Superposition Principle

Superposition principle (for 1D waves): the resultant wave at each point in the region of overlap of two or more waves is the **algebraic sum** of the individual constituent waves at that location.

Note: Once the waves pass the intersecting region they will move away unaffected by the encounter.

• For example, if ψ_1 and ψ_2 are separate wavefunctions describing the constituent waves, then the resultant wavefunction is $(\psi_1 + \psi_2)$.

• Note that if ψ_1 and ψ_2 are solutions of the 1D wave equation, then $(\psi_1 + \psi_2)$ is also a solution of the 1D differential wave equation.

$$
\frac{\partial^2 \psi_1}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_1}{\partial t^2} \quad \text{and} \quad \frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_2}{\partial t^2}
$$

Adding these yields

$$
\frac{\partial^2 \psi_1}{\partial x^2} + \frac{\partial^2 \psi_2}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi_1}{\partial t^2} + \frac{1}{v^2} \frac{\partial^2 \psi_2}{\partial t^2}
$$

 $\frac{\partial^2}{\partial x^2}(\psi_1 + \psi_2) = \frac{1}{\eta^2} \frac{\partial^2}{\partial t^2}(\psi_1 + \psi_2)$

and so

which establishes that $(\psi_1 + \psi_2)$ is indeed a solution.

Superposition principle:

- Resultant wavefunction is just the algebraic sum of the two individual wavefunctions (whose shapes do not change).

- Overlapping waves do NOT in any way alter the travel of each other.

Superposition Principle (con't):

Example of two harmonic waves with the same k : (i.e., same λ)

• For any value of x , the resultant wave is the algebraic sum of the individual waves: $\psi(x) = \psi_1(x) + \psi_2(x)$.

• The resultant wave is still a harmonic wave (with the same k).

• The peak of the resultant wave ψ is between the peaks of the individual waves ψ_1 and ψ_2 (the phase of the resultant wave is "between" the phases of the individual waves).

Note: It can be shown that the resultant wave is $\psi = 1.668 \sin(kx +$ 0.4713 rad). [see end of handout for an example of this calculation]

Superposition Principle: Constructive & Destructive Interference

Example: Two waves are "*in-phase*",

i.e., their constituent waves have the same phase.

$$
\psi_1 = A_1 \sin(kx \mp \omega t)
$$

$$
\psi_2 = A_2 \sin(kx \mp \omega t)
$$

$$
\psi = (A_1 + A_2) \sin(kx \mp \omega t)
$$

 Amplitude of the resultant wave is larger than the amplitudes of either constituent wave: *constructive interference*

(this situation, where the phases are identical, is sometimes called "*fully constructive interference*")

Constructive & Destructive Interference (con't)

 Example: Two waves are "*out-of-phase*", i.e., the phase of the constituent waves differ by $\Delta \varphi = \pi = 180^0$

 Amplitude of the resultant wave is smaller than at least one of the constituent waves: *destructive interference*

(this situation, where the phases differ by exactly π , is sometimes called "*fully destructive interference*")

Extra information: (Excerpts from document authored by H. Haber, UCSC) **One method for adding sine functions of different amplitude and phase**

(below, "phase" means "initial phase")

In these notes, I will show you how to add two sinusoidal waves, each of different amplitude and phase, to get a third sinusoidal wave. That is, we wish to show that given

$$
E_1 = E_{10} \sin \omega t \,,\tag{1}
$$

$$
E_2 = E_{20}\sin(\omega t + \delta),\tag{2}
$$

the sum $E_{\theta} \equiv E_1 + E_2$ can be written in the form:

$$
E_{\theta} = E_{10} \sin \omega t + E_{20} \sin(\omega t + \delta) = E_{\theta 0} \sin(\omega t + \phi)
$$
 (3)

where the amplitude $E_{\theta 0}$ and phase ϕ are determined in terms of E_{10} , E_{20} and δ . In these notes, we shall derive that the amplitude $E_{\theta 0}$ is given by

$$
E_{\theta 0} = \sqrt{E_{10}^2 + E_{20}^2 + 2E_{10}E_{20}\cos\delta}
$$
 (4)

and the phase ϕ is determined modulo 2π by

$$
\sin \phi = \frac{E_{20} \sin \delta}{E_{\theta 0}}, \qquad \cos \phi = \frac{E_{10} + E_{20} \cos \delta}{E_{\theta 0}}.
$$
 (5)

Derivation:

First, set $t = 0$ in eq. (3) to obtain $E_{20} \sin \delta = E_{\theta 0} \sin \phi$. Solving for $\sin \phi$ yields:

$$
\sin \phi = \frac{E_{20} \sin \delta}{E_{\theta 0}}.
$$

Next, set $\omega t = \pi/2$ in eq.(3). Noting that $\sin(\delta + \pi/2) = \cos \delta$, it follows that $E_{10} + E_{20} \cos \delta =$ $E_{\theta 0}$ cos ϕ . Solving for cos ϕ yields:

$$
\cos \phi = \frac{E_{10} + E_{20} \cos \delta}{E_{\theta 0}}.
$$

Finally, using $\cos^2 \phi + \sin^2 \phi = 1$, and inserting the expressions for $\cos \phi$ and $\sin \phi$ just obtained, one finds:

$$
E_{\theta 0}^{2} = (E_{10} + E_{20} \cos \delta)^{2} + E_{20}^{2} \sin^{2} \delta
$$

= $E_{10}^{2} + 2E_{10}E_{20} \cos \delta + E_{20}^{2}(\cos^{2} \delta + \sin^{2} \delta)$
= $E_{10}^{2} + E_{20}^{2} + 2E_{10}E_{20} \cos \delta$.

By definition, $E_{\theta 0}$ is a non-negative number. Thus, we take the positive square root to obtain

$$
E_{\theta 0} = \sqrt{E_{10}^2 + E_{20}^2 + 2E_{10}E_{20}\cos\delta}
$$

This completes our derivation.

For example,

If
$$
\psi_1 = 1.0\sin(kx)
$$

\n $\psi_2 = 0.9\sin(kx + 1.0 \text{ rad})$
\nWant $\psi_1 + \psi_2 = A\sin(kx + \phi)$
\nWhat is *A* and ϕ ?

Answer:

In using the equations on the previous page, we are of course using different variable names, i.e., $\omega t \rightarrow kx$, $E_{\theta 0} \rightarrow A$, etc.

Use eq. (4) to find A :

$$
A = \sqrt{1^2 + 0.9^2 + 2(1)(0.9)\cos(1.0 \text{rad})} = 1.668
$$

Use first of eqs. (5) to find ϕ :

$$
\sin \phi = \frac{0.90 \sin(1.0 \text{rad})}{1.668} \qquad \Rightarrow \qquad \phi = 0.4713 \text{ rad}
$$

So
$$
\psi_1 + \psi_2 = 1.668 \sin(kx + 0.4713)
$$