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ABSTRACT 

 

Citizen science is the public participation in research, usually through volunteer monitoring or 

data collection. Data collected by citizen scientists is a valuable resource in many fields of 

research that require long-term observations across broad spatial scales. However, such data may 

not be as accurate as those collected by trained professionals. The objective of this thesis is to 

analyze the reliability of individual observers and observations to enhance the data quality of a 

citizen science network that has recorded plant phenology (bloom times) since 1987 across 

Alberta to track biological response to environmental change. This study evaluates five 

algorithms designed to detect outlier observations and inconsistent observers.  These methods 

rely on different quantitative approaches, including residuals of linear models, correlations 

among observers, and deviations from multivariate clusters, and percentile-based outlier 

removal. The effects of these data pre-processing approaches was evaluated by comparing 

regional means of the resulting time series, through comparing maps of observations that were 

removed by different methods, and by evaluating spatial autocorrelations, measured as Moran’s 

I. Spatial autocorrelations are expected to increase if outliers and inconsistent observations are 

successfully removed. All data cleaning methods resulted in an improvement of Moran’s I 

statistic, with percentile-based outlier removal and the clustering method showing the greatest 

increase in autocorrelations. Methods based on residual analysis of linear models had the 

strongest impact on the final bloom time mean estimates, but were among the weakest based on 

autocorrelation analysis. Removing entire sets of observations from potentially unreliable 

observers proved least effective. In conclusion, percentile-based outlier removal emerges as a 

simple and effective method to improve reliability of citizen science phenology observations. 
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1.  INTRODUCTION 

1.1 Citizen science and its benefits 

Citizen science is broadly defined as “scientific study that includes non-professional scientists as 

contributors or collaborators” which may include sample collection with standardized protocols.  

Citizen science has been documented as early as 3 500 years ago with citizens and officials 

recording locust outbreaks in China (Miller-Rushing et al 2012). In Europe, citizen science 

networks became an important resource for scientific progress in the 17
th

 century for natural 

history observations. For example, early ecologists such as John Ray and Carl Linnaeus have 

relied extensively on observations reported and specimens collected my amateur naturalists 

(Miller-Rushing et al 2012).  

Today, volunteer observers contribute to various research fields, including astronomy, 

conservation science, population ecology, environmental risk assessments, pollution detection, 

and monitoring environmental change (Fuccillo et al 2014; Mengersen et al 2017). Their 

contributions enable large-scale scientific data collection efforts that would otherwise not be 

possible.  For example, national-scale programs, such as the French Breeding Bird Survey, 

running since 1989, have been estimated to cost hundreds of thousands to several million Euros 

per year if the same work were to be carried out by paid professionals instead of volunteers 

(Levrel et al 2010). Similarly, volunteer contributions to the Cornell University’s FeederWatch 

program, located in the United States, have been valued at 3 million dollars per year (Dickinson 

et al 2010). Even for smaller scientific studies, citizen science contributions are often invaluable. 

For example, in a taxonomic study of ladybird beetles (Coccinellidae spp.), volunteer 

contributions were estimated to be worth several tens of thousands of dollars (Gardiner et al 

2012).  

In general, any type of biological or environmental monitoring over large geographic areas or 

long time periods tends to benefit from citizen science networks. For example, citizen science 

driven projects have been used to identify pollution sources (McKinley et al 2017). The 

establishment, spread, and control of invasive species are regularly supported by volunteer 

observation networks (Crall et al 2015). Citizen scientists monitor dozens of invasive plants in 

Portugal (Marchante et al 2017). In Italy, invasive species and their effects on native species are 
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monitored by volunteers (Buldrini et al 2015). Also, invasive animals are reported and monitored 

through citizen science networks (Anderson et al 2017; Morii and Nakano 2017). In conservation 

biology, rare plant populations are monitored, and potential threats to populations have been 

identified through data collected by volunteers (Havens et al 2012; Vander Stelt et al 2017). The 

previously mentioned French Breeding Bird Survey has demonstrated a northward-shift of bird 

communities, as well as changes in bird community composition, coinciding with climate change 

(Jiguet et al 2012).  The results of an annual Christmas bird count in North America, has also 

found poleward shifts in the range boundaries of birds from 1975 to 2004, potentially due to 

anthropogenic and climatic factors (La Sorte and Thompson 2007).  

In the context of environmental monitoring, perhaps the most important citizen science 

contribution is found in the field of phenology and climate change. Phenology, is based on “the 

seasonal timing of life cycle events” (Rathcke and Lacey 1985).  Citizen scientist supported plant 

phenology programs include the USA National Phenology Network (USANPN), which monitors 

the timing of flowering and leafing of approximately 878 plant species (USA National 

Phenology Network n.d.). In Canada, the Alberta PlantWatch program is the longest currently 

running citizen-science plant phenology observation network (Beaubien and Hamann 2011b). In 

Europe, phenological monitoring programs include the International Phenological Gardens, 

founded in 1957 to monitor genetically identical plants across the continent, although nationwide 

phenological monitoring programs are common, for example the former USSR has recorded 

phenological occurrences since the 1850s, and since the 1920s in Estonia, and portions of Slovak 

and the Czech Republic (Menzel 2003). In recent decades, data from such phenology monitoring 

networks have emerged from relative obscurity to the forefront of environmental monitoring. For 

example, an analysis of published studies in plant phenology within the International Journal of 

Biometeorology alone have increased from approximately 350 papers per decade between 1957-

2007 to over 1 000 contributions between 2007 to 2016 (Donnelly and Yu 2017).   

Citizen science networks not only benefit the scientific community, but the benefits can return to 

the volunteers through their involvement in managing local resources and environments, or 

through education and promotion of conservation programs. By incorporating the local 

involvement of citizen scientists, there is potential for citizen science driven projects to support 

environmental management and policy-making (McKinley et al 2017). In an example of a citizen 
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scientist-driven research project, the Shermans Creek Conservation Association in Pennsylvania, 

USA, designed a study with the assistance of researchers from the Alliance for Aquatic Resource 

Monitoring, and collected and analyzed three years of data relating to the condition of Shermans 

Creek with the goal of future participation in decision making (Shirk et al 2012).   In another 

example, data collected by recreational fishers was instrumental to determining the boundaries of 

a Great Barrier Reef Marine Park (Granek et al 2008). 

 

1.2 Problems and approaches for quality assurance  

Several criticisms have been raised regarding the reliability and objectivity of citizen scientists’ 

data (Danielsen et al 2014). As unpaid researchers, the motivation and objectivity of citizen 

scientists have been questioned, and concerns have arisen from policies and decisions derived 

from citizen scientist-produced data in which the observers have a vested interest in the 

outcomes of the study (Kosmala et al 2016).  In the USA, arguments against the reliability of 

volunteer data have led to some programs reverting to the use of professional scientists, or to 

limiting volunteer involvement (Silvertown et al 2013; MacKenzie et al 2017).  In 1993, while 

establishing the United States National Biological Survey (now a part of the Biological 

Resources Division of the United States Geological Survey), an amendment was made to the 

original bill prohibiting the use of volunteers in survey activities (Reichhardt 1994; Wagner 

1999; Lewis 2003).  

