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Preface

The purpose of this book is to serve as supporting material for a fairly typi-
cal introductory course in Linear Algebra using a discovery-based pedagogical
approach.

Each chapter is organized into sections titled Discovery guide, Terminology
and notation, Concepts, Examples, and Theory (though some chapters have
additional Motivation and/or More examples sections).

The purpose for employing this uniform sectioning scheme is to give the
student a uniform flow to encountering each new collection of topics:

Discovery guide initial encounter through discovery- and problem-solving-
based activities;

Terminology
and notation

introduction of the communication tools necessary to begin
a more sophisticated conversation about the new topics;

Concepts fuller discussion of the new topics, grounded in reflections
on the questions and results of the Discovery guide section;

Examples computational examples to assist students with the proce-
dural tasks related to the new topics, as well as additional
examples that serve to illustrate certain concepts; and

Theory a more formal and general description of the concepts, with
proofs.

Traditional textbooks usually intersperse terminology, concepts, examples,
and theory in a linear narrative, and relegate “activities” to the Exercises
section at the end of the chapter. By organizing the flow of learning in the
above-described manner, it is hoped that the process of encountering and re-
encountering (and re-encountering) the topics in different modes — discovery,
reflection and discussion, examples, and theory — and at increasing levels of
sophistication will lead to deeper learning.

The organization of topics is fairly typical, under the choice of “late vectors”
(though the term column vector is used informally in the early chapters).
Systems of linear equations are used to motivate matrix theory, up through a
basic treatment of determinants and the classical adjoint. Then vectors in Rn

are introduced as the initial model for how a “vector space” should behave, with
an emphasis on a geometric understanding of the vector operations. A basic
introduction to abstract vector spaces follows. Finally, the topic of matrix forms is
broached by a simple treatment of eigenvalues/eigenvectors and diagonalization.
Note that even though the concept of similar matrices is referenced in this final
topic, the topic of “change of basis” has been omitted (see below). However, the
full two-semester version3 of this book does include the topic of change of basis.

3sites.ualberta.ca/~jsylvest/books/DLA
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vi

When using discovery as a pedagogical principal, it is not possible to cover
as many topics, or to cover each topic with the same breadth, as in a breakneck-
paced lecture class. The goal of these notes is not to teach students a bunch
of mathematics in the particular topic of linear algebra, but instead to teach
students about mathematics through the discovery of the beautiful and coherent
subject of linear algebra. I have tried to distill each topic down to the necessary
minimal core of concepts essential to the study of the subject, and have rejected
inclusion of peripheral topics and facts or esoteric applications. I do not intend
for these notes to be workable for everyone in every kind of linear algebra class.
(But since they are released under an open license, they could of course be edited
to make them workable for any kind of linear algebra course.)

Jeremy Sylvestre
Camrose, Alberta 2020
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Part I

Systems of Equations and
Matrices
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CHAPTER 1

Systems of linear equations

1.1 Discovery guide

Discovery 1.1 Sketch the graph of 2x+ y= 3.
(a) What type of graph is it? What is the name of this course again?

(b) Fill in the blanks: The connection between the graph and the equation
above is that the graph is the collection of that the
equation above.

Discovery 1.2

(a) On the same axes as your graph for Discovery 1.1, sketch the graph of
x+ y= 1.

(b) Looking at your graphs, is there any pair of values (x, y) that satisfy both
equations simultaneously?

Discovery 1.3

(a) On a new set of axes, sketch the graphs of 2x+ y= 3 and 4x+2y= 4.

(b) Looking at these two graphs, is there any pair of values (x, y) that satisfy
both equations simultaneously?

Discovery 1.4 The graph of a linear equation in three variables (e.g., 3x+y−2z =
5) corresponds to a plane in three-dimensional space.

Suppose you had three equations in three variables. Try to imagine the
geometric configuration of the corresponding three planes in each of the following
situations. You might find it helpful to use three pieces of paper as props.

(a) There is no triple of numbers (x, y, z) that satisfies all three plane equations
at once.

(b) There are an infinite number of triples of numbers (x, y, z) that satisfy all
three plane equations at once.

(c) There is exactly one triple of numbers (x, y, z) that satisfies all three plane
equations at once.

