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Abstract. Motivated by studying large-scale longitudinal image data,
we propose a novel functional nonlinear mixed effects modeling (FNMEM)
framework to model the nonlinear spatial-temporal growth patterns of
brain structure and function and their association with covariates of inter-
est (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a
random nonlinear association map of individual trajectories. We develop
an efficient estimation method to estimate the nonlinear growth function
and the covariance operator of the spatial-temporal process. We propose
a global test and a simultaneous confidence band for some specific growth
patterns. We conduct Monte Carlo simulation to examine the finite-sample
performance of the proposed procedures. We apply FNMEM to investi-
gate the spatial-temporal dynamics of white-matter fiber skeletons in a
national database for autism research. Our FNMEM may provide a valu-
able tool for charting the developmental trajectories of various neuropsy-
chiatric and neurodegenerative disorders.

Keywords: Functional nonlinear mixed effects model · Functional
response · Global test statistic · Simultaneous confidence band · Spatial-
temporal pattern

1 Introduction

Improving understanding of brain structure and function (e.g., brain circuits)
can be translated to the study of various neuropsychiatric and neurodegenera-
tive disorders [2,3,5,9,10,14]. In effect, it is common to collect big data with
great complexity and diversity in order to understand how changes in the brain
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can lead to these brain-related disorders and to understand their trajectories
across the lifespan and across diverse populations. By learning more about such
trajectories, one hopes to improve existing approaches and devise new ones for
the prevention, treatment, and cure of such disorders. To accomplish these objec-
tives, development of novel statistical methods and their software platforms are
critically important to deal with difficulties and challenges inherent in imaging
data and associated data obtained from large-scale biomedical studies.

The aim of this paper is to develop a FNMEM framework to delineate
dynamic changes of longitudinal image data and their association with a set of
covariates of interest and to characterize their large spatial-temporal
variations. The FMPM framework is motivated by the emerging demand to
analyze massive image data collected in large-scale longitudinal biomedical stud-
ies, such as the Alzeimer’s disease neuroimaging initiative [12]. In those stud-
ies, longitudinal functional data from different subjects, denoted by {yij(s) =
yi(tij , s) : i = 1, · · · , n}, are usually observed and/or normalized in a large num-
ber of locations of a common space, denoted by S, across multiple time points
{tij : j = 1, · · · , Ti}i≥1. Also, S is often a compact subset of Euclidean space.

Methodology to handle longitudinal image data is still in its infancy, and
further theoretical and practical development is much needed. Most existing
methods focus on the analysis of univariate (or multivariate) variables measured
longitudinally [4]. Many parametric mixed effects models including both fixed
and random effects are the predominant approach for characterizing both the
temporal correlations and random individual variations. Although there is a
great interest in the analysis of functional data with various levels of hierarchical
structures [7,11,18], only a handful of them [6,17,21] focused on the development
of linear mixed models for longitudinal image data. Recently, there was some
attempt on the development of hierarchical geodesic models on diffeomorphism
for longitudinal shape analysis [15].

Specifically, FNMEM contains two major components including a random
nonlinear association map for characterizing dynamic association between image
data and covariates, and a spatial-temporal process for capturing large subject
variation across both spatial and temporal domains. Because of its greater flex-
ibility, FNMEM is generally more interpretable and parsimonious, and the pre-
dictions obtained from FNMEM extend more reliably outside the observed range
of the data. We explicitly incorporate the spatial-temporal smoothness into our
estimation procedure in order to accurately estimate the nonlinear association
map and the spatial-temporal covariance operator. We also propose a global test
statistic for testing the association map and construct its asymptotic simultane-
ous confidence band.

2 Method

2.1 Functional Nonlinear Mixed Effects Model

A functional nonlinear mixed effects model consists of two major components.
The first one is a pointwise nonlinear mixed effects model given by

yij(s) = f(φi(s),xij) + εij(s) for i = 1, . . . , n, (1)
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where f(· · · ) is a real-valued, differentiable nonlinear association map, φi(s) is
a p × 1 vector of subject-specific functions, xij is p-dimensional covariate of
interest, and εi(s) is the corresponding random error process. It is assumed that
f has continuous second-order derivative with respect to φi(s). For image data,
it is typical that after normalization, yij(s) are measured at the same location
for all subjects and exhibit both the within curve and between-curve dependence
structure. Thus, without loss of generality, it is assumed that yij(s) are observed
on the M same grid points S0 = [0, 1] = {sm, 0 = s1 ≤ s2 · · · ≤ sM = 1} for all
subjects and time points.

