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� Model Robustness. We consider experiments in which the investigator
chooses inputs X, and observes an output Z; these and the resulting predic-
tions are related through a, possibly imperfectly speci�ed, parametric model:

Input (X) �! Parametric
model

�! Output (Z) �! Predict ZjnewX;model

�Choose design points xi at which to observe Z; aim for e¢ ciency (small
variance when the model is right) and accurate predictions (small biases
if the parametric model is wrong).

�The �best� design for a slightly wrong model can be much more than
slightly sub-optimal. (Box and Draper 1959 etc.)

� Robust estimation: Quantile Regression

�Assume that the � -quantile of the output Z at input x is a possibly
nonlinear function F (x;�):

� = PZjx (Z � F (x;�� )) :

�Estimation is by quantile regression; inherently resistant to y-outliers.

�More e¢ cient than LSE under non-normal distributions; no moment as-
sumptions made (e.g. Cauchy errors are possible).

�Provides a satisfying picture of the manner in which the response is af-
fected by the covariates.

� Example Dette and Trampisch ((�DT�) JASA 2012) report an experiment
carried out by Cressie and Keightley (�CK�) 1979):
Response Z = amount of estrogen bound to a receptor; x = amount of hor-
mone; Michaelis-Menten response:

z = F (x;�) =
�1x

�2 + x
:

� Linear approximation (expand around initial estimate �0):

(Z � F (x;�0) =)Y = f 00 (x)� + random error (1)

for � = � � �0 and

f 00 (x) =

�
x

�2 + x
;� �1x

(�2 + x)
2

�
j�=�0

: (2)

1Department of Mathematical and Statistical Sciences; University of Alberta, Edmonton, Al-
berta; Canada T6G 2G1. e-mail: lkong@ualberta.ca, doug.wiens@ualberta.ca

JSM2015 - Section on Physical and Engineering Sciences

3602



50 100 150 200 250 300
10

20

30

40

50

60

70

x
z

Figure 1: Data gathered by Cressie and Keightley (1979) with least squares response
curve F (x;�0) using initial estimate �0 = (57:98; 46:43)

0.

As �design space�we take a grid � of N = 100 equally spaced points spanning
[1; 400]; we will choose n = 20, not necessarily distinct, points x 2 �, at which
to observe Y .

� See Figure 1. The poor �t suggests a need for robustness of some form.

� The experimenter, acting as though the model is correct and the errors are
homoscedastic, computes the quantile regression estimate (see Figure 2)

�̂ = argmin
t

nX
i=1

��
�
Yi � f 00 (xi) t

�
:

� The (Y;x;�) formulation (1) is only an approximation, partly because of the
linearizing, and also possibly because the original Michaelis-Menten model may
itself have been misspeci�ed, either with respect to the local parameter, or the
functional form of the assumed MM-response F (x;�). We suppose that in
fact the model is

Y� = f
0
0 (x)�� + �n (x) + � (x) "; (3)

for some �small�model error �n. We de�ne the �true�parameter by

� = argmin
t

1

N

NX
i=1

EY jx
�
��
�
Y � f 00 (xi) t

��
; (4)

carrying out this minimization and taking a �rst order approximation results
in the orthogonality of the �model residuals��n (xi) and the regressors:

�
n�1=2g" (0) +O (1)

� 1
N

NX
i=1

f0 (xi)
p
n�n (xi) = 0: (5)
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Figure 2: Check function �� (r) = r (� � I (r < 0)); � = :95.

� We seek designs for (3) which are robust against increased mean squared errors
of the predicted conditional quantiles Ŷ� = f 00 (x) �̂� :

MSE = E
h
fpredicted value� true valueg2

i
= E

�n
Ŷ� (xi)� Y� (xi)

o2�
engendered by �n or by nonconstant � (�).

� For the asymptotics, the e¤ect of �n must drop at the same rate as standard
error (Reason: mse = s.e.2+ bias2), and so we assume the existence of a
bounded limit:

�0(x) = lim
n!1

p
n�n (x) ; with N�1

NX
i=1

�20 (xi) � �2; (6)

for given �2. We also impose a bound N�1PN
i=1 �

2(xi) � �20 for a given �
2
0

(= 1 w.l.o.g.).

� Optimality and variational mathematics: In KW we establish asymptotic
normality of the estimate �̂n, from which we obtain the MSE matrix mse(�0;�)
of �̂n. Our loss function is to be asymptotic, average MSE when the conditional
quantile Y� (x) = f 0 (x)� + �n (x), for x 2 �, is incorrectly estimated by
Ŷn (x) = f

0 (x) �̂n, i.e.

amse = lim
n

1

N

NX
i=1

E

�np
n
�
Ŷn (xi)� Y� (xi)

�o2�
:

This is evaluated, and then maximized over �0 2 �0 (a class de�ned by (5)
and (6)) using variational methods. In terms of the design measure

�i = fraction of observations made at xi;
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and

A = N�1
NX
i=1

f0 (xi)f
0
0 (xi) ;

B =
X
�i>0

f0 (xi)f
0
0 (xi)

�
�i

�(xi)

�
;

S = B�1

24X
�i>0

f0 (xi)f
0
0 (xi) �i

35B�1;

T = B�1

24X
�i>0

f0 (xi)f
0
0 (xi)

�
�i

�(xi)

�235B�1;

we obtain that max�0amse is
�(1��)
g2"(0)

+ �2 times

L� (�j�) = (1� �) tr (AS) + �chmax (AT ) ; (7)

where � = �2
.n

�(1��)
g2"(0)

+ �2
o
.