Discovery 1.5 Consider the system of equations{
x + 2y − z = 5,

y + z = −1.

(a) If z = 2, what is y? . . . what is x?

3



4 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

(b) If z =−10, what is y? . . . what is x?

(c) For these example values of z, why do you think you are being asked to
determine the value of y first and then to determine the value of x?

(d) Do you think that, given any arbitrary value for z, you could solve for y
and then for x?

(e) The three values of x, y, z that you came up with in Task a together rep-
resent one solution to the system of equations. The three values of x, y, z
that you came up with in Task b together represent another solution to the
system of equations.

Based on your response to Task d, how many solutions does this system
have in total?

(f) If z = t, what is y? . . . what is x?

Discovery 1.6 Suppose x and y are “mystery” numbers, but you have a clue to
their identities: you know that both x−2y=−4 and 2x+ y= 2 are true.

(a) Without determining the values of x and y, answer each of the following
with a number.

(i) 3(x−2y)= ?

(ii) −2(2x+ y)= ?

(iii) (x−2y)+ (2x+ y)= ?

(iv) (2x+ y)−2(x−2y)= ?

(b) Algebraically simplify the expression in the last part of Task a, and combine
this simplified expression with your numerical answer to that part to solve
for y. Then use one of the original equations from the introduction to this
activity to solve for x.

Why was that combination of the left-hand sides of the two equations
particularly useful for determining the values of x and y?

Discovery 1.7 We can work with a system of equations more efficiently by
representing it compactly as an augmented matrix. For example,

−2x + 2y − 5z = −1
3x + 3z = 9

x − y + 3z = 2
−→

 −2 2 −5 −1
3 0 3 9
1 −1 3 2


Do you understand how this system was turned into a matrix? Now perform

the following calculations, but using the matrix, obtaining a new matrix at each
step.

(a) Change the order of the equations: interchange the first and third equa-
tions.

(b) Starting with your new system from Task a, subtract 3 times the first
equation from the second equation, and add 2 times the first equation to
the third equation.

(c) Starting with your new system from Task b, multiply the second equation
by 1/3.

(d) Your final result from Task c, should be a “simplified” matrix. Turn this
matrix back into a system of equations and see how much easier it is to
solve the system.
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1.2 Terminology and notation

linear equation
an equation of the form

number times variable plus number times variable plus . . .

equals number

system of linear equations
a (finite) collection of linear equations

Note 1.2.1 We will often just say system of equations to mean a system of
linear equations.

solution a set of values that, when substituted in for the variables of a system
of equations, satisfy all of the equations in the system simultaneously

solution set
the collection of all possible solutions to a system of equations

consistent system
a system of equations with at least one solution

inconsistent system
a system of equations with no solution

parametric equations
a collection of formulas, based on one or more parameters, for the
variables in a linear system that represent all possible solutions to
the system (as the parameters vary over all real numbers)

matrix a rectangular array of numbers
augmented matrix

a matrix of the coefficients and constants in a linear system
matrix entry

one of the numbers in a matrix; sometimes also referred to as a
matrix coefficient

row a horizontal line of entries in a matrix
column a vertical line of entries in a matrix
elementary row operations

the three basic operations that can be applied to an augmented
matrix without changing the set of solutions to the corresponding
linear system:

(i) swap the positions of two rows,

(ii) multiply a row by a nonzero constant, and

(iii) add a multiple of one row to another.
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1.3 Concepts

In this section.

• Subsection 1.3.1 System solutions

• Subsection 1.3.2 Determining solutions

Goal 1.3.1 Develop a systematic procedure to determine all combinations (if any)
of variable values that solve a system of equations.

Before we work to realize this goal, let’s make sure we understand it.

1.3.1 System solutions
Question 1.3.2 What is a solution, and how do we verify solutions? □

For the system consisting of the two lines in the xy-plane from Discovery 1.1
and Discovery 1.2, {

2x + y = 3,
x + y = 1,

the combination x = 2, y = −1 is a solution because both equations will be
satisfied simultaneously with these values. We verify this by proper “LHS vs
RHS” procedure:

First equation: LHS= 2x+ y= 2(2)+ (−1)= 3=RHS,

Second equation: LHS= x+ y= 2(2)+ (−1)= 2+ (−1)= 1=RHS.