The second one is a spatial-temporal process for modeling large variations
across subject-specific functions φi(s). Specifically, φi(s) is modeled as

φi(s) = β(s) + bi(s), (2)

where β(·) = (β1(·), · · · , βp(·))T is a p × 1 vector of fixed effect functions and
bi(s) = (bi1(s), · · · , bip(s))T is a p× 1 vector of random effect functions. In addi-
tion, {bi(s)} and {εi(s)} are independent and identical copies of SP(0, Σb(s, t))
and SP(0, σ2

ε(s)1(s = t)) respectively, where SP(μ(s), Σ(s, t)) is a stochastic
process (e.g., Gaussian process) with mean function μ(s) and covariance func-
tion Σ(s, t).

2.2 An Example

Recently, nonlinear mixed effects models based on the Gompertz function have
been used to characterize longitudinal white matter development during early
childhood [3,9,14] The Gompertz function can be written as

y = f(φ, t) = asymptote exp(−delay exp(−speed t)) = φ1 exp{−φ2φ
t
3},

where φ1 is asymptote, φ2 is delay, and φ3 is exp(−speed). Specifically, in [14],
a nonlinear mixed effects model based on the Gompertz function is given by

yij = φ1i exp{−φ2iφ
tij
3i } + εij and φi = (φ1i, φ2i, φ3i)T = β + bi, (3)

where β = (β1, β2, β3)T are fixed effects and bi are random effects. For image
data, an extension of model (3) is to consider a FNMEM as

yij(s) = φ1i(s) exp{−φ2i(s)φ3i(s)tij} + εij(s) and φi(s) = β(s) + bi(s). (4)

We will use model (4) to characterize the spatial-temporal dynamics of white-
matter fiber tracts.

2.3 Estimation Procedure

The next interesting question is how to estimate the fixed effect and random
effect functions of FNMEM. It should be noted that the estimation procedures
used in [6,17,21] are not directly applicable here due to the nonlinear association
map in (1).
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Estimating the Fixed Effect Functions. At each grid point sm ∈ S0, we
treat model (1) as a traditional nonlinear mixed effects model as

yij(sm) = f(β(sm) + bi(sm),xij) + εij(sm), (5)

where bi(sm) ∼ N(0, Σb(sm, sm)) and εij(sm) ∼ N(0, σ2(sm)). Then, we cal-
culate the maximum likelihood estimator of β(sm), denoted by β̂(sm), across all
sm. Define Kh(t − s) = K((t − s)/h)/h as the kernel function, where K is the
Epanechnikov kernel, and K̃h(sm − s) = Kh(sm − s)/{∑M

m=1 Kh(sm − s)}. We
calculate a kernel estimator of β(s) as:

β̃(s) =
M∑

m=1

K̃h1(sm − s)β̂(sm) for all s ∈ S. (6)

The bandwidth ĥ1 is selected using a leave-one-out cross-validation method.

Estimating the Covariance Operators. Under certain smoothness condi-
tions on bi(s), we use local linear regression technique to estimate all bi(s).
Specifically, by using Taylor expansion for bi(sm) at bi(s), we have

bi(sm) ≈ bi(s) + ḃi(s)(sm − s) = Bi(s)Z(sm − s),

where Bi(s) = (bi(s), ḃi(s)) is a p×2 matrix and Z(sm−s) = (1, (sm−s))T is a p

dimensional vector, in which ḃi(s) = (ḃi1(s), · · · , ḃip(s))T and ḃil(s) = ∂bil(s)/∂s
for l = 1, · · · , p. For each i and s, we estimate Bi(s) by minimizing the weighted
nonlinear least squares [19]:

SM (Bi(s))
def
=

ni∑

j=1

M∑

m=1

{
yij(sm) − f(β̂(sm) + Bi(s)Z(sm − s),xij)

}2

Kh2(sm − s).

The optimal bandwidth ĥ2 is selected using a leave-one-out cross-validation
method, and an iteration algorithm is proposed to get the estimators. Finally,
let N =

∑n
i=1 ni, we estimate Σb(s, t) by using

Σ̂b(s, t) = N−1
n∑

i=1

nib̃i(s)b̃i(t)T .

Functional Principal Component Analysis. With the empirical covariance
Σ̂b(s, t), we follow [13] and calculate the spectral decomposition as

Σ̂b(s, t) =
∞∑

k=1

λ̂kψ̂k(s)ψ̂k(t)T ,

where λ̂k are estimated eigenvalues and ψ̂k(s) are their corresponding estimated
eigenfunctions. Moreover, the k-th functional principal component scores can be
computes by ξ̂ik =

∑M
m=1 b̃i(sm)ψk(sm)(sm − sm−1) for i = 1, · · · , n.
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2.4 Inference Procedure

The next interesting question is how to make statistical inference on the fixed
effect functions of FNMEM.

