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a b s t r a c t

Genetic studies often involve quantitative traits. Identifying genetic features that influence
quantitative traits can help to uncover the etiology of diseases. Quantile regressionmethod
considers the conditional quantiles of the response variable, and is able to characterize the
underlying regression structure in a more comprehensive manner. On the other hand, ge-
netic studies often involve high-dimensional genomic features, and the underlying regres-
sion structure may be heterogeneous in terms of both effect sizes and sparsity. To account
for the potential genetic heterogeneity, including the heterogeneous sparsity, a regularized
quantile regressionmethod is introduced. The theoretical property of the proposedmethod
is investigated, and its performance is examined through a series of simulation studies. A
real dataset is analyzed to demonstrate the application of the proposed method.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many genetic studies, quantitative traits are collected for studying the associations between the traits and certain
genomic features. For example, body mass index, lipids and blood pressure have been investigated with respect to single
nucleotide polymorphisms (SNPs) (Avery et al., 2011). With the rapid progress of high-throughput genome technology,
new types of quantitative traits have emerged and attracted considerable research interest, such as gene expression, DNA
methylation, and protein quantification (Landmark-Høyvik et al., 2013). The analysis of these quantitative traits yields new
insight into biological processes and sheds light on the genetic basis of diseases.

Typically, quantitative genetic traits are analyzed by least-square based methods, which seek to estimate the E(Y |Z),
whereY is the trait and Z is the set of covariates of interest. Quantile regression (Koenker andBassett, 1978) instead considers
the conditional quantile function of Y given Z , Qτ (Y |Z), at a given τ ∈ (0, 1). When τ is fixed at 0.5, quantile regression
is simply the median regression, which is well known to be more robust than the least-square estimation. In examining
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quantiles at different τ , quantile regressionprovides amore complete picture of the underlying regression structure between
Y and Z .

Like least-square methods, traditional quantile regression methods only consider a handful of covariates. With the
emergence of high-dimensional data, penalized quantile regression methods have been developed in recent years, and can
be broadly classified into two classes. The first class seeks to harness the information shared among different quantiles to
jointly estimate the regression coefficients. Jiang et al. (2014) proposed two novel methods, Fused Adaptive Lasso (FAL)
and Fused Adaptive Sup-norm estimator (FAS), for variable selection in interquantile regression. FAL combines the LASSO
penalty (Tibshirani, 1996) with the fused lasso penalty (Tibshirani et al., 2005), while FAS imposes the grouped sup-norm
penalty and the fused lasso penalty. The fused lasso penalty delivers the effect of smoothing the regression slopes of adjacent
quantiles, hence FAL and FAS can be used to identify common quantile slopes if such a smoothing property is desired. Zou
and Yuan (2008) adopted an F∞ penalty, which either eliminates or retains all the regression coefficients for a covariate at
multiple quantiles. The method by Jiang et al. (2013) seeks to shrink the differences among adjacent quantiles by resorting
to the fused lasso penalty; however, this method does not perform variable selection at the covariate level, i.e., it does not
remove any covariates from the model.

The second class of methods focuses on a single quantile at a time. Koenker (2004) imposed a LASSO penalty on the
random effects in the mixed-effect quantile regression model; Li and Zhu (2008) adopted the LASSO penalty; Wu and Liu
(2009) explored the SCAD penalty (Fan and Li, 2001) and the adaptive LASSO penalty (Zou, 2006), and proved the selection
consistency and normality of the proposed estimators (for a fixed dimension of covariates). Wang et al. (2012) investigated
several penalties for quantile regression under the scenario of p > n, i.e., the dimension is larger than the sample size,
and proved the selection consistency of their proposed methods through a novel use of the subgradient theory. A recent
approach by Peng et al. (2014) shares characteristics with both classes; its loss function targets a single τ , while its penalty
borrows information across different quantiles; their proposed penalty was shown to achieve more accurate estimation
than the one that uses information from only a single quantile.

If the regression coefficients associated with a covariate are treated as a group, then some groups may be entirely zero
and some other groups may be partially zero. Thus, sparsity can occur both at the group level and within the group level,
and we call this type of sparsity as the heterogeneous sparsity. In this paper, we propose an approach that conducts joint
variable selection and estimation for multiple quantiles under the situation that p can diverge with n. Our proposedmethod
is able to achieve sparsity both at the group level and within the group level. We note that FAL can potentially yield sparsity
at the two levels, but this approach has not been evaluated under the scenario where the dimension p is high. To the best
of our knowledge, this is the first paper that explicitly investigates the heterogeneous sparsity for quantile regression. We
show that our method tends to be more effective than the comparedmethods in handling heterogeneous sparsity when the
dimension is high. We also provide theoretical justification for the proposed method. The paper is organized as follows. In
Section 2,wedescribe the proposedmethod and the implementation details. In Section 3,weprove the theoretical properties
of the proposed method. In Section 4, we show the results of simulation studies regarding several related methods, and in
Section 5, we present an example of real data analysis for the proposed method.

2. Method

2.1. Data and model

Let Z represent the vector consisting of p covariates, such as SNPs or genes. Let γτ be the p-dimension coefficient vector
at the τ th quantile. Let Y be the random variable that denotes the phenotype we are interested in, such as quantitative traits
in genetic studies. For a given τ ∈ (0, 1), the linear quantile regression model is known as

Qτ (Y |Z) = γ0 + ZTγτ ,

where γ0 is the intercept, and Qτ (Y |Z) is the τ -th conditional quantile of Y given Z , that is, PY |Z (Y ≤ Qτ (Y |Z)) = τ .
The dimension p can be potentially very high in genomic studies, but typically it is assumed that only a limited number

of genomic features contribute to the phenotype. For this reason, one needs to find a sparse estimation of γτ to identify
those important genomic features. On the other hand, we also wish to consider multiple quantile levels simultaneously so
that information shared among different quantile levels can be utilized. To this end, we propose the following model for the
joint estimation of the regression coefficients for multiple quantiles. Given M quantile levels, 0 < τ1 < · · · < τM < 1, our
linear quantile regression model is defined as, for τm (m = 1, . . . ,M),

Qτm(Y |Z) = γm0 + ZTγτm . (1)

where γm0 is the intercept, and γτm is the p-dimension coefficient vector. For ease of notation, we write γm = γτm . For
the above model, we further define γ ≡ (γ T

1 , . . . , γ
T
M)

T with γm = (γm1, . . . , γmp)
T, and intercept parameter γ0 ≡

(γ10, . . . , γM0)
T.
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We now focus on the sample version of the model (1). Let {(Yi, ZT
i )

T
}
n
i=1 be an i.i.d. random sample of size n from

population (Y , ZT)T, where Zi = (Zi1, Zi2, . . . , Zip)T. The sample quantile loss function is defined as

Qn(γ0, γ ) =

M
m=1

n
i=1

ρm(Yi − ZT
i γm − γm0)

where ρm(u) = u(τm − I(u < 0)) is the quantile check loss function with I(·) being the indicator function. To introduce
sparsity to the model, we add to the loss function a penalty function

Pn(γ ) = nλn
p

j=1


M

m=1

ωmj|γmj|

 1
2

,

where λn is the tuning parameter, and ωn = (ωmj : 1 ≤ m ≤ M, 1 ≤ j ≤ p) is the weight vector whose component
ωmj > 0 is the weight of parameter γmj. Note that the penalty is a nonconvex function. It essentially divides the regression
coefficients into p groups, and each group consists of M parameters associated with the jth covariate. The motivation is
that, while each quantile may have its own set of regression parameters, we wish to borrow strengths from each quantile
to select covariates that are important across all quantiles as well as those covariates that are important to only some of the
quantiles. This type of nonconvex penalty has been considered in the Cox regression model and other settings (see Wang
et al. (2009) for an example), but to the best of our knowledge has not been studied in the quantile regression model. We
can choose ωmj = γ̃−1

mj , where γ̃mj is some consistent estimate for γmj; for example, we may use the estimates from the
unpenalized quantile regression conducted at each individual quantile level. When p < n but is fixed, the consistency of the
unpenalized estimates has been proved by Koenker and Bassett (1978). When p < n but is diverging with n, the estimates
from unpenalized quantile regression are consistent by adapting to Lemma A.1 of Wang et al. (2012). Thus, our objective
function is defined as

M
m=1

n
i=1

ρm(Yi − ZT
i γm − γm0)+ nλn

p
j=1


M

m=1

ωmj|γmj|

 1
2

.

For the sake of convenience, we define θ = (θT1 , . . . , θ
T
M)

T with θm = (γm0, γ
T
m)

T, m = 1, . . . ,M , and the corresponding
parameter space by Θn ⊂ RM(p+1). Further define Ui = (1, ZT

i )
T, i = 1, . . . , n. Then, Qn(γ0, γ ) can be written as Qn(θ).

Emphasizing that γ is a subset of θ , we can write the objective function as

Ln(θ) ≡ Qn(θ)+ Pn(γ ) =

M
m=1

n
i=1

ρm(Yi − UT
i θm)+ nλn

p
j=1


M

m=1

ωmj|γmj|

 1
2

. (2)

Let θ̂ be a local minimizer of Ln(θ) in (2) for θ ∈ Θn. Because the heterogeneity of sparsity is explicitly taken into
account in this model, we name our proposed method as Heterogeneous Quantile Regression (Het-QR). Our model can
be modified to accommodate different weights for the losses at different quantiles. That is, Qn(θ) may take the formM

m=1 πm
n

i=1 ρm(Yi − UT
i θm), where πm is the weight for the mth quantile. Some examples on the choice of weight πm

can be found in Koenker (2004) and Zhao and Xiao (2014).