Since LHS=RHS in both equations when x = 2 and y = −1, we have a valid
solution to the system. However, the combination x = 1,y= 1 is not a solution to
the system, because at least one of the equations will not be satisfied by these
values. Again, we can verify this by proper “LHS vs RHS” procedure:

First equation: LHS= 2x+ y= 2(1)+1= 3=RHS,

Second equation: LHS= x+ y= 1+1= 2 ̸=RHS.

While the first equation is satisfied, the second is not, and so this combination of
variable values is not a valid solution.

Remark 1.3.3 In the example above and in Discovery guide 1.1 we have seen
that systems of linear equations have geometric interpretations: intersecting
lines in the xy-plane, or intersecting planes in xyz-space. We can make a similar
geometric interpretation for systems with more than 3 variables by imagining
“hyperplanes” intersecting in higher-dimensional spaces, but unfortunately our
three-dimensional brains cannot actually picture such a thing.

Question 1.3.4 How many solutions can a system have? □
We have seen in Discovery guide 1.1 that there are different possibilities for

the number of different solutions a particular system can have.

one unique solution
This is demonstrated by the system formed by the two lines from
Discovery 1.1 and Discovery 1.2, as the two lines in these activities
only intersected in a single point.

no solutions
This is demonstrated by the two lines in Discovery 1.3, as these two
lines were parallel and did not intersect.
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an infinite number of solutions
This is demonstrated by the system in Discovery 1.5, as any chosen
value of z leads to a new solution by then solving for y and x in turn,
and there are infinity of different choices of starting value z.

Question 1.3.5 Are the possibilities considered above the only possibilities?
Could there be a system that has exactly seven different solutions, say? □

We will prove in Chapter 4 (Theorem 4.5.5) that for every system there are in
fact only these three possibilities as encountered in Discovery guide 1.1.

In Discovery 1.4, you were asked to imagine the geometric configuration
of three planes (each represented algebraically by a linear equation in three
variables) to realize each of the three possibilities described above. Hopefully
you can also imagine how it would be geometrically impossible for three planes
to intersect in exactly seven points, no more and no fewer.

Question 1.3.6 When a system has an infinite number of solutions, how can
we express all possible solutions in a compact way? (We certainly cannot list all
possible solutions.) □

We can use one or more parameters to represent the choices that must be made
to get to one particular solution, and then use formulas in those parameter(s) to
express the patterns of similarity between the different solutions. For example,
in Task f of Discovery 1.5, there did not seem to be any restriction on what values
the variable z could take and still be part of a solution to the system. So z was set
to be an unspecified parameter t, and then y and x could be solved for in terms of
this parameter. Choosing different values of t (such as t = 2 or t =−10, as in the
previous parts of the referenced discovery activity) leads to different particular
solutions for the system. The infinity of possible solutions to this system is now
represented entirely by the infinity of choices available for starting value of the
parameter t.

Remark 1.3.7 It may seem silly to trade one variable letter z for another letter
t. But these letters represent different kinds of “unknown” quantities. Letter
z represents a variable in an equation whose value we would like to determine,
whereas letter t represents a parameter whose value we are free to choose. Re-
member that mathematical notation is a tool for communicating ideas: the letter
t is a traditional choice for a parameter in mathematics, and so we switch from
letter z to letter t to indicate to the reader (whether that is one’s self or someone
reading our work) this change in perspective from variable to parameter.

1.3.2 Determining solutions
The first of two core ideas behind how we should go about determining the
solutions of a system of equations is contained in Discovery 1.6. The left-hand
side of a linear equation looks like a jumble of numbers and letters, but remember
that it is just a formula for computing a single number, and that the result of
this computation is proposed to always be equal the number on the right-hand
side of the equation. So if we algebraically manipulate or combine the left-hand
sides of equations in the system, as long as we perform the same manipulation
or combination of the corresponding right-hand sides of those equations, then
the same variable values that solve the new old system should solve the new
system, and vice versa.