Hypothesis Test. We focus on the linear hypothesis of β(s) as follows

H0 : Rβ(s) = b0(s) for all s vs. H1 : Rβ(s) �= b0(s),

where R is a r×p matrix with rank r, and b0 is a given r×1 vector of functions.
A global test statistic Sn is given by

Sn =
∫ 1

0

d(s)T [RΣ̂(s, s)RT ]−1d(s)ds,

where d(s) = R[β̃(s) − bias(β̃(s))] − b0(s), Σ̂(s, s) = ̂Var(β̂(s)). We just drop
bias(β̃(s)) when calculate the score functions for computational efficiency since
Rβ̃(s) ≈ b0(s) and bias(β̃(s)) = op(h2

1), so that Rbias(β̃(s)) ≈ 0. Since the
asymptotic distribution of Sn is very complicated, we can hardly approximate
the percentiles of Sn under H0 directly. Instead, we propose a score bootstrap
method [8] to obtain the p value.

Simultaneous Confidence Bands. Give a confidence level α, we construct
simultaneous confidence bands for each βl(s), l = 1, · · · , p as follows:

P (β̂L,α
l (s) < βl(s) < β̂U,α

l (s) for all s ∈ S) = 1 − α,

where β̂L,α
l (s) and β̂U,α

l (s) are the lower and upper limits of simultaneous confi-
dence band, respectively. We develop a resampling method to approximate the
bounds as in [19].

3 Numerical Studies

In this section, we use Monte Carlo simulations and a real example to evaluate
the finite sample performance of FNMEM.

3.1 Simulations

We generated multiple data sets from a FNMEM given by

yij(s) = exp{xij1φ1i(s) + xij2φ2i(s)} + εi(s) and φli(s) = βl(s) + bli(s)

for l = 1, 2, j = 1, · · · , ni and i = 1, · · · , n. We use two sets of simulations to
investigate the estimation and inference procedures.
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Simulation 1. The first one is to evaluate the power of the global test statistic
Sn. Let sm be equidistant time points in [0, 1], where s1 = 0 and sM = 1. More-
over, εij(s) ∼ N(0, 0.1) and (xij1, xij2)T ∼ N((0, 0)T , Σ) with Σ = (σjk)p×p,
where σjk = 0.3|k−j| for 1 � k, j � p. Furthermore, we set bi(s) as

bi(s) = sin(2πs) · N((0, 0)T , 0.1 × Σ) + cos(2πs) · N((0, 0)T , 0.2 × Σ).

The functional fixed effects functions β(s) are given by

β1(s) = cs2 and β2(s) = (1 − s)2.

To examine the hypothesis test H0 : β1(s) = 0 for all s against H1 : β1(s) �= 0
for at least one s, we set c at different values in order to study the Type I error
rates and power. Specifically, we fixed c = 0 to assess the Type I error, and
then set c = 0.05, 0.1, 0.15, 0.2 to examine the power of Sn. We set M = 25 and
ni = 5. To evaluate at different sample sizes, we set n = 50 and 100 for each c.
We calculated the rejection rate under the significance levels α = 0.05 and 0.01
by using the score bootstrap method with G = 500. 200 replications are used for
each simulation setting.

Figure 1 shows the power curves at two different significance levels. It can be
seen that Type I error rates based on score bootstrap are well maintained under
the pre-fixed significance levels when n = 100. The power of rejecting the null
hypothesis increases with the sample size as expected. To show that FNMEM
outperforms voxel-wise NMEM, we estimated Σ̂(sm, sm) using the asymptotic
covariance matrix without smoothing, and then calculated the global testing sta-
tistic and its p-values with the score bootstrap method as in FNMEM. Figure 1
shows that voxel-wise NMEM is much less powerful than FNMEM.

Simulation 2. The second one is to explore the finite-sample performance of
simultaneous confidence band. We used the same data generation procedure as
Simulation 1. We fix c = 1 and then set n = 50, ni = 5, M = 25, 50 and 75.
Based on 200 replications, we calculated simultaneous confidence bands for each
component of β(s) by using the wild bootstrap method with G = 500. Table 1
summarizes the empirical coverage probabilities for α = 0.05 and 0.01. Again as
expected, with the number of grid points M increasing, the coverage probabilities
are improved. When M = 75, the results are reasonable since the coverage
probabilities are quite closed to the prespecified confidence levels 1 − α. The
Monte Carlo errors are of size

√
0.95 × 0.05/200 ≈ 0.015 for α = 0.05. Figure 2

presents typical 95 % and 99 % simultaneous confidence bands for M = 75.