2.2. Implementation

Wedesign the following algorithm to implement the proposedmethod. First, we show in the Appendix that the objective
function can be transformed into

argminθ,ξ
M

m=1

n
i=1

ρm(Yi − UT
i θm)+ λ1

p
j=1

ξj +

p
j=1

ξ−1
j


M

m=1

ωmj|γmj|


,

where ξ = (ξ1, . . . , ξp) are newly introduced nonnegative parameters. Then, the new objective function can be solved by
the following iterative algorithm:

Step 1: We first fix θ to solve ξj, j = 1, . . . , p. To this end, ξj has a closed-form solution. That is, ξ̂j =M
m=1 ωmj|γmj|

1/2
λ

−1/2
1 , j = 1, . . . , p.

Step 2:We fix ξj, j = 1, . . . , p, to solve θ . That is, we aim to solve

argminθ
M

m=1

n
i=1

ρm(Yi − UT
i θm)+

p
j=1

M
m=1

ξ−1
j ωmj|γmj|.
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We can formulate this objective function as a linear program and derive its dual form (see Appendix for details), then the
optimization can be conducted by recoursing to existing linear programming packages; we utilize the Quantreg R package
(Koenker, 2015) in our implementation.

Step 3: Iterate step 1 and step 2 until convergence. Due to the nonconvexity of the penalty function, the estimate is a
local minimizer.

3. Theoretical properties

Now we investigate the asymptotic properties of the proposed method. FAL and FAS considered p to be fixed. We study
the situation where p can diverge with n. Let the true value of θ be θ∗, where the corresponding true values of γm0, γmj, γ
are γ ∗

m0, γ
∗

mj, γ
∗, respectively. Let the number of nonzero elements in γ ∗ be s. To emphasize that s and p can go to infinity,

we use sn and pn when necessary. For Theorems 1 and 2 (to be shown), pn is at the order lower than O(n1/2); for Theorem 3,
pn is at the order lower than O(n1/6).

We define some index sets to be used in our theorems. Let N = {(m, j) : 1 ≤ m ≤ M, 1 ≤ j ≤ pn}. For the true
parameters, define the oracle index set I = {(m, j) ∈ N : γ ∗

mj ≠ 0} and its complementary set II = {(m, j) ∈ N : γ ∗

mj = 0}.
Assume that I has cardinality |I| = sn.

We define some notations used for our theorems.
Define dnI = max(m,j)∈I ωmj and dnII = min(m,j)∈II ωmj


max(m,j)∈N ωmj

− 1
2 . Define θ∗

I and θ̂I as the subvectors of the
vectors θ∗ and θ̂ corresponding to the oracle index set I , respectively. For every fixed 1 ≤ m ≤ M , define the index set
Im = {1 ≤ j ≤ pn : γ ∗

mj ≠ 0}. Let

6n = (6lm)M×M with 6lm = (min(τm, τl)− τmτl) E(UilIUT
imI), (3)

BnI = Diag(B1, B2, . . . , BM) with Bm =

n
i=1

f (UT
i θ

∗

m| Zi)UimIUT
imI , (4)

where UimI = (1, ZT
imI)

T with ZimI being the subvector of Zi corresponding to index set Im.
Let F(y|z) and f (y|z) be the conditional distribution function and the conditional density function of Y given Z = z,

respectively. For any proper square matrix A, let λmin(A) and λmax(A) denote the minimum and maximum eigenvalue of A,
respectively.

Before stating the main theorems, we need the following regularity conditions labeled by L:

(L1) The conditional density f (y|z) has first order derivative f ′(y|z) with respect to y; And f (y|z) and f ′(y|z) are uniformly
bounded away from 0 and ∞ on the support set of Y and the support set of Z;

(L2) For random sample Zi = (Zi1, Zi2, . . . , Zip)T, 1 ≤ i ≤ n, there exists a positive constant C1 such that
max1≤i≤n,1≤j≤p |Zij| ≤ C1;

(L3) For Ui = (1, ZT
i )

T, i = 1, . . . , n, let Sn =
n

i=1 UiUT
i . There exist positive constants C2 < C3 such that C2 ≤

λmin(n−1Sn) ≤ λmax(n−1Sn) ≤ C3;
(L4) The dimension sn satisfies that sn = a0nα0 , and the dimension pn satisfies that pn = a1nα1 , where 0 < α0 < α1 <

1
2 ,

and a0 and a1 are two positive constants;
(L5) The matrix Bn given in (6) (see Appendix) satisfies that C4 ≤ λmin(n−1Bn) ≤ λmax(n−1Bn) ≤ C5, where C4 and C5 are

positive constants.
(L6) The matrix 6n satisfies that λmin(6n) ≥ C6, where C6 is a positive constant.

Conditions (L1)–(L3) and (L5)–(L6) are seen in typical theoretical investigation of quantile regression. Condition (L4)
specifies the magnitude of sn and pn with respect to the sample size. Under the aforementioned regularity conditions, we
present the following three theorems. The proof is relegated to the Appendix. Define θ∗

II and θ̂II as the subvectors of the
vectors θ∗ and θ̂ corresponding to the index set II , respectively. Clearly, θ∗

II = 0. Due to the nonconvexity of the penalty
function, all the following theorems and their proof (in the Appendix) are regarding to a local minimizer of the objective
function.

Theorem 1. Under conditions (L1)–(L5) , if λnd
1
2
nI = o(s

−
3
4

n p
3
4
n n−

3
4 ), then the estimator θ̂ of θ∗ exists, is a local minimizer, and

satisfies the estimation consistency that ∥θ̂ − θ∗
∥2 = Op(n−

1
2 p

1
2
n ).

Theorem 1 shows that the proposed method is consistent in parameter estimation. The convergence rate Op(n−
1
2 p

1
2
n ) is

typical for the settings where p diverges with n.

Theorem 2. Under conditions (L1)–(L5) , if λnd
1
2
nI = o(n−

3
4 s

−
3
4

n p
3
4
n ) and n−

1
2 p

1
2
n = o(λn dnII), then P(θ̂II = 0) → 1.

Theorem 2 indicates that our method can distinguish the truly zero coefficients from the nonzero coefficients with
probability tending to 1. It can be seen that the penaltyweight dnII plays a critical role in the property of selection consistency.



226 Q. He et al. / Computational Statistics and Data Analysis 95 (2016) 222–239

Theorem 3. Under conditions (L1)–(L3) and (L5)–(L6) , if λnd
1
2
nI = O(n−1p

1
2
n ), and n−

1
2 p

1
2
n = o(λn dnII), and the powers of sn

and pn in condition (L4) satisfy 0 < α0 < α1 <
1
6 , then for any unit vector b ∈ RM+sn we have

(nbT6nb)−
1
2 bTBnI


θ̂I − θ∗

I


→ N(0, 1).

Theorem 3 suggests that the estimated nonzero coefficients have the asymptotic normality. Heuristically, for given n, λn and
ωmj, the considered penalty in (2) has its slope tending to infinity when γmj goes to 0, thus the penalty tends to dominate
small γmj. On the other hand, when λn is sufficiently small, the penalty has little impact on the estimation of relatively large
γmj. These properties, in combination with proper choice of the tuning parameter, play major roles in the oracle property of
the proposed estimator. The oracle property for coefficients within a group is mainly due to the penalty weights, which put
large penalty on small coefficients (and small penalty on large coefficients).

4. Simulation studies

We conduct simulation studies to evaluate the proposed method along with the following methods: the QR method,
which applies quantile regression to each individual quantile level without any variable selection; the QR-LASSO method,
which adopts the L1-penalized quantile regression for each quantile level; the QR-aLASSO method, which imposes the
adaptive LASSO penalty on each quantile level (Wu and Liu, 2009); the FAL and the FAS method (Jiang et al., 2014). Both
FAL and FAS contain a fused-LASSO type of penalty, which encourages the equality of the regression coefficients among
different quantiles. FAL allows within-group sparsity, while FAS generates sparsity only at the group level. For Het-QR, we
set the penalty weight ωmj to be the inverse of the estimate from the unpenalized quantile regression (unless specified
otherwise).

We first consider a model where important covariates have nonzero regression coefficients across all (or almost all)
quantiles. We simulate 6 independent covariates, each of which follows the uniform(0,1) distribution. Thenwe simulate the
trait as

Y = 1.0 + β1Z1 + β2Z2 + β6Z6 + κZ6ϵ,

where β1 = 1, β2 = 1, β6 = 2, κ = 2 and ϵ ∼ N(0, 1). Under this set up, Z1 and Z2 have constant regression coefficients
across all quantiles, while Z6’s regression coefficient is determined by 2+2×Φ−1(τ ), which varies across different quantiles.
That is, the τ th quantile of Y given Z1, Z2 and Z6 is

Qτ (Y |Z1, Z2, Z6) = 1.0 + Z1 + Z2 +

2 + 2 × Φ−1(τ )


Z6.

This model is in line with the model considered by Jiang et al. (2014). All the other 3 covariates, Z3, Z4 and Z5, have no
contribution to Y . The sample size n is set to 500. To select the tuning parameter, we follow the lines of Mazumder et al.
(2011) and Wang et al. (2012) to generate another dataset with sample size of 10n, and then pick the tuning parameter at
which the check loss function is minimized. The total number of simulations for each experiment is 100.