We need to be a little bit careful with the kinds of manipulations and combi-
nations we allow ourselves so that our manipulations are nondestructive. For
example, if we multiplied both left- and right-hand sides of an equation by 0, we
would lose all information the original equation contained, since we would be
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left with just 0= 0. In this case, new and old equations would not have the same
solutions. This is why we restrict ourselves to the elementary row operations
described in Section 1.2: to ensure our manipulations are always nondestructive.

Rows versus equations. The elementary operations are stated as row opera-
tions on an augmented matrix, but just replace the word “row” with “equation”
in their descriptions and you have the equivalent manipulation of equations in a
system.

The second core idea behind solving systems of equations is contained in
Discovery 1.7. We should choose sequences of manipulations that will result in a
simplified system for which it is easier to determine the solutions. Discovery 1.7
lays out a specific sequence of operations to do this; in the next discovery guide
and corresponding chapter we will explore a systematic strategy for performing
such simplification.

Finally, Discovery 1.7 contains another important idea: all of the crucial
information in a system of equations is contained in its coefficients on variables
and the constant on the right-hand side of each equation. We can get rid of
the clutter of all the variable letters by turning a system of equations into an
augmented matrix. We can then perform manipulations of the equations in
the system by just performing the corresponding operations on the coefficients
in the matrix. You should keep in mind the structure of an augmented matrix:
each row represents an equation, and each column (except the last) represents
a variable. See the examples below on how row operations correspond to the
algebra of equations.

1.4 Examples

In this section.

• Subsection 1.4.1 Row operations versus equation manipulations

1.4.1 Row operations versus equation manipulations
Let’s examine the operations in Discovery 1.7 in detail, by considering the
operations as both equation manipulations and row operations simultaneously.

In each step, notice how the row↔equation and column↔variable correspon-
dence is preserved. −2 2 −5 −1

3 0 3 9
1 −1 3 2




−2x + 2y − 5z = −1
3x + 3z = 9

x − y + 3z = 2

Interchange the first and third rows/equations. 1 −1 3 2
3 0 3 9

−2 2 −5 −1




x − y + 3z = 2
3x + 3z = 9

−2x + 2y − 5z = −1

Subtract 3 times the first row/equation from the second row/equation. For the
equation version, we do this by performing the same combination of left- and
right-hand sides, collecting terms on the left.

(LHS2) − 3(LHS1) = (RHS2) − 3(RHS1)
(3x+3z) − 3(x− y+3z) = 9 − 3(2)
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This combination leads to new equation

0x+3y−6z = 3.

Notice that when collecting terms, we ended up performing that “subtract 3
times the first from the second” on the coefficients of each variable. So we can
achieve the same result in the matrix by performing “subtract 3 times the entry
in the first row from the entry in the second row,” one column at a time. 1 −1 3 2

0 3 −6 3
−2 2 −5 −1




x − y + 3z = 2
3y − 6z = 3

−2x + 2y − 5z = −1

Next, add 2 times the first row/equation to the third row/equation:

(LHS3) + 2(LHS1) = (RHS3) + 2(RHS1)
(−2x+2y−5z) + 2(x− y+3z) = −1 + 2(2),

leading to new equation
z = 3,

which we will use to replace the old third row/equation. 1 −1 3 2
0 3 −6 3
0 0 1 3




x − y + 3z = 2
3y − 6z = 3

z = 3

Finally, multiply the second row/equation by 1/3.

(1/3)(LHS2) = (1/3)(RHS2)
(1/3)(3y−6z) = (1/3)(3)

y−2z = 1

The matrix is modified accordingly. 1 −1 3 2
0 1 −2 1
0 0 1 3




x − y + 3z = 2
y − 2z = 1

z = 3

The final system on the right is much easier to solve: we can see immediately
from the third equation that z = 3, then can use this in the second equation
to determine y = 7, and finally can use both of these in the first equation to
determine x = 0.

A look ahead. In Chapter 2, we will develop a systematic method of simplifying
a system in this manner, but working exclusively with augmented matrices. Also,
we will take the process a few steps further to make the system as simple as
possible. Notice how “back-solving” the system proceeds from bottom-right to
top-left. We will use the same process when solving systems using matrices.





CHAPTER 2

Solving systems using matrices

2.1 Discovery guide

Reminder.