Research has provided some evidence that supports the above criticisms regarding quality issues 

with data obtained from volunteer networks. For observations where temporal accuracy needs to 

be high, a potential sampling bias includes a “weekender effect”, where reported observations 

are more frequent on the weekends, potentially causing a delay in reported event dates. This is 

apparent in particular with migration studies of birds, where an analysis of citizen scientist bird 

migration data from 1947 to 2004 found that 44% of first arrival reports were made on 

weekends, as opposed to the expected 28%.  Rare birds were also primarily observed on 

weekends (Sparks et al 2008).  Another important sampling bias is based on the geographic 

distribution of sampling sites, where easily accessible areas are more frequently sampled, and 

remote areas are less frequently sampled (Hugo and Altwegg 2017).  
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Errors in citizen science data may also result from incorrect data entry. Records are often 

recorded manually by volunteers, and are later transcribed into a computer database, where there 

is possible error due to interpretation of handwriting, and in the manual entry process of data into 

the database.  Incorrect identification of species is also possible and accuracy of observations has 

been found to decline with increasing difficulty to distinguish among closely related or visually 

similar species (Beaubien and Hamann 2011b; Crall et al 2011; Fuccillo et al 2014; Kosmala et 

al 2016).  It has been noted earlier that the quality of observations can be influenced in part by 

the education level of observers (Dickinson et al 2010). However, some studies have 

contradicted this information (Danielsen 2014).  Citizen scientists who are invested in a project, 

involved in the study design, and properly trained, even in communities with limited abilities to 

read and write, can produce data similar to that of trained scientists (Danielsen 2014).   

Nevertheless, other research has also shown that when issues such as those listed above are 

properly taken into consideration, the inherent concerns on accuracy and bias in citizen science 

data may be accounted for at the stage of data preparation. In evaluating the quality of citizen 

scientist data, a variety of factors should be taken into account, including the level of effort 

required for a task, the level of training invested in observers, and the study design (Kosmala et 

al 2016). For example, relatively straight forward observation protocols by the United States 

National Phenology Network has yielded a higher than 90% match when compared to 

independent observations made by a professional ecologists, while more difficult to observe 

transition phases were accurate at approximately 70% (Fuccillo et al 2014). Previous studies of 

citizen science accuracy have found that citizen scientists could assess phenology of easy to 

identify plant species with approximately 80% accuracy, declining to 65% for species that could 

be easily confused with others (Crall et al 2011).   

For difficult tasks, careful training of volunteers should be taken into consideration, as well as 

ongoing assessment, validation, and pre-tests in order to minimize error (Kosmala et al 2016).  In 

previous literature from Alberta PlantWatch, it has been found that citizen scientist driven data is 

high quality if proper training has been given for observers (Beaubien and Hamann 2011b).  The 

effectiveness of volunteer training can also be evaluated. For example, the global eBird 

observation network uses machine learning methods to improve observer training, and validate 

submitted data (Kelling et al 2013).  Effective training has also been documented as instrumental 
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in citizen science driven studies related to water quality assessments and invasive plant 

monitoring (Fore et al 2001; Gallo and Waitt, 2011).  Improvement to training and observation 

protocols in science is not unique to volunteer networks, but similarly applies to data collection 

by professionals and experts, where repetitive tasks invariably lead to fatigue and errors in data 

entry and management (Kosmala et al 2016).   

Data cleaning, outlier detection, or other data pre-processing is a common scientific approach 

that does not only apply to volunteer data, but also to any professionally collected data or 

instrument measurements that are prone to inaccuracies. Such methods have been routinely 

applied to improve volunteer data. According to the by the Data Observation Network for Earth 

(DataONE) – a United States National Science Foundation funded agency to encourage data 

sharing, the quality of data could be evaluated after data input by using a statistical model for the 

visual detection of outliers, and subsequent investigation (DataONE n.d.).  An example of this 

statistical model could be based on that of Ranjitkar (2013) where a significant correlation was 

found between flowering date and location (latitude and elevation) for Rhododendron arboretum 

Sm. in Nepal. Spatiotemporal verification of data has also been conducted in the past on citizen 

scientist-submitted data, utilizing volunteer validation, expert validation, or geographic 

assessment of quality (Mehdipoor et al 2015).   

Another way that biological data from volunteer networks could potentially be evaluated without 

a direct comparison to professional observers is the internal consistency of observations, based 

on the general principle expressed by Tobler’s first law of geography: “Everything is related to 

everything else, but near things are more related than distant things” (Tobler 1970).  Plant 

blooming and budburst in the temperate region is highly dependent on temperature, measured 

through heat sum accumulation (Rathcke and Lacey 1985), which is spatially autocorrelated 

(Javari 2017). Factors that influence the timing of budburst and flower blooming may also 

include plant genetics, and environmental factors such as photoperiod, and moisture in tropical 

areas (Rathcke and Lacey 1985).  These environmental factors vary geographically and are also 

inherently related to location and elevation. A previous study by Schwartz, Hanes, and Liang 

(2014) found that using Moran’s I, clustering of phenological observations occurred across the 

study area of 625 m x 625 m. At smaller (microclimate) scales within the larger study area, 

Schwartz et al (2014) found that spatial autocorrelation measures depicted random patterns.   
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1.3 Research objectives 

This study evaluates algorithms designed to detect outlier observations and inconsistent 

observers from a citizen science network that monitors the timing of bloom and leaf out for 30 

plant species in Alberta, Canada. The network consists of 700 observers that have reported more 

than 50,000 bloom dates from 1987 to 2016. The data has been used to document the impact of 

climate change at northern latitudes (Beaubien and Johnson 1994; Beaubien and Freeland 2000; 

Beaubien and Hamann 2011a). Data from Beaubien and Freeland 2000 has been featured in the 

Fourth Assessment Report of the Intergovernmental Panel on Climate Change as evidence for 

the impacts of climate change (IPCC 2007). Due to the large number of observers, the 

geographic extent of the network over more than a thousand kilometers, covering a variety of 

climates and ecosystems, makes outlier detection challenging. This study contributes a 

comparison of five data cleaning methods that rely on different quantitative approaches, 

including residuals of linear models, correlations among observers, and deviations from 

multivariate clusters, and percentile-based outlier removal. As a measure for determining the best 

method for potentially unreliable observation removal, Moran’s I statistic (Moran’s I) was used 

as a measure of spatial autocorrelation to determine if the cleaned datasets had an increase in 

spatial autocorrelation when compared to the original dataset. Spatial autocorrelations are 

expected to increase if outliers and inconsistent observations are successfully removed. In 

addition to the effect of different cleaning methods on spatial autocorrelations, the data cleaning 

approaches were also evaluated by comparing regional means of the resulting time series, and 

through comparing maps of observations that were removed by different methods.  

 

2.  MATERIALS AND METHODS 

2.1 Study layout 

This study was implemented in Alberta, one of Canada’s three Prairie Provinces, and is bound to 

the north by the 60
th

 parallel, the 110
th

 meridian to the east, and the 120
th

 meridian and the Rocky 

Mountains to the west (Smith et al 2017).  With an area of 661 848 km
2
, topography ranges from 

mountainous regions to the west with elevations up to 3 747m, and slopes downwards towards 
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the northeast where the lowest elevation is 175m (Figure 1) (Alberta Environment and Parks 

2015, Smith et al 2017). Temperatures also fluctuate annually from summer daytime high 

temperatures averaging 20 to 25°C, to winter daytime low temperatures averaging -5 to -15°C 

(Travel Alberta 2017). Climatic regimes in Alberta include the grassland region in the southeast, 

characterized by a continental climate of long cold winters and low precipitation (Strong and 

Legatt 1992).  The cordilleran climatic region encompassing the Rocky Mountains is located to 

the southwest of the province and has short summers and variable winters (Strong and Legatt 

1992).  The boreal region in the north of the province has low precipitation, but long daylight 

hours in summer (Strong and Leggatt 1992).  As outlined by the Natural Regions Committee 

(2006), Alberta is divided into six natural regions based on landscape pattern (vegetation, soils, 

and physiographic features). 

 

Figure 1. Environmental context for the province of Alberta, Canada.   

 

Datasets including the Alberta Climate Model developed by Alberta Environment (2005) and the 

provincial digital elevation model were incorporated with field surveys to develop the natural 

regions of Alberta (Figure 2).  These natural regions are further subdivided into 21 subregions, 

and “generally characterized by vegetation, climate, elevation, and latitudinal or physiographic 

differences” within regions. 

