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Abstract

Forests in water-limited regions of the world face increasing risks from intensifying drought
events under climate change. Yet assessing and comparing drought vulnerability of forests at
broad spatial scales remains a difficult problem. Analysis efforts are typically constrained by
fragmented data sources and multiple co-varying factors in empirical research. This makes it
very difficult to compare species and populations across different regions for the purpose of
vulnerability assessments or to find resilient species and genotypes for climate change adaptation
in forest management. This thesis addresses these limitations by developing a framework to
assess drought sensitivity and resilience in tree species populations using a combination of
dendrochronology, remote sensing, and methodological advances in historical biology analysis.
The aim is to derive ecologically meaningful, scalable metrics that support both a better
understanding of forest responses to drought and the development of practical tools for adaptive

forest management.

A foundational step toward this goal was the systematic evaluation and correction of the
International Tree Ring Database (ITRDB), the world’s largest dendrochronological archive.
Metadata inconsistencies, species misidentifications, and formatting errors were corrected for
approximately 20% of records. Subsequently, consistently detrended site chronologies were
developed using three smoothing approaches to preserve different frequency components of
growth variability. This cleaned and harmonized dataset enabled reliable downstream analysis of
drought sensitivity across nearly 5,000 sites, focusing on the 20 most widely represented tree

species.



To ensure that dendroclimatological analyses are based on appropriate climatic inputs, a
comparative evaluation of global precipitation datasets was carried out using two biological
indicators: tree-ring growth and satellite-derived vegetation greenness (MODIS-EVI). The study
found that multi-source climate datasets such as MSWEP outperformed single-source products,
particularly in regions with sparse weather station coverage. However, for long-term historical
applications, the climate station based UDEL-TS product showed superior alignment with
biological data prior to the 1940s. These results offer guidance for selecting suitable climate
datasets in ecological applications, addressing a frequently overlooked source of uncertainty in

vulnerability assessments.

Given the sparse and uneven geographic distribution of tree-ring data, the thesis next evaluated
whether analytical methods developed for dendroclimatology could be applied to satellite-based
vegetation indices. By calculating climate sensitivity metrics from annual EVI time series and
comparing them with those derived from tree rings, it was shown that remotely sensed proxies
capture similar climatic constraints on growth across major forest biomes. Although EVI-based
estimates tend to smooth short-term lag effects and may reflect different aspects of physiological
response, the correspondence in limiting climate factors suggests that remote sensing products
can be used to extend drought sensitivity assessments to areas without dendrochronological

records.

Building on these foundations, the thesis introduces a standardized Resilience to Ecological
Drought index (RED50), which quantifies the capacity of trees to recover from a modeled
drought event that causes a 50% growth reduction. This approach addresses key limitations of
vulnerability assessments by controlling for variation in drought severity and decoupling

recovery estimates from specific species, regional populations, site conditions, or sampling



years. Applying RED50 to tree-ring sites globally revealed that species and populations with
lower resistance, those that suppress growth during drought, tend to recover more fully
afterwards. High RED50 values were often observed in species or populations from historically
drier or warmer environments, particularly in trailing-edge regions at the margins of species’

ranges.

The RED50-based analysis of drought resilience highlights the role of species- and provenance-
level adaptation in shaping recovery capacity, where local populations have evolved traits that
support resilience under recurrent water limitation. Importantly, the same ecological signal is
observed both among and within species: drought-adapted species tend to dominate drier sites
within regions, and drought-adapted populations tend to show higher resilience across regions.
Two complementary strategies emerge from this pattern: first, relocating resilient genotypes
within species—such as from dry interior or trailing-edge provenances—can inform seed
sourcing under climate change; second, short-distance assisted migration at the species level can
be used to shift species composition within regions toward those with higher inherent drought

resilience.
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Chapter 1. General introduction

1.1. Drought impacts to forested ecosystems

In many forested regions, especially those experiencing seasonal water deficits, climate change
has altered disturbance regimes and increased physiological stress. Among the most commonly
reported changes are shifts in the frequency, intensity, and duration of drought events (Cook et
al. 2016; Greenwood et al. 2017; Hammond et al. 2022), which have been shown to reduce
growth, increase mortality, and alter competitive dynamics in affected forest ecosystems (Ciais et
al. 2005; Clark et al. 2016; Gazol et al. 2018). Drought can impair water transport and
photosynthesis in trees, disrupting carbon uptake and leading to hydraulic failure in xylem
tissues (Hartmann et al. 2013; Choat et al. 2018). These processes are associated with two
commonly observed mortality mechanisms: embolism-induced hydraulic failure and carbon
starvation following sustained stomatal closure (Hartmann et al. 2013; Kono et al. 2019; Prats et
al. 2023). While the relative importance of these mechanisms varies by species and drought

characteristics, both have been implicated in dieback events in moisture-limited environments.

In addition to direct physiological stress, drought can increase forest vulnerability to biotic
disturbances and compound effects from other stressors. Prolonged dry periods may weaken tree
defenses, increasing susceptibility to pests and pathogens and contributing to delayed mortality
over multiple years (Marini et al. 2017; Pirtskhalava-Karpova et al. 2024). Drought also
interacts with other disturbance agents, such as fire, which may occur more frequently or with
greater severity when fuel moisture is low (Seidl et al. 2017; Luo et al. 2024). These interactions
have been linked to cascading effects on forest structure, composition, and the delivery of
ecosystem functions such as carbon storage and water regulation (Kannenberg et al. 2019;
Knutzen et al. 2023).

The severity and persistence of drought impacts depend on the ability of trees and forest
communities to resist, survive, and recover from water deficits. These capacities vary widely
among species, populations, and site conditions, and are expected to shape future forest

dynamics under continued climate change. Understanding these response mechanisms remains a



prerequisite for identifying where and for whom drought poses the greatest risk, and for

developing informed strategies to manage that risk.

1.2. Forest management responses and the need for scalable assessments

Observed drought-related impacts on forest growth and survival have motivated the adoption of
silvicultural practices aimed at reducing water stress and improving recovery potential. Among
these, selective thinning has been shown to lower competition for soil moisture, enhance
physiological function such as photosynthetic rates, and reduce drought-induced mortality in
several species and regions (Sohn et al. 2016b; Zald et al. 2022). By decreasing stand density,
thinning may support carbon balance and hydraulic safety during drought, as demonstrated by

lower mortality rates and improved post-drought recovery (Klockow et al. 2018).

Another applied response to climate change is assisted migration, where tree species or
populations with traits suited to drier conditions are introduced to regions expected to become
more arid (Montwe et al. 2016; Sang et al. 2019; Sebastian-Azcona et al. 2020; D’Orangeville et
al. 2025). This approach leverages our understanding of species' adaptive traits, such as rooting
depth (Bachofen et al. 2024) or efficient hydraulic architecture (Carlquist 2012; Anderegg and
Meinzer 2015), to guide the movement of seed sources or species. While promising in concept,
its implementation hinges on robust information about which species and populations are most

likely to succeed under changing climatic conditions.

Additionally, technological advances in climate modeling and remote sensing now offer new
opportunities to evaluate forest vulnerability over large areas (Xue and Su 2017; Correa-Diaz et
al. 2019; Eliades et al. 2024). However, the integration of such tools into forest management
remains limited, in part because of methodological challenges in translating climate signals into
biological response across diverse ecosystems. Process-based models, while powerful, often
require detailed parameterization and are sensitive to uncertainty in species-specific
physiological inputs. At the same time, empirical studies, though often grounded in rich
ecological data and context, are difficult to compare across regions due to variation in site

conditions, study designs, and measurement approaches.



As a result, current vulnerability assessments often lack consistency and scalability. Regional
studies may identify drought-sensitive species or management interventions that are effective
under local conditions, but they are not easily generalizable. Efforts to support reforestation or
adaptation planning at larger scales require methods that can compare responses across species
and regions in a consistent, interpretable way. This gap forms the basis for the present study,
which seeks to develop standardized, biologically meaningful metrics for drought sensitivity and
recovery, using tree-ring data and remotely sensed observations to inform management decisions

under climate change.

1.3. Tree-ring research and vulnerability assessments

Over the last several decades, tree-ring data have been widely used to reconstruct past climate
variability and to investigate ecological responses to climate extremes beyond the period covered
by instrumental records (e.g., Folland et al., 2001). Pearl et al. (2020) noted that studies in the
fields of dendroclimatology and dendroecology have more than quadrupled in the past two
decades, providing a valuable basis for assessing how climate variability influences tree growth
over long timescales. Applications now extend beyond climate reconstruction to tracking forest
productivity, detecting growth declines, and evaluating forest health under changing
environmental conditions (Hogg et al. 2005; Williams et al. 2013; Schéngart et al. 2015;
Vasconcellos et al. 2019). Tree-ring records have also been used to examine the impacts of
extreme events (Villalba and Veblen 1998; Bond-Lamberty et al. 2014; Dorman et al. 2015), to
link changes in fire frequency to climate (Brandes et al. 2019; Saenz-Ceja and Pérez-Salicrup
2019; Spinu et al. 2020; Brown et al. 2020) and to quantify drought sensitivity (Herweijer et al.
2007; Huang et al. 2018; DeSoto et al. 2020a; Bose et al. 2021).

The International Tree Ring Database (ITRDB) serves as the primary repository for such data,
enabling large-scale reanalyzes that go beyond the scope of individual studies. Examples include
global estimates of annual CO: sequestration trends (Brienen et al. 2020a), which suggest that
carbon uptake has increased in recent decades but may be accompanied by reduced tree
longevity, potentially offsetting long-term carbon storage. Other analyses have applied common
statistical frameworks to evaluate tree-growth sensitivity to drought in North America (Cook et
al. 2007), Europe (Cook et al. 2015, 2020) and South America (Morales et al. (2020). Tree-ring



derived parameters have also been incorporated into models predicting future growth under

climate change (Charney et al. 2016).

Despite these advances, ITRDB data have been less fully utilized for comparative studies aimed
at supporting forest management. For example, coordinated assessments of drought resilience,
resistance, and recovery across multiple species in the same region are rare. Such comparisons
could help identify species with advantageous drought-response traits for specific sites.
Likewise, evaluating climate limiting factors to growth could inform species selection in
reforestation programs under changing climate conditions. For a single species occurring across
diverse environments, comparisons among populations could reveal differences in vulnerability

related to local adaptation, guiding the selection of seed sources suited to future climates.

These opportunities point to the potential of dendrochronology for informing large-scale,
management-relevant vulnerability assessments. However, the lack of standardized analytical
approaches and the uneven global distribution of dendrochronology sampling sites remain major

barriers to making such comparisons across species, populations, and regions.

1.4. Current challenges in drought vulnerability assessments

Tree-ring data offer a useful approach for understanding how forests have responded to past
climate variability and climate trends, with implications for their likely response under future
climate change. However, their broader use in drought vulnerability assessments is complicated
by methodological and data limitations. Chronologies are often produced for site-specific
questions, using different sampling strategies and detrending methods depending on the
ecological context or research aim (Nehrbass-Ahles et al. 2014a; Biintgen et al. 2021). For
example, researchers studying snowpack or runoff reconstruction may intentionally sample trees
in topographic positions that accumulate water (Martin et al. 2018) , while ecological studies
may prioritize a representative cross-section of stand conditions (Pederson et al. 2014; Krusic et
al. 2015). Although these decisions are justified for individual studies, they reduce comparability

across datasets and hinder synthesis at larger spatial scales.



Efforts to standardize tree-ring data have improved the coherence of large-scale reanalyzes,
though often at the cost of accuracy at the tree or stand level (Coulthard et al. 2020). Site-level
standardization and more flexible detrending methods can help mitigate this trade-off, but may
also remove long-term growth trends important for detecting decadal shifts in moisture
availability. Still, these approaches remain effective for identifying acute drought responses over
one to two-year periods. Comparisons among species are particularly challenging in
heterogeneous environments, where topography and microsite conditions strongly influence
growth. Even within a species, response differences may reflect a combination of climate
exposure and local adaptation. While such variation limits the transferability of findings, it also
offers a valuable opportunity to examine provenance-level differences in drought response,

which may be used to inform reforestation strategies under future climates.

Reliable climate data are equally essential for evaluating growth sensitivity and attributing
responses to drought. Multiple gridded datasets exist, varying in spatial resolution, time span,
and underlying data sources (Sun et al. 2018). Traditional interpolations based on weather
stations (New et al. 2002; Harris et al. 2020) coexist with satellite-derived or reanalysis products
that offer global coverage but start later and may vary in accuracy depending on region (Nguyen
et al. 2019). Errors in precipitation, in particular, can be high in regions with sparse station
networks or complex terrain (e.g., Zandler et al. (2019). While cross-validation against stations is
commonly used (Kluver et al. 2016; Cui et al. 2017), such methods often suffer from spatial
autocorrelation and do not fully capture uncertainties in poorly monitored areas (Dinku et al.
2008).

One possible solution is to validate climate datasets against independent biological responses.
Tree growth, as reflected in ring width or remotely sensed greenness indices, is a biologically
meaningful integrator of temperature and precipitation variability. All else being equal, data
products that best correlate with growth responses are likely to more accurately reflect
ecologically relevant climate variation, especially in moisture-limited environments. This
approach allows for both practical data selection and provides a potential contribution to
broadening independent validation methods for climate data.



Studying response to drought requires employing a definition of drought, which presents its own
set of challenges. Indices such as the SPEI provide a consistent climatic basis for detecting
anomalies (Gavin et al. 2007; Vicente-Serrano et al. 2013; Spangenberg et al. 2024), but they
often fail to capture species-specific physiological thresholds or site-level buffering effects. For
example, drought tolerance can differ dramatically between species with deep or shallow rooting
systems, as seen in northeastern Italy where Prunus mahaleb maintained function during extreme
drought while co-occurring Quercus pubescens suffered high mortality (Nardini et al. 2013,
2016). Local topography can similarly mediate drought impacts, with trees in valleys
experiencing less stress due to runoff accumulation (Galiano et al. 2010). These dynamics
highlight the limitations of climate-based definitions of drought and point to the need for

biologically anchored metrics.

Beyond species-level differences, substantial variation in drought response exists among
populations of the same species, reflecting both local adaptation and phenotypic plasticity in
response to environmental heterogeneity. Some populations may exhibit trait variation due to
plastic responses to soil conditions, microclimate, or stand structure, while others show
genetically based differences that have evolved under divergent climate regimes (Sniderhan et al.
2018; Vizcaino-Palomar et al. 2019; Silvestro et al. 2023). Distinguishing between these sources
of variation is notoriously difficult in observational studies, yet both mechanisms contribute to
observed drought resilience across landscapes. For example, trees from drier or more variable
climates often show greater capacity to maintain growth under water stress, whether due to
inherited traits such as narrower vessels and deeper roots, or through plasticity in morphology or
physiology. These factors interact with environmental modifiers such as soil water-holding
capacity, topographic position, or stand competition (Galiano et al. 2010; Cavin et al. 2013; Paz-
Kagan et al. 2017; Gutierrez Lopez et al. 2021), making it challenging to generalize vulnerability
at the species level. Given local adaptations (plastic and evolutionary), climate change may
expose even mesic populations to moisture stress that exceeds their evolved tolerances, leading

to drought impacts well beyond historically water-limited ecosystems.

To advance comparative vulnerability assessments, analytical approaches that recognize and
accommodate this biological complexity are needed. One promising direction involves the

development of standardized metrics that evaluate drought response relative to each population’s



baseline climate conditions, thereby decoupling drought severity from absolute climate values
and improving comparability across regions and taxa. This perspective aligns with the concept of
ecological drought, which defines drought not simply by climatic anomalies, but by their impact
on specific species, populations, or ecosystems. For example, a moderate climate anomaly may
constitute a severe drought for populations with narrow hydraulic safety margins or shallow
rooting systems, while the same event may have little effect elsewhere. Standardizing drought
impact based on relative growth decline—such as estimating a population’s capacity to recover
from a hypothetical event that causes a fixed percentage of growth reduction—can help isolate
intrinsic resilience from differences in climate exposure. This approach of identifying regions,
species or populations most vulnerable (or resilient to climate change) could help to set priorities
for where management interventions may be most needed due to heightened vulnerability, while
also identifying candidate species and populations that show greater resilience and may be

suitable for reforestation and restoration activities under drought-prone conditions.

1.5. Objectives and thesis structure

This thesis addresses the challenge of quantifying drought vulnerability in forests at scales
relevant to global change research and forest management. While it is well understood that
drought impacts forest growth and survival, the capacity to compare species and populations
across regions, or to evaluate droughts defined by climate data in an ecological contexts, remains
difficult to implement across large geographic scales. This limitation stems not only from
ecological complexity but also from fragmented data, variable quality of both ecological and
climate data, and methodological limitations to evaluate drought impacts across diverse
ecosystems and climate conditions. The overarching objective of this thesis is to develop and test
a coherent framework for assessing drought sensitivity and resilience across tree species,

populations, and regions using both dendrochronological and remote sensing approaches.

Chapter 2 begins by resolving the issue of inconsistent and incomplete dendrochronological
data, which can compromise robust, large-scale conclusions. It contributes a harmonized and
quality-checked dataset based on the International Tree Ring Database (ITRDB), correcting

metadata and standardizing chronology formats across thousands of sites. By assembling a



consistent empirical foundation, this chapter establishes a reliable baseline for analyzing

interspecific and regional patterns in growth sensitivity and recovery under drought.

Chapter 3 turns to the question of climate inputs, recognizing that the accuracy of available
climate data products are often assumed rather than tested for a specific purpose. Here, we focus
on comparing monthly historical precipitation products, which can substantially vary in their
estimates (historical temperature datasets mostly conform). Multiple global precipitation
products are independently validated against biological response variables of interest in this
research, tree-ring width and remotely sensed vegetation greenness, to determine how well these
datasets represent the moisture variability that drives tree growth. This evaluation helps clarify
which datasets are suitable for ecological modeling and which may misrepresent drought

dynamics in regions with sparse station coverage or complex topography.

With the input datasets established, we turn to applications that explore climatic growth
limitations at scale. Tree-ring analysis remains one of the most powerful tools for assessing how
climate constrains forest productivity, including drought, because of its long temporal reach.
These biological records often extend well before the availability of instrumental climate data
and offer insights into past response to interannual climate variability. However, the spatial
distribution of tree-ring sampling is limited and uneven, with large gaps in key regions of the
world. In Chapter 4, we test whether the same analytical approaches commonly used in
dendrochronology can be applied to satellite-derived vegetation indices. Although remotely
sensed records only extend back a few decades and with high-quality data mostly available since
the early 2000s, they offer near-global coverage with consistent, empirical observations. This
chapter investigates how well remote sensing metrics replicate patterns of climatic sensitivity
inferred from tree-ring data, evaluating their potential to scale drought vulnerability assessments
to areas where dendrochronological records are lacking or sparse.

Chapter 5 represents the core methodological contribution of this thesis by developing and

applying a new standardized Resilience to Ecological Drought index (RED50), which quantifies
the capacity of trees to recover from a hypothetical drought event that causes a 50% reduction in
growth. Building on the harmonized dendrochronological dataset and climate validation work of

the preceding chapters, this analysis addresses a key limitation in previous research: the



difficulty of comparing drought vulnerability across species and regions due to variation in
drought severity, species composition, local population adaptation, and site conditions. By
standardizing the drought impact to a fixed growth reduction and modeling recovery independent
of the climatic event severity, this chapter disentangles these confounding influences and enables
ecologically meaningful comparisons across diverse environments. The resulting RED50 metric
reveals both general patterns of species resilience and differences among regional provenances
within the same species. This approach not only enhances our understanding of drought
adaptation but provides a practical tool to inform climate-resilient reforestation and assisted
migration. By linking growth responses to climate through a standardized analytical framework,
this chapter delivers a scalable and actionable contribution to genotype selection and species

choice in forest management where drought is a potential concern under climate change.