The elementary row operations are
(i) swap rows;

(ii) multiply a row by a non-zero constant; and

(iii) add a multiple of one row to another.

Discovery 2.1 Consider the following system.
2x − 2z = 4,

x − y = 3,
4x − 2y − 3z = 7.

(a) Convert to an augmented matrix.

(b) Via elementary row operations, obtain a “leading 1” in the first entry of
the first row (maybe swap some rows?), then use it to eliminate all other
entries in the first column.

(c) Obtain a leading 1 in the second entry of the second row (do not use/alter
the first row!), then use it to eliminate all other entries in the second
column (yes, you can now alter the first row).

(d) Obtain a leading 1 in the third entry of the third row (do not use/alter
first or second rows!), then use it to eliminate all other entries in the third
column.

(e) Turn the final augmented matrix back into a system and solve it.

Discovery 2.2 Consider the following system.
3x + 6y + 5z = −9,
2x + 4y + 3z = −5,
3x + 6y + 6z = −12.

(a) Convert to an augmented matrix.

(b) Via elementary row operations, obtain a leading 1 in the first entry of the
first row (maybe combine first two rows somehow?), then use it to eliminate

11



12 CHAPTER 2. SOLVING SYSTEMS USING MATRICES

all other entries in the first column.

(c) Is it possible to obtain a leading 1 in the second entry of the second row?

(d) Obtain a leading 1 in third entry of the second row (do not use/alter the
first row!), then use it to eliminate all other entries in the third column.

(e) Assign a parameter to every variable whose column does not contain a
leading one. Turn the final augmented matrix back into a system and solve
it in terms of your parameter(s).

Discovery 2.3 Consider the following system.
x + 2y + z = 2,

2x + 5y + 2z = −3,
2x + 4y + 2z = −1.

(a) Convert to an augmented matrix.

(b) Use the leading 1 in first entry of the first row to eliminate all other entries
in the first column.

(c) Convert the new third row back into an equation. What does this mean
about the system?

Discovery 2.4 Consider the following system. Notice that the “equals” column
is all zeros. Such a system is called homogeneous.

3x1 + 6x2 − 8x3 + 13x4 = 0,
x1 + 2x2 − 2x3 + 3x4 = 0,

2x1 + 4x2 − 5x3 + 8x4 = 0.

Careful. After you’ve reduced the homogeneous system in this activity, remember
that there is still the omitted “equals” column of all zeros.

(a) There is one obvious particular solution to the system. What is it?

(b) Will any row operation ever alter the “equals” column?

(c) Convert the system to a coefficient matrix (i.e. omit the “equals” column).
Then solve as usual.

Discovery 2.5 In a homogeneous system, what is the relationship between the
number of variables, the number of “leading ones” in the most reduced form of the
coefficient matrix, and the number of parameters required to solve the system?
What pattern of leading ones in a completely reduced coefficient matrix tells you
that the corresponding homogeneous system has a single, unique solution?

Discovery 2.6 Consider system
3x1 − x2 + 4x3 = b1,

x1 + 2x2 − x3 = b2,
3x1 + 3x3 = b3,

where the constants of each equation are not specified. For what values of the
unknown constants b1,b2,b3 is this system consistent?

To answer this question, row reduce the associated augmented matrix (below)
until you are at a point where you can determine conditions on the constants
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b1,b2,b3 that ensures the system is consistent. 3 −1 4 b1

1 2 −1 b2

3 0 3 b3

 .
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2.2 Terminology and notation

row echelon form
a matrix that has the following properties:

• if a row has nonzero entries, its first nonzero entry is a one
(called a leading one),

• each leading one occurs in a column that is to the right of the
column containing the leading one in the row above it, and

• zero rows appear below all nonzero rows
reduced row echelon form

a row echelon form matrix that also has the following property:

• the leading one of each row has all other entries in the column
that contains it equal to zero

Note 2.2.1 The acronyms REF and RREF are commonly used for row echelon
form and reduced row echelon form, respectively.

row reduction
the process of using elementary row operations to reduce a matrix to
REF or RREF

row equivalent matrices
matrices where it is possible to obtain one from the other through a
sequence of elementary row operations

rank the number of leading ones in the RREF of the matrix
leading variables

the variables in a linear system whose columns in the RREF of the
augmented matrix contain the leading one of some row

free variables
the variables in a linear system that are not leading variables

general solution
a set of parametric equations from which all solutions to a linear
system can be obtain by choosing arbitrary values for the parameters

homogeneous system
a linear system in which the “equals” column is all zeros

coefficient matrix
the matrix for a linear system but without the “equals” column

trivial solution
the obvious solution to a homogeneous system obtained by setting
all variables to equal zero

nontrivial solution
a solution to a homogeneous system that is not the trivial solution
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2.3 Concepts

In this section.