We consider various criteria to evaluate the performance of the compared methods, such as the model size and the
parameter estimation error (PEE). The model size refers to the number of estimated non-zero coefficients among the
M quantile levels. The PEE is calculated by

M
m=1

p
j=1 |γ̂mj − γ ∗

mj|/M . To evaluate the prediction error, we simulate an
independent dataset, (Ypred, Zpred), with sample size of 100n, and then calculate the F-measure (FM) (Gasso et al., 2009), the
quantile prediction error (QPE) and the prediction error (PE). The FM is equal to 2 × Sa/Ma, where Sa is the number of truly
nonzero slopes being captured, and Ma is the sum of the estimated model size and the true model size. The QPE is defined
as the sample version of the

M
m=1(Qτm(Ypred|Zpred)− ZT

predγ̂τm − γ̂m0)
2/M , averaged across all the subjects. The PE is defined

as Qn(θ̂)/n, i.e., the check loss averaged across all considered quantiles for all the test samples, evaluated on (Ypred, Zpred).
For the purpose of illustration, we consider three quantiles, τ = 0.25, 0.5, 0.75. The results are shown in the upper panel

of Table 1. It can be seen that when p is 6, FAL has the lowest parameter estimation error and FAS has the lowest PE, though
the difference between these twomethods and the other comparedmethods is generally quite small. Next, we increase p to
100 to evaluate the methods under a higher dimension. As shown in the lower panel of Table 1, when p is equal to 100, both
FAL and FAS have deteriorated performance; for instance, their model sizes tend to be twice (or more) as the true model
size and their PEE and PE are higher than Het-QR. This experiment shows that the performance of FAL and FAS is suboptimal
when the dimensionality grows large; one potential explanation is that the penalties of FAL and FAS may overemphasize
the interquantile shrinkage, which make them less efficient when many noise covariates are present. Further research is
merited. As to computation, we did not observe non-convergence for Het-QR in our experiments.

Next, we systematically evaluate the situation where within-group sparsity exists. To introduce correlations into
covariates, we simulate 20 blocks of covariates, each block containing 5 correlated covariates. For each block, we first
simulate a multivariate normal distribution with mean being the unit vector and covariance matrix following either the
compound symmetry or the auto-regressive correlation structure with correlation coefficient ρ = 0.5; next, we take the
absolute value of the simulated random normal variables as the covariates Z . The total number of covariates is 100. We
specify the conditional quantile regression coefficient function γ (τ) as follows. For τ ∈ (0, 0.3], the first 8 regression
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Table 1
Comparison of Het-QR and othermethods in the absence ofwithin-group sparsity (standard error of the samplemean shown
in the parenthesis).

Method Model-size FM (%) PEE × 100 QPE × 103 PE × 103

p = 6
QR 18 – 53.3(1.5) 10.2(0.6) 1041.2(0.6)
QR-LASSO 15.0(0.2) 75(0.7) 36.1(1.2) 6.7(0.5) 1038.4(0.6)
QR-aLASSO 10.9(0.2) 91(0.7) 25.6(0.9) 5.8(0.4) 1037.2(0.5)
FAL 11.1(0.2) 91(0.9) 25.3(1.0) 6.2(0.5) 1037.2(0.5)
FAS 12.1(0.2) 86(0.9) 26.4(1.1) 5.9(0.4) 1037.1(0.5)
Het-QR 9.6(0.1) 97(0.6) 26.0(0.9) 6.5(0.5) 1037.5(0.5)

p = 100
QR 300 – 1556.4(12.7) 325.0(5.1) 1242.1(2.7)
QR-LASSO 47.3(1.2) 33(0.7) 120.5(3.5) 23.4(1.2) 1052.4(0.9)
QR-aLASSO 16.8(0.4) 72(1.1) 46.9(1.9) 10.5(0.8) 1042.1(0.7)
FAL 17.7(0.6) 70(1.4) 41.9(1.8) 10.2(0.8) 1041.0(0.6)
FAS 23.7(0.7) 58(1.2) 58.0(2.4) 13.9(0.9) 1043.4(0.7)
Het-QR 9.3(0.1) 99(0.4) 29.5(1.2) 8.4(0.6) 1039.9(0.6)

slopes for Z are (0.5, 0, 0, 0, 0, 0.6, 0, 0); for τ ∈ (0.3, 0.7], the first 8 regression slopes are (0.5, 0, 0, 0, 0, 0.6, 0, 0.7);
for τ ∈ (0.7, 1.0), the corresponding slopes are (0.6, 0, 0, 0, 0, 0.7, 0, 0.7). All other regression slopes are 0. Thus, the first
and the sixth covariates are active among all quantiles, while the eighth covariate is active only for the last two quantile
levels. To generate Y , we first simulate a random number τ ∈ Uniform (0, 1), and then determine the γ (τ) based on τ ;
subsequently, we obtain

Y = 1.0 + ZTγ (τ)+ F−1(τ ),

where F−1 is the inverse cumulative function of some distribution F . That is, the τ th quantile of Y given Z is

Qτ (Y |Z) =

1.0 + F−1(τ )+ 0.5Z1 + 0.6Z6 if 0 < τ ≤ 0.3
1.0 + F−1(τ )+ 0.5Z1 + 0.6Z6 + 0.7Z8 if 0.3 < τ ≤ 0.7
1.0 + F−1(τ )+ 0.6Z1 + 0.7Z6 + 0.7Z8 if 0.7 < τ < 1.

We explore different distributions for F : the standard normal distribution, the T -distribution with degrees of freedom equal
to 3 (T3), and the exponential distribution with shape parameter equal to 1.

We first consider the normal distribution for F . The results are shown in Table 2. Because no variable selection is
conducted, QR has much larger PEE, QPE, and PE than the other methods; for example, the PEE and QPE of QR are more
than 10 times higher than the compared methods. QR-LASSO, QR-aLASSO, FAL, and FAS have more tamed model sizes, but
still contain a number of noise features. Het-QR yields amodel that is closer to the truemodel, in which the three considered
quantiles contain 2, 2, and 3 nonzero slopes, respectively. Het-QR also appears to have the highest FM, and lowest errors
for parameter estimation and prediction. Next, we consider the distribution to be the T3 (Table 3) and the exponential
distribution (Table 4), and the results show a similar pattern. These experiments indicate that Het-QR can handle higher
dimension as well as the heterogeneous sparsity better than the other methods.

We finally consider the situation where p > n. While theoretical development is still needed for this setting, our
experiment is to evaluate the practical performance of the proposed approach. We let n = 500 and p = 600. For
τ ∈ (0, 0.3], the first 8 regression slopes for Z are (0.6, 0, 0, 0, 0, 0.6, 0, 0); for τ ∈ (0.3, 0.7], the first 8 regression slopes are
(0.6, 0, 0.8, 0, 0, 0.7, 0, 0.8); for τ ∈ (0.7, 1.0), the corresponding slopes are (0.8, 0, 0.8, 0, 0, 0.8, 0, 1.0). In this scenario,
Z3 and Z8 have zero coefficients for the first quantile, but nonzero coefficients for the other two quantiles. That is, the τ th
quantile of Y given Z is

Qτ (Y |Z) =

1.0 + F−1(τ )+ 0.6Z1 + 0.6Z6 if 0 < τ ≤ 0.3
1.0 + F−1(τ )+ 0.6Z1 + 0.8Z3 + 0.7Z6 + 0.8Z8 if 0.3 < τ ≤ 0.7
1.0 + F−1(τ )+ 0.8Z1 + 0.8Z3 + 0.8Z6 + 1.0Z8 if 0.7 < τ < 1.

We omit QR, FAL and FAS because they are not designed to handle the setting of ‘p > n’. QR-LASSO can be directly applied
to data that have dimension higher than sample size. For QR-aLASSO, we derive the penalty weights using the estimates
from QR-LASSO. For Het-QR, we first run Het-QR with the penalty weights equal to 1 to obtain the initial estimators for
γ ∗
m,m = 1, . . . ,M , and then use the inverse of the initial estimators as the penalty weights; finally, we run Het-QR to obtain

the θ̂ . The results are shown in Table 5. Het-QR tends to yield a smaller model than the compared methods and have better
performance in estimating the regression coefficients as well as in prediction.

5. Real data analysis

We collect 206 brain tumor patients each with 91 gene expression levels. All patients were de-identified. All patients
were diagnosed to have glioma, one of the deadliest cancers among all cancer types. Indeed, many patients died within 1
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Table 2
Comparison of Het-QR and other methods for p = 100 under the normal distribution (standard error of the sample mean
shown in the parenthesis).

Method Model-size FM (%) PEE × 100 QPE × 103 PE × 103

Correlation structure: auto-regressive
QR 300 – 1189.3(7.2) 791.6(9.1) 1606.5(3.1)
QR-LASSO 41.1(1.3) 34(0.9) 108.7(3.1) 78.5(3.1) 1353.1(1.2)
QR-aLASSO 17.8(0.5) 63(1.2) 60.4(2.5) 49.2(3.2) 1341.5(1.2)
FAL 20.3(0.8) 60(1.6) 59.5(2.6) 49.9(3.5) 1340.4(1.2)
FAS 24.8(1.1) 53(1.5) 85.1(2.6) 86.4(3.1) 1351.2(1.1)
Het-QR 8.6(0.1) 96(0.7) 34.7(1.6) 32.6(2.8) 1334.9(1.1)

Correlation structure: compound symmetry
QR 300 – 1218.1(8.4) 792.7(9.5) 1606.1(3.4)
QR-LASSO 40.1(1.1) 35.0(0.9) 105.9(3.1) 74.8(3.0) 1351.9(1.3)
QR-aLASSO 18.9(0.6) 61(1.3) 61.2(2.7) 48.0(3.1) 1341.6(1.3)
FAL 19.9(0.8) 61(1.4) 61.0(2.9) 54.4(4.0) 1341.2(1.3)
FAS 24.1(1.1) 55(1.6) 83.8(2.8) 89.3(3.2) 1351.3(1.2)
Het-QR 8.9(0.2) 94(0.8) 34.6(1.9) 31.4(2.9) 1334.7(1.2)

Table 3
Comparison of the Het-QR and other methods for p = 100 under the T3 distribution (standard error of the sample mean
shown in the parenthesis).