Taken together, the chapters in this thesis offer a structured approach to assessing forest drought
vulnerability, with the aim of improving our ability to compare species and population responses
to historical droughts and support informed decisions in forest management under changing

climate.
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Chapter 2. A snapshot of the international tree ring database
(ITRDB) with improved metadata and error corrections

2.1. Summary

The international tree ring database (ITRDB) is an important resource to document climate
change impacts, reconstruct long-term climate trends, and investigate historical trends in forest
health and growth. Founded in 1974, it has been the primary global dendrochronology database,
and today contains data representing more than 5,000 sites, 160,000 cores and 250,000 core
measurements. Since data formats and metadata requirements have occasionally changed since
the inception of the ITRDB, considerable data checking and cleaning efforts are required by
investigators who want to use large portions of the database for continental or global research.
Here, we contribute a snapshot of the ITRDB (as of October 2021), that contains cross-checked
and corrected metadata (~20% of records corrected), consistently formatted raw ring width files
(~15% corrected) that can be read by open-source software without issue, as well as consistent
site chronologies, developed with three detrending methods (preserving low- medium- and high-
frequency variability) for different research objectives. We further report chronology statistics

and quality flags that help users exclude portions of the database as desired.
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2.2. Background & Summary

Over the last several decades, dendrochronology has become an important research approach to
document climate change impacts, reconstruct long-term climate trends, and investigate
historical forest health and growth characteristics (Folland et al. 2001). Pearl et al. (2020)
estimate that studies in the fields of dendroclimatology and dendroecology have more than
quadrupled in the past two decades. Dendrochronology-based research approaches have also
gained a variety of management applications in the context of tracking forest productivity and
forest health under changing climates (Hogg et al. 2005; Williams et al. 2013; Schongart et al.
2015; Vasconcellos et al. 2019), to evaluate drought vulnerability of species and forest
ecosystems (Herweijer et al. 2007; Huang et al. 2018; DeSoto et al. 2020a; Bose et al. 2021), to
study the long-term impacts of extreme climate events (Villalba and VVeblen 1998; Bond-
Lamberty et al. 2014; Dorman et al. 2015), and to track historical trends in fire frequencies
(Brandes et al. 2019; Saenz-Ceja and Pérez-Salicrup 2019; Spinu et al. 2020; Brown et al. 2020).

The primary data repository for researchers engaged in tree ring research for various objectives is
the international tree ring databank (ITRDB). The ITRDB was founded in 1974 by Harold C
Fritts through the Tree-Ring Research Laboratory in Tucson, Arizona when its operation was
largely dependent on volunteers (Grissino-Mayer and Fritts 1997). However, in 1990, with the
establishment of the World Data Center — A for paleoclimatology, the National Atmospheric
Administration Oceanic (NOAA) commenced the operation of the ITRDB, providing permanent
storage of tree-ring data from around the world (Grissino-Mayer and Fritts 1997). Since then, an
advisory committee consisting of international researchers has served as the custodian of the
ITRDB. As of 2021, the database contains over 5,000 sites, 160,000 cores and 250,000 data files

of core measurements.

The spatial and temporal coverage of the ITRDB has enabled important global and continental-
scale re-analyses efforts to yield more general insights than local studies can provide. Examples
for larger scale analyses based on the ITRDB include improving estimates of annual CO,
sequestration (Brienen et al. 2020b), which has shown that carbon sequestration has increased
with climate change, but also reduced average tree longevity, potentially compromising overall
carbon sequestration. Other important insights derived from ITRDB-based research include

forest resilience to drought events in large-scale studies for the US (Cook et al. 2007), Europe
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(Cook et al. 2015, 2020) and South America (Morales et al. 2020). ITRDB data has also
supported forecasting forest growth in the context of climate change (Charney et al. 2016) and

identification of legacy effects from climate extremes (Anderegg et al. 2015).

Working with ITRDB data does, however, present some technical challenges for researchers,
because the database relies on author contributions over a period of more than 50 years, and best
practices for metadata provision and file formats have changed over this period. Users may find
inconsistencies, omissions and data format idiosyncrasies that make batch processing of
downloaded ITRDB data difficult. There are multiple versions of Tucson format (.rwl) data files,
making bulk importing of data challenging. In a major quality control effort, Zhao et al.(2018)
has identified and corrected many problematic data files, although some data import issues
remain, and metadata issues were not addressed in this study. Metadata submitted by
contributing authors is available in the header of original .rwl data files, but they often contain
omissions, unit errors, or errors in start and end dates of chronologies. The NOAA team has
addressed many of these issues, providing corrected metadata in additional hierarchical file

formats (.xIm and .json), but not all problems have been resolved.

Here we contribute a recent snapshot (October 3, 2021) of the ITRDB, which provides data files
in a consistent format, readable without issues by the widely used R package dpIR (Bunn et al.
2022) for the R programming environment (R Core Team 2021). Header information in these
data files has undergone multiple cross-checks for consistency, and we have improved metadata,
where unambiguous corrections could be made. The ITRDB further contains author-contributed
chronologies that use a wide variety of detrending methods and are therefore not suitable for
reanalysis projects. We therefore provide three sets of consistently detrended chronologies that
preserve low, medium, or high frequency variability. Lastly, we built a metadata flat file with
curated information that allows users to select relevant records for various research purposes,
with links to data files, and original publications. The purpose of this contribution is to provide a
snapshot of a clean, consistently formatted version of the ITRDB with cross-checked metadata,
suitable for large-scale re-analysis projects. We further provide scripts used for some automated
error detection tasks that could be applied to future submissions to the ITRDB.
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2.3. Methods

2.3.1. Metadata compilation and inclusion of data types

In order to identify inconsistencies and potential errors in the existing ITRDB metadata, we
compiled metadata information from different sources into a single flat file, merging information
from (1) the header of the individual tree ring (.rwl) data files that were contributed by
researchers, (2) metadata compiled by Zhao et al. (2018), last updated on Oct 12, 2017, and
available as Appendix S1 at https://www.ncdc.noaa.gov/paleo-search/study/25570, (3) the
metadata text file on the ITRDB Server last updated on Oct 3", 2021, available at

https://www1.ncdc.noaa.gov/pub/data/paleo/treering/, and (4) additional NOAA metadata fields

available at https://www?1.ncdc.noaa.gov/pub/data/metadata/published/paleo/json/ last updated
on Nov 5", 2021.

This metadata information from multiple sources was imported and merged with the appropriate
ID field (variously referred to as “studyCode”, “fileCode”, “CODE”, “ID” and “file”).
Subsequently, we searched for inconsistencies of any metadata field provided by different
sources, accepted the most plausible version, and made additional corrections as described
below. After corrections, the corrected metadata was assembled as a flat file and expanded with
useful additional fields sourced from NOAA’s .json file types. We included URLS to each data
file, the study name and author notes, the NOAA study page URL, location information, species
common and updated scientific names, citations and DOIs or URLSs to publications (where
available). In addition, we include quality and error flags that we generated as part of this cross-
checking effort and currently accepted species names that allows for merging of synonyms. An R
script to bulk-import individual .json metadata and assemble the flat file is provided as Appendix
1.

A chronology may include multiple types of measurements, some of the measurement types
being quite rare. Since the objective of this contribution is to provide a database for large-scale
re-analysis efforts, we only included the most common measurements: (1) ring width (indicated
in the .rwl file name as w, rw, original, or simply left blank without a letter), latewood width
(coded as | or Iw), earlywood width (e or ew), maximum density (x), minimum density (n),

latewood density (t), earlywood density (i) and latewood percent (p). Together, these data types
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comprised 99.5% of the data in the ITRDB. The remaining 0.5% of data types, e.g., basal area
(ba), basal area mass (bm), blue intensity (b), cell wall thickness (c), tracheid diameter (w), were
not included in this compilation and cross-checking effort. We recoded the .rwl file names
indicating measurement types for consistency according to the conversion matrix provided as
Appendix 2. Our final collection of raw data files comprises chronology data from 5014 sites,
with 5008 data files of ring width measurements (containing multiple trees and multiple cores
per tree), 625 measurements of latewood width, 621 earlywood width, 576 maximum density,
519 minimum density, 311 latewood density, 311, earlywood density and 49 latewood percent

measurements.
2.3.2. Manual location and elevation corrections

We investigated all location discrepancies that exceeded 5 km among any pair of meta-data
sources described above (computed with the geosphere package (Hijmans 2021) for the R
programming environment (R Core Team 2021). In addition, we checked for inconsistencies
among reported country, province or state with a point extraction from a GIS layer with the same
information (USGS 1997). To resolve conflicting information, we consulted the author’s original
publication where available, used Google Earth satellite imagery to judge the plausibility of
different candidate locations based on reported location names, and lastly compared reported
elevation versus elevation from a digital elevation model as an additional criterion to decide on
the most plausible location record. For location records that matched between NOAA metadata
and author reported, we re-calculated a decimal degree location from the original degree-minute
record with 4-decimal precision to avoid the introduction of additional (albeit very small)
rounding errors. For unresolvable location discrepancies, we accepted NOAA’s .json files due to
its superior quality control procedure and documentation (details available at

https://www1.ncdc.noaa.gov/pub/data/paleo/data management/ITRDBworkflow.txt).

Inconsistencies in reported elevation values were mapped by pairwise comparisons among the
different sources of metadata as well as checked against a 30 arcsecond (approximately 1km)
Digital Elevation Model (DEM) (USGS 1997). Reported elevation values of zero or missing
values were replaced with the DEM value. For mountainous areas, mismatches between a

reported elevation and DEM values are common, and typically arise from location coordinate

25


https://www1.ncdc.noaa.gov/pub/data/paleo/data_management/ITRDBworkflow.txt

inaccuracies rather than a mis-reported elevation values. We therefore only investigated
discrepancies if no matching elevation values could be found within a 10 km radius, a query
implemented with the ArcGIS focal statistics tool (ESRI 2011). As a secondary criterion to
focal-point based elevation corrections, we evaluated the percentile value of the reported
elevation in species’ elevation range. All focal-point DEM discrepancies were corrected if they
also corresponded to a position above the 95th or below the 5th percentile of a species’ elevation
range. With this dual criterion, errors could be corrected with high confidence. Note that
elevation corrections are valuable if climate values are estimated directly for sample locations
through interpolation techniques that use elevation as a covariate for climate estimates (e.g., for
users of climate databases that allow for lapse-rate based temperature corrections (Wang et al.
2016; Marchi et al. 2020)).

2.3.3. Chronology start and end dates

The start and end dates of chronologies are available in metadata, but they are also encoded at
the end of the second line of .rwl data files and can further be retrieved from row names after
import with the read.rwl() function of the dpIR package (Bunn et al. 2022). The latter reflects
years for which ring width data is available. Mismatches were classified into three types. The
most common errors were due to how the year is encoded on .rwl files: (1) When elevation
information is missing, latitude is read as start year and subsequent start and end date reads
failed; (2) floating chronologies do not have exact calendar year assigned to them and sometimes
are encoded with future years or random starting years e.g. 1001 or 101 or 0, (3) some files
included a hyphen between start and end year instead of a space which was read into metadata
source as negative years. All problems could be unambiguously resolved, and corrected start and
end dates of chronologies were included in the final metadata flat file, as well as written into a
new set of .rwl data files.

2.3.4. Species nomenclature

Species information is available on the first line of the header of .rwl files and it is encoded by
four letters — generally the first two encode the genus and last two the specific epithet. In order to
include the full species name, codes were first converted to NOAA'’s list of species names

(https://www.ncei.noaa.gov/pub/data/paleo/templates/tree-species-code.csv). Subsequently, we
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cross-checked the nomenclature against The Plant List database (2013) using the function TPL()
from the Taxonstand package (Cayuela et al. 2021). This database is based on the World Flora
Online Dataset of 2013 curated by the Kew Royal Botanical Garden, and then manually updated
through the Plants of the World Online (POWO) website, also curated by the Kew Royal
Botanical Garden but more frequently updated. Name matching was implemented with a fuzzy
match algorithm implemented using the stringdist_join() function of the fuzzyjoin package
(David Robinson 2020). Current accepted names were added to the metadata to allow
consolidating synonyms by users of this database, but original ITRDB names and codes were not

altered.
2.3.5. Corrections to tree ring data files

To check for formatting issues in Tucson format (.rwl) data files, we used the read.rwl() function
from the dpIR package for the R programming software to import all files checked or corrected
by Zhao et al. (2018) and any new files added to the database since the cut-off date reported in
Zhao et al.’s (2018) publication. For all files that failed to import we programmed a modified
version of the read.tucson() function (available as Appendix 3 which returns a list of errors
encountered in each file. Issues that prevent files from being read included the presence of
diacritics and commas in file headers, partially or fully duplicated cores, and mistakes in labels
identifying cores or years. For duplicated cores, we followed the same rationale used by Zhao et
al. (2018), that is, identical values were deleted, cores with only a partial overlap that had similar
values were considered segments of the same core and had their labels adjusted, and in case of
fully duplicated cores (complete overlap) the first core in the file was kept and any subsequent

duplicates were discarded.

2.4. Data records

2.4.1. Species and geographic coverage
The final database snapshot comprised 5,014 sampled forest stands (sites) with a total sampling
effort of 163,236 tree cores representing 228 species. For each forest stand of a given species,

multiple trees are usually sampled with 1-2 cores per tree. Dated measurements from all cores
collected at a forest stand (site) are then recorded into a single .rwl file. After detrending to
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remove unwanted age effects and other low frequency variance, cores are then combined to form
a single chronology containing the average signal of that stand in .crn files, resulting in one

chronology per site and measurement type.

The five most commonly sampled genera are Pinus (57 species), Picea (12), Quercus (26),
Pseudotsuga (2) and Larix (8) summing to 3,593 sites and representing 70% of the chronologies
of the ITRDB (Figure 2.1). The 50 most sampled species represent 85% of all chronologies of
the ITRDB. Gymnosperms comprise most of the chronologies (83% vs 17% angiosperms), but
the percentage Angiosperm species is somewhat higher than its raw data representation (32% of

species).

28



_ Pseudotsuga
Larix

B rvies

- Tsuga

- Juniperus

. Nothofagus
l Fagus
0

Genus

('r

500 1000
Number of Sites

Figure 2.1. Frequency (inset) and distribution of the ten most common genera contributed to the ITRDB representing approximately three quarters of
all entries.
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overlaid as box plots (right scale).
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The majority of chronologies (2768) and species (161) have been contributed from North
America, followed by Europe with 1460 and Asia with 393 chronologies (Figure 2.2). Asia is
represented with 59 species and Europe with 51 species. Chronologies from other continents
amount to 394 chronologies (8% of the ITRDB), mostly located in Oceania (186) and South

America (176), and only a small number of chronologies originate in Africa (32).

Both, low and high-elevation species are represented in the database (Figure 2.2), but generally
the number of chronologies decreases with increasing elevation. Only 21% of the database
contains sites above 2000 m, and sites in the 3000-4000 m range are mostly restricted to North
America, representing 295 sites or 4% of the database. A few other high-elevation species with
low numbers of chronologies can be found in the Himalayas, including Abies spectabilis, A.
pindrow, A. forrestii, Betula utilis, Juniperus przewalskii, J. tibetica, Picea likiangensis and P.

smithiana, which together account for 0.6% of the database.
2.4.2. Temporal coverage

The database records span from 6000 BC to 2019, covering 8019 years of data, with records
representing the period from 1700 to 2000 most common (Figure 2.3). Millenia-long
chronologies are available from 236 sites (4.7% of the ITRDB), not including floating
chronologies from undated fossil samples. The longest chronologies developed comprise 7979
years for Pinus longaeva sampled in the White Mountains in California and 7417 years for P.
sylvestris. P. longaeva from Lapland. The median time span of chronologies in the database is
284 years.
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Figure 2.3. Number and proportion of cores for the 10 most common genera found in the
database.

2.4.3. Detrended chronology files

We selected three widely used methods that preserve low-medium, medium, or high frequency
variability, and that did not require information unavailable in the ITRDB records, (such as
cambial age). The chosen detrending methods were: (1) a modified negative exponential curve,

which preserves medium to low frequency signals (multidecadal to centennial); (2) the default

option of the COFECHA software, which is a smoothing spline with a 32-year interval and cut
off frequency of 50% (Bunn et al. 2022), representing a detrending method commonly used to
analyze medium-high variability (interannual to multi-decadal); and (3) the Friedman super
smoother (Friedman 1984), which operates more locally than cubic splines and only preserves
high frequency variation (interannual to single-decade). While better methods exist for
preserving low-frequency variability, e.g., Regional Curve Standardization (Melvin and Briffa
2008), they require additional data on cambial age of samples, and also cannot sensibly be
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applied to many shorter chronologies that are contained in the ITRDB. Subsequent to detrending
individual cores, chronology data files were generated by averaging detrended and cross-dated
cores of a single stand using the function chron() of the dpIR package for the R programming
environment. Scripts used for detrending are available as Appendix 4 and can be modified for

different purposes by users of this database.

2.5. Technical Validation

2.5.1. Estimated population signal (EPS) statistics

Generally, chronologies measured more recently show higher concordance among tree cores, as
evaluated by the Estimated Population Signal (EPS) statistic (Figure 2.4). EPS is a measure of
how much the average chronology reflects the theoretical common signal of an infinitely large
population (Wigley et al. 1984). The statistic is strongly driven by number of samples (cores),
estimating how much variance can be attributed to the common signal throughout the sample
depth. Lower EPS values generally indicate lower predictive power for dendroclimatological
analysis (Buras 2017). A commonly used threshold to measure the quality of the chronology is
0.85 meaning a 15% loss in explained variance due to sampling (Figure 2.4, blue vs red). This
value can vary depending on the detrending method due to different levels of variance removal
associated with the spline or function flexibility. Based on a common detrending method with a
32-year spline and 50% cut-off frequency, 92% of chronologies attain an average EPS statistic
above 0.75 across their entire length, and 74% of chronologies have average EPS values above

0.85 across their entire length.
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Figure 2.4. Estimated population signal (EPS) statistics for the most common species. The
length of individual chronologies is represented by a vertical line. EPS was calculated for a
moving window of 50 years and colors represent an EPS quality threshold of 0.85.

2.5.2. Corrections to metadata

Corrections of various types were made to about 35% of ITRDB submissions (Table 2.1). This
included 41 major location errors that could be unambiguously corrected with publication
information, Google earth imagery, geopolitical boundaries, and elevation information. Further
we identified and corrected 162 elevation values that were reported in the imperial measurement
system instead of the metric system, 113 implausible elevation values and 354 files that had
missing elevation values. For the remaining elevation discrepancies in mountainous areas we
accepted the reported elevation values as correct, but we flagged discrepancies to the DEM in the
metadata file (Figure 2.5 and Figure 2.6, red).

Errors in the starting and end year of the chronology were detected for 596 chronologies, 62 of
these originated from read errors by import algorithms (e.g., when elevation is missing, an
algorithm that uses spaces for boundaries may read coordinates as years). For 49 files, years
were mistakenly coded with hyphens to indicate the time span between start and end year but
those were read as negative years. 19 error were related to floating chronologies which may not
have defined calendar years and were arbitrarily given random dates in order to create .rwl files.
Those were reset to start date of -9999.
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Original ITRDB species names were not changed (251 different species), but we added
additional metadata fields containing the current accepted names of 243 species, and this field

can now be used to aggregate synonyms.

Table 2.1. Summary of corrections to metadata and raw data files (.rwl files).