Given the scale of Alberta and the wide range of geographic variability, natural subregions were 

selected for this study as a means of landscape classification in order to generalize areas of 

Alberta that are expected to have similar phenological responses. 
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Figure 2. Natural subregions for ecological classifications used for data cleaning Method 1 
Standardized difference, Method 3 Linear model by natural subregion, and Method 4 Observer 
correlation.  

 

2.2 Alberta PlantWatch phenological data 

Phenological data from 1987 to 2016 was provided for this study by Elisabeth Beaubien, Alberta 

coordinator the citizen science phenological program PlantWatch.  Data was checked at the 

manual entry stage for easily recognized issues such as location, phenophase (phase), and species 

numbers that do not exist.  These “impossible” records were cleaned manually, and cross 

referenced with the original data submission files to ensure errors resulting from data entry were 

limited as much as possible.  In total, 57 745 observations were available for 30 species from 

1987 to 2016.  Observer locations are primarily where human population is greater i.e. within 
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areas around large cities and extensive road networks.  Observations in remote areas are limited, 

such as those far away from road networks in the northeast portion of the province (Figure 3).  

Basic summary statistics for each plant species and phase used in data cleaning are available in 

Appendix A. 

 

 

Figure 3. Observations made by Citizen Scientists for the Alberta PlantWatch program from 1987 
to 2016.  Observation counts and natural subregions are depicted with matching colours. 

 

Instructions for phase reporting in the PlantWatch program are detailed in a “PlantWatch Canada 

in Bloom!” publication by Nature Canada (2010) and on the web (www.plantwatch.ca).  Phase 1 

(first bloom) is reported as when the first flowers are open, or when male catkins or cones first 

start shedding pollen.  When flowering occurs in multiple places across the plant, observers are 

instructed to report the date where first flowering or shedding is observed in three places across 

the plant.  Phase 2 (mid bloom) is reported as when either 50% of flowers are open, or when 

50% of male catkins or cones are shedding pollen.  Additional phases can be reported by 

observers for full bloom and leafing however these were not consistently reported for all species’ 

and across all years as protocols were adjusted over the course of the study period (Beaubien and 
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Hamann 2011b). As a result, only first bloom and mid bloom phase data was used for the 

purposes of this research project.   

Of species data collected over the whole study period, four species were selected where a 

minimum of 18 records for first bloom and mid bloom phases were recorded from 1987 to 2016.  

The four species used for this study included the tree aspen (Populus tremuloides Michx.), the 

herbaceous species early blue violet (Viola adunca J.E.Smith), and the two shrub species 

chokecherry (Prunus virginiana L.) and saskatoon (Amelanchier alnifolia Nutt.) (Figure 4). 

 

Figure 4. Observations made for the Alberta PlantWatch program from 1987 to 2016 used as a 
part of the data cleaning study.  Observer counts and locations are depicted with matching 
colours. 

 

2.3 Climatic data 

In this study, 1 km x 1 km gridded climatic data was obtained from the National Aeronautics and 

Space Administration, Daymet project for each observation point (Thornton et al, 2016; 

Hufkens 2017).  The climatic variables were summed from January 1 up to the day of year that 

each phenological observation was made, and included the cumulative maximum daily 

temperature, cumulative minimum daily temperature, cumulative average daily temperature 
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(calculated by the average of the maximum and minimum temperatures), cumulative daily day 

length, cumulative daily precipitation, cumulative daily solar radiation, cumulative daily snow 

water equivalent, and cumulative daily water vapor pressure.  

 

2.4 Data cleaning methods used for phenological data quality improvement 

Data cleaning methods used for improvement of quality for phenological data was as follows: 

percentile-based outlier removal, residuals of linear models, correlations among observers, and 

deviations from multivariate clusters.  

Each species and phase (species phase) was cleaned independently of other species phases. In 

total, 5% of data points were removed with each data cleaning method.  Data cleaning activities, 

summary statistics, and visualizations were done using the R programming environment (R 

Development Core Team 2014).  These five methods are introduced below in more detail. 

Method 1 - Standardized difference (SDiff) 

Natural subregions generally have similar climatic factors, landscape pattern, vegetation, soils, 

elevation, and physiographic features (Natural Regions Committee 2006). Native plants and trees 

have adapted to the local factors (Savolainen et al 2007).  Thus, the expectation is that 

observations of the same species phase are expected to occur at approximately the same time 

within nearby areas, and within individual natural subregions.  A good indication for a potential 

error would therefore be the tails of the distribution around the mean value of the natural 

subregion (Figure 5).    

In order to compare outliers across different natural subregions, the scale of observations was 

standardized to express each observation in units of standard deviations from the natural 

subregion mean using Cohen’s d, grouped by natural subregion and year (subregion year):  

      
    

 
   (1) 
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Where       is the values scaled to the standard deviation of the mean,   is the day of 

observation,    is the average observation date grouped by subregion year, and where   is the 

standard deviation of observations.  

Where only one record for a subregion year is available, the standard deviation is set to zero. 5% 

of observations were removed with the highest standardized difference from the mean of their 

corresponding subregion year.   

 

Figure 5. Conceptual depiction of Method 1 (Standardized difference) data cleaning based on 
the removal of outliers grouped by natural subregion and year.  Blue represents conceptually 
retained records, red represents conceptually removed records. 

 

Method 2 - Linear model (LM) 

This method of data cleaning is based on developing a generalized linear model for the purposes 

of data cleaning (Figure 6).  This model is similar to the model developed by Ranjitkar (2013), 

where flowering is based on a linear model developed using location (latitude, longitude, and 

elevation) as predictors.  Since the model developed by Ranjitkar (2013) was for observations 
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made over the course of one year, an additional predictor was included in this study in order to 

account for annual climatic variability such as El Niño and El Niña events.   

For the development of this (LM) method of data cleaning, latitude, longitude, elevation, as well 

as year were used as predictors in the linear model for the phenological occurrence.  The records 

for removal were assessed by calculating the residual difference between the predicted day of 

year of phenological occurrence (based on the linear model), and the observed day of occurrence.  

The 5% of observations with the highest absolute residual difference to the linear model were 

removed. 

 

Figure 6.  Conceptual depiction of Method 2 (Linear model) data cleaning, based on the 
development of a linear model with latitude, longitude, elevation, and year as predictors.  
Observations with the largest residual difference are removed.  Blue represents conceptually 
retained records, red ‘x’ represents conceptually removed records. 

 

Method 3 - Linear model by natural subregion (LMNSR) 

As outlined in Method 1 (SDiff) above, the expectation is for observations of the same species 

phase to occur at approximately the same time within individual natural subregions.  As a 

modification of Method 2 (LM) above, Method 3 (LMNSR) uses natural subregion and year as 

predictors for developing a linear model for the removal of outliers (Figure 7).  By using natural 
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subregions, local variability is accounted for, such as landscape pattern, climatic variables, and 

elevation, as these factors were incorporated into delineation of natural subregions (Natural 

Regions Committee 2006). 

The residual difference was again calculated by subtracting the predicted day of year of 

phenological occurrence (based on the LMNSR linear model) from the observed day of 

occurrence, and the 5% of observations with the highest absolute difference were removed. 

 

Figure 7. Conceptual depiction of Method 3 (Linear model by natural subregion) data cleaning, 
based on the development of a linear model with natural subregion and year as predictors.  
Observations with the largest residual difference are removed.  Blue represents conceptually 
retained records, red ‘x’ represents conceptually removed records. 