3.2 Real Data Analysis

We analyzed a data set taken from a national database for autism research
(NDAR) (http://ndar.nih.gov/), an NIH-funded research data repository, that
aims to accelerate progress in autism spectrum disorders (ASD) research through
data sharing, data harmonization, and the reporting of research results. 416 high
quality MRI scans are available for 253 children (126 males and 127 females) with
45 grid points, demographic information is shown in Table 2.

http://ndar.nih.gov/
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Fig. 1. Plots of power curves. Rejection rates of Sn based on score bootstrap method
are calculated at six different values of c using FNMEM and NMEM, with sample size
50 and 100 at significance levels 5 % and 1 %.

Table 1. Empirical coverage probabilities of 1 − α simultaneous confidence bands for
all components of β based on 200 simulated data sets.

M β1 β2 β1 β2

α = 0.05 α = 0.01

25 0.935 0.925 0.975 0.975

50 0.935 0.930 0.980 0.980

75 0.950 0.945 0.985 0.990

The data were processed by two key steps including a weighted least squares
estimation method [1]; [20] to construct the diffusion tensors and a FSL TBSS
pipeline [16] to register DTIs from multiple subjects to create a mean image and
a mean skeleton. Specifically, maps of fractional anisotropy (FA) were computed
for all subjects from the DTI after eddy current correction and automatic brain
extraction using FMRIB software library. FA maps were then fed into the TBSS
tool, which is also part of the FSL. In the TBSS analysis, the FA data of all the
subjects were aligned into a common space by non-linear registration and the
mean FA image were created and thinned to obtain a mean FA skeleton, which
represents the centers of all WM tracts common to the group. Subsequently,
each subjects aligned FA data were projected onto this skeleton.
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We focus on the midsagittal corpus callosum skeleton and associated FA
curves. The corpus callosum (CC) is the largest fiber tract in the human brain
and is a topographically organized structure. It is responsible for much of the

Fig. 2. Typical 95 % (the first row) and 99 % (the second row) simultaneous confidence
bands for M = 75. The black solid, green solid, and red dash curves are, respectively, the
true curves, the estimated curves and their corresponding 95 % and 99 % simultaneous
confidence bands (Color figure online).

Table 2. Demographic information for participants.

Visit Number of subjects Age(years) Range(years)

1 58 10.53(5.96) [0, 18]

2 148 12.25(4.62) [0, 21]

3 160 12.29(5.14) [1, 22]

4 19 1.84(1.42) [1, 6]

5 7 1.57(0.79) [1, 3]

6 10 2.70(0.67) [2, 4]

7 6 3.17(0.75) [2, 4]

8 5 3.40(1.14) [2, 5]

9 3 3.67(1.15) [3, 5]

Gender Male/Female 126/127
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Fig. 3. Tract (red solid lines) varying as a function of age for grid points from 25 to
40, the black dash curves are estimated curves (Color figure online).

communication between the two hemispheres and connects homologous areas in
the two cerebral hemispheres.

Figure 3 shows the variations of tract as age increases for grid points from
25 to 40, as well as the estimated curves at these grid points. It is observed that
there are random subject-to-subject variations at each grid point along this tract
as well as random subject-to-subject variations in the age effect at the selected
location.

We fitted model (4) to the real data. We estimated the functional fixed effects
functions β(s) and constructed their 95 % and 99 % simultaneous confidence
bands by using wild bootstrap method with G = 500 replications. We also
constructed the global test statistic Sn to test the significance of delay and
speed. The p-value of Sn is approximated by the score bootstrap method with
G = 500 replications. Figure 5 shows the first 10 eigenvalues and 4 eigenfunctions
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Fig. 4. The 100(1 − α)% simultaneous confidence bands of parameters for α = 0.05
(the first row) and α = 0.01 (the second row). The green solid and red dash curves are,
respectively, the estimated curves and their corresponding 95% and 99% simultaneous
confidence bands (Color figure online).

Fig. 5. The 100(1 − α)% cumulative proportion of the first 10 eigenvalues (left). The
first 4 eigenfunctions corresponding to bi1(s) (middle) and bi2(s) (right).

of Σ̂b(s, t). We can observe that the first four eigenvalues contribute more than
90 % (93.04 %) of the total while the rest quickly vanish to zero.

Figure 4 presents the uncertainty in the estimated coefficient functions, the
horizontal line crossing (0, 0) is contained. It can be seen that the horizontal
lines are under the 95 % simultaneous confidence band of delay coefficients and
exp(−speed) coefficients at most of the grid points. In addition, exp(−speed)
coefficients are significantly less than 1. These may indicate that the measures
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will increase with age, but the growth will slow down quickly and then become
flat. To test the age effect, we calculated the global test statistic Sn = 763.73 and
obtained its associated p-value (p < 0.001), indicating a significant age effect.
Our analysis of simultaneous confidence band also agrees with the hypothesis
test results.
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