Type of error Total % files
File read errors 1309 16.3%
e Diacritic corrections 1278  15.9%
e Duplicated cores 31 0.38%
Location errors 302 3.76%
e Deviation > 100 km 14 0.17%
e Deviation > 10 km 36 0.44%
e Deviation > 1 km 106 1.32%
e Country mismatch 146 1.82%
Elevation errors 632 7.88%
e High deviation in flat areas 113 1.41%
e Conversion errors 163 2.03%
e Missing values filled with DEM 356 4.44%
e Focal point corrections 205 2.55%
Chronology start or end date errors 730 9.10%
e Lat, lon, elev as date 62 0.77%
» Negative end years 49 0.61%
e Multiple 8 0.01%
e Other 611 7.62%
Species corrections 1151  14.34%
e Author name change 498 6.20%
e Epithet change 633 7.89%
e Genus change 20 0.25%
e Conflicting names 12 0.15%
Total files manually corrected 2870*  35.79%*

* Total number of unique files corrected and corresponding percentage of the database.
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2.6. Corrections to data files

About one sixth of all files failed to read properly during import with the dpIR package for the R
programming environment (Table 1). Issues that prevent files from being read could be classified
generally in six types that were, (1) the presence of diacritics (e.g., “a”, “a”, “i’””) or commas in
file headers, (2) duplicated cores, (3) mistakes in decade or core labels, and (4) files with years in
the future, and non-standard use of trailing zeros instead of missing values. Except for duplicated
cores, the required corrections were straight forward and were carried out in the original .rwl
files. For duplicated cores we followed a procedure similar to Mina (Mina et al. 2016) who also
identified this issue. The first core in the file was kept and any subsequent duplicates were
discarded for 36 out of 63 instances of duplication issues, including identical duplications. For
the remaining 27 partial duplications, we retained the longest entry and included additional

segments of the same core from subsequent entries.

Using the corrected metadata as previously described and corrected data files, we created a new
set of .rwl files in decadal Tucson format using the function write.tucson() of the dpIR package
(Bunn et al. 2022). The corrections were implemented by setting the corrected metadata as
source for the header information in the function parameter options. This final set of .rwl files
was tested for compatibility for a variety of software packages, allowing users to bulk-import
ITRDB data for analysis without additional efforts or without the need to troubleshoot import

errors, incorrect location information or other issues.

2.7. Usage Notes

The database contains (1) a compressed archive of all raw ring width data, (2) chronology files
using three different detrending methods, (3) a flat file of meta data for each raw data file and
chronology, (4) detailed variable explanations for the meta data flat file, and (5) various
appendices with scripts, and records of changes used in this database cleaning and compilation
effort. As data format for raw measurements and chronologies, we chose the Tucson decadal
format, which has been the standard in dendrochronology community since long before the
creation of the ITRDB. While it reflects file size limitations that no longer exist today (Grissino-
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Mayer and Fritts 1997), it is the most widely supported by software applications, and is a

familiar format in the dendrochronology community.

Wherever possible, we provide flags or variables that allows users to use their own criteria for
inclusion or exclusion of records according to their analysis objectives. Data can be filtered by
start and end dates of the chronology, number of sampled trees, number of cores per tree, or
expressed population signal. For research in mountainous regions, the plausibility of recorded
elevations can be checked against a value from a digital elevation model (DEM) or the range of
DEM values within a radius of 10 km of the reported location. Furthermore, the data can be
easily subset by continent, subcontinental regions, countries and state of province information

where applicable, which is now complete for all ITRDB records.

We have further included URLs and DOls to additional information about original contributors
and their publications to facilitate attribution through citation of the original publications.
References to URLs and DOIs of each dataset and study page by NOAA is also contained in the

meta data flat file for citation and for additional meta data information.

We provide three detrending options that preserve low-medium, medium, or high frequency
variability. One of the most common detrending methods, cubic smoothing splines preserves
medium frequency variation (although this can be modified by parameter settings). This set of
chronologies would be suitable for studies that assess impacts of disturbances and other natural
phenomena that can last several years to decades (e.g., impact of logging, forest extraction,
insect outbreaks, or severe climatic extreme events). In contrast, the Friedman super smoother
method, which operates more locally than cubic splines and only preserves high frequency
variation (interannual to single-decade) would be best suited for ecological research that
quantifies the influence of interannual variation of environmental variables on tree growth (e.g.,
identification of limiting climatic factors). Lastly, the modified negative exponential method,
which preserves medium to low frequency signals (multidecadal to centennial) would be best
suited to study long-term climate shifts and reconstruct past climate variables. We should note,
however, that usability of chronology files using this method is also strongly restricted by
chronology length (Cook et al. 1995), and additional filtering by chronology length should be
applied.
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Lastly, we note a limitation, in that this effort to improve the quality and usability of ITRDB data
did not include detection of errors in crossdating, which could lead to lower EPS statistics, or
errors in start and end dates of whole chronologies that may be revealed through correlation
analysis with climate records. A reanalysis by St. George and Ault (St. George and Ault 2014)
revealed that for northern hemisphere tree cores, crossdating errors due to missing rings are
common, and they could be coded as zeros or as small non-zero values. However, evaluation of

raw core data on this aspect was beyond the scope of this study.

2.8. Code Availability

Code used to track errors, update them, and generate new .rwl and .crn files were created in the
R software programming environment version 4.1.2 (Bird Hippie). All codes used here are
publicly available on Appendices Appendix 1, Appendix 3 and Appendix 4.
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Chapter 3. Validation of global precipitation time series products
against tree ring records and remotely sensed vegetation greenness

3.1. Summary

Global interpolated climate products are widely used in ecological research to investigate
biosphere-climate interactions and to track ecological response to climate variability and climate
change. In turn, biological data could also be used for an independent validation of one aspect of
climate data quality. All else being equal, more variance explained in biological data identifies
the better climate data product. Here, we compare seven global precipitation time series
products, including gauge-based datasets (CRU-TS, UDEL-TS, GPCC), re-analysis products
(ERA5, CHELSA), a satellite-based dataset (PERSIANN) and a multi-source product that draws
on gauge, re-analysis, and satellite data (MSWEP). We focus on precipitation variables, because
they are more difficult to interpolate than temperature, and show larger divergence among
gridded data products. Our validation is based on 20 years of remotely sensed vegetation
greenness (MODIS-EVI) and 120 years of tree ring records from the International Tree Ring
Data Bank (ITRDB). The results for the 20-year EVI based validation shows that all gauge and
re-analysis data products performed similarly, but were outperformed by the multi-source
MSWEP product, especially in regions with low weather station coverage, such as Africa. For
analyzing long 120-year time-series, UDEL-TS showed superior performance prior to the 1940s,
with especially large margins for northern Asia and the Himalayas region. For other regions,
CRU-TS and GPCC could be recommended. We provide maps that can guide the best regional
choice of climate product for research involving time series of biological response to historic

climate variability and climate change.
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3.2. Introduction

Researching biological response to interannual climate variability, long-term climate trends or
climate extreme events requires reliable historical climate data. Such data are usually provided as
gridded data products that have been interpolated from weather stations, allowing for estimates
of climate variables for any study site or sample location (Speer 2010; Golian et al. 2019;
Serrano-Notivoli et al. 2021). However, depending on the climate variables required, the
topographic complexity of the landscape, and the distance between the study site of interest and
the nearest weather station, climate estimates from different data products may be very variable
in quality (Garcia-Suarez et al. 2009; Sun and Liu 2016; Fontana et al. 2018). Generally,
temperature variables are easier to interpolate and even in mountainous areas they follow
predictable patterns according to adiabatic or environmental lapse rates. This is not the case for
precipitation variables that are driven by more difficult to model processes, such as orographic
lift and rain shadows that do not scale in straight-forward ways with elevation. Furthermore, the
shorter the historical time period to be predicted (annual, monthly or daily), the more
precipitation estimates are driven by spatially distinctly bounded, and randomly occurring

weather events, making interpolations especially challenging (Augustine 2010).

Nevertheless, at monthly spatial resolution, global and regional gridded climate data products are
available from many sources, and these products are based on two general types of data sources.
Traditionally, gridded climate data is produced from interpolating weather station data (gauge-
base) using a variety of interpolation methods (New et al. 2002; Harris et al. 2020). Since
approximately the year 2000, time series climate data products based on remotely sensed
temperature and precipitation have become available from high-quality satellite-based sensors
(Nguyen et al. 2019). However, both approaches have their own limitations. Gauge-base data
provides long-term climate datasets (100+ years) but is often severely limited by regional and
temporal gaps in weather station coverage (Castellanos-Acufia and Hamann 2020). Remote
sensing-based datasets, on the other hand, have homogeneous coverage of the earth’s surface that
are covered by the orbital path of the satellites (between 60° latitude north and south), but the
earliest datasets only start around the 1980s with high quality data only available since around

the year 2000. Some gridded climate data products make use of both data sources, where
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remotely sensed climate estimates are used where available, and adjusted with weather station

information (Simmons et al. 2021).

Making selections among different climate data products could therefore potentially be an
important choice for researchers studying climate-biosphere interactions. For gauge-based
precipitation products, there are two main reasons why estimates may differ in precision and
accuracy. First, authors of different interpolated climate data products may have different levels
of access to weather station data from specific countries or regions (Sun et al. 2018), and second,
different interpolation algorithms used may result in varying regional quality of climate variable
estimates (Sun et al. 2018; Serrano-Notivoli et al. 2021). The choice of interpolation algorithms
is not particularly important for regions with dense weather station coverage, where most
methods yield very similar estimates and validation statistics. However, for remote regions with
sparse or no weather station coverage, such as high montane, high latitude, or other undeveloped
regions of the world, interpolation methods can substantially diverge in their climate estimates
(Sun et al. 2018; Zandler et al. 2019). This divergence among different interpolation approaches
often goes undetected because areas without training data also have no weather stations available
for validation.

While validation of the accuracy of climate data is usually performed against weather station
data by the authors of climate data products, these validations are generally meaningless for
cross-product comparisons. First, there are many valid approaches to validation including
various statistical methods, different options to subset training and validation data, and different
approaches to deal with autocorrelations among nearby weather station records that may inflate
validation statistics (Dinku et al. 2008; Kluver et al. 2016; Fung et al. 2022; Xu et al. 2023). As
such, validation statistics from different studies are not directly comparable. Second, after
validation statistics have been computed, the withheld validation data will be re-joined with the
training data to create the final climate data product to take advantage of all available
information. For valid product comparisons, all authors would need to use the same validation
data, withheld from the training data, and as such post hoc product comparisons with weather
station records are not possible.
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Biological data, on the other hand, offers an independent data source for validating one aspect of
the quality of climate data products. In this study we use 20 years of global historical remote
sensing records of vegetation greenness (MODIS-EVI1) and 120 years of tree ring records from
the International Tree Ring Data Bank (ITRDB). This independent validation is based on the
strength of plant-climate associations, with the expectation that variance explained in biological
data should be higher for better quality climate data sets. We note that this is only a partial
validation, because the accuracy of absolute climate values cannot be assessed with biological
data sources. However, we can assess the precision of plant-climate interactions in time series.
To describe this limitation in other words, we cannot assess systematic bias of climate estimates
for any location with biological data, but statistical precision of climate data tracking inter-
annual variation of historical biological records can be quantified. For this comparison, we can
hold all model parameters and top-level attributes (such as missing values and length of data

coverage) constant, with only the climate data source varying in the validation analysis.

This study contributes such an independent validation effort for seven widely used global
historical climate products CRU v4, UDEL-TS, GPCC, ERA5, CHELSA, MSWEP and
PERSIANN, described in more detail below. Our objective is to carry out two types of
comparisons: one long-term evaluation against 120 years of tree ring records for three weather
station-derived products with the same long time series coverage (CRU v4, UDEL-TS, GPCC).
In a second comparison, we use 20 years of recent global historical remote sensing records of
vegetation greenness for validation. For more recent time periods, remote sensing-based products
(PERSIANN), re-analysis products that combine observational data with general circulation
models (ERA5, CHELSA), and multi-source models that combine gauge, satellite, and re-
analysis data (MSWEP) could yield better precipitation estimates, especially for regions with
sparse weather station coverage. Our objective is to provide region-specific guidance to
researchers, who investigate time series of biological responses to historic climate variability and

climate change, as to which climate product is most suitable for their research.
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3.3. Methods

3.3.1. Climate data products

We selected seven widely used global, monthly climate data products with a historical coverage
dating to the beginning of the 21* century for gridded products derived from weather station
records, and dating back to the 1980s for remote-sensing or reanalysis based climate products.
This includes the CRU TS 4.05 dataset from the Climatic Research Unit of the University of East
Anglia (Harris et al. 2020), the Terrestrial Precipitation product from the University of Delaware
(UDEL) (Matsuura and Willmott 2018), the Full Data Monthly Product v2018 from the Global
Precipitation Climatology Centre (GPCC) (Schneider et al. 2018), the 5th generation reanalysis
product (ERADS) of the European Centre for Medium-Range Weather Forecasts (Simmons et al.
2021), the climatologies at high resolution for the earth’s land surface areas v2.1 (CHELSA)
from the Swiss Federal Institute for Forest, Snow and Landscape Research (Karger et al. 2021),
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks - Climate Data Record (PERSIANN-CDR) from the Center for Hydrometeorology and
Remote Sensing at the University of California (Nguyen et al. 2019), and the Multi-Source
Weighted-Ensemble Precipitation (MSWEP) product from Department of Civil and
Environmental Engineering at the Princeton University (Beck et al. 2019). Attributes of these
climate data products are summarized in Table 3.1. A general map of weather stations with at
least 30 years of precipitation data is shown in Figure 3.1, based on Castellanos and Hamann
(Castellanos-Acufia and Hamann 2020), to represent general regional climate data coverage.
However, not all of the above gauge-based climate products would have utilized all of these

stations for interpolation, depending on different exclusion criteria.
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Table 3.1. Global interpolated precipitation products evaluated in this study. Datasets were
generated by the University of East Anglia Climatic Research Unit (CRU), the University of
Delaware Terrestrial Precipitation (UDEL), the Global Precipitation Climatology Centre
(GPCC), the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERAS), the
Swiss Federal Institute for Forest, Snow and Landscape Research (CHELSA), the Center for
Hydrometeorology and Remote Sensing at the University of California (PERSIANN), and the
Department of Civil and Environmental Engineering at Princeton University (MSWEP).

Dataset Type Resolution ~ Start End*
CRU4 Gauge 0.5° 1901 2022
UDEL Gauge 0.5° 1901 2017
GPCC Gauge 0.25° 1890 2022
ERA5 Reanalysis 0.25° 1950 2022
CHELSA Reanalysis 30" 1979 2022
PERSIANN Satellite 0.25° 1983 2022
MSWEP Multi-source 0.01° 1979 2022

! at the time of data access, 2022 implies ongoing updates.

P

Figure 3.1. Spatial coverage of weather stations with precipitation records. Remotely sensed
precipitation estimates are not available above 60° latitude, indicated by the dashed line. The
figure uses public domain spatial data from Natural Earth (http://www.naturalearthdata.com/)

and public domain location data from the International Tree Ring Databank

(https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring).
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3.3.2. Tree ring records

A global dataset of tree ring records was obtained from the International Tree Ring Data Bank
(ITRDB) (Grissino-Mayer and Fritts 1997; Zhao et al. 2018). Raw tree ring measurements from
approximately 150,000 cores collected at 4422 sites were used to develop site- and species-
specific chronologies. Chronologies were detrended using the Friedman Super-Smoother method
to remove both long- and medium-frequency variability and maintain short-frequency (year-to-
year) variability. This removes age-related trends in tree ring data that may be confounded with
long-term climate trends or decadal climate oscillations. Our analysis therefore evaluates how
well tree ring data tracks inter-annual climate variability. The Friedman Super-Smoother method
was implemented with the package dpIR (Bunn 2008, 2010; Bunn et al. 2022) for the R
programming environment (R Core Team 2022). We used the default parameters of the function
detrend(), which were equal case weights (wt parameter), automatic span detection using cross-
validation (span = “cv”) and default bass (bass = 0). After detrending, each series of cross-dated
ring width measurements from the same site and of the same species were averaged using a
robust biweighted mean to reduce the effect of outliers in the final chronology, implemented
with the function chron(), of the package dpIR (Bunn 2008, 2010; Bunn et al. 2022) for the R
programming environment (R Core Team 2022). The function chron(), was also used to fit an
autoregressive model to remove temporal autocorrelation (pre-whitening), which maximized
correlations with precipitation data (determined empirically, post hoc). The spatial coverage of
tree ring records is shown in Figure 3.2, and the overlap of chronology records with climate data
products is shown in Figure 3.3 The validation was restricted to complete pairwise comparisons
across all data products. In other words, all data products were evaluated based on an identical

number of chronologies and years per chronology.
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Figure 3.2. Spatial coverage of tree ring chronologies and remotely sensed vegetation greenness. Remotely sensed enhanced vegetation index (EVI)
coverage is restricted to pixels with a dominant growing season, allowing for an annual area under the curve estimate from EVI data as a proxy for
vegetation productivity, equivalent to tree ring widths. The figure uses public domain spatial data from Natural Earth
(http://www.naturalearthdata.com/) and an original spatial layer developed from open-access EVI12 data

(https://Ipdaac.usgs.gov/products/mcd12q2v006/).
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Figure 3.3. Temporal data coverage of climate products, remotely sensed EVI data, and tree ring
chronologies. Tree ring chronologies are ordered by end year and truncated at 1900s to match
climate data (total of 4422 sites). Shades of grey in lower panel represent the percentiles of the

dataset. Only temporally pairwise-complete data was used for climate product comparisons.

3.3.3. Remote sensing data

The most widely used vegetation indices to assess vegetation greenness and draw inferences on
vegetation health and productivity are the Normalized Difference Vegetation Index (NDVI) and
the Enhanced Vegetation Index (EVI) (Xue and Su 2017). While both have been used widely,
EVI is less prone to noise from atmospheric and soil conditions and less easily saturated by
dense vegetation, and therefore more sensitive to interannual variation of forested areas,
particularly in temperate and tropical regions (Myneni et al. 2002; Huang et al. 2021). Here we
use an annual EVI data from the NASA Earth Observing System Data and Information System
(EOSDIS) website, where an annual area under the curve has been integrated (collection
MCD12Qz2 v006, product MOD13A1), which represents photosynthesis over the entire growth
cycle from greenup to dormancy (Friedl et al. 2019). This data is similar in principle to tree-ring

records, where the ring width represents the integration of a growing season’s growth. Also
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similar to tree ring data the EVI area under the curve records are only available for climate
regions with a distinct growing seasons (Fig 2, shown as dark gray data coverage). We
aggregated the original 500 m resolution EVI area under the curve data to 5 km resolution and
included only pixels that had time series with at least 50% non-missing values for a 5 km
aggregated grid cell. Our analysis focuses on forested areas, by excluding croplands, grasslands
and other non-forested areas using the vegetation continuous fields product (MOD44B)
(DiMuiceli et al. 2015). This aggregated 5 km resolution dataset is available through a data
repository (http://doi.org/ 10.6084/m9.figshare.24540928), and could be used to test other

climate products.
3.3.4. Statistical analyses

For each tree ring site and for each pixel of the EVI dataset we carry out an 8-months lagged
correlation analysis. We assumed the growing season to have ended at the end of August for the
northern hemisphere and at the end of February for the southern hemisphere, evaluating
cumulative annual EV1 or tree ring width with 8 months of climate data with a simple linear
model, implemented with the Im() function of the R base package (R Core Team 2022).
Although more sophisticated multivariate response function analysis methods are available for
research in dendroclimatology, this is not needed in this study. For comparisons of climate data
products with all factors held identical, a simple statistic from a correlative model is sufficient.
We therefore chose an un-adjusted variance explained (R?) from a multiple regression model,
where the EVI area under the curve or tree ring width was specified as response variable, and the
8 month of monthly climate data prior to the end of the growing season were the predictor
variables. This generally captures the growing season and several month prior where

precipitation-growth correlations are expected to be reasonably strong.

To concisely report results for thousands of tree ring chronologies and millions of EVI grid cells,
we used regional aggregation of the resulting R? values. EVI data was aggregated using ecozone
delineations from the Terrestrial Ecoregions of the World product (Olson et al. 2001). To enable
regional choices of the best climate data product, an assessment of the best dataset for an
ecoregion was made using the Condorcet voting algorithm. The Condorcet method is a ranked

pair-wise balloting system. In our case, the ranked ballots are the ranked R statistics for each

55



tree ring chronology or EVI pixel that belong to the same ecoregion. A ranked ballot not only
evaluates how often a product is ranked first in regional summaries. Last place rankings (and
intermediate rankings) carry negative (or neutral) weight in the evaluation as well. The ranked
ballot procedure was implemented with the Condorcet() function of the Vote package (Version

2.3-2) (Sevcikova et al. 2022) for the R programming environment (R Core Team 2022).