 

Method 4 - Observer correlation (CORR) 

In a previous study using Alberta PlantWatch data, it was found that one-time observers are 

relatively unbiased in over and under-estimation of observations compared to long-term 

observers (Beaubien and Hamann 2011b).  This was found although the quality of observations 

can be influenced by training of observers (Kosmala et al 2016).  Method 4 (CORR) is based on 

the idea that by removing potentially inconsistent or unreliable observers, the accuracy of the 

dataset may be improved.  Since observations of the same species phase are expected to occur at 
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approximately the same time within individual natural subregions, an individual’s observation 

within a subregion year should correlate with the overall mean of all observers’ phenological 

activity within the natural subregion as well (Figure 8).  By limiting observations within an 

individual natural subregion, this method also takes into account local variability.  While 

observers are instructed to submit only one date for each species phase a year, there were a few 

observers that submitted multiple observations for the same species phase within the same 

subregion year.  As a result, prior to calculating the correlation of observers, the day of year for 

phenological events was averaged for each observer where the species, phase, natural subregion, 

and year all matched. 

 

Figure 8. Conceptual depiction of Method 4 (Observer correlation) data cleaning, based on the 
removal of observers with the lowest correlation to the average observations by natural 
subregion.  Blue dashed lines represents conceptually retained observers; red solid line 
represents a conceptually removed observer. 

 

Where observers submitted three or more observations for an individual species phase within a 

natural subregion over several years, a correlation was calculated for the observer’s values to the 

overall mean of the natural subregion, and ranked from lowest to highest correlation values by 

observer. Correlation was calculated using the ‘cor’ function in R with the default Pearson 
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correlation coefficient settings.  If observers have submitted only one or two total observations 

over all years for a natural subregion species phase, correlation to the mean could not be 

determined.  These observers were ranked by comparing the absolute difference of their 

individual observations from the mean of the subregion year in the same process as Method 1 

(SDiff) above, using equation (1).  

Observers in the correlation dataset (with three or more observations per subregion) with the 

lowest correlation to the mean species phase values, and observers with observations having the 

highest residual difference in the standardized difference dataset (with 1 or 2 observations) were 

noted and all records from those observers in the natural subregion were removed from the 

dataset. An attempt was made to remove 5% of observations from the correlation dataset (with 3 

or more observations) and 5% from the standardized difference dataset (with 1 or 2 

observations).  However, since only whole observers were removed, some variation occurred in 

the proportion of observers in each dataset in order to meet the 5% target removal. This method 

is perhaps the most subjective in terms of observation removal.  This is because, in order to have 

an exact 5% removal, the selection of observers could not be automated. 

 

Method 5 Dimensionality reduction and clustering (DRC) 

Previous studies have used spatiotemporal proximity to verify observations.  However, this 

(DRC) method of data cleaning incorporates not only geographic proximity, but also 

environmental contextual information to explain inconsistencies in information (Mehdipoor et al 

2015).  

This dimensionality reduction and clustering (DRC) method is based on a workflow devised by 

Mehdipoor et al (2015) for phenological data (Figure 9).  Although Mehdipoor et al (2015) used 

USANPN data in developing their workflow, it may also be used for Alberta PlantWatch data.  

This is since rather than using the sequence yes/no observations for observation date, the 

Mehdipoor et al (2015) workflow uses the day of year of a given phenological phase (flowering 

onset) as the observation date, similar to the Alberta PlantWatch program protocol. 
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Figure 9. Conceptual depiction of Method 5 (Dimensionality reduction and clustering) data 
removal method.  T-distributed stochastic neighbor embedding dimensionality reduction reduces 
data to two dimensions and clustered into groups (left panel).  The points with the largest 
standardized difference to its cluster mean are removed. Blue represents conceptually retained 
records, and red ‘x’ represents conceptually removed records (right panel).  

 

The day of year of the phenological observation, latitude, longitude, elevation, and climatic 

variables obtained through the National Aeronautics and Space Administration Daymet project 

(Thornton et al 2016; Hufkens K 2017) were used as into the tsne package in R for 

dimensionality reduction (Donaldson 2012).  T-distributed stochastic neighbor embedding (t-

SNE) was used as a means for visualizing high dimensional data in low dimensional space. The 

t-SNE, which was originally developed by van der Maaten and Hinton (2008), allows for both 

separation of dissimilar data points, as well as preserving short distances of similar datapoints.  

Perplexity settings ranged from 5 to 50 with increments of 5. This also followed the workflow 

outlined by Mehdipoor et al (2015).  In total, 5000 iterations were run using the tsne package in 

R in order to allow sufficient iterations for the error value to stabilize.  

Clustering was conducted by optimizing the Bayesian Information Criterion (BIC) within the 

mclust package in R (Fraley et al 2012).  Following the workflow outlined by Mehdipoor et al 

(2015), this study automated the clustering method selection.  The BIC was calculated for up to 

100 clusters, and the clustering model with the highest BIC was automatically selected for each 

perplexity value.   
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Outliers were removed for all perplexities by first calculating the Euclidean distance of each 

observation from the center of its respective cluster.  The standardized difference was calculated 

for each data point to the center of the cluster using Cohen’s d (equation 1).  In total, 5% of data 

points with the highest standardized distance to their respective cluster center were removed.   

After dimensionality and reduction was run on all perplexities, Moran’s I was calculated for each 

year of all perplexity values, and the perplexity value that resulted in the greatest average 

increase in Moran’s I value was selected as the overall “best” perplexity for each species phase. 

 

2.5 Assessment of validity for different data cleaning methods 

The degree of improvement in data cleaning provided by the five cleaning methods was assessed 

using spatial autocorrelation, quantified by Moran’s I. Moran’s I, which ranges from -1 to 1, is 

comparable to a correlation coefficient, where 0 indicates random patterns depending on the 

strength of the autocorrelation (Latta et al 2009), positive value’s for Moran’s I indicate positive 

spatial autocorrelation, and negative values indicate negative spatial autocorrelation (Table 1). 

For all data cleaning methods, Moran’s I was calculated using the ape package in R (Paradis et al 

2004) with an inverse distance matrix.  Records were grouped by year, and species phase for 

calculation. Moran’s I was utilized rather than the probability factor since the probability factor 

can reflect the significance of negative or positive autocorrelation.  The equation used to 

calculate Moran’s I is: 

   
                     

 
 
 

     
 
 

 
          

 

  (2) 

Where I is Moran’s I, n is the number of observations of variable x, at locations i, j.    represents 

the mean of the x variable over n locations, and wij represents the spatial weights matrix for 

locations i and j (Zhou and Lin 2008).   
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Table 1. Conceptual examples of spatial autocorrelation 

 Negative Spatial 

Autocorrelation 

Random Spatial 

Pattern 

Positive Spatial 

Autocorrelation 

Illustrative example 

 

 

 
 

 

 

 

 

Numerical example 

 

  
 

 

Moran’s I Statistic
1 

 

Negative,  

approaching -1 

Positive or negative, 

approaching 0 

Positive,  

approaching 1 
1 

Values vary based on the weight matrix used in calculation of Moran’s I statistic. 

 

Since Moran’s I calculation outlined in equation (2) incorporates the number of records in a 

dataset in its calculation, the number of records removed per species phase was consistent for all 

cleaning methods.  While in this study 5% removal is set in order to remove equal proportions of 

records, this removal limit may be adjusted by end users based on required geographic extent and 

research goals.   

Moran’s I was calculated for each year (1987 to 2016) for each of the eight species phases 

selected for this study, and for each of the five data cleaning methods as well as the original 

datasets prior to cleaning. These values were evaluated using a two way ANOVA model with the 

year and species phase as random effects.   

The full range of records before data cleaning, and with each data cleaning method were plotted 

using the ggplot2 package in R (Wickham 2009) and visually assessed for variability in the data 

(Figure 11).  Outliers were classified as having values beyond the interquartile range (the 25
th

 

percentile and 75
th

 percentile) multiplied by 1.5.  The day of phenological occurrence for each 

natural subregion was predicted using a Best Linear Unbiased Prediction model with the asreml 

package in R (Butler 2009).  In this model, the phase was set as the predictor, and year, species, 
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and natural subregion were random effects.  Records that were removed with each data cleaning 

method were also mapped and visually assessed for spatial trends. 