Method Model-size FM (%) PEE × 100 QPE × 103 PE × 103

Correlation structure: auto-regressive
QR 300 – 1452.1(10.2) 1149.1(15.2) 2114.3(4.5)
QR-LASSO 39.4(1.3) 35(0.9) 123.6(3.3) 103.7(3.7) 1796.8(1.4)
QR-aLASSO 19.7(0.6) 58(1.3) 81.0(3.0) 77.3(4.2) 1787.7(1.6)
FAL 20.6(0.7) 58(1.3) 76.4(3.1) 74.8(4.6) 1786.2(1.6)
FAS 24.2(0.9) 53(1.3) 99.6(3.4) 107.8(4.2) 1795.6(1.6)
Het-QR 8.9(0.2) 92(1.0) 47.3(2.3) 53.5(4.0) 1779.4(1.5)

Correlation structure: compound symmetry
QR 300 – 1487.4(11.2) 1156.3(15.6) 2115.2(4.7)
QR-LASSO 38.7(1.0) 35(1.2) 120.5(3.2) 99.4(3.4) 1795.5(1.6)
QR-aLASSO 20.3(0.7) 56(1.3) 81.6(3.3) 76.0(4.1) 1787.6(1.8)
FAL 22.5(0.9) 56(1.5) 82.5(3.9) 78.1(5.1) 1786.6(1.8)
FAS 25.6(1.0) 51(1.3) 99.1(3.5) 107.0(4.1) 1794.7(1.7)
Het-QR 9.1(0.3) 91(1.1) 48.6(2.9) 55.4(4.7) 1780.1(1.8)

Table 4
Comparison of Het-QR and other methods for p = 100 under the exponential distribution (standard error of the sample
mean shown in the parenthesis).

Method Model-size FM (%) PEE × 100 QPE × 103 PE × 103

Correlation structure: auto-regressive
QR 300 – 1024.2(7.1) 618.4(8.8) 1446.4(3.1)
QR-LASSO 39.3(1.1) 36(0.9) 88.7(2.5) 60.6(2.2) 1220.9(1.0)
QR-aLASSO 17.1(0.5) 66(1.2) 47.9(1.9) 37.0(2.3) 1210.2(0.9)
FAL 18.9(0.7) 63(1.5) 43.0(1.9) 33.3(3.0) 1209.5(1.0)
FAS 26.9(1.2) 51(1.7) 74.5(2.3) 79.1(3.5) 1223.8(1.1)
Het-QR 8.7(0.1) 96(0.6) 28.8(1.3) 24.2(1.8) 1205.4(0.8)

Correlation structure: compound symmetry
QR 300 – 1041.6(7.5) 610.9(8.3) 1444.4(2.9)
QR-LASSO 39.6(1.2) 36(0.9) 86.1(2.6) 58.0(2.4) 1220.2(1.1)
QR-aLASSO 17.0(0.5) 66(1.3) 46.6(2.0) 35.7(2.3) 1210.1(1.1)
FAL 18.7(0.7) 63(1.4) 41.8(2.0) 31.0(3.0) 1208.8(1.1)
FAS 27.6(1.4) 51(1.8) 74.3(2.5) 79.6(3.3) 1223.5(1.1)
Het-QR 8.7(0.1) 96(0.7) 27.2(1.3) 22.3(1.9) 1205.1(0.9)

year after the diagnosis. Glioma is associated with a number of genes. We focus on the PDGFRA gene, which encodes the
alpha-type platelet-derived growth factor receptor and has been shown to be an important gene for brain tumors (Holland,
2000; Puputti et al., 2006). We use this dataset to investigate how the expression of PDGFRA is influenced by other genes.

For demonstration, we set τ to 0.25, 0.5, and 0.75. For QR-LASSO, QR-aLASSO, and Het-QR, we use cross-validation to
ascertain the tuning parameter. That is, (1) we divide the data into 3 folds; (2) we use 2 folds to build the model and 1
fold to calculate the prediction error, and this is done three times; (3) we choose the λn that minimizes the prediction
error as the best tuning parameter (we were not able to obtain an independent dataset with sample size 10n to determine
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Table 5
Comparison of Het-QR and other methods for p > n (standard error of the sample mean shown in the parenthesis).

Method Model-size FM (%) PEE × 100 QPE × 103 PE × 103

Correlation structure: auto-regressive
QR-LASSO 67.6(1.8) 25(0.6) 199.0(4.2) 215.5(6.0) 1801.4(1.7)
QR-aLASSO 15.2(0.3) 73(1.1) 81.3(3.0) 113.3(6.2) 1768.8(1.6)
Het-QR 10.6(0.1) 96(0.6) 44.6(2.5) 61.0(7.0) 1753.9(1.6)

Correlation structure: compound symmetry
QR-LASSO 62.9(1.8) 27(0.7) 182.4(4.2) 199.8(5.9) 1796.4(1.8)
QR-aLASSO 15.2(0.3) 74(1.0) 76.7(2.9) 103.5(5.9) 1766.6(1.6)
Het-QR 10.6(0.1) 96(0.7) 46.4(3.0) 63.1(7.8) 1754.2(1.7)

the tuning parameter; it would be meaningful to compare the two procedures when such a dataset becomes available in
future). For FAL and FAS, we follow Jiang et al. (2014) to use BIC and AIC for determining the tuning parameter, and the
corresponding methods are named as FAL-BIC, FAL-AIC, FAS-BIC, FAS-AIC. Hence, in total 7 approaches are compared. We
first examine the model sizes. For all the three quantiles combined, the number of nonzero covariates of the seven models
are 89 (QR-LASSO), 47 (QR-aLASSO), 25 (Het-QR), 49 (FAL-BIC), 182 (FAL-AIC), 93 (FAS-BIC), 167 (FAS-AIC). For illustration,
we list some of the estimated regression coefficients in Table 6. It can be seen that the coefficients for a given gene often
differ among different quantiles. For a better view of the regression coefficients among different quantiles, we plot the
estimated coefficients for the first 30 covariates (Fig. 1). Table 6 and Fig. 1 show that most models (except FAS-BIC and
FAS-AIC) demonstrate heterogeneous sparsity, i.e., some covariates have nonzero effects in only one or two of the three
quantiles. FAS-BIC and FAS-AIC do not show this type of sparsity due to the sup-norm penalty they adopt, as this penalty
either selects or removes a covariate for all the quantiles. FAL-AIC and FAS-AICmodels containmore nonzero estimates than
FAL-BIC and FAS-BIC, consistent with the fact that BIC favors smaller models than AIC. Compared to other methods, Het-QR
yields a smaller model which may be easier to interpret and prioritize candidate genes for further functional study.

The covariates selected by Het-QR are shown in Table 7. Consistent with themodel assumption, the estimated regression
coefficients show heterogeneity among quantiles. For example, the CDKN2C gene has zero coefficient at τ = 0.25, and
nonzero coefficients at τ = 0.5 and 0.75. In contrast, some other genes, such as BMP2 and SLC4A4, have nonzero coefficients
across all the considered quantiles. This suggests that the expression of PDGFRA is influenced by other genes in a delicate
manner that may not be fully characterized by least square methods or quantile regression methods that fail to account for
the genetic heterogeneity. CDKN2C encodes a cyclin-dependent kinase, and BMP2 and SLC4A4 encode a bonemorphogenetic
protein and a sodium bicarbonate cotransporter, respectively. This indicates that PDGFRA’s expression is associated with
genes with a wide spectrum of cellular functions. The gene EGFR has non-positive regression coefficients, suggesting that
there may be some negative control between PDGFRA and EGFR. Future biological studies may provide new insight into the
gene regulation of PDGFRA.

One main purpose of variable selection is to apply the selected variables from one dataset to other datasets to guide
statistical analysis. Along this line, we further collect the brain tumor data from the cancer genome atlas (TCGA) project,
which contains 567 subjects. We apply the models selected by different methods from the training data to the TCGA data to
assess the prediction accuracy of the different models. We randomly split the TCGA data into two halves, and use one half to
estimate the regression coefficients and the other half to calculate the prediction error; the prediction error is then averaged
across the two halves. We repeat the random-splitting 400 times, and calculate the average of the prediction errors. Het-QR
appears to have a slightly lower prediction error than the other compared ones, but the difference among the sevenmethods
is generally small; in detail, the observed prediction errors are 1.349 (QR-LASSO), 1.351 (QR-aLASSO), 1.345 (Het-QR), 1.362
(FAL-BIC), 1.513 (FAL-AIC), 1.355 (FAS-BIC), and 1.430 (FAS-AIC).

6. Discussion

In this article, we have proposed a variable selectionmethod that is able to conduct joint variable selection and estimation
for multiple quantiles simultaneously. The joint selection/estimation allows one to harness the strength shared among
multiple quantiles and to achieve a model that is closer to the truth. In particular, our approach is able to handle the
heterogeneous sparsity, under which a covariate contributes to some (but not all) of the quantiles. By considering the
heterogeneous sparsity, one can better dissect the regression structure of the trait over the covariates, which in turn leads
to more accurate characterization of the underlying biological mechanism.

We have conducted a series of simulation studies to evaluate the performance of our proposed approach and other
approaches. Our simulation studies show that the proposed method has superior performance to its peer methods. In real
data analysis, ourmethod tends to yield a sparsermodel than the comparedmethods. The benefit of achieving a sparsemodel
is of great importance to biological studies, because it helps biological investigators to narrow down important candidate
covariates (such as genes or proteins), so that research efforts can be leveraged more efficiently. Our analysis indicates
that the regression coefficients at different quantiles can be quite heterogeneous. We suggest that the interpretation of
the results be guided by biological knowledge and scientific insight, and that the variability be examined by experimental
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Fig. 1. Graphic view of the first 30 regression coefficients estimated by different methods. Estimates are thresholded at 0.4 and −0.4, and only nonzero
estimates are shown.

Table 6
A snapshot of the estimated regression coefficients (only 5 covariates are shown).