Lastly, for the long-term historical analysis, using the 120-year dendrochronology dataset, we
used the same multiple regression approach described above using 21-year moving windows in
single year increment steps, covering the period 1901 to 2000, and therefore reporting moving
average statistics from 1911 to 1990. This allows the evaluation of how data quality has
developed over time. All graphical representation of quantitative data were generated with the
ggplot2 package (Wickham 2016) for the R programming environment, and maps of data
coverage and results were generated with ArcGIS Pro v3.0.0 (ESRI 2022).

3.4. Results & discussion

3.4.1. Regional comparisons based on EVI data

Remote-sensing based validation statistics of precipitation products for recent climate data since

2000 are very similar, when summarized by continent or subcontinent (

Figure 3.4, bar charts). It should be noted that the analysis is restricted to forested areas with
seasonal growth patterns and therefore excludes ecoregions with aseasonal tropical rainforests
and areas with minimal tree coverage. Regional Condorcet ranked-ballot winners by ecoregions
provides spatially more explicit results (Figure 3.4, map). All data products appear as the best
choice in some regions of the world, notably, however, MSWEP is more frequently the winner
dominating large area of several ecosystems. For North America, MSWEP, CHELSA and UDEL
dominate as the preferred data products by a small margin. Northern Asia is dominated by
MSWEP and CRUA4. For sub-Saharan Africa and the Sierras of Mexico, MSWEP wins by

relatively large margin when compared to all others.
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Figure 3.4. Best regional interpolated precipitation products for a recent 2000-2017 period against remotely sensed vegetation greenness. The
comparisons are based on the strongest correlation with Enhanced Vegetation Index (EVI) annual area under the curve values. The map by ecoregions
represents the best performing precipitation product, using the Condorcet winner method, where R? values of individual EVI pixels are used

equivalently to ranked ballots. The figure uses public domain data from Natural Earth (http://www.naturalearthdata.com/) and original results
generated in this study.
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A fairly consistent result is that the remotely-sensed PERSIANN precipitation product under-
performs in most regions of the world (most frequently ranked last), although the product does
come out as ranked-ballot winner for mid- to high-latitude eastern continental regions, i.e. the
east coast of Canada, the US, Russia and China, as well as similarly positioned mid-latitude
eastern regions of South America and the Africa on the southern hemisphere. Climatic patterns,
typically with year-round intermediate amounts of rainfall in these regions appear to favor
accurate estimates of precipitation via remote sensing. We speculate that both passive and active
microwave sensors may be less likely to be saturated, and therefore allow for better precision in
regions with intermediate rainfall. While the remote-sensing based PERSIANN product was not
superior to gauge-based products where weather station coverage is sparse, a multi-source
models that combines gauge, satellite, and re-analysis data (MSWEP) could yield better
precipitation estimates. While superiority of MSWEP compared to other products was not very
closely linked to poor weather station coverage (c.f., Figure 3.1 and Figure 3.4), impressive
margins of improvement were observed for some regions with few ground-based climate

stations, such as Africa and parts of South America
3.4.2. Validation against long-term tree ring data

While validation against EVI time series provides spatially explicit results, tree ring records can
evaluate quality of data products over long time periods. For this second comparison, only
gauge-based products (CRU, UDEL and GPCC) can be included, where data coverage is
available since the beginning of the century.

Variance explained by moving averages of 21-year windows reveal that the UDEL is generally
superior for early climate estimates based on data from 1901-1940, corresponding to R? values of
moving windows from 1910-1930 (Figure 3.5, global panel). Subsequently, R? values are fairly
similar for moving window mid-points from 1930 to 1960, and then separate by a moderate
amount for the most recent decades, with GPCC performing best, followed by UDEL and CRUA4.
It is important to note that the superior performance of UDEL in the early decades only applies
to specific regions, namely Northern Asia and the Himalayas region, where whether station
coverage is generally sparse, and we speculate that the researchers developing the UDEL product

may have had access to station records not available for interpolation in CRU and GPCC
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products. However, UDEL data is also marginally better in early century climate estimates for
North America, Europe, South America and Southeast Asia. Their method of interpolation, an
angular-distance weighting (ADW) method, appears superior to those used in other products for
early century reconstructions, where weather station coverage is generally sparse. AWD can
make use of directional information from data nodes, and has been found to handle sparse data
coverage reasonably well (Shepard 1968, 1984; Willmott et al. 1985).

| North America (N=2469) | | Europe (N=726) | | North Asia (N=192)
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Figure 3.5. Best regional interpolated precipitation products in a long term (1901-2017)
evaluation against tree ring records. Trends over time in validation statistics for the three global
interpolated precipitation products that extend back to the 1900s. The lines represent variance

explained in tree ring width by precipitation using 20-year moving windows.

Regional breakdowns suggest that all three gauge-based climate data products perform fairly
similarly besides regional differences in the early decades (Figure 3.5, regional panels). That
said, a small but notable difference among data products is CRU outperforming other data
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products for recent climate since the 1970s for South America. For the Oceania region GPCC

appears to be the best choice for most of the evaluated time series.

As a side note, not directly related to this study’s objectives, we should also briefly interpret
trends and variability in validation statistics over time that are visible in all data products. A
general increase in the strength of the association between precipitation variables and chronology
time series indicates that biological response has become more dependent on variability in
precipitation over time. This is apparent for Northern Asia, the Himalayas region, and Central
America. An opposite trend can be observed for Europe, indicating a weakening of the
dependence of tree growth on variability in precipitation. Directional climate change towards
drier conditions and/or warmer temperatures would be a plausible explanation for positive
trends, and this has in fact been observed, especially for Central America (with a strong trend
toward less precipitation (Magrin et al. 2014; Herrera and Ault 2017; WMO 2021), and the
Himalayas with a strong warming trend of high elevation ecosystems where trees were sampled
(Liu et al. 2009; Shrestha et al. 2012; Garg et al. 2022). The weakening in of plant-climate
interactions in Europe can be explained by increased water-use efficiency from cumulative NOy
pollution due to industrialization over the century, where increases in water-use efficiency can

over-compensate for any negative climate change effects on tree growth (e.g., Guerrieri (2010)).

3.5. Limitations of the analysis

As noted previously, our contribution is only a partial validation of climate data products,
because the accuracy of absolute climate values cannot be assessed with biological data sources.
Our evaluation is therefore only relevant for a specific target audience of researchers who
analyze historical time series in biological or geophysical data. To establish a putatively causal
link between climate and biological response, with correlative or associative methods using time
series data, bias is not an important metric. Climate data can actually be extremely biased
without compromising such analyses. To give an example, consider the usage of coarse
resolution gridded temperature data used in mountainous terrain. Widely used datasets for this
purpose such as CRU or UDEL have 0.5° resolution, and absolute temperature values along
elevation gradients can vary extremely across an approximately 50x50 km grid cell in

mountainous terrain. Yet, in the field of dendroclimatology this poses no problem, because a
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warmer than average growing season in a particular year is warmer than average at all elevations.
That said, our evaluation should not inform data selection for types of analysis that require
unbiased estimates. To give an example, analysis types that build on climatic comparisons
among different locations for a fixed time period, such as ecological niche modeling or species

distribution modeling should not rely on climate data recommendations from this analysis.

3.6. Conclusions

For researchers who analyze historical time series in biological or geophysical data, our analysis
allows to infer the best regional choice of time-series precipitation products. That said we should
emphasize that for applications that require unbiased estimate of differences among locations for
a fixed time period, our recommendations are not applicable. The results for the 20-year time
series of remotely sensed EV1 allows for comprehensive regional comparisons. All gauge and re-
analysis based data products performed similarly, but they were outperformed by the multi-
source MSWEP product that utilizes gauge, re-analysis, and remote sensing data. Especially for
regions with low weather station coverage, such as Africa and parts of South America, the
margin of improvement in how well MSWEP time series data tracks vegetation greenness was
impressive. The analysis confirmed our working hypothesis that satellite-based or multi-source
products have the potential to provide better precipitation estimates in regions of low weather
station coverage. Unfortunately, satellite or re-analysis based products are not available prior to
the 1980s. For applications that require longer time series analysis, gauge based products are the
only option. Of the three gauge-based data products included in the analysis against 120-year
tree ring records (CRU, GPCC and UDEL), the results showed that UDEL had superior
performance prior to the 1940s, with especially large margins for northern Asia and the
Himalayas region. From the 1940s onward, all three gauge-based climate data products perform
fairly similarly. Locally, CRU outperformed other data products after the 1960s for South

America. For the Oceania region GPCC was the best choice for analysis of long time series.
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Chapter 4. Climate sensitivity of global seasonal forests inferred
from remote sensing versus dendrochronology

4.1. Summary

Dendroclimatology research offers insights on how trees respond to climate anomalies and
climate trends through historical analysis. However, tree ring databases cannot be easily updated
with recent observations. Here, we test if a remotely sensed area under the curve metric from the
Enhanced Vegetation Index (EVI) can serve as a tree ring equivalent to study growth—climate
relationships. The results show that EVI-inferred vegetation sensitivity to climate broadly
mirrors forest growth limitations inferred from tree ring analysis. A univariate drought sensitivity
index correlates between r=0.35 (individual trees vs. single grid cells) and 0.52 (ecoregion
averages). A cluster-based multivariate response function analysis shows misclassification error
rates between 32 and 55% depending on how narrow the required match in multiple variables is
defined. While there are apparent differences in response functions derived from tree rings
versus EVI, the discrepancies arise primarily from how trees partition photosynthate into current
and next year’s growth, and the differences do not affect inferences on climatic growth
limitations. We conclude that dendroclimatology methods applied to remotely sensed time series
of EVI data can provide global, regional, and local characterization of climatic limiting factors of
forest ecosystems with global coverage, spatial resolution, and timeliness that could not be

obtained from dendrochronology research alone.

66



4.2. Introduction

Dendroclimatological analysis has been an important tool to reconstruct historical climate
conditions, but more recently the approach has also been used to analyze anthropogenic climate
change impacts, such as drought-related dieback (Gazol et al. 2018; Hevia et al. 2019; Sanchez-
Salguero et al. 2020) and forecasting changes in productivity associated with climate change (Xu
et al. 2017; Salas-Eljatib 2021; Martinez del Castillo et al. 2022). Although insightful, the
research approach is time-consuming and limited by sample size to make broader inferences on
ecosystems at landscape scales. When reanalyzing chronologies from databases such as the
International Tree Ring Databank, it must also be kept in mind that contributing authors had
different original study objectives, leading to sample selection that may be biased towards
maximizing the climate signal, e.g. by sampling trees in exposed topo-edaphic positions
(Sullivan and Csank 2016). Therefore, inferences from dendroclimatological research are
difficult to extend to regional, continental or global scales. Lastly, the arguably most restrictive
limitation of dendroclimatological research is that existing historical tree ring data cannot
practically be updated, and only a very small fraction of globally available chronologies cover
recent decades. The approach is therefore generally unsuitable for monitoring tree growth

response to recent climate change at scale.

Remote sensing technology could be an excellent complement to address these limitations. High
quality time-series data from the satellite borne MODIS sensors provides vegetation reflectance
data that is updated every year with global coverage (Xue and Su 2017; Huang et al. 2021).
Notably, the normalized difference vegetation index (NDVI) and the enhanced vegetation index
(EVI1) (Xue and Su 2017) are available as mature and well validated products that have been
widely used to quantify vegetation productivity (Ogaya et al. 2015; Jaafar and Ahmad 2015; von
Keyserlingk et al. 2021; Xiong et al. 2021; Kang et al. 2022; Wang et al. 2022). Of the two
indices, EVI1 is less prone to noise from atmospheric and soil conditions and is also more
sensitive to interannual variation forest greenness by not being easily saturated by dense
vegetation coverage (Myneni et al. 2002; Huang et al. 2021). With more than 20 years of high
quality remote sensing data available today, it becomes possible to analyze interannual

variability in inferred forest growth at local, continental or global scales and derive similar
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insights regarding climatic limiting factors to those from dendroclimatological research (Sang
and Hamann 2022).

Remote sensing approaches have already been widely used to make inferences on vegetation
sensitivity to climate change and climate extreme events. For example, both EVI and NDVI
indices have been used for monitoring vegetation health over time, and infer sensitivity to
climatic anomalies and climate extremes, including many recent contributions to the field (Dong
et al. 2022; Wang et al. 2022; Das et al. 2022; Sang and Hamann 2022). Correspondence of
remote sensing data and tree ring anomalies in response to frost and drought have also been
documented (Kharuk et al. 2013; Pasho and Alla 2015; Correa-Diaz et al. 2021; Tonelli et al.
2023), including inferred water stress validated against isotope-based water-use efficiency in tree
rings (Correa-Diaz et al. 2020, 2021). Other studies that tried to match inferred interannual
variation in forest productivity from tree ring records with historical time series of remote
sensing data found discrepancies, however, for example in cold-limited growing environments

such as subalpine and boreal ecosystems (Brehaut and Danby 2018; Erasmi et al. 2021).

In this study we investigate under what circumstances inferred climate dependencies match
between tree ring records and remotely sensed vegetation greenness, and for what reasons we
may see discrepancies. We contribute a global analysis based on more than 100,000 tree cores
from 4422 sites from the International Tree Ring Databank, primarily representing seasonal
temperate forests. We quantify how well remotely sensed time series records of vegetation
greenness (EVI) can replicate annual, seasonal or monthly growth limitations inferred from
dendroclimatology analysis. Our specific objectives are: (1) to validate a simple EVI-derived
univariate index of drought vulnerability against tree ring records, similar to previous local
studies; (2) investigate tree-ring and EVI based correspondence in monthly climatic sensitivity
through the year; and (3) test if any discrepancies observed can be explained through lagged
growth effects in tree rings versus the more immediate metric of remotely sensed canopy
greenness. Our overall goal is to contribute insights that may help to complement
dendroclimatology research approaches with remote sensing data, allowing a spatial and
temporal expansion of vulnerability assessments of seasonal forest ecosystems to climate change.
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4.3. Material and Methods

4.3.1. Remote sensing data and processing

For remote sensing data we use the MCD12Q2 v006 Enhanced Vegetation Index (EVI) product
developed by NASA and obtained from the Earth Observing System Data and Information
System website (Friedl et al. 2019). We selected an EVI metric that closely corresponds to tree
ring data: an area under the curve estimate (product MOD13A1), derived by applying a cubic
smoothing spline to EVI time series data taken at 16-days intervals (Friedl et al. 2019). This
layer was chosen as proxy for annual vegetation growth, representing the full vegetation cycle
from green-up to dormancy in a year (Friedl et al. 2019), comparable to a single-year growth
increments in tree ring chronologies. It should be noted that this metric is not available for
aseasonal forests, such as evergreen tropical regions. The same limitation actually applies to tree
ring records, where trees in aseasonal ecosystems do not produce rings that can be dated. We
filtered the EVI data for forested grid cells with the Vegetation Continuous Fields product
MODA44B (DiMiceli et al., 2015), and then averaged 250m grid cells that were classified as
forested to 5 km resolution for further analysis. We required at least 3% non-missing values (i.e.
3% 250m grid cells classified as forested) within a 5 km grid-cell. The 5 km grid cell values may
therefore only represent a small area of forest cover contained within. In other words, the
analysis and derived visualizations do not represent the overall response of various vegetation
classes across the full 25 km? extent of the aggregated 5 km grid cells, but represents forest

stands with seasonal growth patterns only.
4.3.2. Tree ring data and pre-processing

Tree ring data were obtained from the International Tree Ring Data Bank (ITRDB) for 4422
sample locations (NOAA 2023). We used approximately 100,000 raw tree ring measurements
that were detrended using Friedman’s super-smoother method to remove both long and medium-
frequency variability, emphasizing short frequency (year-to-year) variability (Friedman 1984),
implanted with the package dpIR (Bunn 2008, 2010; Bunn et al. 2022) for the R programming
environment (R Core Team 2022). Raw ring width records for individual cores from the same
tree, and individual trees of the same species and the same forest stand were then combined into

a site chronology using the function chron() of the package dplR, which applies a robust
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biweight mean on all measurements of a given year. This robust mean assigns a weight of zero to
outliers (values over + 6 SD), i.e., removing them from site chronology calculations (Mosteller
and Tukey 1977; Cook and Kairiukstis 1990). Because tree ring growth data is temporally auto
correlated, we further employed autoregressive modelling (Brockwell and Davis 1991) to
remove temporal autocorrelations, also implemented with the dpIR package for the R

programming environment (R Core Team 2022).
4.3.3. Climate data

Time series of monthly precipitation were obtained from the University of Delaware Terrestrial
Precipitation product from the University of Delaware (UDEL) (Matsuura and Willmott, 2018)
for the coordinates of the tree ring chronologies and the corresponding center coordinates of 5
km aggregated EVI grid cells. Similarly, time series of monthly minimum, maximum and
average temperature were obtained from dataset from the Climatic Research Unit of the
University of East Anglia (CRU-TS v4.05) (Harris et al. 2020). The datasets were chosen from
three options: UDEL, CRU-TS, and the monthly precipitation product v2018 from the Global
Precipitation Climatology Centre (GPCC) (Schneider et al. 2018), based on an initial exploratory
analysis of the amount of variance they explain in tree ring data. Both CRU and GPCC
performed well for temperature data, and the UDEL dataset, specialized on modeling

precipitation, outperformed both CRU and GPCC for precipitation variables (data not shown).
4.3.4. Response function analysis and sensitivity indices

Growth sensitivity to climate was based on a lagged monthly correlation analysis between annual
growth data and monthly climatic variables for average temperature and precipitation. For each
tree ring site and each individual EVI grid cell, we calculated Pearson correlation coefficients for
the 18 months prior to the presumed end of the growing season. These periods were April of the
previous year to September of the current year for the northern hemisphere, and October of the
previous year to March of the current year for the northern hemisphere (i.e., a 6-month shift).
Therefore, the analysis also captures potential legacy effects of previous year growing conditions

on current year ring width or vegetation greenness.
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Next, a simple univariate index of drought sensitivity was derived from 36 correlation
coefficients (18 lagged temperature and 18 lagged precipitation correlation coefficients). To
obtain a univariate index of climate sensitivity, we subtracted the average of all precipitation
coefficients from the average of all temperature coefficients, with the resulting index value
theoretically ranging from 2 to -2, where positive values indicate primarily cold-limited and
light- or cloud-limited growing environments (i.e., positive correlation with temperature
anomalies and negative correlation with precipitation anomalies) and negative value indicate
drought limited conditions (i.e., negative response to high temperature anomalies and positive

response to high precipitation anomalies).

For a more complex representation of monthly vegetation sensitivity to climate, we follow the
approach of Sang & Hamann (2022) that groups time series of individual remote sensing pixels
(or tree ring chronologies) via a cluster analysis. Cluster identity represents a specific pattern of
vegetation responses across 18 months of historical temperature and precipitation variability. For
clustering we used the Partition Around Medoids (PAM) algorithm, implemented with the
cluster package (Maechler et al. 2023) for the R programming environment (R Core Team 2022).
To map visualization of global patterns, the clusters were ordered from cold-limited to drought-
limited in the same way as for the univariate index, by subtracting the average precipitation
coefficient from the average temperature coefficient. This ordering was only for visualization
purposes to convey one aspect of the clusters by colors in maps. However, clusters with similar
overall sensitivity to climate may still differ in the seasonal timing of drought or cold limitations.