3.  RESULTS 

3.1 Improvement of overall data quality 

All data cleaning methods demonstrated an increase in Moran’s I when compared to the Moran’s 

I generated with the full datasets prior to data cleaning (Figure 10).  The two methods with the 

greatest increase in Moran’s I value were Method 1 (SDiff) and Method 5 (DRC) and had only a 

small difference in their Moran’s I values. The improvement in Moran’s I was the highest with 

Method 1 (SDiff) and Method 5 (DRC) followed by Method 2 (LM), Method 3 (LMNSR), and 

Method 4 (CORR) respectively. However, the differences for Moran’s I value between the five 

data cleaning methods were not statistically significant (Table 2).  Summary statistics for 

Moran’s I values are provided in Appendix B. 

 

Figure 10. Effectiveness of data cleaning methods as measured by Moran’s I statistic (±SE) 
before and after data cleaning.  N=240 groups of datasets per cleaning method (4 species x 2 
phases x 30 years).  5% of records were removed during data cleaning for each data cleaning 
method.  The “full dataset” represents the Moran’s I statistic for the original records prior to data 
cleaning. 
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Table 2. Two-way analysis of variance (ANOVA) results of Moran’s I statistic values, with 
individual year (1987-2016) and species phase (4 species x 2 phases) as random effects.  
Method factors include the original dataset as well as five assessed methods of data cleaning 
(5% of records were removed during data cleaning). 

Source DF SS MS F P 
Method 5 0.0099 0.001986 0.3955 0.852 

Year 1 0.3070 0.306999 61.1516 1.018x10
-14

 
***

 

Species phase 1 0.0641 0.064102 12.7687 3.642 x10
-4

 
***

 

Total 1432 7.1891 0.005020   

*** denotes significance at p<0.001. 

 

3.2 Global outlier treatment 

Based on visual assessment, Method 1 (SDiff) and Method 4 (CORR) both retained many of the 

prevalent outliers resulting in a greater range of variability in the resulting (cleaned) data.  

Method 2 (LM) and Method 3 (LMNSR) both removed many of the prevalent outliers, resulting 

in a more apparent reduction in the range and variability of the data.  Method 5 (DRC) did not 

appear to follow any consistent trends in the variability in the resulting (cleaned) data.  This is 

visible in first bloom of aspen, where an abnormally late bloom was retained, especially 

compared to first bloom of saskatoon, where many of the late outliers were removed (Figure 11). 

More detailed summary statistics for original (raw) dataset and cleaned data (after outlier 

removal) are provided in Appendix A. 

 
Figure 11. Differences among data cleaning methods in the treatment of global outliers for 
five assessed data cleaning methods.  Outliers were classified as having values beyond the 
interquartile range (the 25th percentile and 75th percentile) multiplied by 1.5. 
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3.3 Effects of data cleaning on regional means 

While means and medians across the entire dataset and all years were not affected at all by data 

cleaning methods (Figure 11), we expect changes to become more pronounced when separately 

analyzed for different natural subregions, years, and species. Nonetheless, for many of the 

species-region-year combinations phenology estimates show only minor shifts in dates after the 

five data cleaning methods have been applied. Ninety-five percent of all mean dates for species-

region-year combination shift by one to four days, depending on the cleaning method (Table 3).   

 

Table 3. Change in predicted date for phenological occurrence date for natural subregions after 
data cleaning compared to the original predicted date for phenological occurrence. 

Method Maximum change (days)
1 

95
th

 percentile of 

magnitude of change 

(days)
2
 

Change in 

standard error of 

the estimate 

compared to 

control  (days) 

Earliest Latest 

Method 1 

(Standardized difference) 

 

-6.6 4.7 ±1.5 0.29 

Method 2 

(Linear model) 

 

-13.1 15.2 ±4.4 -0.92 

Method 3 

(Linear model by natural 

subregion) 

 

-13.0 14.7 ±4.0 -0.84 

Method 4 

(Observer correlation) 

 

-4.3 5.9 ±1.1 0.16 

Method 5 

(Dimensionality reduction 

and clustering) 

-6.2 6.7 ±2.0 0.16 

1 
Maximum change represents the largest changes observed in predicted phenological occurrence date. Best 

Linear Unbiased Prediction was used to predict the phenological occurrence date in each natural subregion 

using the asreml package in R (Butler 2009).  Phase was the predictor, and year, species, and natural subregion 

were random effects. 
2 
Difference in days to the mean, calculated using the standard deviation of the differences between the original 

and post-cleaning occurrence date, multiplied by 2. 
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Predicted phenological occurrence date within natural subregions shifted by the greatest number 

of days (both positive and negative) with the two linear models Method 2 (LM) and Method 3 

(LMNSR), i.e. being up to 15.2 days later than the original predicted date.  The variation of the 

change in the predicted day of phenological occurrence was also greatest with the linear model.  

The 95% of all predicted occurrences after data cleaning were within up to ±4.4 days difference 

compared to the original natural subregion prediction. However, with the linear model, the 

standard error of the phenological occurrences within natural subregions decreased with the two 

linear data cleaning methods by up to 0.92 days. 

The shifts in predicted date for phenological occurrence in each natural subregion did not vary as 

much with any of the other methods of data cleaning (SDiff, CORR, and DRC).  Maximum 

change in predicted day of phenological occurrence for a natural subregion ranged from 4.3 to 

6.7 days earlier or later than the original predicted phenological occurrence date, and the 

confidence interval was narrower with 95% of post-cleaning estimates being within ±2 days of 

the original mean. However, these three different data cleaning methods demonstrated an 

increase in the standard error of phenological occurrence within natural subregions. 

 

3.4 Spatial patterns for removal of records due to data cleaning 

Records that were removed with each data cleaning method were also mapped for spatial trends 

(Figure 12).  While all data cleaning methods removed records in high density areas (in the 

south-central region of Alberta), the influence of data cleaning methods varied in low density 

areas, in particular the northeast and southeast portions of the province.   
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Figure 12. Spatial locations of removed records for assessed data cleaning methods.  For 
Methods 1 and 5, the size of the circle represents the absolute difference from the mean.  For 
Methods 2 and 3, the size of the circle represents the absolute difference from the model, and 
for Method 4, the size of the circle represents the correlation of removed observers multiplied 
by -1. 

 

Method 1 (SDiff) and Method 4 (CORR) appear to preferentially remove records in high density 

observation areas and retain records in low density areas when compared to any of the other 

cleaning methods. By comparison, Method 5 (DRC) appeared to preferentially remove records in 

the low density observation areas of the northeast portion of the province.  Methods 2 (LM), 3 

(LMNSR), and 4 (CORR) did not appear to preferentially remove records in high or low density 

areas.  However, a few more records in the northeast portion of the province were retained with 

Method 2 (LM) when compared to Method 3 (LMNSR). Removed records through Method 4 

(CORR) also appeared to be more clustered than any of the other data cleaning methods. 
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3.5 Similarity of outlier rankings between data cleaning methods 

Since the number of records removed was kept consistent, 638 records were removed across all 

species phases for each cleaning method.  Of these, only 13 removed records were consistent 

across all cleaning method (2%). Ten of these records were for saskatoon (six first bloom, four 

mid bloom), one record was for violet (first bloom), one record was for aspen (mid bloom) and 

one record was for chokecherry (first bloom).  Three of these thirteen records were recorded in 

1994, two in 1993, 1998, and 1999 respectively, and one in 1988, 1997, 2011, and 2015.   While 

the majority of these consistently removed records were for saskatoon (10 of the 13, or 77%), 

other prevalent patterns were not observed in the phase or year of consistently removed records. 

Despite the low number of consistently removed records, all data cleaning methods demonstrated 

a significant correlation to other methods, with varying r-values (Table 4).  With Method 4 

(CORR), since the correlation value is based on removal of low or negative values, a negative 

correlation confirms a relationship between point removal with the CORR method, and with all 

other data cleaning methods. 