Gene τ QR-LASSO QR-aLASSO Het-QR FAL-BIC FAL-AIC FAS-BIC FAS-AIC

0.25 0.10 0.06
POLR2A 0.5 0.20 0.06

0.75 0.20 0.06

0.25 0.13 0.30 0.09 0.19
SDHA 0.5 0.13 0.26 0.09 0.19

0.75 0.03 0.32 0.2 0.13 0.58 0.09 0.19

0.25 0.09 0.01 0.04
CDKN2A 0.5 0.03 0.03 0.01 0.04

0.75 0.02 0.01 0.04

0.25 0.10 0.10 0.19
CDKN2C 0.5 0.02 0.07 0.13 0.19 0.26 0.10 0.19

0.75 0.05 0.33 0.25 0.19 0.34 0.10 0.19

0.25 0.07 0.03 0.05
DLL3 0.5 0.06 0.03 0.05

0.75 0.06 0.12 0.07 0.01 0.16 0.03 0.05

Note: Zero estimates are left blank.

studies. FAL and FASweremainly designed to generate interquantile shrinkage for quantile regression; when a smooth γ (τ)
(with respect to τ ) is desired, these two methods are highly suitable and are indeed the only available methods to achieve
such a goal.
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Table 7
The model selected by the Het-QR method.

Estimated regression coefficients
Gene τ = 0.25 τ = 0.5 τ = 0.75

SDHA 0.2
BMP2 0.35 0.31 0.34
CDKN2C 0.13 0.25
DLL3 0.07
EGFR −0.08 −0.29
GRIA2 0.28 0.22 0.18
LTF 0.07
OLIG2 0.14 0.30 0.38
PLAT 0.20 0.21 0.25
SLC4A4 −0.21 −0.25 −0.24
TAGLN −0.20
TMEM100 0.20 0.17

We have also provided theoretical proof for the proposed method under the situation that p can grow to infinity. Our
exploratory experiments suggest that Het-QR can be potentially applied to ‘p > n’, although theoretical work is still needed
to guide future experiments in this direction. Wang et al. (2012) proposed a novel approach for studying asymptotics
under the ‘p > n’ situation, and they focused on the penalties that can be written as the difference of two convex
functions. The group penalty considered herein does not seem to fall into their framework. Further theoretical development
is merited. While we have imposed equal weights for multiple quantiles in this paper, our method can be easily extended
to accommodate different weights for different quantiles. Properly chosen weights may lead to improved efficiency of the
estimated parameters (Zhao and Xiao, 2014).
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Appendix

Transformation of the objective function

Our proof is in vein with the proof of Proposition 1 in Huang et al. (2009). Consider the transformed objective function

min
θ,ξ

M
m=1

n
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ρm(Yi − UT
i θm)+ λ1

p
j=1

ξj +

p
j=1

ξ−1
j
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By Cauchy–Schwarz inequality, we have
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then it follows that (5) is equivalent to

min
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ρm(Yi − UT
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ωmj|γmj|

 1
2

. (6)

Now, let 2
√
λ1 = nλn, then (6) is identical to the original objective function (2). �
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Derivation of the primal and dual problem

Let λmj = ξ−1
j ωmj, then in step 2 of Section 2.2, we aim to solve

min
γ ,γ0


M

m=1

n
i=1

ρm(Yi − ZT
i γm − γm0)+

p
j=1

M
m=1

λmj|γmj|


.

Let en denote the unit vector of length n, and λm the vector of λmj(j = 1, . . . , p). With slight abuse of notation, let Y be the
n × 1 vector consisting of Yi, and Z the n × pmatrix consisting of Zi. The above objective function is equivalent to

min
um,vm,γm,sm,tm

M
m=1

τmeTnum + (1 − τm)eTnvm + λT
msm + λT

mtm,

subject to um − vm = Y − Zγm − γm0en, sm − tm = γm, um ≥ 0, vm ≥ 0, sm ≥ 0, and tm ≥ 0.
Let 0r be the zero vector of length r , λ∗

= (λT
1, . . . ,λ

T
M)

T , s∗ = (sT1, . . . , s
T
M)

T , t∗ = (tT1 , . . . , t
T
M), u∗

=

(uT
1, . . . , u

T
M)

T , v∗
= (vT1 , . . . , v

T
M)

T . Let Y(M) denote the vector in which Y is stacked by M times. Let

c = (0T
Mp, 0

T
M , λ

∗T , λ∗T , τ1eTn, . . . , τMeTn, (1 − τ1)eTn, . . . , (1 − τM)eTn)
T ,

x = (γ T , γ T
0 , s

∗T , t∗T , u∗T , v∗T )T , and b = (Y T
(M), 0

T
Mp)

T . Then, the linear program primal of the above objective function can
be written as

min
x

cT x,

subject to Ax = b and (s∗T , t∗T , u∗T , v∗T )T ≥ 0, where A is defined as follows. A is a matrix consisting of two rows of blocks.
The first row of A consists of 6 blocks, A11 = IM ⊗ Z, A12 = IM ⊗ en, A13 = [0]nM×Mp, A14 = [0]nM×Mp, A15 = InM ,
and A16 = −InM . The second row of A consists of the following 6 blocks, A21 = IMp, A22 = [0]Mp×M , A23 = −IMp, A24 =

IMp, A25 = [0]nM×nM , and A26 = [0]nM×nM .
Then using standard linear program arguments, we obtain the dual as

max
d̃

bT d̃,

subject to Z̃T d̃ = S1 + S2 and d̃ ∈ [0, 1]nM+Mp, where

S1 =

(1 − τ1)eTnZ, . . . , (1 − τM)eTnZ, n(1 − τ1), . . . , n(1 − τM)

T
,

S2 = 1/2 × (R, [0]Mp×M)
T eMp, R = diag((2λT , . . . , 2λT

M)
T ), and Z̃ is defined as follows. Z̃ consists of two rows of blocks.

The first row of Z̃ includes two blocks, Z̃11 = IM ⊗ Z and Z̃12 = IM ⊗ en. The second row includes two blocks, Z̃21 = R and
Z̃22 = [0]Mp×M .

Computation time

For p = 100 under the auto-regressive structure, i.e., Table 2, we calculate the summary statistics of the CPU time
(seconds). The average time (and the standard error of the sample mean) for QR, QR-LASSO, QR-aLASSO, FAL, FAS, Het-QR
is 1.6(0.003), 10.2(0.017), 10.0(0.030), 867.0(8.059), 455.3(2.641), 90.3(0.391), respectively. For p = 600 under the auto-
regressive structure, the CPU time for QR-LASSO is 372.6(1.453); the time for QR-aLASSO and Het-QR is 362.0(1.729) and
3717.5(36.401), respectively (excluding the time for calculating penalty weights).

Proof of the theorems

We now give the proof of the theorems. We note that throughout the proof, the upper letter C in different formulas
stands for different constants.

Recall that the definitions of N , I , II , sn and Im have been given in the main text. Define the index set J = {1 ≤ j ≤

pn : there exists 1 ≤ m ≤ M such that γ ∗

mj ≠ 0} with the cardinality |J| = kn. For every fixed j ∈ J , define the index set
Mj = {1 ≤ m ≤ M : γ ∗

mj ≠ 0}. Clearly, the oracle index set I = {(m, j) : m ∈ Mj, j ∈ J}. For every fixed 1 ≤ m ≤ M , define
IIm = {1 ≤ j ≤ pn : γ ∗

mj = 0}.
We need to define some notations for our proof. Let the vectors γmI , γ ∗

mI and γ̂mI be the subvectors of γm, γ ∗
m and γ̂m

corresponding to the index set Im, respectively. Define the subvectors of γ , γ ∗ and γ̂ corresponding to the oracle index set
I as γI = (γ T
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T
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T. Define the vector θI as the subvector of the parameter vector θ corresponding to the oracle index set I .
Recall that the vectors θ∗

I and θ̂I are the subvectors of the vectors θ∗ and θ̂ corresponding to the oracle index set I . Clearly,
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MI)

T, θ∗
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Similarly, let the vectors γmII , γ
∗

mII and γ̂mII be the subvectors of γm, γ ∗
m and γ̂m corresponding to the index set IIm,

respectively. Define the subvectors of γ , γ ∗ and γ̂ corresponding to the index set II as γII = (γ T
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T. Define the vector θII as the subvector of the parameter vector θ corresponding
to the index set II . Recall that the vectors θ∗

II and θ̂II are the subvectors of the vectors θ∗ and θ̂ corresponding to the index
set II , respectively. Clearly, θII = γII , θ∗
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We first give a lemma related to the loss function Qn(θ). The lemma plays an important role in the proof of our theorems.