4.3.5. Correspondence of EVI and tree ring data

To evaluate the extent to which the univariate and multivariate vegetation sensitivity indices
derived from tree ring vs EVI data match, we calculated Pearson correlation coefficients for the
univariate climate sensitivity index of each tree ring chronology to the respective EVI grid cell
into which the tree ring chronology site falls. To investigate how well correlations hold at larger
scales for broader inferences, we also aggregate tree ring data and EV1 data at the level of
mapped ecosystems. Correlations and root mean square errors were then calculated between
ecosystem means of EVI and tree ring data to estimate precision and bias. For this purpose, we

used the high-resolution ecosystem variant delineation compiled by Roberts and Hamann (2012)
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that tracks elevation gradients for western North America, where a large amount of tree ring data
was available along complex climatic gradients. For the rest of the world, we used the Terrestrial
Ecoregions of the World (TEOW) delineation at the ecoregion level (Olson et al. 2001).

4.4. Results and Discussion

4.4.1. Overall climatic sensitivity

The univariate vegetation sensitivity index, which ranges from primarily cold-limited (blue) to
heat- and drought-limited (red) broadly matches between remotely sensed EV1 data and tree-ring
inferred values (cf., Figure 4.1a versus Figure 4.1b). It should be noted that geographic coverage
of tree rings and remote sensing data is quite different. For example, drought-limited ecosystems
in the southwestern U.S. are well researched by dendrochronologists, but there is not enough
continuous canopy coverage in these savannah-type ecosystems to allow inferences on tree
sensitivity to climate from moderate resolution remote sensing. Conversely, large regions of
seasonal forests of the world that can be evaluated through remote sensing have sparse or no

dendrochronology sample coverage.

72



Climatic ; g
Sensitivity y ) e
Index i gt 3

0.6 M % R R § e 3
i st Frayi
0.3 ; - ‘51,_1‘ ! ; %

b o

i
-0.6

(b)

Figure 4.1. Forest sensitivity to drought, measured as average monthly precipitation correlations
minus average monthly temperature correlations, for (a) remotely sensed EVI area under the
curve for 250m grid cells classified as forests, aggregated to 5 km cells and (b) tree ring
chronology locations. Red indicates drought limited regions while blue areas indicate cold or

cloud/light limited environments.

Where chronology- and EVI-derived climate sensitivity overlaps, we find that remote sensing-
based index has a somewhat larger range, but is otherwise unbiased (Figure 4.2). The correlation

between chronology- and EVI-derived indices is relatively low (0.36), but it needs to be kept in

73



mind that EVI grid cells represent an aggregated tree response within 25 km? areas that may
contain several hundreds of thousands of trees and other vegetation, whereas tree ring
chronologies are typically built from no more than 25 individual trees in a specific location
(Cook and Kairiukstis 1990; Nehrbass-Ahles et al. 2014b). When both tree ring chronology data
and EVI data was aggregated by ecoregion, the correlation improved to r=0.56 and the small
bias, indicated by the regression line deviating from the diagonal, is further reduced. Bias
correction, if desired, would be straight forward, but normally such indices are used for relative

vulnerability assessments, and bias correction should therefore not be required.
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Figure 4.2. Comparison of forest drought sensitivity inferred from tree ring chronologies versus
remotely sensed EV1 area under the curve. Blue line is simple linear regression on actual data.
for (a) the EVI grid cell that contains the tree ring sample location, and (b) sensitivity estimates

from EVI grid cells and tree rings averaged by ecoregion.

The direction of the bias is slightly to the right towards more apparent drought-sensitivity in tree
rings relative to the corresponding EV1 pixel (Figure 4.2), and we speculate that this may be due
to sampling bias in site and tree species selection for dendrochronology analysis. Investigators of
local studies, who submit their chronologies to the ITRDB, usually select species, study
locations, topo-edaphic positions or crown positions for chronology samples that are exposed

and not buffered by deep soils and readily accessible ground water, so that the climate signal in
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tree ring chronologies is maximized, for example for the purpose of reconstructing past climate
trends. Although this sampling does not bias direction and relative magnitude of tree responses
to short-term climate variability, inferences from individual dendrochronology samples to overall
forest stand productivity are rather susceptible to biases (Nehrbass-Ahles et al. 2014b). As such it
seems plausible that the observed shifts to right in Figure 4.2, implying a somewhat higher
drought sensitivity from tree rings than EVI estimates, could well be due to sampling bias in the

tree ring data set.
4.4.2. Monthly climatic limiting factors

When comparing clusters of similar response functions in tree rings with the corresponding
response function derived from time series of EVI grid cells, the seasonal timing and magnitude
of climate sensitivities also correspond reasonably well (Figure 4.3). Although the clusters are
categorical, we applied a color ramp equivalent to Figure 4.1 for visualization of geographic
patterns (Figure 4.4). Again, clusters that are limited by low precipitation and/or high
temperatures are indicated by red, and those limited by high precipitation and/or cold
temperatures appear in blue. The latter applies to northern environments, but blue grid cells are
also visible in seasonal forests in tropical regions. Here, the inter-annually varying growth
limitation is neither cold nor water availability, but light-limitations associated with cloudy skies

during years with high precipitation.
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Figure 4.3. Comparison of tree-ring versus EVI-based monthly temperature (red line) and
precipitation (blue bars) limitations for 18 months prior to the end of the current growing season.
The values are averages for chronology sites, and corresponding EV1 grid cells that contain the
tree ring sample locations. Typical growing season periods are highlighted in gray, and months in
the top and bottom row are for the northern and southern hemisphere, respectively.

At the hottest and driest end of the spectrum, trees are limited by higher-than-normal
temperatures and lower than normal precipitation (Figure 4.3, Clusters 1 and 2, red). The period
of these limitations spans approximately for a full year prior the end of the current growing
season, i.e. August of the previous year to July of the current year’s growing season (for the
northern hemisphere). Clusters 3 and 4 show similar limitations, but to a lesser extent and more
narrowly restricted to the current and the end of the prior growing season. The next set of climate
response types, Clusters 5 and 6, show a generally more neutral response. For the tree ring-based
climate dependencies, growth is still somewhat positively influenced during years with high
precipitation during the growing season, but temperature dependencies flip from negative
(Cluster 5) to positive (Cluster 6), indicating the emergence of cold limitations. The
corresponding EVI-inferred growth limitations are somewhat divergent, with clusters 5 and 6
showing moderate pre-growing season cold limitations (February to April). This suggests
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negative effects of a late spring or late snowmelt on overall growth during the current growing

season.
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Figure 4.4. Cluster membership of (a) EVI grid cells and (b) tree ring chronologies, representing

multivariate climatic limitations as shown in Figure 4.3.

Lastly, Cluster 7 and 8 are most cold-limited during the current season. High temperatures in
June and July are most strongly correlated with a large ring width, while years with high
precipitation have a small to moderate negative effect on growth, possibly due to cloud cover
being correlated with lower temperatures. In these two clusters, we see a very pronounced
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difference compared to the EVI counterpart. First, for EVI inferred productivity, substantial pre-
growing season cold limitations apply, which is not at all the case tree ring data. Secondly, in the
tree ring data temperature and precipitation dependencies for the previous year growing season
are reversed, apparently suggesting heat- and drought limitations. We think the reason for this
apparently paradoxical response type is lagged partitioning of photosynthate, also observed in
other studies (e.g., Kannenberg et al., 2019). If the previous growing season is warm and long,
then the carbohydrates get laid down in latewood growth of that growing season, and are thus not
available for early wood growth in the subsequent year. If the previous growing season is cool
and short (i.e. unfavorable), then carbohydrates get stored in the wood and roots over winter and
contribute to next year’s early-wood growth, thus explaining the correlation reversal (poor

previous growing season conditions causing increased ring width in the current year).

A misclassification analysis between EVI versus tree-ring inferred growth limitations suggests
that error rates are high, and the overall match of cluster membership of a tree ring chronology
and the corresponding aggregated forests within 25 km2 grid cells is low (Table 1). The highest
EVI error rates occur in the intermediate Cluster 5 with overall low climate dependencies (i.e., a
total of only 166 correct classifications, and 71% misclassified). The type of errors are not
unexpected, with EVI-inferred Cluster 5 response types that were misclassified actually
containing tree ring chronologies of Cluster 4 and 6 response types (i.e. a total of 150 and 110
misclassifications with adjacent cluster types). As noted earlier when discussing correlations of
the univariate drought sensitivity index, exact matches between a single site chronology for
ground truthing, versus hundreds of thousands of trees (and other vegetation types that could not
be filtered at 250m resolution) should not be expected. When relaxing the matching criteria to
accept adjacent response types as matching, then the overall misclassification error rate drops to
32% (Table 4.1, off-diagonal in italics).
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Table 4.1. Misclassification matrix of tree ring versus remote sensing based grouping of climatic
limiting factors. We show the matrix for five clusters with an overall out of bag (OOB) error rate
of 55.5%. Allowing for an adjacent cluster counting as match (italic), the OOB misclassification
rate drops to 32.6%.

EVI Tree ring cluster
cluster 1 2 3 4 5 6

8 Error

7
1 188 39 53 83 10 15 1 22 054
2 57 167 17 35 6 6 0 3 0.43
3 25 1 407 138 65 47 4 28 043
4 38 13 119 347 84 90 4 57 054
5 4 2 89 150 166 110 7 38 071
6 10 5 71 118 71 251 15 111 0.62
7 1 0 19 3% 15 52 96 70 0.67
8 7 3 31 68 23 102 31 233 0.53

4.5. Conclusion

Overall, the results demonstrate potential value of remote sensing data to obtain insights
equivalent to those from dendroclimatology research in identifying specific types of climatic
limitations and implied sensitivity to observed and projected climate change. While there is no
perfect correspondence in the response types that we inferred from tree ring versus EVI data,
these are neither needed nor necessarily desired. For example, sampling biases present in tree
ring research to maximize the climate signal are not expected in remote sensing data. Lagged
growth effects in tree rings versus the more immediate metric of remotely sensed canopy
greenness, while interesting, does not cause any issues in inferring climatic limiting factors and
potential climate change vulnerabilities, as long as the timing of the limitations is correctly
interpreted. We think that overall the findings highlight the potential of remote sensing data for
assessing the timing and magnitude of climate sensitivities throughout the year. The approach
provides a foundation for complementing dendroclimatological research with remote sensing,
and enabling broader vulnerability assessments of seasonal forest ecosystems to climate change,
where tree ring data is sparse or unavailable. Furthermore, changes in climate dependencies can
be analyzed as remote sensing records are added every year, enabling monitoring and forecasting

of the impacts of climate change on forest growth at regional, continental, and global scales.
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Chapter 5. A standardized resilience index to ecological droughts
(RED50) reveals local adaptation of tree species and their
populations

5.1. Summary

Climate change adaptation in forestry requires metrics that identify species and populations with
the capacity to tolerate and recover from drought. Yet, empirical comparisons of drought
resilience are challenging due to inconsistent drought definitions and confounding effects of
species composition, regional population adaptation and local site factors. To address this, we
develop a standardized Resilience to Ecological Drought index (RED50), which quantifies the
ability of trees to recover from a modeled drought event that causes a 50% growth reduction.
Applied to 718 tree-ring sites globally, including detailed analyses of 20 North American
species, RED50 enables consistent, cross-species assessments of recovery potential. First, we
found a moderate negative correlation between drought resistance and recovery (r =-0.24, p <
0.0001), indicating a trade-off: species that suppress growth during drought tend to recover more
fully afterward. Second, recovery potential varied within species across their ranges, with
trailing-edge and interior populations generally showing the highest RED50 values. Third,
within-region comparisons revealed that drought-adapted species occupying more xeric sites
consistently outperformed mesic-site species in post-drought recovery. These patterns suggest
that both species- and population-level adaptations to water limitation enhance resilience. Two
complementary, low-risk assisted migration strategies emerge for climate-informed forest
management from this analysis: seed sourcing from resilient populations within the species range
(e.g., from dry-edge provenances), and RED50-informed species selection within regions when
water limitations are expected (i.e. a short-distance version of assisted migration among local
sites). Together, these approaches offer practical pathways for reforestation, restoration, and

gene conservation planning under climate change.
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5.2. Introduction

Under observed climate change over the last several decades, droughts have caused tree
mortality, dieback and growth reductions through impacts that include disruptions of the water
conduction systems (Choat et al. 2018), dieback of the fine root system (Hartmann et al. 2013),
carbon starvation (Hartmann et al. 2013; Kono et al. 2019; Prats et al. 2023) or a combination of
these factors. Mortality can be a direct effect of a single drought event, an outcome of additive
effects of consecutive droughts (Anderegg et al. 2013), or may also be an indirect outcome
through pests and diseases that can more easily overwhelm the defense mechanisms of weakened
trees (Babst et al. 2013; Macalady and Bugmann 2014).

Not all species and ecosystems are equally vulnerable to such drought impacts, however. The
general expectation is that drought impacts will be most severe in forest communities where tree
growth is already water-limited, and where tree populations are located in transition zones
toward macroclimatic conditions that no longer support forested ecosystems. That said, tree
species and their populations are also locally adapted to the environments in which they occur
(Sniderhan et al. 2018; Vizcaino-Palomar et al. 2019; Silvestro et al. 2023), which could explain
more widespread drought impacts observed across forested ecosystems. In other words, if
climate change increases the evapotranspirative demand relative to the tolerances of locally
adapted species populations, drought impacts may be observed throughout the species range and
not only at the drier portion of their range.

This introduces a central challenge for comparative drought vulnerability assessments: the same
climatic event may produce very different biological outcomes depending on local site factors,
species traits and population-level adaptation. For example, rooting depth and hydraulic
architecture strongly shape drought response (Nardini et al. 2013, 2016), while topographic
position, soil properties, and competition modulate stress exposure and recovery potential
(Galiano et al. 2010; Cavin et al. 2013). These differences align with the concept of ecological
drought, defined as an episodic deficit in water availability that causes negative impacts on
individual species, natural ecosystems, or managed landscapes (Crausbay et al. 2017). In this
framing, even moderate climatic deviations become biologically meaningful if they exceed the
adaptive capacity of particular species or populations. Recognizing ecological drought shifts

attention from absolute climatic thresholds toward context-specific biological impacts, and
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highlights why standardized, relative metrics, such as measuring recovery from a fixed decline in
growth, are needed. These approaches can help identify vulnerable species and populations more
effectively and support decision-making in reforestation planning, assisted migration, and

regional conservation strategies.

In order to assess the capacity of trees to recover from drought events, tracking historical time
series of tree growth in response to climate conditions has proven to be a useful approach. Lloret
et al (2011) proposed a number of widely used metrics that describe the immediate drought
impact on growth (resistance), the ability to resume growth post-drought (recovery) and the
degree of return to pre-drought growth levels within a defined period (resilience). The resilience
metric is important as an indicator of physical drought damage that requires time to repair. These
metrics are used to identify vulnerability of forest ecosystems to climate change in various
studies (Das et al. 2007; Grant et al. 2013; Sohn et al. 2016a; Matusick et al. 2018; Senf et al.
2020; Zald et al. 2022).

Such dendroclimatological analyses offer the potential to inform climate change adaptation by
guiding management interventions (Oggioni et al. 2024; D’Orangeville et al. 2025). If drought-
sensitive species or forest ecosystems can be identified, they may benefit from targeted
silvicultural practices, such as thinning, which reduces water demand and thereby enhance
drought recovery and reduce mortality (Sohn et al. 2016b). Adaptation to changing
environmental conditions could also involve the selection of drought-adapted planting stock
through assisted migration (Oggioni et al. 2024), or the use of species sourced from historically
drier environments that match planting site conditions under observed or anticipated climate
change (Vizcaino-Palomar et al. 2019; Silvestro et al. 2023; Bower et al. 2024).

To prioritize such climate change adaptation and mitigation efforts, comparative drought
vulnerability assessments of tree species and their populations are essential. However, in
empirical tree ring research, where environmental conditions are not directly controlled, it has
been difficult to compare drought vulnerability metrics across species and regions (Schwarz et al.
2020; DeSoto et al. 2020b). First, climatic drought events occur with different severity in
different years and regions. Second, even identical climatic conditions (climatic drought) may be

perceived differently, reflected in the concept of an ecological drought. Such differences can
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arise between species, populations, or communities, depending on their local adaptation and
physiological thresholds. Third, local site factors mediate how sensitive individual trees are to
climatic or ecological droughts. Such site factors can vary in scale and include topographic
positions (Galiano et al. 2010; Gutierrez Lopez et al. 2021), soil water holding capacity (Paz-
Kagan et al. 2017), rooting depth (Nardini et al. 2013, 2016), or competition for available water

resources (Cavin et al. 2013).

While site factors are difficult to account for in large-scale comparative studies (except through
representative sampling of site conditions), variation in drought severity and local adaptations of
species and their populations can be addressed through analytical and methodological choices.
Standardized dryness indices like Standardized Precipitation Evapotranspiration Index (SPEI)
can be used as a proxy for ecological drought conditions. The SPEI represents an accumulated
water deficit that is standardized by its long-term average for a specific location. Thus, it does

not represent an absolute climatic value, but a deviation from normal conditions.

The issue of droughts differing in severity, location and timing in empirical studies can also be
addressed through standardization approaches. Schwarz et al. (2020) proposed fitting a curve of
observed recovery over observed resilience across multiple different drought events in tree ring
chronologies. By fitting different curves to samples from different species or regions, and
comparing their deviation to the curve that represents complete recovery, a standardized
resilience metric can be obtained that is independent of the severity of individual drought events.
The standardized resilience metric is a conceptual analogue to physiological vulnerability curves
and calculating P50 metrics in tree physiology, indicating the capacity of xylem to withstand
progressively drier conditions until 50% of conduits embolize (Meinzer and McCulloh 2013;
Wagner et al. 2023).

Here, we apply this standardization approach to obtain a Resilience index to Ecological Drought
(RED50), which measures the capacity to recover from a hypothetical ecological drought that
causes a 50% growth reduction. We apply the RED50 metric to compare drought vulnerability
among species and regions based on 718 tree ring chronology sites obtained from the ITRDB.
Our objectives are to (1) discover general patterns of how standardized drought vulnerability is

related to macroclimatic site environments; (2) to test if populations of species regionally differ
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in their capacity to withstand standardized drought events, and (3) to compare the standardized
resilience of different species within the same regions. Our working hypothesis is that due to
adaptation of tree species and populations to local climate conditions, the most severe drought
impacts are not limited to the trailing edge of forested ecosystems. However, if drought
resilience can adequately be quantified, the information may guide species selection and

population movements through assisted migration to address climate change.

5.3. Methods

1.3.1. Chronology and climate data

The analysis of damage-dependent recovery capacity of trees across global forest ecosystems
was carried out for the period 1971-2005, which had a high number of complete chronologies
available from the from the International Tree-Ring Data Bank (ITRDB), good quality of global
historical climate records (Manvailer and Hamann 2024), and also coverage of published
research on drought impacts on forested ecosystems for validating our definition of ecological

drought events (Hammond et al. 2022).

Tree ring width measurements were detrended using the Friedman Super-Smoother 'spline’ to
preserve short-term variability, which is preferable for assessing year-to-year growth responses
to drought events (Friedman 1984). We employed autoregressive modeling to mitigate temporal
autocorrelation effects, thereby amplifying the climate signal in our growth data. These two steps
were implemented with the dpIR package (Bunn 2008, 2010; Bunn et al. 2022) for the R

programming environment (R Core Team 2024).

As the climatic drought metric we used the Standardized Precipitation Evapotranspiration Index
(SPEI) with monthly values aggregated to an annual drought index (Sep to Aug for the northern
hemisphere and Mar to Feb for the southern hemisphere) to ensure alignment of prior climatic
events with the end of growing season tree ring records. SPEI calculations were implemented
with the SPEI package (Begueria and Vicente-Serrano 2023) for the R programming
environment, based on precipitation and temperature interpolations by (Matsuura and Willmott
2018), which were chosen for their superior correlation with biological data (Manvailer and
Hamann 2024).
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Ecological drought events were defined as reductions of >1 standard deviation in both SPEI and
ring width index within the same or subsequent year, ensuring that our analysis had a focus on
climatically-induced growth reductions (See Appendix 5 for all cases considered). To validate
our drought detection method, we cross-referenced our identified drought events with a global
drought-induced mortality dataset (Hammond et al. 2022). By linking ecological drought events
as defined above to the published mortality database, allowing for a distance of up to 150 km
between chronology sites and mortality records, then from a total of 170 mortality event
locations within the range of chronology sites, 82% (140 mortality events) were preceded within
3 years by an ecological drought as defined above (see Appendix 6 for details on this analysis

supporting the method development).