Method 1 (SDiff), Method 2 (LM), and Method 3 (LMNSR) all demonstrated relatively strong 

positive r-values ranging from 0.58 (between LM and SDiff p<0.05) to 0.93 (between LM and 

LMNSR p<0.05).  A weak r-value was present with CORR where r-values ranged from -0.1558 

(with LM p<0.05) to -0.1779 (with SDiff p<0.05). The weakest r-value was present with DRC 

where r-values ranged from 0.0391 (with SDiff p<0.05) to 0.1251 (with LM p<0.05).   
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Table 4. Illustration of correlations, and statistical strengths of correlations between removal 
values amongst five assessed data cleaning methods Method 1 Standardized Difference (SDiff), 
Method 2 Linear model (LM), Method 3 Linear model by natural subregion (LMNSR), Method 4 
Observer correlation (CORR), and Method 5 Dimensionality reduction and clustering (DRC) 
(method = Pearson). 

 SDiff 
A
 LM 

B 
LMNSR 

B 
CORR

 C 
DRC 

A
 

SDiff  

    
LM r: 0.5788 

p: < 2.2e-16 

 

   
LMNSR r: 0.6115 

p: < 2.2e-16 

r: 0.9313 

p: < 2.2e-16 

 

  
CORR r: -0.1779 

p: < 2.2e-16 

r: -0.1558 

p: < 2.2e-16 

r: -0.1673 

p: < 2.2e-16 

 

 
DRC r: 0.0391 

p:9.8e-6 

r: 0.1251 

p: < 2.2e-16 

r: 0.1208 

p: < 2.2e-16 

r: -0.0535 

p:4.2e-8 

 

A 
Correlation values based on the standardized difference of an observation to the mean 

value of respective groupings. 
B 

Correlation values based on the absolute difference of an observation to a linear model. 
C 

Correlation values based on the correlation of the individual observer (where 3 or more 

observations per species phase within an NSR has been submitted) to the overall mean. 

 

3.6 Other findings for specific methods 

Method 4 (CORR) used a mixed approach to data cleaning where correlations to the overall 

mean were calculated for individual observers with more than 3 submitted observations for a 

specific species phase within any given natural subregion.  A standardized difference approach 

(calculated with Cohen’s d given in equation 1) was used to rank observations when only one or 

two observations for a species phase within any given natural subregion were reported for an 

individual observer in the dataset.   
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Through this method, 505 of the 638 records (79%) of the records were removed through 

correlation and the remaining 133 records (21%) were removed through the standardized 

difference approach (Table 5).   

Method 5 (DRC) followed the workflow outlined by Mehdipoor et al (2015).  However, rather 

than defining a user-selected perplexity for the dimensionality reduction process, the perplexity 

selection was automated by selecting the perplexity level with the highest increase in Moran’s I.  

The perplexities and the clustering methods were not consistent across species phases (Table 6).  

When assessing the clusters for each species phase individually, observations within the same 

cluster were generally spatially clustered.  However, in south central regions of the province, 

where high densities of observations are present, there was considerable and visible overlap in 

clusters (Figure 13). This data cleaning method required extensive computational time when 

compared to the other data cleaning methods.  The runtime for the dimensionality reduction and 

clustering scripts for each species phase, and for all perplexities assessed required approximately 

8 hours, but may vary depending on computational capacity 

Table 5. Proportion of removed records through Method 4 (Observer correlation) data cleaning.  
A mixed approach to data cleaning was used based on the number of records submitted by any 
individual observer within any given natural subregion.  In total, 5% of the overall records were 
removed for each species phase. 

 Correlation removal 

(with 3 or more records) 
A 

Standardized difference removal 

(with 1 or 2 records) 
B 

No. of observers 

removed 

No. of records 

removed 

No. of observers 

removed 

No. of records 

removed 

Aspen First bloom 11 of 152 (7.2%) 55 of 1166 (4.7%) 13 of 200 (6.5%) 15 of 234 (6.4%) 

Aspen Mid bloom 8 of 127 (6.3%) 48 of 968 (5.0%) 7 of 176 (4.0%) 11 of 215 (5.1%) 

Early Blue Violet First bloom 15 of 186 (8.1%) 64 of 1437 (4.4%) 17 of 255 (6.7%) 23 of 317 (7.3%) 

Early Blue Violet Mid bloom 16 of 173 (9.2%) 59 of 1228 (4.8%) 13 of 366 (3.6%) 18 of 311 (5.8%) 

Saskatoon First bloom 15 of 211 (7.1%) 88 of 1841 (4.8%) 16 of 287 (5.6%) 21 of 358 (5.9%) 

Saskatoon Mid bloom 19 of 209 (9.1%) 79 of 1599 (4.9%) 15 of 280 (5.4%) 18 of 348 (5.2%) 

Chokecherry First bloom 14 of 150 (9.3%) 60 of 1207 (5.0%) 11 of 226 (4.9%) 14 of 288 (4.9%) 

Chokecherry Mid bloom 11 of 136 (8.1%) 52 of 1033 (5.0%) 9 of 198 (4.5%) 13 of 252 (5.2%) 
A
 correlations to the overall mean were calculated for individual observers when more than 3 submitted 

observations for a specific species phase within any given natural subregion were present in the dataset. 
B 

observations were ranked through standardized difference (Cohen’s d) when only one or two observations for a 

species phase within any given natural subregion were reported for an individual observer in the dataset. 
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Table 6. Fitted dimensionality reduction and clustering models from Method 5: Dimensionality 
reduction and clustering technique for automated data cleaning.A 

 Perplexity 

level
B 

Error at 

5000 

iterations
B
 

BIC 

value
C
 

Clustering method
C
 No. of 

clusters
C
 

Aspen First bloom 45 0.774 -27582.4 spherical, unequal volume 14 

Aspen Mid bloom 35 0.710 -24368.0 diagonal, varying volume, 

equal shape 

12 

Early Blue Violet First 

bloom 

35 0.815 -35780.8 ellipsoidal, equal shape 12 

Early Blue Violet Mid 

bloom 

20 0.813 -33332.9 diagonal, varying volume, 

equal shape 

25 

Saskatoon First bloom 40 0.751 -45051.7 ellipsoidal, equal shape and 

orientation 

19 

Saskatoon Mid bloom 45 0.770 -39553.7 ellipsoidal, equal orientation 23 

Chokecherry First bloom 40 0.760 -29878.9 ellipsoidal, equal shape 15 

Chokecherry Mid bloom 45 0.763 -26148.0 ellipsoidal, equal shape 8 
A
 Methodology modified from the workflow presented by Mehdipoor et al (2015) 

B
 Automated dimensionality reduction was conducted using the tsne package in R 

C 
Automated clustering was conducted using the mclust package in R by maximizing the Bayesian Information Criterion 

(BIC) value. 

 

.  
Figure 13. Automated clusters generated through Method 5 (Dimensionality reduction and 
clustering).  Climatic variables, location, and observed phenological occurrence date were 
incorporated for automated dimensionality reduction and clustering.  Each colour represents 
and individual cluster grouping. 
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4.  DISCUSSION 

Potential sources of human-caused inconsistencies in the Alberta PlantWatch dataset may be due 

to variation in the training protocol and effort expended by the observer.  Additional errors that 

could be present in the dataset may be the result of incorrect identification of plants, and data 

entry errors – either at the time of observation, or at the time of manual database entry.  The goal 

of removing inconsistent or potentially inaccurate observations is to improve the consistency of 

the dataset. 