Lemma .1. Under conditions (L1)–(L4) , we have
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n
i=1


I(Yi < UT

i θ
∗

m)− τm

Ui,

Bn = Diag(B11, B22, . . . , BMM) with Bmm =

n
i=1

f (UT
i θ

∗

m| Zi)UiUT
i . (7)

Proof of Lemma .1. Letψm(u) be a sub-derivative of the quantile function ρm(u), thenψm(u) = τm−I(u < 0)+ lm I(u = 0)
with lm ∈ [−1, 0]. Let Tn = Qn(θ) − Qn(θ

∗). Then, there exists an lmi ∈ [−1, 0] for every 1 ≤ m ≤ M and 1 ≤ i ≤ n such
that

Tn = −

M
m=1

n
i=1

ψm(Yi − UT
i θ̄m)U

T
i (θm − θ∗

m)

= −

M
m=1

n
i=1


τm − I(Yi < UT

i θ̄m)+ lmi I(Yi = UT
i θ̄m)


UT
i (θm − θ∗

m)

=

M
m=1

n
i=1


I(Yi < UT

i θ
∗

m)− τm

UT
i (θm − θ∗

m)

−

M
m=1

n
i=1


I(Yi < UT

i θ
∗

m)− I(Yi < UT
i θ̄m)


UT
i (θm − θ∗

m)−

M
m=1

n
i=1

lmi I(Yi = UT
i θ̄m)U

T
i (θm − θ∗

m)

≡ Tn1 − Tn2 − Tn3 (8)

where θ̄m is on the linear segment between θm and θ∗
m, and may be written as θ̄m = θ∗

m + ηm (θm − θ∗
m)with ηm ∈ (0, 1). For

Tn3, note that Yi has a continuous conditional distribution given Zi, hence almost surely I(Yi = UT
i θ̄m) = 0 for all i = 1, . . . , n

and m = 1, . . . ,M , thus Tn3 = 0 almost surely. Subsequently, we can write

Tn =

Tn1 − E(Tn1)


−

Tn2 − E(Tn2)


+ E(Tn),

where E(Tn) = E(Tn1) + E(Tn2), and E denotes the conditional expectation given Z . Note that E(Tn1) = 0 because
E(I(Yi < UT

i θ
∗
m) − τm|Zi) = F(UT

i θ
∗
m|Zi) − τm = 0 from (1). Rename


Tn2 − E(Tn2)


as Rn2 and E(Tn) as Tn4, then we

have

Tn = Tn1 − Rn2 + Tn4. (9)

For Rn2 (recall Tn2 in (8)), let ζmi(t) = I(Yi − UT
i θ

∗
m < 0)− I(Yi − UT

i θ
∗
m < UT

i t), then

Rn2 =

M
m=1

 n
i=1

{ζmi(ηm(θm − θ∗

m))− E(ζmi(ηm(θm − θ∗

m)))}Ui

T

(θm − θ∗

m)

=

M
m=1

φn(m)T(θm − θ∗

m) (10)

where φn(m) =
n

i=1 {ζmi(ηm(θm − θ∗
m))− E(ζmi(ηm(θm − θ∗

m)))} Ui.
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Note that |ζmi(t)| = |I(Yi − UT
i θ

∗
m < 0)− I(Yi − UT

i θ
∗
m < UT

i t)| ≤ I(|Yi − UT
i θ

∗
m| ≤ |UT

i t|), and that f (t|Zi) is bounded
under condition (L1) and ∥Ui∥2 ≤ Cp

1
2 under condition (L2). Hence, making use of independence, under conditions (L1) and

(L2), for all 1 ≤ m ≤ M and ∥θm − θ∗
m∥2 ≤ ηn, we can see

E∥φn(m)∥2
2 = E

 n
i=1

{ζmi(ηm(θm − θ∗

m))− E(ζmi(ηm(θm − θ∗

m)))}Ui

2
2

=

n
i=1

E{ζmi(ηm(θm − θ∗

m))− E(ζmi(ηm(θm − θ∗

m)))}
2
∥Ui∥

2
2

≤ CnpEζmi(ηm(θm − θ∗

m))
2

≤ Cnp P

|Yi − UT

i θ
∗

m| ≤ |UT
i (θm − θ∗

m)|


≤ CnpP

|Yi − UT

i θ
∗

m| ≤ Cp
1
2 ∥θm − θ∗

m∥2


.

Note that

P

|Yi − UT

i θ
∗

m| ≤ Cp
1
2 ∥θm − θ∗

m∥2


= F(UT

i θ
∗

m + Cp
1
2 ∥θm − θ∗

m∥2)− F(UT
i θ

∗

m − Cp
1
2 ∥θm − θ∗

m∥2)

≤ |f (ξmi|Zi)|p
1
2 ∥θm − θ∗

m∥2 ≤ Cp
1
2 ∥θm − θ∗

m∥2,

where ξmi is between UT
i θ

∗
m + Cp

1
2 ∥θm − θ∗

m∥2 and UT
i θ

∗
m − Cp

1
2 ∥θm − θ∗

m∥2. Thus, E∥φn(m)∥2
2 ≤ Cnp

3
2 ηn. By Chebyshev’s

inequality, we get sup1≤m≤M sup∥θm−θ∗
m∥2≤ηn

∥φn(m)∥2 = Op(n
1
2 p

3
4 η

1
2
n ). Together with (10), by Cauchy–Schwarz’s

inequality, we get

sup
1≤m≤ M

sup
∥θm−θ∗

m∥2≤ηn

|Rn2| = Op(n
1
2 p

3
4 ηn

1
2 )O(ηn) = Op(n

1
2 p

3
4 ηn

3
2 ). (11)

For Tn4, the third term in (9), write E(Tn) = en(θ)− en(θ∗), where

en(θ) ≡

M
m=1

n
i=1

E ρm

Yi − UT

i θm

.

E ρm

Yi − UT

i θm

is second order differentiable with respect to θm under condition (L1), with gradient Gmi(θ) = −E


(τm −

I(Yi < UT
i θm))Ui


=

F(UT

i θm|Zi)− τm

Ui, and Hessian matrix Hmi(θ) = f (


UT
i θm)|Zi


UiUT

i .
Let G(θ) and H(θ) be gradient and Hessian matrix of en(θ), then G(θ) =

M
m=1

n
i=1 Gmi(θ) and H(θ) =M

m=1
n

i=1 Hmi(θ) =
M

m=1
n

i=1 f (

UT
i θm)|Zi


UiUT

i . It is easy to see that G(θ∗) = 0 by F(UT
i θ

∗
m|Zi) = τm in (1). By

Taylor expansion of Tn4 = E(Tn) = en(θ)− en(θ∗) at θ∗, we have

Tn4 =
1
2
(θ − θ∗)T H


θ∗

+ ξ(θ − θ∗)

(θ − θ∗)

=
1
2

M
m=1

n
i=1

f (ζmi|Zi) (θm − θ∗

m)
T UiUT

i (θm − θ∗

m),

=
1
2

M
m=1

n
i=1


f (ζmi|Zi)− f (UT

i θ
∗

m|Zi)

(θm − θ∗

m)
T UiUT

i (θm − θ∗

m)

+
1
2

M
m=1

n
i=1

f (UT
i θ

∗

m|Zi)(θm − θ∗

m)
TUiUT

i (θm − θ∗

m)

≡ Rn4 + Tn41. (12)

where ξ ∈ (0, 1) and ζmi is between UT
i θm and UT

i θ
∗
m. Trivially,

|Rn4| ≤ C
M

m=1

sup
1≤i≤n

f (ζmi|Zi)− f (UT
i θ

∗

m|Zi)
(θm − θ∗

m)
T

n
i=1

UiUT
i (θm − θ∗

m). (13)

Note that f ′(t|Zi) is bounded under condition (L1), ∥Ui∥2 ≤ Cp
1
2 under condition (L2), and λmax


n−1n

i=1 UiUT
i


≤ C

under condition (L3). Hence, for all 1 ≤ i ≤ n, 1 ≤ m ≤ M , and ∥θm − θ∗
m∥2 ≤ ηn, we have |f (ζmi|Zi) − f (UT

i θ
∗
m|Zi)| ≤

C |UT
i (θm−θ∗

m)| ≤ C∥Ui∥2∥θm−θ∗
m∥2 ≤ Cp

1
2 ηn, and (θm−θ∗

m)
Tn

i=1 UiUT
i (θm−θ∗

m) ≤ nλmax

n−1n

i=1 UiUT
i


∥θm−θ∗

m∥
2
2 ≤

Cnη2n . Hence, from (13), we get sup1≤m≤M sup∥θm−θ∗
m∥2≤ηn

|Rn4| ≤ Cnp
1
2 η3n . Together with (9), (11) and (12), we obtain
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Tn = Tn1 + Tn41 + Rn(θ), where sup1≤m≤M sup∥θm−θ∗
m∥2≤ηn

|Rn(θ)| = Op(n
1
2 p

3
4 ηn

3
2 )+ Op(np

1
2 η3n), and

Tn1 =

M
m=1

n
i=1


I(Yi < UT

i θ
∗

m)− τm

UT
i (θm − θ∗

m) = AT
n(θ − θ∗),

Tn41 =
1
2

M
m=1

n
i=1

f (UT
i θ

∗

m|Zi)(θm − θ∗

m)
TUiUT

i (θm − θ∗

m) =
1
2
(θ − θ∗)TBn(θ − θ∗).

This completes the proof of the lemma. �

Proof of Theorem 1. Recall the definition of Ln(θ) = Qn(θ) + Pn(γ ) in (2). Let θ − θ∗
= νn u, where νn > 0, u ∈ RM(p+1)

and ∥u∥2 = 1. It is easy to see that ∥θ − θ∗
∥2 = νn. Based on the continuity of Ln, if we can prove that in probability

inf
∥u∥2=1

Ln(θ∗
+ νnu) > Ln(θ∗), (14)

then the minimal value point of Ln(θ∗
+ νnu) on {u : ∥u∥2 ≤ 1} exists and lies in the unit ball {u : ∥u∥2 ≤ 1} in probability.

We will prove that (14) holds.
For Qn(θ), because ∥θm − θ∗

m∥2 ≤ ∥θ − θ∗
∥2 for all m = 1, 2, . . . ,M , by Lemma .1 with ηn = νn under conditions (L1)

to (L4), we get

qn(θ) ≡ Qn(θ)− Qn(θ
∗) = AT

n(θ − θ∗)+
1
2
(θ − θ∗)TBn(θ − θ∗)+ Rn(θ), (15)

where sup∥θ−θ∗∥2≤νn
|Rn(θ)| = Op(n

1
2 p

3
4 νn

3
2 )+ Op(np

1
2 ν3n ).