For reporting purposes, we group chronologies into clusters of site chronologies that had similar
climatologies and growth responses. For this purpose, we employed the Partition Around
Medoids (PAM) algorithm to cluster chronology sites based on 35 annual SPEI values and 35
corresponding ring width values. PAM was implemented with the function pam() of the package
cluster (Struyf et al. 1997; Maechler et al. 2023) while the optimal number of clusters was
determined using the elbow method implemented with the function fviz_nbclust() of the package
factoextra (Kassambara and Mundt 2020) for the R programming environment. See Appendix 7

for more details.

After applying filtering criteria, 718 site chronologies, grouped into 26 clusters, were used for
the drought response analysis (Figure 5.1). Filtering criteria included the following: (1) a
minimum of 30 years of data within the 1971-2005 period, (2) at least 6 chronology sites within
a PAM cluster, (3) at least 3 ecological drought events identified in a site chronology, (4) some
outlier removal of less than 5% of the remaining chronology sites due to various issues,
including spatially disjunct cluster members, and outliers in calculations of drought metrics. See

Appendix 8 for visualization of sites filtered.

A large number of chronology sites (43%) were removed because chronologies did not contain at
least three drought events during the study period, or because PAM clusters contained less than 6

site chronologies with at least three droughts (Figure 5.1, gray sample points and clusters). These
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Figure 5.1. Chronology sites and clusters of sites with similar climatologies and growth response. Approximately 40% of chronology sites were
removed to satisfy filtering criteria that ensured that drought metrics could be estimated, and reliable inferences could be drawn for clusters with

regards to their drought vulnerability.
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filtering criteria ensured that drought response metrics could reliably be estimated, and

subsequent statistical analysis of precision of estimates within clusters could be carried out.

Drought responses were quantified with both the widely used metrics resistance, recovery, and
resilience (Loret et al. (2011), and a “recovery capacity” metric as described by Schwarz et al.
(2020). This drought recovery capacity metric is based on a negative exponential function fitted
to recovery over resistance metrics for individual drought events (colored points in Figure 5.2 a).
The recovery capacity is then defined by how much the fitted curve deviates from complete
recovery (solid line vs dashed line in Figure 5.2 b). This recovery capacity metric is independent
of the severity of the actually observed individual drought events. We calculate this recovery
capacity metric for a resistance value of 0.5, meaning that the growth is reduced by 50% as a

consequence of a hypothetical ecological drought event.
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Figure 5.2. Estimation of a recovery capacity metric by fitting a curve to resistance and recovery
values. The deviation of the fitted lines (solid) to full recovery (dashed lines) for a hypothetical
drought event that causes 50% growth reduction (Resistance = 0.5) is interpreted as a recovery
capacity metric that is independent of the severity of the observed individual drought events

(colored dots).

5.4. Results

5.4.1. Resilience in relation to ecological drought severity
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While one might expect that severe drought impacts on growth (i.e., low resistance values)
would be associated with impaired recovery, this pattern does not hold for the standardized
RED50 metric (Figure 5.3). Across species and regions, sites with more pronounced growth
reductions during drought—indicated by low resistance—often exhibit more complete recovery.
In contrast, sites with high resistance values—where drought had only minor effects on growth—
tend to show incomplete recovery, with elevated RED50 values. This counterintuitive pattern
suggests that resilience, as quantified here, is not simply a function of how severely a tree was
affected during drought, but may also reflect underlying physiological or ecological strategies

that influence both sensitivity and recovery.
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Figure 5.3. Resilience to ecological droughts (RED50) as a function of the ecological drought
severity (resistance), and their relationships with a non-standardized annual heat-moisture index
(AHM, log transformed values with smaller values indicate a drier climate normal values). Data
points represent chronologies averaged by species and sites. A RED50 value of zero indicates
complete recovery to pre-drought levels, a resistance value of 0.5 indicates a 50% growth

reduction (indicated by dashed lines).

This general inverse relationship between resistance and RED50 is consistent across most
regions and taxa, indicating that trees which experience larger growth reductions during drought
are often capable of more complete recovery. This pattern suggests that the ability to sharply
reduce growth during drought—a form of drought avoidance or protective shutdown—may be
advantageous for subsequent recovery. In contrast, trees that maintain moderate growth during
drought conditions may accumulate greater physiological damage, resulting in slower or

incomplete recovery.
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5.4.2. Recovery across species and regions

To compare species and regional differences under equivalent drought stress, we modeled
REDS50 values assuming a uniform growth reduction of 50% (resistance = 0.5) across all sites.
This approach isolates recovery capacity from variation in drought severity, thereby enabling a
standardized comparison. Results reveal substantial variation in RED50 both across and within
species and regions (Table 4.1). Species-specific averages ranged from near-complete lack of
recovery—such as Pinus strobus in region 9 (RED50 = -0.50, SE = 0.07) to full recovery, as
observed in Pseudotsuga menziesii in region 13 (RED50 = 0.01, SE = 0.09). Overall, the mean
REDS50 across all chronologies was —0.16, suggesting that most populations exhibit incomplete
recovery from a hypothetical drought event causing 50% growth reduction. This modeled
drought severity is relatively uncommon in the full dataset, occurring in approximately 30% of
the identified drought years. For context, the average resistance across all observations was 0.83,
indicating that most drought events in the data produced milder growth reductions. RED values
exceeding zero (at the top) that are well beyond the uncertainty indicated by the standard error
would suggest overcompensation or unexpected additional growth enabled by prior drought
conditions (or cyclical climate patterns where very favorable growth conditions regularly follow

drought periods).

Table 5.1 Average drought recovery statistics across sites for each species—cluster combination,
sorted from most to least resilient within each continent. Columns include the number of sites (N
Sites), number of drought events analyzed (N Droughts), the standardized recovery metric
(RED50) at 50% growth reduction, standard error of the RED statistic (SE), mean resistance

(Resistance), and traditional resilience (Resilience).

% Species Siltles DrolL\jlghts RED50 SE Resistance Resilience
North America
7 Quercus douglasii 29 6 0.28 0.09 0.79 1.10
14 Picea glauca 24 4 0.12 0.04 0.83 0.98
11 Quercus prinus 7 3 0.03 0.13 0.89 0.97
12 Tsuga mertensiana 14 3 0.03 0.16 0.95 1.14
13 Pseudotsuga menziesii 33 6 0.01 0.09 0.90 1.03
Chamaecyparis
11 thyoides 18 3 -0.05 0.10 0.91 1.02
7 Pinus ponderosa 7 6 -0.06 0.04 0.87 1.06

94



©ONE oo oo~

Europe
16

17
15
17
17
18
19
17
17
Asia
22
21
20
24
21

Pinus edulis

Quercus alba

Pinus flexilis
Pseudotsuga menziesii
Liriodendron tulipifera
Quercus spp

Quercus stellata
Pinus ponderosa
Taxodium mucronatum
Pseudotsuga menziesii
Abies lasiocarpa
Pseudotsuga menziesii
Pseudotsuga menziesii
Pseudotsuga menziesii
Picea glauca

Quercus rubra

Tsuga canadensis
Pinus ponderosa
Pinus ponderosa
Pseudotsuga menziesii
Quercus macrocarpa
Pinus flexilis

Quercus alba

Abies lasiocarpa
Pinus resinosa

Pinus strobus

Larix decidua
Fagus sylvatica
Pinus heldreichii
Picea abies
Pinus sylvestris
Quercus spp
Pinus sylvestris
Quercus petraea
Quercus robur

Juniperus przewalskii
Juniperus tibetica
Picea schrenkiana
Larix sibirica

Abies forestii

South America

25
24

Nothofagus pumilio
Nothofagus pumilio

33
12
10
28
12

15
12
34

27

32

12
25
13
34
11
10

~

13

10
26
10
21

10

11
19

13
13

10

~

ol

AR WWORNRUUOWWWWUIAWOHWOOAoO®U O~y Ul o

U101 W b 0101 W 01 O

NDA DN OOW

w

-0.07
-0.09
-0.11
-0.11
-0.12
-0.12
-0.14
-0.14
-0.15
-0.15
-0.15
-0.16
-0.17
-0.17
-0.17
-0.18
-0.18
-0.18
-0.22
-0.24
-0.25
-0.29
-0.30
-0.31
-0.36
-0.50

-0.09
-0.09
-0.14
-0.17
-0.25
-0.30
-0.31
-0.36
-0.45

0.17
0.00
-0.14
-0.20
-0.35

-0.17
-0.22

0.02
0.09
0.06
0.02
0.08
0.07
0.06
0.04
0.06
0.03
0.13
0.02
0.13
0.05
0.03
0.07
0.05
0.02
0.05
0.03
0.08
0.06
0.05
0.05
0.07
0.07

0.02
0.02
0.04
0.05
0.09
0.04
0.05
0.03
0.06

0.07
0.05
0.05
0.10
0.11

0.07
0.07

0.73
0.88
0.86
0.73
0.84
0.91
0.99
0.79
0.86
0.57
0.94
0.74
0.90
0.77
0.92
0.78
0.97
0.63
0.84
0.84
0.85
0.89
0.83
0.98
0.89
1.00

0.70
0.78
0.87
0.87
1.00
0.90
0.90
1.01
0.96

0.62
0.90
0.83
0.86
0.91

0.87
0.93

0.97
1.01
1.05
0.94
0.99
0.98
0.99
0.96
1.03
0.91
1.05
0.94
0.96
1.05
1.06
0.97
1.03
0.89
0.95
0.93
0.95
0.95
0.96
1.04
0.93
1.02

0.99
0.97
0.95
1.00
1.03
1.03
0.95
1.10
1.08

0.99
1.14
0.93
0.97
0.99

0.96
1.06

95



5 =i - —e—
Quercus douglasii (29) Califarnia (7)

Finus ponderosa (7) - e
FPeeudotzuga menziesii (33) - —e— Canadian
Pinus flexilis (10} - = Rockies (13)
Tsuga mertensiana (14) - e interior BC
Abies lasiocarpa (8) - e n El:r,"g]r
Pseudotsuga menziesii (7) - s
Pinus eduliz (33) - bl
Pseudotsuga menziesii (28) - bo] SR%“;E':;" :EJS
FPinus ponderosa (15) - Fa
Quercus alba (12) -
Liriodendron tulipifera (12) - 5"“‘“&?“ us
Quercus spp (7) -
Quercus prinus (7) - e
Chamaecyparis thyoides (18) - s
Guercus rubra (6) - —e— East El::ﬁia]ﬂ us
Tsuga canadensis (12) - =]
Quercus alba (8) - e
Gwercus stellata (6) - —a— Morthern Mexico
Pseudotsuga menziesii (27) - b
Taxodivm mucronatum (12) - e Southern Mexico
Pseudotsuga menziesii (9) - e
Peeudotsuga menziesii (34) - e Sonoran Desert
b

Finus ponderosa (23) -

Finus ponderosa (13) -
FPeeudotzuga menziesii (34) - %%gﬂii;"tgf
Pinus flexilis (10) -

GQuercus macrocarpa (11) - —e—
Pinus resinosa (9) - —— Great Lakes (9)
Finus strobus (13)- - =

08 04 02 0.0 0.2 0.4
Projected recovered growth at 0.5 Resistance

Figure 5.4. Average RED50 across clusters and species. Points represent average RED50 species
recovery for a given cluster in a given region. Horizontal bars show one standard error. Only
species with more than six sites are shown (N = 718). A RED50 value of zero indicates complete
recovery to pre-drought levels, while —0.5 represents no recovery at all (dashed lines). Points to
the left of —0.5 indicate that growth during the recovery period was lower than during drought.

Positions to the right of zero indicate growth rates exceeding pre-drought levels.
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5.4.1. Species comparisons with regions of North America

For a comparative assessment of species performance we plotted standardized drought recovery
values (RED50) within North American regions. Only North America had sufficient sample
sizes across multiple species and clusters to enable this analysis. Figure 4.4 summarizes species-
level RED50 values averaged by regional clusters (as indicated by their names and the
corresponding numbers shown in Figure 4.1), allowing for intra-regional comparisons of drought

recovery.

Across regions, some of the highest RED50 values were observed in species and clusters
associated with moderate to high annual precipitation, including the California, The Canadian
Rockies, Interior BC, and East Coast US clusters (Fig. 5.4). Species with notably high resilience
values include Quercus douglasii and Pinus ponderosa in California (cluster 7), which showed
unexpectedly high post-drought growth and near-complete recovery, respectively. In the
Canadian Rockies (cluster 13), Pseudotsuga menziesii also demonstrated complete recovery. On
the East Coast (cluster 11), Quercus prinus and Chamaecyparis thyoides showed strong
recovery, with RED50 values close to zero, suggesting effective recovery capacity in these mesic
forest types.

Several regional clusters exhibit strong interspecific gradients in drought resilience, with non-
overlapping standard errors indicating statistically significant differences among species. In the
East Coast US (cluster 11), Quercus prinus, a species typically found on dry, rocky ridges,
south- or west-facing slopes, showed the highest RED50 values (~0.03), while Quercus alba,
typically found on well-drained but moisture-retentive soils exhibited the lowest value (—0.30),
reflecting a marked contrast in recovery capacity among co-occurring hardwood species. In the
Great Lakes cluster (9), Pinus strobus shows the lowest drought resilience (-0.50), consistent
with its shallow roots and mesic-site preference in this region. Pinus resinosa performs slightly
better but still poorly (-0.36), matching its moderate drought tolerance. Quercus macrocarpa has
the highest RED50 value of the group (-0.25), which fits its dry-site adaptation and deep-rooted
physiology, though overall recovery remains incomplete under a 50% drought impact,
underscoring the limited drought adaptation of these mesic species. In the Southern Rockies

(cluster 6), Pinus edulis is the top performer (-=0.07), as expected from a specialist in arid
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environments. Pseudotsuga menziesii (-0.11) and Pinus ponderosa (-0.14) trail comparatively in
REDS50 values.

5.4.2. Population variations in wide-ranging species

Several wide-ranging species were present in multiple clusters across North America, enabling
comparisons of RED50 values across different parts of their range. These comparisons can reveal
whether drought recovery potential is influenced by local environmental conditions and/or

population-level differentiation.

With species ordered from most to least resilient overall in Fig. 4.5, Picea glauca shows
substantial regional variation in drought recovery. In the Northern Yukon cluster (14) a very dry
interior region, RED50 reached 0.12, suggesting higher values than indicative of recovery. In
contrast, populations in the Boreal Alaska cluster (1), which experiences stronger coastal
climatic influence and higher precipitation, showed lower recovery (-0.17).

Pseudotsuga menziesii (Douglas-fir) is present in six clusters. Recovery potential was highest in
the Southwest US and Interior California (clusters 4 and 5), where RED50 values ranged from —
0.15 to —0.16, suggesting relatively strong recovery in some trailing-edge populations. In
contrast, more southerly and interior populations, such as those in the Southern US Rockies and
Southern Mexico (clusters 6 and 10), showed lower recovery values (-0.17), under equivalent

relative drought impacts.

Pinus ponderosa occurs in four regional clusters, showing a gradient in drought recovery
performance. The highest RED50 value is observed in the California cluster (7; —0.06),
representing the trailing western edge of the species’ distribution, conforming to patterns
observed in other trailing-edge noted above. Recovery is somewhat lower in the Southern
Rockies (cluster 6; —0.14), and further declines towards the Northern US Rockies (cluster 8; —
0.22) show the lowest recovery. However, the Sonoran Desert region (cluster 4; —0.18), which
represents the driest portion of the species’ interior range, where one might have expected the
greatest drought resilience showed intermediate RED50 values. The low resilience may indicate

a limit to the species adaptive capacity to an extremely marginal environment.
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Quercus alba (White oak) shows higher RED50 values in the Southeast US cluster (3), closer to
the great plains biome, compared to the East Coast (cluster 11), a more mesic region where

recovery was minimal.
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Figure 5.5. Same as Figure 5.4 but RED50 averages are grouped by species for population

comparisons.
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Pinus flexilis appears in two regional clusters and shows differentiation that are consistent with
general trends observed in other species. In the Southern Rockies (cluster 4), RED50 was
relatively high at —0.11, indicating reasonable recovery following severe drought. In contrast,
populations in the Northern US Rockies (cluster 8) showed substantially lower recovery (-0.29).

Abies lasiocarpa again shows an expected difference in RED50 values between two interior and
coastal clusters. In the dry Interior BC (cluster 12), RED50 was —0.15, while in the Pacific Coast
(cluster 2) it declined to —0.31, indicating substantially reduced recovery in more mesic coastal
populations, in fact one of the weakest resilience values overall. This pattern aligns with
observations for other species, where interior or trailing-edge populations demonstrate stronger

recovery capacity under standardized drought impacts.

5.5. Discussion

5.5.1. Adaptive resilience in dry environments

Our analysis reveals that many species demonstrate higher resilience where historical drought
severity has been most pronounced. This includes populations of species toward the dry and
warm end of their distribution, e.g., Quercus douglasii, Pinus ponderosa in California, Pinus
edulis in the Southern Rockies, and Picea glauca in the interior Yukon. Even species not
typically associated with arid conditions, such as Quercus alba, exhibited improved drought
recovery in drier southwestern regions compared to more mesic eastern sites. These patterns
suggest that local adaptation to long-term water limitation can enhance post-drought recovery,
aligning with the expectation that trailing-edge or interior populations often harbor traits
conferring greater resilience (Choat et al. 2012; Aitken and Whitlock 2013).

Rather than uniformly increasing vulnerability, chronic drought exposure appears to select for
conservative water use strategies, deeper rooting systems, and hydraulic traits that facilitate
recovery once favorable conditions return (Anderegg et al. 2016; Peters et al. 2021; Bachofen et
al. 2024). For instance, Pinus ponderosa shows precise timing of xylogenesis regulated by
moisture availability (Ziaco et al. 2018), while Pinus edulis exhibits deep rooting and strong

drought avoidance traits (Ronco Jr. 1990). Even among mesic conifers like Pseudotsuga
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menziesii, populations in drier areas show improved post-drought performance, likely reflecting

stomatal control and greater hydraulic safety margins (Choat et al. 2012; Leuschner et al. 2024).

We found no evidence for uniformly reduced resilience in more arid regions. Instead,
populations at the trailing or driest interior edge of species distributions often exhibit the
strongest recovery potential, likely due to long-term selection for drought-avoidance and
hydraulic safety traits (Choat et al. 2018; Blumstein et al. 2023). This aligns with studies
showing greater non-structural carbohydrate reserves and enhanced root investment in dry-
adapted populations, supporting faster regrowth after stress events (Blumstein et al. 2023;
Bachofen et al. 2024).

5.5.2. Trade-offs between drought resistance and recovery

A consistent global pattern in our results is a negative correlation between drought resistance and
recovery capacity: sites or species that maintained high growth during drought (high resistance)
often had lower RED50 values, and vice versa (r =—-0.24, p < 0.0001). This suggests a trade-off
between strategies: conservative species that shut down growth rapidly during drought may
avoid hydraulic damage and thereby enable faster recovery when conditions improve

(McDowell et al. 2008; Hesse et al. 2023). In contrast, species that sustain moderate growth
under drought, possibly maintaining carbon gain or competitive advantage, may suffer longer-

term physiological costs (e.g., embolism, carbon depletion), impairing recovery.