• Subsection 2.3.1 Reducing matrices

• Subsection 2.3.2 Solving systems

2.3.1 Reducing matrices
In Discovery guide 2.1, you were led through a strategy to simplify an augmented
matrix. Below is presented a step-by-step description of the strategy. But first, it
is important to stress that your goal is not to become an expert row reducer —
very few people ever need to know how to row reduce a matrix by hand outside
of a linear algebra class. Computers are great at row reducing, and should be
used to efficiently solve linear systems in the “real world.” Here, we are not
interested in learning calculation tricks or short-cuts — we can safely leave those
to the experts that program computers to solve linear systems. (Prospective
computational experts in the audience of this course can learn such calculation
short-cuts in a numerical methods course.)

Goal 2.3.1 Learn, understand, and become reasonably proficient at a simple,
systematic strategy to reduce a matrix to RREF, so that we can use this knowledge
to understand the theory of linear systems and matrices.

Procedure 2.3.2 Reduce a matrix to RREF.

1. Obtain a leading one in a column as far to the left as possible, then move
the row containing this leading one to the top row. Use this leading one to
eliminate (i.e. reduce to zero) all other entries in that column.

2. Ignoring the first row, obtain a leading one in a column as far to the left as
possible, then move the row containing this new leading one to the second
row. Use this new leading one to eliminate all other entries in that column
(including in the first row now).

3. Ignoring the first and second rows, obtain a leading one in a column as far
to the left as possible, then move the row containing this new leading one to
the third row. Use this new leading one to eliminate all other entries in that
column (including in the first and second rows now).

4. Continue in this fashion until all rows either have a leading one or contain
all zeros.

The choice and order of row operations you use to implement this strategy
depends on the augmented matrix you start with, and knowing how to proceed is
a skill that you will develop through practise and experience.

2.3.2 Solving systems
In the end, we will want to turn our simplified RREF matrix back into a system
of equations. When we do this, every leading one corresponds to a leading
variable that has a coefficient of 1, and so is easy to isolate and solve for in terms
of the other variables. Another way to think of this is that a leading variable is
constrained by the equation in which it appears, and its value depends on the
values of the other variables in that equation. On the other hand, every variable
that does not have a leading one in its column of the RREF matrix cannot be
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solved for without going in circles: you cannot solve for variable x in terms of
variables y and z, and then turn around and solve for variable y in terms of
variables x and z. A variable without a leading one becomes a free variable:
there are no constraints on its value, and every choice of value for that variable
leads to one or more solutions (depending on choices of values for other free
variables) for the system similarly to Discovery 1.5.

Procedure 2.3.3 Describe the solution set of a linear system. To determine
the solution set of a system of equations from the corresponding RREF matrix,
expressed in terms of parametric equations if necessary (if there are free variables),
carry out the following steps.

1. For each variable column that does not have a leading one, assign a pa-
rameter to the corresponding variable. Use different letters for different free
variables.

2. For each nonzero row, turn the row back into an equation and isolate
the leading variable. Substitute in the associated parameter for each free
variable that appears in the equation.

For a homogeneous system, as in Discovery 2.4, there is no need to work with
the full augmented matrix, since no elementary row operation will ever change
the column of zeros on the right. Instead, we reduce just the coefficient matrix,
making sure to remember that we are dealing with a homogeneous system when
it is time to convert back to equations and solve the simplified system.

2.4 Examples

In this section.

• Subsection 2.4.1 Worked examples from the discovery guide

Here we use our procedures to use matrices to reduce and solve the systems
from Discovery guide 2.1. Here are a few things to note about our method.