For Pn(γ ), let pn(γ ) = Pn(γ )− Pn(γ ∗). Define p1n(γ ) = pn(γI , 0), that is,

p1n(γ ) = nλn

j∈J


m∈Mj

ωmj|γmj|

 1
2

− nλn

j∈J


m∈Mj

ωmj|γ
∗

mj|

 1
2
. (16)

Clearly, p1n(γ ) ≤ pn(γ ) and p1n(γ ∗) = pn(γ ∗) = 0.
Define ln(θ) = qn(θ) + pn(γ ) and l1n(θ) = qn(θ) + p1n(γ ), both of which are continuous. Clearly, l1n(θ) ≤ ln(θ) and

l1n(θ∗) = ln(θ∗) = 0. Note that (14) is equivalent to that in probability

inf
∥u∥2=1

l1n(θ∗
+ νnu) > 0. (17)

Note that

|p1n(γ )| = nλn


j∈J


m∈Mj

ωmj|γmj|

 1
2

−


j∈J


m∈Mj

ωmj|γ
∗

mj|

 1
2


≤ nλn

j∈J


m∈Mj

ωmj|γmj|

 1
2

−


m∈Mj

ωmj|γ
∗

mj|

 1
2
 ≤ nλn


j∈J


m∈Mj

ωmj|γmj − γ ∗

mj|

 1
2
,

where the last inequality follows from the fact that |
√

|x| −
√

|y|| ≤
√

|x − y|. Note that γmj − γ ∗

mj = νn umj where umj is a
component of u. Hence,

|p1n(γ )| ≤ nλn d
1
2
nIν

1
2
n


j∈J


m∈Mj

|umj|

 1
2

≤ nλn d
1
2
nIν

1
2
n k

1
2
n

 
(m,j)∈I

|umj|

 1
2

≤ nλnd
1
2
nIν

1
2
n k

1
2
n s

1
4
n ∥u∥

1
2
2 = nλnd

1
2
nIν

1
2
n s

3
4
n ∥u∥

1
2
2 , (18)

where kn = |J| ≤ sn. By (15) and the above, we have

l1n(θ∗
+ νnu) = qn(θ∗

+ νnu)+ p1n(θ∗
+ νnu) = νnAT

nu +
1
2
ν2nu

TBnu + RL(u), (19)

where sup∥u∥2 = 1 |RL(u)| = Op(n
1
2 p

3
4 νn

3
2 )+ Op(np

1
2 ν3n )+ O(nλn d

1
2
nIν

1
2
n s

3
4
n ).

For the quadratic term in (19), from condition (L5),

1
2
ν2nu

TBnu ≥
C4

2
nν2n∥u∥

2
2. (20)
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For the linear term AT
nu in (19), by the independence of (Zi, Yi) and (Zj, Yj) for all i ≠ j and the fact that E(I(Yi <

UT
i θ

∗
m)− τm|Zi) = 0, we get

E(AT
nAn) = E

M
m=1

n
i=1


I(Yi < UT

i θ
∗

m)− τm

UT
i

n
j=1


I(Yj < UT

j θ
∗

m)− τm

Uj

=

M
m=1

n
i=1

E

I(Yi < UT

i θ
∗

m)− τm
2

∥Ui∥
2
2


≤ Cnp.

Then, it follows that

∥An∥2 = Op((np)
1
2 ), (21)

which implies that sup∥u∥2≤1 |AT
nu| = Op((np)

1
2 ). Together with (19) and (20), in probability,

inf
∥u∥2=1

l1n(θ∗
+ νnu) ≥

C4

2
nν2n − C(np)

1
2 νn − Cn

1
2 p

3
4 νn

3
2 − Cnp

1
2 ν3n − Cnλn d

1
2
nIν

1
2
n s

3
4
n

≥
C4

2
nνn

νn − Cn−

1
2 p

1
2 − Cn−

1
2 p

3
4 νn

1
2 − Cp

1
2 ν2n − Cλnd

1
2
nIs

3
4
n ν

−
1
2

n


. (22)

Now take νn = C0(n−
1
2 p

1
2 ) where C0 is a sufficiently large constant. Under condition (L4), i.e., λnd

1
2
nI = o(s

−
3
4

n p
3
4
n n−

3
4 ), for

the last three terms in (22), we can check that n−
1
2 p

3
4 νn

1
2 ≤ Cn−

1
4 +

1
2 α1νn = o(νn), p

1
2 ν2n ≤ Cn−

1
2 +α1νn = o(νn), and

λn d
1
2
nIs

3
4
n ν

−
1
2

n ≤ Cλn d
1
2
nIs

3
4
n p

−
3
4

n n
3
4 νn = o(νn). Hence,

inf
∥u∥2=1

l1n(θ∗
+ νnu) ≥ Cnν2n → ∞ in probability. (23)

Therefore, in probability there exists a local minimizer θ̂ of Ln(θ) such that ∥θ̂ − θ∗
∥2 < νn. This completes the proof of the

theorem. �

Proof of Theorem 2. For the quantile function Qn(θ), because ∥θm − θ∗
m∥2 ≤ ∥θ − θ∗

∥2 for all 1 ≤ m ≤ M , by Lemma .1
with ηn = νn, under conditions (L1)–(L4), we have

Qn(θ)− Qn(θ
∗) = AT

n(θ − θ∗)+
1
2
(θ − θ∗)TBn(θ − θ∗)+ Rn(θ), (24)

where sup∥θ−θ∗∥2≤νn
|Rn(θ)| = Op(n

1
2 p

3
4 νn

3
2 )+ Op(np

1
2 ν3n ).

Let θ − θ∗
= νnu where νn > 0 and u ∈ RM(p+1). Then ∥θ − θ∗

∥2 ≤ νn if and only if ∥u∥2 ≤ 1. Let u = (uT
I , u

T
II)

T, where
uI and uII are subvectors of u corresponding to the index sets I and II , respectively. Clearly, ∥u∥2

2 = ∥uI∥
2
2 +∥uII∥

2
2. Note that

θI = θ∗

I + νnuI and θII = θ∗

II + νnuII = νnuII .

Define the ball Θ̃n = {θ = θ∗
+ νnu ∈ Θn : ∥u∥2 ≤ 1} with νn = C0n−

1
2 p

1
2 . For any θ = (θTI , θ

T
II )

T
∈ Θ̃n, we can see

∥(θTI , 0
T)T − θ∗

∥2 = ∥θI − θ∗

I ∥2 ≤ νn, and ∥θII∥2 = νn∥uII∥2, where ∥uII∥2 ≤ 1.
Consider that Qn(θI , θII)− Qn(θI , 0) = Qn(θI , θII)− Qn(θ

∗)−

Qn(θI , 0)− Qn(θ

∗)


=
1
2
(0T, θTII )Bn(0T, θTII )

T
+ AT

n(0
T, θTII )

T
− (θTI − θ∗T

I , 0
T)Bn(0T, θTII )

T
+

Rn(θ)− Rn(θI , 0)


≡ In1 + In2 + In3 + r1n(θ).

From (21), we can see supθ∈Θ̃n
|In2| ≤ ∥An∥2∥θII∥2 = Op((np)

1
2 )νn∥uII∥2 = Op(p∥uII∥2). Under condition (L5),

∥Bn(0T, θTII )
T
∥
2
2 = (0T, θTII )B

2
n(0

T, θTII )
T

≤ n2λ2max(n
−1Bn)∥θII∥

2
2 ≤ Cn2ν2n∥uII∥

2
2, we have supθ∈Θ̃n

|In3| ≤ ∥θI −

θ∗

I ∥2∥Bn(0T, θTII )
T
∥2 ≤ Cnν2n ≤ Cp. From (24), we have supθ∈Θ̃n

|r1n(θ)| = Op(n−
1
4 p

3
2 ). Hence,

Qn(θI , θII)− Qn(θI , 0) = In1 + r2n(θ), (25)

where supθ∈Θ̃n
|r2n(θ)| = Op(p∥uII∥2) + Op(n−

1
4 p

3
2 ). Recall Ln(θI , θII) − Ln(θI , 0) = Qn(θI , θII) − Qn(θI , 0) + Pn(γI , γII) −

Pn(γI , 0). From (25), we get

Ln(θI , θII)− Ln(θI , 0) ≥ Pn(γI , γII)− Pn(γI , 0)+ r2n(θ). (26)
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Note that (nλn)−1

P(γI , γII)− Pn(γI , 0)


=

p
j=1

 M
m=1

ωmj|γmj|

 1
2

−


j∈J


m∈Mj

ωmj|γmj|

 1
2

=


j∈Jc

 M
m=1

ωmj|γmj|

 1
2

+


j∈J

 M
m=1

ωmj|γmj|

 1
2

−


j∈J


m∈Mj

ωmj|γmj|

 1
2

≥


j∈Jc

M
m=1

ωmj|γmj|

2
 M
m=1

ωmj|γmj|

 1
2

+


j∈J


m∈Mc

j

ωmj|γmj|

2
 M
m=1

ωmj|γmj|

 1
2
. (27)

For all θ ∈ Θ̃n, we have |γmj| ≤ |γ ∗

mj| + 1 ≤ C , which implies that
M

m=1 ωmj|γmj| ≤ C∥ωn∥∞ for all j = 1, 2, . . . , p, where

∥ωn∥∞ = max1≤m≤M, 1≤j≤p |ωmj|. Recall that dnII = min(m,j)∈II{ωmj}∥ωn∥
−

1
2

∞ . From (27), it follows that for all θ ∈ Θ̃n,

Pn(γI , γII)− Pn(γI , 0) ≥ Cnλn ∥ωn∥
−

1
2

∞


j∈Jc

M
m=1

ωmj|γmj| +


j∈J


m∈Mc

j

ωmj|γmj|


= Cnλn ∥ωn∥

−
1
2

∞


(m,j)∈II

ωmj|γmj| ≥ Cnλn dnII

(m,j)∈II

|γmj|

≥ Cnλn dnII∥γII∥2 = Cλn dnII(np)
1
2 ∥uII∥2. (28)

DefineΩn = {θ = θ∗
+ νnu ∈ Θ̃n : ∥uII∥2 > 0} andΩc

n = {θ = θ∗
+ νnu ∈ Θ̃n : uII = 0}. Clearly, Θ̃n = Ωn ∪Ωc

n . From
(26) and (28), we obtain in probability

inf
θ∈Ωn


Ln(θI , θII)− Ln(θI , 0)