�The �rst component (tr (AS)) of L� (�j�) arises solely from variation �
f 00 (x)Sf0 (x) is the asymptotic variance of

p
nf 00 (x) �̂n =

p
nŶn (x). A

�classical�(non-robust) design aims to minimize L0; this is appropriate if
one has absolute faith in one�s model.

�The second (chmax (AT )) arises from bias �the asymptotic bias of
p
nf 0 (x) �̂n

is

f 0 (x)B�1

24X
�i>0

f0 (xi) �0 (xi) �i

35�= c0 (x)d; say� ;
this is squared, averaged over � and maximized over d = (�0 (x1) ; :::; �0 (xN ))

0.

This amounts to maximizing a quadratic form d0
h
N�1PN

i=1 c (xi) c
0 (xi)

i
d

subject to a bound (from (6)) d0d � N�2 and a linear constraint

NX
i=1

f0 (xi)
p
n�n (xi) � (f0 (x1) ; :::;f0 (xN ))d = 0.

This leads to chmax (AT ).

�We parameterize the designs by � 2 [0; 1], which may be chosen by the ex-
perimenter, representing his relative concern for errors due to bias rather
than to variation. Once � is chosen, the designs do not depend upon � .

� See Figure 3 for a comparative plot of the regressors (2) and the least favourable
model error function �n (x) = �0 (x) =

p
n. These model errors are essentially

constant and slightly negative except at the design points.
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Figure 3: Regressors f0 (x) and least favourable model error �n (x); � = :1, � = 1.

� Design construction. We compare �ve designs �ES (n equally spaced points
spanning � = [1; 400]) and:

KW1 These attain minimax amse, i.e. minimize (7), for a particular value of
�; each is assessed for 0 � � � 1. When � = 0 the loss is the average
variance of the predicted values. The minimization is carried out via a
genetic algorithm. Computationally rather intensive.

KW2 We have found designs minimizing the maximum amse, with the maxi-
mum evaluated not only over � but also over variance functions �2(xi) /
�ri for r 2 (�1;1). It turns out that r = 1 is least favourable, and that
the minimizing design must be supported on n distinct points. These
points are found very quickly and simply via an exchange algorithm.

DT1 These �D-optimal�designs minimize the determinant of the asymptotic
covariance matrix of the parameter estimates, assuming homoscedastic
errors. They place equal weight on two points, derived explicitly in DT.

DT2 As for DT1, but derived assuming heteroscedastic errors � (x) / 1=F (x;�0).
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Figure 4: Designs; n = 20. Top plots are the replicated designs of DT, constructed
assuming homoscedasticity (left) or heteroscedasticity (right). Those of KW are
constructed for optimality at the indicated values of �. Those in the left panel
minimize the maximum loss (7), either for constant � or heteroscedasticity of the
speci�ed form � (x) / 1=F (x;�0); those in the right panel are the �no replicate�
designs, minimax against heteroscedasticity as well.

JSM2015 - Section on Physical and Engineering Sciences

3607



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

KW optimized for ν = 0; σ ∝ 1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

KW optimized for ν = 0; σ ∝ F(x; β
0
)­1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

KW optimized for ν = 0.1; σ ∝ 1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

KW optimized for ν = 0.1; σ ∝ F(x; β
0
)­1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

KW optimized for ν = 0.25; σ ∝ 1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

KW optimized for ν = 0.25; σ ∝ F(x; β0)­1

ES
KW1
KW2
DT1
DT2

ES
KW1
KW2
DT1
DT2

ES
KW1
KW2
DT1
DT2

ES
KW1
KW2
DT1
DT2

ES
KW1
KW2
DT1
DT2

ES
KW1
KW2
DT1
DT2

Figure 5: Maximum amse vs. �. Our aim: small loss in e¢ ciency when � = 0 , large
gain in robustness when � > 0 . In the left panel the designs are assessed under
homoscedasticity, in the right panel they are assessed under heteroscedastcity.
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Conclusions and recommendations

� If the model is in doubt, then substantial reductions in MSE can be attained
by employing notions of robustness.

� If the �classically� optimal design is available, then an easy robusti�cation
comes about by spreading its replicates into clusters of design points at distinct
but nearby locations.

� The very easily constructed n-point designs KW2 always performed at least
as well as the more computationally intensive KW1. They were very nearly
fully e¢ cient (at � = 0) and uniformly more robust (when � > 0). Thus
the robustness is obtained at almost no cost in e¢ ciency.
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