• We only use the three elementary row operations. It sometimes is possible
to reduce a bit faster using non-elementary operations such as adding a
multiple of a row to a multiple of another row, but remember we are not
interested in short-cuts, and using non-elementary operations will get us
into trouble in later topics.

• We sometimes perform more than one operation at the same time. This is
an acceptable short-cut, as long as we never simultaneously modify a
row and also use that row to modify another row.

• We write down the row operation(s) we are using in that reduction step to
the right of the matrix, to keep track of what we are doing.

• We don’t always have to multiply a row by a fraction to get a leading one —
we can sometimes use a difference between entries in a column, and avoid
fractions that way.

• There are many different sequences of operations one could use to get
from initial augmented matrix to an RREF matrix. The reductions in the
examples below are not the only way, nor are they necessarily the best way
to proceed. As long as we steadily progress toward RREF, that’s all that
matters.
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• We never write an equals sign between matrices when row reducing. We
will explore what it means for two matrices to be equal in Discovery
guide 4.1, and this here is not it. When you perform a row operation,
the result is a different matrix than the original, and the two matrices
represent different systems of equations. However, the two matrices are
related, and it is to express this relationship that we have the terminology
row equivalent.

2.4.1 Worked examples from the discovery guide
Example 2.4.1 One unique solution. From Discovery 2.1:

2x − 2z = 4,
x − y = 3,

4x − 2y − 3z = 7.

We form the augmented matrix for the system, and reduce. 2 0 −2 4
1 −1 0 3
4 −2 −3 7

R1 ↔ R2

−→

 1 −1 0 3
2 0 −2 4
4 −2 −3 7

R2 −2R1

R3 −4R1

−→

 1 −1 0 3
0 2 −2 −2
0 2 −3 −5

 1
2 R2

−→

 1 −1 0 3
0 1 −1 −1
0 2 −3 −5

 R1 +R2

R3 −2R2

−→

 1 0 −1 2
0 1 −1 −1
0 0 −1 −3


−R3

−→

 1 0 −1 2
0 1 −1 −1
0 0 1 3

R1 +R3

R2 +R3

−→

 1 0 0 5
0 1 0 2
0 0 1 3


Every variable column has a leading one, so there are no free variables and no
parameters are required. We can solve for each variable as a specific number, so
the system has one unique solution: x = 5, y= 2, and z = 3. □

Example 2.4.2 Infinite number of solutions. From Discovery 2.2:
3x + 6y + 5z = −9,
2x + 4y + 3z = −5,
3x + 6y + 6z = −12.
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We form the augmented matrix for the system, and reduce. 3 6 5 −9
2 4 3 −5
3 6 6 −12

R1 −R2

−→

 1 2 2 −4
2 4 3 −5
3 6 6 −12

R2 −2R1

R3 −3R1

−→

 1 2 2 −4
0 0 −1 3
0 0 0 0

−R2

−→

 1 2 2 −4
0 0 1 −3
0 0 0 0

R1 −2R2

−→

 1 2 0 2
0 0 1 −3
0 0 0 0


The second column does not contain a leading one, so variable y is free and we
assign to it a parameter: y= t. We can then use the simplified system

x + 2y = 2,
z = −3,
0 = 0.

to solve for x = 2−2t and z =−3. In parametric form, the general solution of
the system can be expressed as

x = 2−2t, y= t, z =−3,

and every particular solution to the system can be obtained by choosing a
value for t. For example, the particular solution associated to t = 3 is

x =−4, y= 3, z =−3,

and the particular solution associated to t =−p2 is

x = 2+2
p

2, y=−
p

2, z =−3.

□

Example 2.4.3 No solution. From Discovery 2.3:
x + 2y + z = 2,

2x + 5y + 2z = −3,
2x + 4y + 2z = −1.