≥ inf

θ∈Ωn


Pn(γI , γII)− Pn(γI , 0)


− sup

θ∈Θ̃n

|r2n(θ)|

≥ C̃1λn dnII(np)
1
2 ∥uII∥2 − C̃2p∥uII∥2 − C̃2n−

1
4 p

3
2

≥ p


∥uII∥2


C̃1λn dnIIn

1
2 p−

1
2 − C̃2


− C̃2n−

1
4 p

1
2


where C̃1 and C̃2 are positive constants. Under the given conditions, λn dnIIn

1
2 p−

1
2 → ∞ and n−

1
4 p

1
2 → 0 as n → ∞. Hence,

infθ∈Ωn


Ln(θI , θII)− Ln(θI , 0)


> 0 in probability. Thus, infθ∈Ωn Ln(θ) ≥ infθ∈Ωn


Ln(θI , θII)− Ln(θI , 0)


+ infθ∈Ωn Ln(θI , 0) >

infθ∈Ωn Ln(θI , 0) = infθ∈Θ̃n
Ln(θI , 0) ≥ infθ∈Θ̃n

Ln(θ), which implies that infθ∈Θ̃n
Ln(θ) = infθ∈Ωc

n Ln(θ). Therefore, the
minimal value point of Ln(θ) on Θ̃n only lies in its subsetΩc

n .
FromTheorem1,weknow that in probability θ̂ ∈ Θ̃n and that θ̂ is a localminimizer of Ln(θ). Hence, θ̂ ∈ Ωc

n in probability,
which implies that γ̂II = 0. �

Proof of Theorem 3. Let θI − θ∗

I = νnu where νn > 0 and u ∈ RM+sn . Because ∥θmI − θ∗

mI∥2 ≤ ∥θI − θ∗

I ∥2 = νn∥u∥2 for all
1 ≤ m ≤ M , and due to conditions (L1)–(L3) and that 0 < α0 < α1 <

1
6 , Lemma .1 implies that

Qn(θI , 0)− Qn(θ
∗

I , 0) = Qn(θ
∗

I + νnu, 0)− Qn(θ
∗

I , 0) = νnAT
nIu +

1
2
ν2nu

TBnIu + rn(u), (29)

where sup∥u∥2≤1 |rn(u)| = Op(n
1
2 s

3
4
n ν

3
2
n )+ Op(ns

1
2
n ν

3
n ), BnI is given in (4),

AnI = (AT
1, . . . , A

T
M)

T with Am =

n
i=1


I(Yi < UT

i θ
∗

m)− τm

UimI , (30)

and UimI is given in Section 3. Note that AnI and BnI are the sub-vector(matrix) of An and Bn in (6) corresponding to the index
set I , respectively.

For Pn(γ ), define pn(γ ) = Pn(γ )− Pn(γ ∗). Let uI be the subvector of u corresponding to the subvector γI in θI . Then, we
have

pn(γI , 0) = pn(γ ∗

I + νnuI , 0) = nλn

j∈J


m∈Mj

ωmj|γmj|

 1
2

− nλn

j∈J


m∈Mj

ωmj|γ
∗

mj|

 1
2
,
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which is p1n(γ ) given in (16). By (18) in the proof of Theorem1,we have |pn(γI , 0)| = |pn(γ ∗

I +νnuI , 0)| ≤ nλnd
1
2
nIν

1
2
n s

3
4
n ∥u∥

1
2
2 .

This, combined with (29), implies that

Ln(θ∗

I + νnu, 0)− Ln(θ∗

I , 0) = νnAT
nIu +

1
2
ν2nu

TBnIu + rl(u), (31)

where sup∥u∥2≤1 |rl(u)| = Op(n
1
2 s

3
4
n νn

3
2 )+ Op(ns

1
2
n ν

3
n )+ O(nλn d

1
2
nIν

1
2
n s

3
4
n ).

Define the ballΘnI = {(θTI , 0
T)T : θI − θ

∗

I = νn u} with νn = C0(n−1pn)
1
2 , where u ∈ RM+sn and C0 is a positive constant.

Given that νn = C0(n−1pn)
1
2 , λnd

1
2
nI = O(n−1p

1
2
n ), and 0 < α0 < α1 <

1
6 , we see that n

1
2 s

3
4
n νn

3
2 ≤ Cn−

1
4 s

3
4
n p

3
4
n = op(1),

n
√
snν3n ≤ Cn−

1
2 s

1
2
n p

3
2
n = o(n−

1
4 s

3
4
n p

3
4
n ) = op(1) and nλn d

1
2
nIν

1
2
n s

3
4
n ≤ λn d

1
2
nI n

3
4 s

3
4
n p

1
4
n = O(n−

1
4 s

3
4
n p

3
4
n ) = op(1). Hence,

considering (31), for all (θTI , 0
T)T ∈ ΘnI we have Ln(θI , 0) − Ln(θ∗

I , 0) = AT
nI(θI − θ∗

I ) +
1
2 (θI − θ∗

I )
T BnI (θI − θ∗

I ) + op(1),
which implies that for all (θTI , 0

T)T ∈ ΘnI ,

Ln(θI , 0)− Ln(θ∗

I , 0)+
1
2
AT
nIB

−1
nI AnI =

1
2


B

−
1
2

nI AnI + B
1
2
nI(θI − θ∗

I )
T

B
−

1
2

nI AnI + B
1
2
nI(θI − θ∗

I )


+ op(1). (32)

By Theorems 1 and 2, we know that in probability a local minimizer θ̂ of Ln(θ) − Ln(θ∗) lies in the ball ΘnI , which implies
that θ̂ = (θ̂TI , 0

T)T ∈ ΘnI in probability. Hence, from (32), we have

B
1
2
nI(θ̂I − θ∗

I ) = −B
−

1
2

nI AnI + op(1)t, (33)

where t ∈ RM+sn is an unit vector. Since tTBnI t ≤ λmax(BnI) ≤ λmax(Bn) ≤ Cn by condition (L5), we have B
1
2
nI t = Op(n

1
2 )t .

Multiplying both sides of (33) by a vector bTB
1
2
nI , where b ∈ RM+sn is any unit vector, we obtain

bTBnI(θ̂I − θ∗

I ) = −bTAnI + op(n1/2). (34)

Let ξn = bTAnI , and write b = (bT1, . . . , b
T
M)

T where bm is the subvector of b corresponding to the subvector θ∗

mI of θ
∗

I . By the
definition of AnI in (30), we see that

ξn =

M
m=1

n
i=1


ψ∗

mi U
T
imIbm


=

n
i=1

ζi,

where ζi =
M

m=1 ψ
∗

mi U
T
imIbm with ψ∗

mi = I(Yi < UT
imIθ

∗

mI) − τm. Clearly, {ζi, i = 1, . . . , n} is an independent sequence.
Next, we will verify that ξn satisfies the Lindeberg’s condition

σ−2
n

n
i=1

E

ζ 2
i I(|ζi| ≥ σn)


→ 0, (35)

where σ 2
n = Var(ξn).

For ζi =
M

m=1 ψ
∗

mi U
T
imIbm, it is easy to see that E(ζi) =

M
m=1 E


E(ψ∗

mi|Zi)U
T
imIbm


= 0 from the fact E(ψ∗

mi|Zi) =

F(UT
imIθ

∗

mI |Zi)− τm = F(UT
i θ

∗
m|Zi)− τm = 0, and that

E(ζ 2
i ) = E

 M
m=1

ψ∗

mi U
T
imIbm

2
=

M
m=1

M
l=1

E

E(ψ∗

miψ
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li |Zi) b
T
m(UimIUT

ilI)bl


=

M
m=1

M
l=1

E

(min(τm, τl)− τmτl) bTm(UimIUT

ilI)bl


= bT6nb,

where6n is given in (3). Hence, we obtain that E(ξn) =
n

i=1 E(ζi) = 0 and that, by independence Var(ξn) =
n

i=1 E(ζ
2
i ) =

nbT6nb. Under condition (L6), we obtain

σ 2
n = nbT6nb ≥ nλmin(6n)bTb ≥ Cn. (36)

Note that (UT
imIbm)

2
≤ ∥UimI∥

2
2∥bm∥

2
2 ≤ Csn∥b∥2

2 ≤ Csn under condition (L2). By Cauchy–Schwarz’s inequality, ζ 2
i =

(
M

m=1 ψ
∗

mi U
T
imIbm)

2
≤ M

M
m=1 (ψ

∗

mi U
T
imIbm)

2
≤ Csn

M
m=1 (ψ

∗

mi)
2, which implies that ζ 2

i ≤ Csn from the fact |ψ∗

mi| ≤
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1 + τm ≤ 2. Hence, we have
n

i=1

E

ζ 2
i I(|ζi| ≥ σn)


≤ Csn

n
i=1

E

I(ζ 2

i ≥ σ 2
n )


≤ Csn
n

i=1

P

Csn

M
m=1

(ψ∗

mi)
2

≥ σ 2
n


≤ Csn

n
i=1

E

Csn

M
m=1

(ψ∗

mi)
2 σ−2

n ≤ Cns2nσ
−2
n .

Together with (36), this implies that, as n → ∞,

σ−2
n

n
i=1

E

ζ 2
i I(|ζi| ≥ σn)


≤ Cns2nσ

−4
n ≤ C

s2n
n

≤ Cn−1+2α0 → 0,

which shows that Lindeberg’s condition (35) holds. Hence,

(nbT6nb)−
1
2 bTAnI =

bTAnI

σn
=
ξn − E(ξn)

σn
→ N(0, 1).

Together with (34) and (36), this implies that

(nbT6nb)−
1
2 bTBnI


θ̂I − θ∗

I


= −(nbT6nb)−

1
2 bTAnI + op(1) → N(0, 1).

This completes the proof of the theorem. �
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