This supports recent syntheses showing that resistance-focused strategies often carry a cost to
resilience, especially when droughts are severe or recurrent (Li et al. 2020; Trugman et al. 2021).
The RED50 trade-off observed here reflects that sustaining productivity during drought may
heighten vulnerability to carbon starvation or hydraulic failure during prolonged stress
(Hartmann et al. 2013; Kono et al. 2019). The mechanisms behind this trade-off are well-
documented by empirical studies showing that trees with high resistance often operate closer to
hydraulic failure thresholds (McDowell et al. 2008; Choat et al. 2012), whereas species with low
resistance may conserve hydraulic integrity and maintain non-structural carbohydrate reserves

essential for regrowth (Hartmann et al. 2013; Hesse et al. 2023). This trade-off helps explain why
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species adapted to arid environments often show both low resistance and high RED50 values.
For example, Pinus edulis and Pseudotsuga menziesii in the Southern Rockies exhibit this
pattern, where the capacity to limit growth during drought appears to support faster rebound
post-drought.

5.5.3. Intra- and inter-specific variation conform

Across multiple species, drought recovery generally aligns with geographic expectations of
adaptation, where trailing-edge, interior, and dry-site populations show higher RED50 values.
For example, Picea glauca and Abies lasiocarpa demonstrated better recovery in interior
continental regions than in coastal, wetter environments. Pseudotsuga menziesii and Pinus
ponderosa also exhibited patterns of stronger recovery in dry Californian or interior populations,
compared to their more northern or mesic counterparts. These results reflect local adaptation of
species populations and conform to the expectation that resilience traits are not uniformly
distributed across a species’ range, but instead shaped by climatic selection pressures, especially
at ecotones where moisture availability varies sharply (Aitken et al. 2008; Isaac-Renton et al.
2018).

This spatial perspective also complements findings from provenance trials and trait-based studies
that highlight local adaptation in hydraulic safety margins and rooting architecture across
climatic gradients (Montwe et al. 2016; Silvestro et al. 2023; D’Orangeville et al. 2025). In other
research, drought-tolerant provenances of black spruce (Picea mariana) and red spruce (Picea
rubens), for example, have shown superior recovery under stress, even within mesic landscapes,
likely due to inherited physiological adaptations (Sniderhan et al. 2018; Vizcaino-Palomar et al.
2019).

Moreover, inter-specific differences within regions showed similar contrasts. In the East Coast
US cluster, Quercus prinus had much higher RED50 than Quercus alba, matching their
ecological preferences. Quercus prinus is commonly associated with dry, rocky ridge sites and
south- or west-facing slopes, where its drought adaptations such as deep rooting are
advantageous (Abrams 1990). In contrast, Q. alba typically occurs on well-drained but moisture-
retentive soils, making it less suited to drought-prone microsites (Burns and Honkala 1990a). In

the Great Lakes region, the drought-tolerant Quercus macrocarpa, which is often found on dry
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prairie-forest transition zones (Burns and Honkala 1990a), exhibited significantly better
resilience than Pinus strobus, a species more commonly associated with cooler, mesic sites
(Burns and Honkala 1990b).

Thus, differences that we observed among regions at the intra-species level, namely greater
resilience in populations adapted to drier regions, can also be seen at the inter-species level
within regions. Drought-resilient species are prevalent at dry sites within regions precisely

because they are better adapted there, and they demonstrate better recovery capacity under

drought.

5.6. Conclusions and management implications

The observation that drought-resilient species dominate drier sites within regions, and that dry-
adapted populations exhibit higher recovery across regions, tells a consistent story: local
adaptation plays a critical role in shaping resilience to drought. This pattern, observed both at the
intra- and interspecific level, has implications for forest management and climate change

adaptation.

Two complementary strategies emerge. First, within-species variation can be harnessed by
relocating drought-resilient populations, typically from trailing edges or interior dry zones, to
regions where climate change is expected to increase drought exposure. This supports regionally
informed seed transfer that leverages adaptive traits already present in natural populations.
Second, at the interspecific level, species selection can be modified within regions to match
changing conditions. For example, managers might favor drought-adapted species from nearby
xeric microsites for planting in areas becoming drier under climate change. These short-distance

"assisted migration™ strategies remain ecologically conservative yet climate-informed.

We should note, however, that even with these management interventions adaptive capacity
remains limited. Further warming and intensification of drought may exceed physiological
thresholds even in currently resilient populations. Future work could extend this framework to
examine tipping points and multi-year drought impacts. Nonetheless, our results strengthen the
rationale for conserving trailing-edge and dry-site populations, which are increasingly
recognized as important reservoirs of adaptive genetic diversity (Hampe and Petit 2005;
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Hoffmann and Sgré 2011; Aitken and Whitlock 2013; Vizcaino-Palomar et al. 2019). This study
adds empirical support to the value of gene conservation efforts that prioritize these marginal

populations under a rapidly changing climate.
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Chapter 6. Thesis conclusion

This thesis set out to explore how tree species and populations respond to drought by drawing on
long-term growth records, satellite observations, and climate data. The analyses presented here
do not claim to resolve all challenges in understanding forest vulnerability but offer a
contribution toward improving the consistency and ecological relevance of comparative

assessments at larger spatial scales.

One of the first goals of this work was to make existing datasets more accessible and analytically
robust. Revisiting foundational data sources such as the International Tree-Ring Data Bank
helped identify and address recurring issues that often complicate their reuse in large-scale
studies. Likewise, comparisons among commonly used climate products, evaluated against
independent growth responses, highlighted the importance of selecting appropriate
environmental inputs for ecological inference. While these steps are incremental, they help lay a

stronger foundation for future research that relies on compiled or repurposed datasets.

A central theme of the thesis is the value of standardized drought response metrics that account
for the environmental conditions under which each tree population has developed. Rather than
applying fixed thresholds across all sites, this approach emphasizes relative change—measuring
recovery against a population’s typical growth patterns and climate background. Doing so can
help account for the effects of exposure and distinguish them from intrinsic sensitivity. The
approach may allow for more meaningful comparisons among species, regions, or ecological
settings. The findings suggest that populations exposed to more frequent or intense droughts in
the past often display greater recovery capacity, consistent with the idea that local adaptation or
acclimation plays a role in shaping drought responses.

The methods developed and applied here are intended as tools rather than prescriptions. In
practical terms, they may assist in identifying populations with greater or lesser resilience, which
in turn could inform decisions around reforestation, assisted migration, or other adaptation
strategies. Integrating tree-ring data with remote sensing further extends the reach of these
analyses, making it possible to explore climate—growth relationships in areas with limited field

data. While the agreement between data sources is not perfect, the general correspondence
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suggests that combining different lines of evidence may offer a more comprehensive view of

forest vulnerability.

It is important to recognize that no single metric, such as the proposed resilience-based drought
index, can capture the complexity of forest adaptation needs or serve as a stand-alone guide for
management decisions. Drought-resilient populations may not perform as well in other
dimensions, such as productivity or pest resistance, and moving genotypes outside their historical
range always involves some uncertainty. Therefore, any decisions based on drought vulnerability
assessments should be weighed alongside other ecological, silvicultural, and operational

considerations.

In summary, this thesis offers a set of approaches aimed at improving how forest vulnerability to
drought can be assessed across broad spatial scales. The findings reflect both the complexity and
variability of drought responses and suggest that careful standardization and ecological framing
can improve the interpretability of large-scale analyses. While the work here represents only one
step in an ongoing effort to understand and manage forests under climate change, it highlights
ways in which existing data and tools might be used more effectively to inform adaptive

strategies.
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Appendix 1. Code for bulk import of ITRDB meta data, available from NOAA

https://www1.ncdc.noaa.gov/pub/data/metadata/published/paleo/json/. Download these files to a

local folder and then execute the code below for the R programming environment. Note that you

have to specify the local subdirectory on page 2 below.

library(tidyverse)
library(rjson)
library(plyr)

# Creating blank data frame with variables of interest
meta_ITRDB_json <- tibble(fileUrl= character(),
urlDescription= character(),
linkText= character(),
xmlId= character(),
NOAAStudyId= character(),
studyName= character(),
doi= character(),
investigators= character(),
studyNotes= character(),
onlineResourcelLink= character(),
studyCode= character(),
contributionDate= character(),
entryId= character(),
NOAASiteId= character(),
siteName= character(),
locationName= character(),
lat= character(),
long= character(),
minElevationMeters= character(),
maxElevationMeters= character(),
earliestYearCE= character(),
mostRecentYearCE= character(),
speciesCode= character(),
scientificName= character(),
commonName= character(),
dataType= character(),
dataTableName= character(),
pubCitation= character(),
pubUrl= character())

# Create blank objects for subsetting variables of interest within the
vars_a <- c("xmlId", "NOAAStudyId", "studyName", "doi", "dataType",
"investigators", "studyNotes", "onlineResourcelLink","studyCode",
"contributionDate", "entryId")

vars b <- c("NOAASiteId", "siteName", "locationName", "coordinates",
"minElevationMeters", "maxElevationMeters")

vars_c <- c("NOAASiteId", "paleoData")

Loop.
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# Retrieving all tree ring metadata file names (specify your directory!).
subdirectory <- "json_files subdirectory/"
meta_files <- list.files(subdirectory)

# Loop extracting all metadata of interesting and compiling into a dataframe.
# Each line represent a single data file stored in the ITRDB database.

# The metadata is extracted according to hierarchy structure of json files.

# The general structure 1is study metadata > site metadata > file metadata.

# One 'study' can contain multiple 'sites' each of which can contain multiple
‘files'.

# Each part 1is extracted separately and them merged at the end of each Loop.

for (i in meta_files){

start <- Sys.time()
jsonfile <- fromJSON(file = paste@(subdirectory,i))

# Extracting general study information
al <- jsonfile %>% keep(names(jsonfile) %in% vars_a)
a2 <- do.call(cbind, al) %>% as_tibble()

# Site information
bl <- jsonfile[["site"]]
b2 <- map(bl, flatten)
b3 <- map(b2, function(x) {

subset <- discard(x, names(x) == "paleoData")

subset_flat <- flatten(subset)})
b4 <- map(b3, function(x) keep(x, names(x) %in% vars_ b))
b5 <- map(b4, function(x) c(x, lat = x[["coordinates"]][1],

long = x[["coordinates"]][2]))

b6 <- map(b5, function(x) discard(x, names(x) == "coordinates"))
b7 <- map(b6, function(x) do.call(cbind, x) %>% as_tibble)
b8 <- bind_rows(b7)

# Timespan and data table ID
cl <- map(bl, function(x) keep(x, names(x) %in% vars_c) %>% flatten)
c2 <- map(cl, function(x) {
list(NOAASiteId = list(c(rep(x$NOAASiteId, sum(names(x) !=
"NOAASiteId")))),
paleoData = transpose(keep(x, names(x) != "NOAASiteId"))) %>%
flatten
})
c3 <- map(c2, function(x){
do.call(cbind,x[c("NOAASiteId", "dataTableName",
"earliestYearCE", "mostRecentYearCE")]) %>% as_tibble()
})
c4 <- map(c3, mutate_if, is.list, ~as.character(.))
c5 <- c4 %>% bind_rows()

# Species info
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dl <- map(c2, function(x){
list( x[c("NOAASiteId")],
x[c("species")] %>% flatten %>% flatten %>% transpose) %>%
flatten() })
d2 <- map(dl, function(x) {
map_at(x, "commonName", function(y) {
map(y, function (z) {

if (is.null(names(z))) {
names(z) = c(seq(l:1length(z)))
bind_rows(z) %>% unite( "commonName", 1:length(z), "5 M)
%>% as_tibble
} else {
bind_rows(z) %>% unite( "commonName", 1:length(z), "
") %>% as_tibble
}
}) %>% flatten
)
1)
d3 <- map(d2, function(x) do.call(cbind, x) %>% as_tibble(
c("universal")))
d4 <- map(d3, function(x) x %>% mutate if(is.list, ~as.character(.)))
d5 <- bind_rows(d4)
names(d5) <- if (length(di[[1]]) > 1) {
di[[1]] %>% names
} else if (length(dl) > 1) {d1[[2]] %>% names} else {
names(d5)}

# File URL and type
el <- map(c2, function(x) {
list( x[c("NOAASiteId")],
x[c("dataFile")] %>% flatten %>% flatten %>% transpose)
%>%
flatten() })
e2 <- map(el, function(x) {
do.call(cbind, x[c("NOAASiteId", "fileUrl", "urlDescription",
"linkText")]) %>% as_tibble})
e3 <- map(e2, mutate_if, is.list, ~as.character(.))
e4 <- bind_rows(e3)

# Citation and URL
f1l <- jsonfile %>% keep(names(jsonfile) %in% c("publication™))
if(length(jsonfile[["publication”]]) == 0){
} else {
f2 <- map_depth(f1l, 2, flatten) %>% flatten
3 <- map(f2, function (x) keep(x, names(x) %in% c("citation", "url")))

f4 <- list( list(rep(jsonfile$NOAAStudyId, length(f2))),

transpose(f3)) %>% flatten
f5 <- do.call(cbind, f4) %>% as_tibble
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f6 <- mutate if(f5, is.list, ~as.character(.))
names(f6)[2:3] <- c("pubCitation", "pubUrl")
}

# Merging all the information of a single file together
if (nrow(c5) == nrow(d5) &
nrow(d5) == nrow(ed4)) {
full extract_c <- reduce(list(c5, d5, e4), cbind)
} else if (nrow(d5) == nrow(e4)) {
de _bind <- cbind(d5, e4[,-c(1)])
full extract_c <- merge(c5, de bind)} else {
cd_bind <- cbind(c5, d5[-c(1)])
full extract c <- merge(cd_bind, e4)
}
full_extract_c <- full_extract_c[, !duplicated(colnames(full_extract_c))]
full extract b <- merge(b8, full extract c)
full_extract_a <- merge(a2, full_extract_b)
if(length(jsonfile[["publication"]]) == 0){
} else { full extract a <- merge(full extract_a, f6)

}
full extract_a <- lapply(full_extract_a, as.character) %>% as_tibble

# Adding the file information to the master data frame
meta_ITRDB_json <- bind_rows(meta_ITRDB_json, full extract_a)

# A simple way to Reep track of progress
end <- Sys.time()
print(pasteo( i, " - ", end-start))

}

# End of import Loop. You can view or export the data table.
# View(meta_ITRDB_json)
# write.csv(meta ITRDB json, "~ meta ITRDB json.csv", row.names = FALSE)
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Appendix 2. Corrections to file type codes that were included in this snapshot of the ITRDB database. Raw ring width files and chronology files in

this database submission use these converted file type code as the last letter of the filename (w, I, e, x, n, t, i, p).

File codes extracted from file names

Converted Grand
Measurement type to: blank | e X n t i w p d b c ba bm ed ew Id Iw mxd mnd rew rw rd rw 1o@
Ring Width blank 4766 243 2 5011
Latewood Width | 10 613 2 625
Earlywood Width e 9 610 2 621
Maximum Density X 2 574 576
Minimum Density n 517 517
Latewood Density t 311 311
Earlywood Density i 311 311
Latewood Percent p 49 49
Ring Density 9 9
Blue Intensity 7 7
Cell Wall Thickness 3 3
Basal Area 2 2
Basal Area Mass 2 2
Earlywood Mean Basic Density 2 2
Latewood Mean Basic Density 2 2
Maximum Latewood Basic Density 2 2
Minimum Earlywood Basic Density 2 2
Relative Earlywood Width 2 2
Relative Latewood Width 2 2
Ring Mean Density 2 2
Grand Total 4787 613 610 574 517 311 311 243 49 9 7 3 2 2 2 2 2 2 2 2 2 2 2 2 8058
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Appendix 3. Code for read error detection when importing ITRDB raw data files in .rwl format.
The code comes in three section. The first and second block represent functions that are called by
the third block, which reads the .rwl data files and calls the functions from Block 1 and 2. This
code is a custom modification of the original read.tucson() function of the dpIR package for the

R programming environment.

Block 1: Function that tests for general file formatting for errors:

input.ok <- function(series, decade.yr, x) {
if (length(series) == 0) {
return(FALSE)
}

## Number of values allowed per row depends on first year modulo 10
n.per.row <-
apply(x, 1,
function(x) {
notna <- which(!is.na(x))
n.notna <- length(notna)
if (n.notna == @) {
(%]
} else {
notna[n.notna]

}

)
full.per.row <- 10 - decade.yr %% 10

## One extra column per row is allowed:

## a. enough space will be allocated (max.year is larger than

## last year of any series)

## b. the extra col may contain a stop marker (non-standard location)
idx.bad <- which(n.per.row > full.per.row + 1)

n.bad <- length(idx.bad)

if (n.bad > 0) {

return(FALSE)
}
series.ids <- unique(series)
nseries <- length(series.ids)
series.index <- match(series, series.ids)
last.row.of.series <- logical(length(series))
for (i in seq_len(nseries)) {

idx.these <- which(series.index == i)
last.row.of.series[idx.these[which.max(decade.yr[idx.these])]] <-
TRUE
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}

flag.bad2 <- n.per.row < full.per.row

if (lall(last.row.of.series) && all(flag.bad2[!last.row.of.series])) {

return(FALSE)
}
min.year <- min(decade.yr)
max.year <- ((max(decade.yr)+10) %/% 10) * 10
if (max.year > as.numeric(format(Sys.Date(), "%Y")) + 100) {
## Must do something to stop R from trying to build huge
## data structures if the maximum year is not detected
## correctly. Not too strict (allow about 100 years past
## today).
return(FALSE)
}
span <- max.year - min.year + 1
val.count <- matrix(®@, span, nseries)
for (i in seq _along(series)) {
this.col <- series.index[i]
these.rows <- seq( decade.yr[i] - min.year + 1, 1,
n.per.row[i])
val.count[these.rows, this.col] <-
val.count[these.rows, this.col] + 1
}
extra.vals <- which(val.count > 1, TRUE)
n.extra <- nrow(extra.vals)
if (n.extra > 0) {
FALSE
} else {
TRUE

}

# END OF CODE

Block 2: Function that checks for and records specific read errors:

#

error.collect <- function (x, decade.yr, series) {

n.per.row <-
apply(x, 1,
function(x) {

notna <- which(!is.na(x[]))

n.notna <- length(notna)

if (n.notna == @) {
(%]

} else {
notna[n.notna]

}

})
full.per.row <- 10 - decade.yr %% 10
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## One extra column per row is allowed:
## a. enough space will be allocated (max.year is larger than
## last year of any series)
## b. the extra col may contain a stop marker (non-standard location)
idx.bad <- which(n.per.row > full.per.row + 1)
n.bad <- length(idx.bad)
if (n.bad > 0) {
ids.decades <- data.frame(R_COREID
R_DECADE
warning("Rows with to many values")
} else {ids.decades <- NULL}
series.ids <- unique(series)
nseries <- length(series.ids)
series.index <- match(series, series.ids)
last.row.of.series <- logical(length(series))
for (i in seqg_len(nseries)) {

series[idx.bad],
decade.yr[idx.bad])

idx.these <- which(series.index == 1i)
last.row.of.series[idx.these[which.max(decade.yr[idx.these])]] <-
TRUE

¥

flag.bad2 <- n.per.row < full.per.row
if ('all(last.row.of.series) && all(flag.bad2[!last.row.of.series])) {
few.values <- "all rows (last rows excluded) have too few values"”
} else {few.values <- NULL}
min.year <- min(decade.yr)
max.year <- ((max(decade.yr)+10) %/% 10) * 10
if (max.year > as.numeric(format(Sys.Date(), "%Y")) + 100) {
## Must do something to stop R from trying to build huge
## data structures if the maximum year is not detected
## correctly. Not too strict (allow about 100 years past
## today).
future.years <- "file format problems (or data from the future)"
} else {future.years <- NULL}
span <- max.year - min.year + 1
val.count <- matrix(®@, span, nseries)
tryCatch(
for (i in seq_along(series)) {
this.col <- series.index[i]
these.rows <- seq(from = decade.yr[i] - min.year + 1, by = 1,
length.out = n.per.row[i])
val.count[these.rows, this.col] <-
val.count[these.rows, this.col] + 1
3
error = function(cond){
message(paste("failed the check for duplicates on series "), series[i])
message(cond)
return(errors <- NULL)
¥
warning = function(cond){
message("Likely the file contain negative years lower than -1000.
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Argument 'long' must be set to TRUE.)