The overall mean and medians for full species phase datasets after data cleaning did not shift in 

this study by more than one day.  In comparison, in the study by Mehdipoor et al (2015), the 

post-cleaned data shifted by two days per decade of data.  However, when the predicted regional 

mean of phenological occurrence by natural subregion was estimated using a Best Linear 

Unbiased Prediction model, the predicted average regional bloom date shifted in this study by up 

to 15.2 days after data cleaning, and 95% of post-cleaning regional prediction dates were within 

±4.4 days of the original predicted date. The largest shifts in regional predicted means were for 

the two linear model methods of data cleaning (Method 2 LM and Method 3 LMNSR). These 

dramatic shifts in predicted natural subregion means using the two linear model methods indicate 

a large influence of prevalent outlier removal in the dataset (as illustrated in Figure 11), and 

larger influence of data cleaning on phenological occurrence trends.   

The shifts in predicted regional mean for phenological occurrence was less dramatic with the 

other three methods of data cleaning, with 95% of post-cleaning predictions being within ±2 

days of the original regional mean.  The maximum shift in predicted day of national subregion 

occurrence was 6.7 days after data cleaning with Method 5 (DRC), and diminishing with 

Method 1 (SDiff) and Method 4 (CORR). 

Method 1 (SDiff) had the largest increase in Moran’s I after data cleaning when compared to the 

Moran’s I of the original dataset, followed by Method 5 (DRC), Method 2 (LM), Method 3 

(LMNSR), and Method 4 (CORR) respectively. While Moran’s I increased after data cleaning 

with all assessed methods, the change in Moran’s I was not statistically significant for any data 

cleaning method.  
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The presence of positive r-values ranging from 0.58 to 0.93 between Method 1 (SDiff), Method 2 

(LM), and Method 3 (LMNSR) indicate some consistency in the removal rankings of points 

between these three data cleaning methods.  However, the absolute r-values for Method 4 

(CORR) and Method 5 (DRC) were lower (less than 0.2).  These lower consistencies in removal 

rankings of points for these two data cleaning methods indicate potentially different processes in 

treatment of data for the purposes of data cleaning.  The weak correlation of Method 4 (CORR) 

to all other methods may be due to the removal of potentially accurate observations, through the 

removal of all records from that observer in the natural subregion.  When comparing the r-values 

of Method 5 (DRC) to all other data cleaning methods, there was limited consistency between 

the removal rankings of records.  All comparisons between removal rankings had absolute 

r-values less than 0.13.   

A consideration for the use of each data cleaning method is the delineation of regions and the 

relative accuracy of delineations.  Method 1 (SDiff), Method 3 (LMNSR), and Method 4 

(CORR) incorporated the use of predefined natural subregions in their data cleaning algorithm.  

Natural subregion boundaries for Alberta were last updated over 10 years ago in 2006 using 

climatic observations from 1961 to 1990 (Natural Regions Committee 2006).  For Method 1 

(SDiff), a minimum of two records are required per natural subregion year, otherwise the 

standardized difference is set to zero.  As a result, this method of data cleaning preferentially 

retains records within natural subregions with few observations. These may also include 

prevalent outliers and the observations collected in low density areas (illustrated in Figure 12). 

Similarly, Method 4 (CORR) was also limited to natural subregions in order to take into account 

local variability.  The resulting (cleaned) data retained many prevalent outliers, and thus more 

variability in the data (illustrated in Figure 11).   

While Method 2 (LM) did not require predefined regional delineation, this method of data 

cleaning inherently follows the assumption that by developing a linear model using location and 

year as the predictors, the progression of plant bloom is consistent across the province, and does 

not take into account local environmental factors such as landscape pattern, and local climatic 

trends.  Method 3 (LMNSR) addresses this by incorporating natural subregions as a predictor in 

the linear model. however the same limitations as identified above still apply. 
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Method 5 (DRC) had extremely weak consistency with the removal rankings of other data 

cleaning methods, with absolute r-values being less than 0.13.  Since the nature of this data 

cleaning method is based on the formation of clusters based on climatic variables, this method of 

data cleaning may group data into more broad-scale climatic regions, and more current climatic 

conditions than those incorporated into the development of natural subregions.  This is reflected 

as based on visual assessment, the spread of clusters (Figure 13) was generally wider than the 

extent of natural subregions (Figure 2).  As a result of the clustierng conducted in this method, 

removal of outliers is also inherently based on larger climatic groupings than natural subregions.  

The exception to this generalization may be for early blue violet mid bloom and for saskatoon 

mid bloom since there were more clusters formed through this method, than existing natural 

subregions.  This method also appeared to preferentially remove observations in low density 

areas (Figure 12).  This may be due to the new climatic groupings or clusters, which no longer 

preferentially retains observations in natural subregions where there are fewer observations, 

unlike Method 1 (SDiff). Since t-SNE dimensionality reduction is based on an initial random 

configuration of map points, results may vary each time it is run (van der Maaten and Hinton, 

2008).  As a result, the change in Moran’s I value with each run of Method 5 (DRC) may also 

vary. An additional consideration for this data cleaning method is the approximately 8 hours of 

computational time required to run the dimensionality reduction and clustering scripts. 

 

5.  CONCLUSIONS 

The potential applications for citizen scientist phenological data are diverse and widespread, 

ranging from climate change to human health.  However, prior to any analytical applications, 

quality assured or quality consistent data is required for reliable data analysis results.  A 

preliminary data screening for “impossible” records or inaccurate data entry may occur at the 

data entry stage, as it is with the Alberta PlantWatch data.  However, additional screening for 

potentially inaccurate and inconsistent observations is more intensive and depends on a variety 

of factors, including the capacity for people, time, or finances available through the program 

administration.   
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This study evaluated five methods of identifying and removing potentially unreliable data, which 

may be undertaken by the citizen science program administrator, or the data user.  Each method 

followed a different process based on different practices, or predetermined workflows.  While 

some removed records may be accurate but unusual flowering occurrences resulting from 

isolated events such as local frost events or variation in microclimate, the goal of data cleaning is 

to remove potentially inaccurate observations in order to improve data consistency. 

The results of different data cleaning methods were not statistically different.  All methods 

demonstrated an increase in spatial autocorrelation, through an improvement (increase) in 

Moran’s I.  Two methods that produced the largest increase in Moran’s I were Method 1 (SDiff) 

and Method 5 (DRC).  Method 1 (SDiff) preferentially retained records in low density areas, 

opposite to Method 5 (DRC).  Method 1 (SDiff) is also based only on predefined natural 

subregions that were last updated over 10 years ago using climatic observations from 1961 to 

1990 (Natural Regions Committee 2006).  Method 5 (DRC) is based on contextual climatic 

information, specific to the year of the observation, from January 1 up to the date of observation. 

Method 5 (DRC) also required higher computational time requirements, whereas Method 1 

(SDiff) was computationally simple, and does not require additional R software packages.  

Where Method 5 (DRC) may be preferred over Method 1 (SDiff) is in identification of 

potentially similar phenological occurrences, or where data is relatively evenly distributed over a 

study area. Expanding beyond phenological data cleaning, Method 5 (DRC), as outlined by 

Mehdipoor et al (2015), could be utilized in situations where contextual factors (in this case 

climate and location) may drive phenomena.  However, the applicability of this method is 

potentially limited due to larger resource and computational requirements compared to the other 

data cleaning methods. The use of this method may also be limited by the time requirements of 

the data cleaner or program administrator.   

Method 1 (SDiff) had the largest increase in Moran’s I, although only marginally larger than 

Method 5 (DRC).  Method 1 (SDiff) may therefore be preferred over Method 5 (DRC) since it is 

also an overall simpler method of data cleaning in terms of computational requirements and 

understanding.  For example, citizen scientist coordinators in non-profit organizations may prefer 

a simpler data evaluation when time and monetary resources are limited.  An additional 
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advantage to Method 1 (SDiff) over Method 5 (DRC) is due to the retention of records in low 

density areas, for example for use with interpolation applications such as kriging. The final 

selection of data cleaning method will likely depend on the objectives of data application, the 

geographic extent of the data required, and the time and resources available to the program 

administrator or data user. 
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Appendix A – Data trends before and after cleaning by species and phase 

 

Table 7. Summary statistics before and after data cleaning for citizen scientist collected phenological data in Alberta, Canada 1987-2016. 

