y-axis) by root mean square error loss after 

removal of variable for frequency model (DNN 2a) of Douglas fir.
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In contrast, the conditional frequency model (DNN 2b), trained only on plots where Douglas-fir 
was present, emphasized predictors associated with local abundance rather than broad occurrence 

the ocean, and terrain exposure 
related variables, 

summer moisture conditions, and shrubland cover probability. This contrast between the two 
of the hurdle framework for separating factors that govern 

species occurrence from those influencing relative dominance within suitable habitat. 

 

axis) by root mean square error loss after 

removal of variable for frequency model (DNN 2a) of Douglas fir. 
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3.3. Model performance metrics and effects of predictor inclusion 

Quantitative performance metrics confirm that the inclusion of additional predictor groups 

improved model performance across species. Mean absolute error (MAE) values calculated on 

withheld data decreased consistently as topographic variables and land cover probabilities were 

added to climate-only models (Table 1). Across the four species evaluated, inclusion of 

topographic predictors reduced MAE by 21–31%, with further error reductions of 25–37% when 

probabilistic land cover variables were included. 

 

Table 1 Mean Absolute Error scores (percent improvement from climate only) of four modelled 

species as variables were added to model training. 

Species Climate Only 
Climate & 
Topographic 
Variables 

Added  Land Cover 
Probabilities  

Subalpine fir 0.93 0.67   (28%) 0.59   (37%) 
Black spruce 0.75 0.59   (21%) 0.56   (25%) 
Trembling aspen 0.99 0.75   (24%) 0.70   (29%) 
Douglas fir 1.61 1.11   (31%) 1.03   (35%) 
  

 

Absolute MAE values remain relatively high due to the zero-inflated nature of the response 

variable, as most plots contain no observations of a given species. As a result, errors reflect both 

incorrect predictions of presence and errors in predicted frequency where species are present. 

The primary purpose of these metrics is therefore comparative rather than absolute: to 

demonstrate that successive additions of ecologically meaningful predictors systematically 

improved model performance. These improvements are consistent with the variable importance 

results (Figs. 11–12) and the spatial patterns observed in the species distribution maps (Figs. 9–

10). 

 



24 
 

3.4. Training behaviour and model stability 

Model training dynamics further indicate stable learning behaviour. Across species, loss values 

declined smoothly over training epochs and plateaued within approximately 15 epochs (Fig. 13). 

Early stopping at this point prevented overfitting while retaining predictive performance. The 

absence of erratic loss behaviour or divergence suggests that the preprocessing, scaling, and data 

preparation steps described earlier were effective in supporting stable neural network training at 

continental scales.  

 

Fig. 13 DNN model performance over time 

 

3.5. Limitations and future improvements 

Several aspects of the framework warrant further development to strengthen its applicability and 

generality. First, although the modelling approach is designed to scale to a large number of 

species, detailed evaluation in this study focused on a limited set of representative taxa. 

Extending systematic evaluation to a broader range of species spanning different functional 

types, range sizes, and inventory representation would provide a more comprehensive 

assessment of model behaviour and robustness. 
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Second, model validation relied primarily on internal random data partitioning and qualitative 

comparison with known biogeographic patterns. Additional validation strategies, such as 

spatially stratified cross-validation across ecoregions or climatic gradients, would provide 

stronger tests of spatial transferability and help quantify uncertainty in extrapolation beyond 

well-sampled regions. 

Third, future development of the framework could incorporate soil variables to better represent 

edaphic constraints on species distributions, using recently available gridded soil datasets at 

appropriate spatial scales, such as the 250 m SoilGrids products (Hengl et al. 2017; Poggio et al. 

2021).  Because climate, topography, land cover, and soil predictor layers are often derived from 

overlapping environmental covariates and spatial information, partial autocorrelation among 

predictor groups is expected. Post hoc analyses that partition shared and unique contributions to 

model accuracy, such as variance partitioning or commonality analysis, could therefore help 

clarify the relative influence of different predictor groups and improve interpretability of model 

outcomes. 

Together, these future directions reflect opportunities to extend and strengthen the framework 

presented here. The results of this study already demonstrate that integrating harmonized forest 

inventory data with climate, topographic, and probabilistic land cover predictors in a deep 

learning framework is a viable and promising basis for large-scale species frequency modelling. 
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