¥
{errors <- NULL}
)
extra.vals <- which(val.count > 1, TRUE)
n.extra <- nrow(extra.vals)
if (n.extra > 0) {
warning("Duplicated cores present")
ids.years <- data.frame( series.ids[extra.vals[, 2]],
min.year - 1 + extra.vals[, 1])
ids.years <- ids.years %>% group_by(D_COREID) %>%
summarise( min(YEAR),
max(YEAR),
length(YEAR),
max(YEAR) - min(YEAR) + 1)
} else {
ids.years <- NULL
}
if (any(!is.null(ids.decades) ||
lis.null(few.values) ||
lis.null(future.years) ||
lis.null(ids.years))) {
errors <- list( ids.decades,
few.values,
future.years,
ids.years)
} else {
errors <- NULL}
}

# END OF CODE

Block 3. This section reads in .rwl data files and calls the functions from Block 1 & 2 above.

#
error.identification <- function(fpath, id, NULL, FALSE,
TRUE){
if(exists("input.ok") & exists("error.collect")){
require(tidyverse)
## Read data file into memory
con <- file(paste@(fpath, id, ".rwl"), "UTF-8")

on.exit(close(con))
goodLines <- readLines(con)
close(con)

on.exit()
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## Strip empty lines (caused by CR CR LF endings etc.)
goodLines <- goodLines[nzchar(goodLines)]

## Remove comment lines (print them?)

foo <- regexpr("#", goodLines, TRUE)

commentFlag <- foo >= 1 & foo <= 78

goodLines <- goodLines[!commentFlag]

## Temporary file for 'goodLines'. Reading from this file is
## faster than making a textConnection to 'goodLines'.

tf <- tempfile()

tfcon <- file(tf, "UTF-8")
on.exit(close(tfcon))
on.exit(unlink(tf), TRUE)

writelLines(goodLines, tf)
## New connection for reading from the temp file
close(tfcon)
tfcon <- file(tf, "UTF-8")
if (is.null(header)) {
## Try to determine if the file has a header. This is failable.
## 3 lines in file
hdrl <- readLines(tfcon, 1)
if (length(hdrl) == 0) {
message("file is empty")
}

if (nchar(hdrl) < 12) {
stop("first line in rwl file ends before col 12")
}

is.head <- FALSE
yrcheck <- suppressWarnings(as.numeric(substr(hdrl, 9, 12)))
if (is.null(yrcheck) || length(yrcheck) != 1 || is.na(yrcheck) ||
yrcheck < -1e04 || yrcheck > 1e04 ||
round(yrcheck) != yrcheck) {
is.head <- TRUE
}
if (!is.head) {
datacheck <- substring(hdri,
seq( 13, 6, 10),
seq( 18, 6, 190))
datacheck <- sub("~[[:blank:]]+", "", datacheck)
idx.good <- which(nzchar(datacheck))
n.good <- length(idx.good)
if (n.good == 0) {
is.head <- TRUE
} else {
datacheck <- datacheck[seq_len(idx.good[n.good])]
if (any(grepl("[[:alpha:]]", datacheck))) {
is.head <- TRUE
} else {
datacheck <- suppressWarnings(as.numeric(datacheck))
if (is.null(datacheck) ||
any(!is.na(datacheck) &
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round(datacheck) != datacheck)) {
is.head <- TRUE

}
}
}
}
if (is.head) {
hdrl.split <- strsplit(str_trim(hdrl, side="both"),
split="[[:space:]]+")[[1]]
n.parts <- length(hdrl.split)
if (n.parts >= 3 && n.parts <= 13) {
hdrl.split <- hdrl.split[2:n.parts]
if (lany(grepl("[[:alpha:]]", hdrl.split))) {
yrdatacheck <- suppressWarnings(as.numeric(hdrl.split))
if (!(is.null(yrdatacheck) ||
any(!is.na(yrdatacheck) &
round(yrdatacheck) != yrdatacheck))) {
is.head <- FALSE

}
¥
}
}
if (is.head) {
cat(gettext("There appears to be a header in the rwl file\n",
domain="R-dplR"))
} else {
cat(gettext("There does not appear to be a header in the rwl file\n",
domain="R-dplR"))
¥
} else if (!is.logical(header) || length(header) != 1 || is.na(header)) {
stop("'header' must be NULL, TRUE or FALSE")
} else {
is.head <- header

}

skip.lines <- if (is.head) 3 else @
datal <- readLines(tfcon, n=skip.lines + 1)
if (length(datal) < skip.lines + 1) {
stop("file has no data")
¥
on.exit(unlink(tf))
## Test for presence of tabs
if (!grepl("\t", datal[length(datal)])) {
## Using a connection instead of a file name in read.fwf and
## read.table allows the function to support different encodings.
if (isTRUE(long)) {
## Reading 11 years per decade allows nonstandard use of stop
## marker at the end of a line that already has 10
## measurements. Such files exist in ITRDB.
fields <- c(7, 5, rep(6, 11))
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} else {
fields <- c(8, 4, rep(6, 11))

}
## First, try fixed width columns as in Tucson "standard"
dat <-

tryCatch(read. fwf(tfcon, widths=fields, skip=skip.lines,
comment.char="", strip.white=TRUE,
blank.lines.skip=FALSE,
colClasses=c("character", rep("integer", 11),
"character")),
error = function(...) {
## If predefined column classes fail
## (e.g. missing values marked with "."), convert
## types manually
tfcon <- file(tf, encoding="UTF-8")
tmp <-
read.fwf(tfcon, widths=fields, skip=skip.lines,
strip.white=TRUE, blank.lines.skip=FALSE,
colClasses="character", comment.char="")
for (idx in 2:12) {
asnum <- as.numeric(tmp[[idx]])
if (!identical(round(asnum), asnum)) {
stop("non-integral numbers found")
}
tmp[[idx]] <- as.integer(asnum)
}
tmp
})
dat <- dat[!is.na(dat[[2]]), , drop=FALSE] # requires non-NA year
series <- dat[[1]]
decade.yr <- dat[[2]]
series.fixed <- series
decade.fixed <- decade.yr
X <- as.matrix(dat[3:12])
## Convert values <= @ or < @ (not -9999) to NA
if (isTRUE(edge.zeros)) {

X[x < @ & x = -9999] <- NA
} else {
X[x <= @ & x = -9999] <- NA

}

x.fixed <- x
fixed.ok <- input.ok(series, decade.yr, x)
} else {
warning("tabs used, assuming non-standard, tab-delimited file")
fixed.ok <- FALSE
}
## If that fails, try columns separated by white space (non-standard)
if (!fixed.ok) {
warning("fixed width failed, trying variable width columns")
tfcon <- file(tf, encoding="UTF-8")
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## Number of columns is decided by length(col.names)
dat <-
tryCatch(read.table(tfcon, skip=skip.lines, blank.lines.skip=FALSE,
comment.char="", col.names=letters[1:13],
colClasses=c("character"”, rep("integer", 11),
"character"), fill=TRUE, quote=""),
error = function(...) {
## In case predefined column classes fail
tfcon <- file(tf, encoding="UTF-8")
tmp <- read.table(tfcon, skip=skip.lines,
blank.lines.skip=FALSE, quote="",
comment.char="", fill=TRUE,
col.names=letters[1:13],
colClasses="character")
tmp[[1]] <- as.character(tmp[[1]])
for (idx in 2:12) {
asnum <- as.numeric(tmp[[idx]])
if (!identical(round(asnum), asnum)) {
stop("non-integral numbers found")
¥
tmp[[idx]] <- as.integer(asnum)
}
tmp
})
dat <- dat[!is.na(dat[[2]]), , drop=FALSE] # requires non-NA year
series <- dat[[1]]
decade.yr <- dat[[2]]
X <- as.matrix(dat[3:12])
if (isTRUE(edge.zeros)) {

X[x < @ & x != -9999] <- NA
} else {
X[x <= @ & x = -9999] <- NA

}
if (!input.ok(series, decade.yr, x)) {
if (exists("series.fixed", inherits=FALSE) &&
exists("decade.fixed", inherits=FALSE) &&
exists("x.fixed", inherits=FALSE) &&
(any(is.na(x) != is.na(x.fixed)) ||
any(x != x.fixed, na.rm=TRUE))) {
series <- series.fixed
decade.yr <- decade.fixed
warning("trying fixed width names, years, variable width data")
if (!input.ok(series, decade.yr, x)) {
# This 1s the original stop function. If the input.ok function fails
again then it stops.
# But here we want to collect the error
warning("Fail to read rwl file - collecting errors [1]")
error.collect(x, decade.yr, series)
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} else {
# This is the original stop function. If the 1input.ok function fails
again then it stops.
# But here we want to collect the error
warning("Fail to read rwl file - collecting errors [2]")
error.collect(x, decade.yr, series)

}
} else {

# This 1is the original stop function. If the input.ok function fails
again then it stops.

# But here we want to collect the error

warning("Fail to read rwl file - collecting errors [3]")

error.collect(x, decade.fixed, series.fixed)

}

} else {NULL}
} else {warning("Please load function 'input.ok' and 'error.collect' on the
global environment before proceeding")}

}
# END OF CODE
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Appendix 4. Code for bulk detrending of ITRDB raw data files in Tucson format (.rwl), and
subsequently averaging them into a site chronology format (.crn). The code also generates a
table with statistics that describe the quality of the chronology (EPS, rbar). We use three
detrending methods, preserving low-frequency (modified negative exponential) medium-
frequency (Spline) and high-frequency variability (Friedman) for different research objectives.
Both the input (.rwl) files and the output (.crn) files are available in this database submission, but
the code below can be used to modify the detrending parameters and create a new set of

chronologies in one run of the code below.

library(tidyverse)
library(dplR)

# Change this relative file path to the subdirectory where .rwl files reside
fpath <- "rwl files subdirectory/"

# Lists all files to be detrended

rwl flist <- list.files( fpath, "orwl™) %>%
str_replace_all(".rwl", "")
rwl flist <- rwl flist[!str detect(rwl flist, "track")]

# Stops output from read.rwl from being printed
quiet <- function(x) {

sink(tempfile())

on.exit(sink())

invisible(force(x)) }

# Creates empty data tables required to run Loop
chr_stats <- tibble() # Statistics about the detrending
chr_all <- list() # List to store detrended rwls

for (i in rwl flist){
start <- Sys.time()
rwl <- read.rwl(paste@(fpath,i,".rwl"))

if (lany(class(rwl) %in% c("warning"))){

# Here 1is where you can select and parameterize the detrending method

# For this database submission we used three methods preserving Llow-frequency
# (modified negative exponential) medium-frequency (Spline) and high-

# frequency variability (Friedman):

# method = "ModNegExp", pos.slope = FALSE

# method = "Spline", nyrs = NULL, f = 0.5

# method = "Friedman", span = "cv", bass = @
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rwl_d mod <- tryCatch(suppressWarnings(

detrend(rwl, "Spline", nyrs = NULL, f = 0.5)),
function (e) {
return(e)
message("Failed to detrend")
¥

function (w) warn <<- as.character(w))
if(lany(class(rwl_d _mod) == "simpleError")){
rwl ¢ mod <- rwl _d mod %>% chron()
chr_all[[i]] <- rwl_c_mod

# Calculating average sample depth

SDEPTH <- rwl_c_mod %>% select(samp.depth) %>% as.matrix

SDEPTH_AVG <- rwl c_mod %>% select(samp.depth) %>% as.matrix %>% mean
%>% round(3)

rwi_runn <- tryCatch( rwi.stats.running(rwl_d_mod,
TRUE),

function (e) return(e))

if(SDEPTH_AVG >= 1 & lany(class(rwi_runn) == "simpleError") &

length(rwi_runn) > 2){
rwi stat <- rwi.stats(rwl d mod)

# Calculating Estimated Population Signal (EPS)

EPS_AVG <- rwi_stat$eps

EPS_85 MIN YR <- rwi_runn[min(which(rwi_runn$eps > 0.85)),
"start.year"]

EPS_85 MAX_ YR <- rwi_runn[max(which(rwi_runn$eps > 0.85)),
"end.year"]

# RBAR
rbar_stat <- cor(rwl_d_mod, "pairwise.complete.obs")

RBAR_AVG <- rwi_stat$rbar.tot
# RBAR_AVG <- rbar_stat %>% mean(na.rm=TRUE)
RBAR_SD <- rbar_stat %>% sd( TRUE) %>% round(4)
RBAR_MIN <- rwi_runn %>% select(rbar.tot) %>% min
RBAR_MAX <- rwi_runn %>% select(rbar.tot) %>% max
chr_stats2 <- cbind(

EPS_AVG, EPS_85 MIN_YR, EPS_85 MAX_YR,

RBAR_AVG, RBAR_SD, RBAR_MIN, RBAR_MAX, SDEPTH_AVG)

} else {message("Can't calculate statistics")

chr_stats2 <- cbind(
SDEPTH_AVG,
tibble( "Failed to run rwi.stats and rwi.stats.running",
if(!length(rwi_runn) > 2){
X <- "Not enough years to calculate rwi.stats.running"
} else {
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X <- as.character(rwi_runn)

}
)
)
}
} else {
chr_stats2 <- cbind(
tibble(
ERROR_DET = "Failed to detrend",
MSG DET = as.character(rwl_d mod)))
¥
} else {

chr_stats2 <- tibble(
ERROR_RWL = "Failed to read rwl",
MSG _RWL = as.character(rwl))

chr_stats2 <- chr_stats2 %>% as_tibble %>% mutate(JSN fileCode = i)
chr_stats <- bind_rows(chr_stats, chr_stats2)

end <- Sys.time()

cat(pasteo("----- B \n",
"Run time: ", round(end-start, 2), "s\n",
"Number of cores: ", rwi_stat$n.cores, "\n\n"))

}

# Writing out the chronology files, note that this code does not generate
# headers, but headers were added to chronology files of thus database

for (i in rwl_flist){ write.crn(chr_all[[i]], paste@(i, ".crn")) }
write.csv(chr_stats, "Chronology statistics.csv", row.names = FALSE)
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Appendix 5. Schematic of drought detection cases exemplifying all possible cases of immediate

and lagged tree responses combined with sharp or slower decline (over 2 years) in moisture
conditions. Red line represents standardized SPEI (Standardized Precipitation and

Evapotranspiration Index) while green line represents standardized RWI (Ring Widths Index).

In that same year
drought and response

S

1581 1582 1583 1984 1985

Year

Drought over two year
Response on a single year

$

1580 1581 1582 1583 1984 18385

Year

Drought over two years
Response aver two years

4

1980 1581 1582 1583 1984 1985

Year

Lagged Drought on single year
Response on a single year

1581 1582 1583 1584 19385

Year

Lagged Drought over two years
Response on single year

1580 1581 1582 1983 1584 1535

Year

Lagged Drought over two years
Response over two years

1530 1981 1582 1583 1934 1985

Year

147



Appendix 6. Supplementary details on ecological drought detection and RED50 methodology.

Data sources

Tree-ring records. Total ring-width measurements from the ITRDB (available from
https://www.ncei.noaa.gov/pub/data/paleo/treering/). Inclusion required >10 trees per site and >30 years
of observations within 1971-2005.

Climate. Monthly temperature and precipitation from the University of Delaware global gridded product
(available from https://downloads.psl.noaa.gov/Datasets/udel.airt.precip/v401/), extracted at site
coordinates.

Mortality validation dataset. Global drought-induced tree mortality database is available from
https://www.tree-mortality.net/globaltreemortalitydatabase/. Used for external validation of flagged
droughts.

Tree-ring processing

Raw widths were detrended with the Friedman Super-Smoother ("spline") to emphasize interannual
variation relevant to drought impacts. Individual series were combined with a robust mean;
autocorrelation was reduced via autoregressive modeling to enhance the climate signal. The working
chronology variable is the ring-width index (RWI). Missing terminal years (<5 years at series end) were
imputed where needed using a Random Forest approach.

Site-level inclusion. Sites used in the drought-response analysis satisfied: (i) >30 record years in 1971—
2005; (ii) >3 ecological drought events detected; (iii) membership in a PAM cluster with >6 sites; (iv)
removal of <5% outliers (spatially disjunct cluster members or metric outliers).

Climate data, growth year alignment, and SPEI

To align climate with ring formation, we defined the growth (drought) year as the 12 months ending in
August for the Northern Hemisphere and February for the Southern Hemisphere. For each month we
computed Thormthwaite PET, water balance (P — PET), and then SPEI. We then calculated a rolling
accumulation over the user-selected growth window (default 12 months) to obtain annual MeanSPEI per
site and growth year. For drought detection, SPEI was z-scored within site over 1971-2005 to yield
MeanSPEIScaled.

Site-level drought detection

We focused on acute droughts (=1-2 years). A site-year was flagged as an ecological drought when
anomalous drying and growth decline were synchronized:

Immediate response (same year): SPEI <0 and ASPEI <—1 SD and ARWI (scaled) <—1 SD
(year-to-year).

Two-year/deferred response: SPEI <0 and ASPEI over two years <—1.5 SD and (ARWI< -1 SD or
two-year ARWI < -2 SD).
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Regional (group) drought years and coherence checks

We summarized site drought flags within bio-climatic groups (see S6) and declared a group drought year
when >30% of sites flagged a drought. Mixed immediate vs. delayed responses were handled as follows:
when one response type exceeded 65% of responding sites, we adopted that year; otherwise, adjacent
years were averaged as a single multi-year event. Years lacking a post-event recovery window (>2 years)
were excluded. Spatial and temporal consistency was verified by reviewing neighboring sites and by
removing group years with average SPEI > —0.25.

External validation. For locations within 150 km of documented drought-induced mortality, 82% of
mortality events were preceded (<3 years) by our ecological droughts, supporting construct validity.

Clustering by bio-geoclimatic similarity

Sites were clustered within continental regions using Partition Around Medoids (PAM) on full time-series
matrices of annual SPEI and raw ring width (1971-2005). k per region was chosen by maximizing the
average silhouette statistic. Clustering was constrained within continental/ecoregional boundaries.

Drought response indices and the RED50 metric

We computed Resistance = Drought/PreDrought, Recovery = PostDrought/Drought, and Resilience =
PostDrought/PreDrought using two-year means for pre- and post-drought windows. Following Schwarz et
al. (2020), we fit a negative-exponential model (Recovery = a - Resistance®) and compared it to the
full-resilience line (1/Resistance). RED50 is the deviation from the full-resilience line at Resistance = 0.5.

Model specification, fitting, and uncertainty

Fitted via non-linear least squares (NLS) with high iteration limits. Uncertainty was quantified by
bootstrapping and propagating to RED50. Minimum 3 events per group required.

Filtering rules and exclusions

- Excluded group years with SPEI > —0.25.

- Removed years failing spatial/temporal coherence.

- Excluded end-of-series events without >2 post years.

- Clusters with <6 sites or sites with <3 droughts removed.
- <5% of sites removed as outliers.
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Reproducibility notes and code availability

Implemented in R as std_drought_impact() with modular helpers.

Default parameters:
clim_growth_end = ¢(NH =8, SH = 2),
clim_growth_period = 12,
clim_spei_scale =1,
clim_rescale_spei = TRUE,
thr_pointer_year_prop_sites = 0.3,
thr_multi_drought_tiebreak = 0.65,
n_years_baseline = 2,
n_years_recovery = 2,
model_min_n_drought_events = 3,
model_resistance_val = 0.5

Outputs: intermediate objects + final RED50 table (mean, SE).

Code archived on GitHub (https://github.com/vmanvailer/treedrought).

Note: The pipeline contains temporary QA steps used during refactoring with minimal effect on results.
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Appendix 7. Continental region delineations used for clustering tree ring chronologies on RED50 drought response analysis. Clustering was applied

on each continental delineation independently for developing coherent clustering.
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Appendix 8. Data availability over time and filtering overview. Darker shades are the cumulative number of trees available after applying each filter

on top of the previous one.
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