Species Phase Statistic All Records 

Method 1 

(Standardized 

difference) 

Method 2 

(Linear 

model) 

Method 3  

(Linear model 

by natural 

subregion) 

Method 4 

(Observer 

correlation) 

Method 5 

(Dimensionality 

reduction and 

clustering) 

Aspen First 

Bloom 

 

Range 63-197 63-150 68-141 68-141 63-150 63-197 

No. records 1400 1330 1330 1330 1330 1330 

Mean 106.3 106.1 106.2 106 106.3 106.2 

Median 107 106 106.5 106 106 106 

Stand. Dev. 12.7 11.7 11.1 11.1 12.5 12.8 

Mid 

Bloom 

 

Range 66-155 66-155 72-143 72-143 66-155 66-155 

No. records 1183 1124 1124 1124 1124 1124 

Mean 110.5 110.2 110.2 110.2 110.4 110.2 

Median 110 110 110 110 110 110 

Stand. Dev. 12 11.5 10.8 10.8 12.1 12.1 

Early blue 

violet 

 

First 

Bloom 

 

Range 89-183 89-183 99-160 99-166 89-183 89-183 

No. records 1754 1667 1667 1667 1667 1667 

Mean 130.8 130.9 130.7 130.8 131.1 130.6 

Median 130 130 130 130 130 130 

Stand. Dev. 10.7 10.3 9.21 9.26 10.6 10.7 

Mid 

Bloom 

 

Range 95-188 100-188 107-186 106-171 95-188 95-188 

No. records 1539 1462 1462 1462 1462 1462 

Mean 136.3 136.2 136 135.9 136.5 136.3 

Median 135 135 135 135 136 136 

Stand. Dev. 11 10.4 9.56 9.4 11 10.9 

Saskatoon 

 

First 

Bloom 

 

Range 95-190 108-190 108-174 108-174 95-190 108-178 

No. records 2200 2090 2090 2090 2090 2090 

Mean 137.8 137.8 137.7 137.7 137.8 138 

Median 138 138 137 137 138 138 

Stand. Dev. 9.8 9.28 8.71 8.79 9.68 9.17 
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Mid 

Bloom 

 

Range 93-179 110-179 119-175 119-175 93-179 93-176 

No. records 1946 1849 1849 1849 1849 1849 

Mean 141.3 141.3 141 141.1 141.4 141 

Median 141 141 141 141 141 141 

Stand. Dev. 9.91 9.48 8.95 8.99 9.83 9.65 

Chokecherry 

 

First 

Bloom 

 

Range 101-179 101-179 114-173 114-173 101-179 101-175 

No. records 1495 1421 1421 1421 1421 1421 

Mean 146 146.3 146.3 146.3 146.1 146.2 

Median 146 147 146 147 147 146 

Stand. Dev. 10.1 9.62 9.17 9.21 9.95 9.92 

Mid 

Bloom 

 

Range 106-192 118-187 123-182 123-182 106-192 106-190 

No. records 1285 1220 1220 1220 1220 1220 

Mean 150.3 150.6 150.5 150.5 150.6 150.4 

Median 150 150 150 150 151 150 

Stand. Dev. 10.2 9.59 9.05 9.18 10.2 10.1 
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Appendix B – Moran’s I for each cleaning method by species and phase 

 

Table 8. Moran’s I statistic before and after data cleaning for citizen scientist collected phenological data in Alberta, Canada 1987-2016. 

Species Phase Statistic All Records 

Method 1 

(Standardized 

difference) 

Method 2 

(Linear model) 

Method 3 

(Linear model 

by natural 

subregion) 

Method 4 

(Observer 

correlation) 

Method 5 

(Dimensionality 

reduction and 

clustering) 

Aspen 

 

First 

Bloom 

Range -0.0739-0.165 -0.0739-0.165 -0.208-0.159 -0.0933-0.142 -0.0801-0.172 -0.114-0.280 

No. records 30 30 30 30 30 30 

Mean 0.0248 0.0248 0.0207 0.0214 0.0233 0.0254 

Median 0.0131 0.0131 0.0255 0.0174 0.0256 0.0207 

Stand. Dev. 0.0648 0.0648 0.0757 0.0602 0.0649 0.0802 

Mid 

Bloom 

Range -0.118-0.164 -0.245-0.187 -0.118-0.156 -0.118-0.137 -0.118-0.155 -0.121-0.213 

No. records 30 30 30 30 30 30 

Mean 0.0224 0.0303 0.0384 0.0286 0.0217 0.0323 

Median 0.0226 0.0204 0.0365 0.0255 0.0292 0.0288 

Stand. Dev. 0.0661 0.0865 0.0624 0.0605 0.0657 0.0732 

Early blue 

violet 

 

First 

Bloom 

Range -0.0446-0.207 -0.0774-0.220 -0.107-0.173 -0.107-0.176 -0.0725-0.185 -0.0504-0.210 

No. records 30 30 30 30 30 30 

Mean 0.0322 0.0385 0.02 0.0219 0.0353 0.0342 

Median 0.0196 0.0311 0.0208 0.0291 0.0339 0.024 

Stand. Dev. 0.058 0.065 0.0658 0.0656 0.0611 0.0613 

Mid 

Bloom 

Range -0.0774-0.223 -0.0774-0.249 -0.179-0.213 -0.179-0.0937 -0.0774-0.211 -0.0774-0.235 

No. records 30 30 30 30 30 30 

Mean 0.0255 0.0363 0.0188 0.00576 0.0303 0.0312 

Median 0.0196 0.0317 0.0188 0.0171 0.0226 0.0282 

Stand. Dev. 0.0554 0.0624 0.0676 0.0532 0.0564 0.0641 

Saskatoon 

 

First 

Bloom 

Range -0.0795-0.236 -0.0942-0.255 -0.0795-0.359 -0.0795-0.359 -0.0513-0.244 -0.00280-0.246 

No. records 30 30 30 30 30 30 

Mean 0.0642 0.0787 0.0917 0.0856 0.0734 0.0818 

Median 0.0531 0.0729 0.0801 0.0589 0.0615 0.0616 

Stand. Dev. 0.0687 0.0754 0.0874 0.087 0.0665 0.0676 
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Mid 

Bloom 

Range -0.0871-0.207 -0.169-0.207 -0.0309-0.277 -0.0280-0.230 -0.141-0.252 -0.087-0.207 

No. records 30 30 30 30 30 30 

Mean 0.0542 0.0603 0.076 0.0734 0.0605 0.0603 

Median 0.0501 0.0634 0.06 0.0538 0.0562 0.0531 

Stand. Dev. 0.0714 0.0774 0.0703 0.064 0.0798 0.0695 

Chokecherry 

 

First 

Bloom 

Range -0.0714-0.218 -0.0714-0.328 -0.0714-0.178 -0.0634-0.280 -0.0830-0.218 -0.123-0.218 

No. records 30 30 30 30 30 30 

Mean 0.0361 0.0443 0.0299 0.0378 0.0309 0.0389 

Median 0.0203 0.0221 0.0149 0.0146 0.0175 0.026 

Stand. Dev. 0.0686 0.0786 0.0662 0.0756 0.0737 0.0805 

Mid 

Bloom 

 

Range -0.105-0.258 -0.146-0.258 -0.115-0.258 -0.0924-0.258 -0.117-0.277 -0.0846-0.258 

No. records 30 30 30 30 30 30 

Mean 0.0248 0.0282 0.0332 0.0389 0.0218 0.0336 

Median 0.00485 0.00751 0.0196 0.0255 0.00496 0.0205 

Stand. Dev. 0.07659 0.0826 0.0824 0.0803 0.0792 0.0804 

 