We form the augmented matrix for the system, and reduce. 1 2 1 2
2 5 2 −3
2 4 2 −1

R2 −2R1

R3 −2R1

−→

 1 2 1 2
0 1 0 −7
0 0 0 −5

R1 −2R2

− 1
5 R3
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−→

 1 0 1 16
0 1 0 −7
0 0 0 1

R1 −16R3

R2 +7R3

−→

 1 0 1 0
0 1 0 0
0 0 0 1


Here we have a leading one in the “equals” column. If we turn that third row
back into an equation, we have

0x+0y+0z = 1,

but there are no possible values of x, y, z that satisfy this equation. Therefore, the
system is inconsistent. (Of course, we could have seen that this would happen
right from the second matrix, and could have stopped there. But we went all the
way to RREF to have another example demonstrating the row reduction strategy.
In practice, we should stop reducing as soon as we can see that the system will
be inconsistent.) □

Example 2.4.4 A homogeneous system. From Discovery 2.4:
3x1 + 6x2 − 8x3 + 13x4 = 0,

x1 + 2x2 − 2x3 + 3x4 = 0,
2x1 + 4x2 − 5x3 + 8x4 = 0.

For a homogeneous system, we only reduce the coefficient matrix, since
elementary row operations will never change an “equals” columns that contains
all zeros.  3 6 −8 13

1 2 −2 3
2 4 −5 8

R1 ↔ R2

−→

 1 2 −2 3
3 6 −8 13
2 4 −5 8

R2 −3R1

R3 −2R1

−→

 1 2 −2 3
0 0 −2 4
0 0 −1 2

− 1
2 R2

−→

 1 2 −2 3
0 0 1 −2
0 0 −1 2

R1 +2R3

R3 +R2

−→

 1 2 0 −1
0 0 1 −2
0 0 0 0


To solve, remember that this is just the coefficient matrix for the simplified
system, so all columns correspond to a variable, and the “equals” column is still
all zeros but does not appear. We have two free variables, corresponding to the
lack of leading one in the second and fourth columns. So set parameters x2 = s
and x4 = t. The first two rows turn into equations

x1 + 2x2 − x4 = 0,
x3 − 2x4 = 0,
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from which we obtain the general solution in parametric form

x1 =−2x2 + x4 x2 = s, x3 = 2x4 x4 = t.
=−2s+ t, = 2t,

□

Example 2.4.5 Correspondence between the solutions to homogeneous
and nonhomogeneous systems with the same coefficient matrix. Consider
the homogeneous system

3x + 6y + 5z = 0,
2x + 4y + 3z = 0,
3x + 6y + 6z = 0.

As in the previous example, to solve we work with just the coefficient matrix 3 6 5
2 4 3
3 6 6

 .

But notice that this is the same coefficient matrix as for the system in Discov-
ery 2.2, and the same row reduction sequence we used to solve that system in
Example 2.4.2 would reduce this coefficient matrix to 1 2 0

0 0 1
0 0 0

 .

And from here we also take the same steps as in Example 2.4.2 to solve this sys-
tem. Assign parameter t to free variable y, and use the simplified homogeneous
system 

x + 2y = 0,
z = 0,
0 = 0.

to solve for x =−2t and z = 0. Let’s compare the parametric forms of the solutions
to the original nonhomogeneous system from Discovery 2.2 and the corresponding
homogeneous system solved here.

Nonhomogeneous Homogeneous
x = 2 + (−2)t
y = 0 + t
z = −3 + 0t

x = (−2)t
y = t
z = 0t

We have added some zeros and ts to emphasize the similarity between the
solutions. To interpret this similarity, remember that every value of t provides
a particular solution to the systems. When t = 0, the corresponding solutions
are {x = 2, y= 0, z =−3} for the nonhomogeneous system and the trivial solution
for the homogeneous system. For every other value of t, it seems that the
corresponding solution for the nonhomogeneous system is equal to that “initial”
particular solution {x = 2, y = 0, z = −3} plus the corresponding homogeneous
solution values. In Chapter 4 we will see that this pattern emerges in every
nonhomogeneous system (see Lemma 4.5.4). □



2.5. THEORY 21

2.5 Theory

In this section.

• Subsection 2.5.1 Reduced matrices

• Subsection 2.5.2 Solving systems using matrices

2.5.1 Reduced matrices
While there are many different sequences of row operations we could use to
obtain a row equivalent RREF matrix, we have the following.

Theorem 2.5.1 Uniqueness of RREF. For each matrix, there is one unique
RREF matrix to which it is row equivalent.

Remark 2.5.2 The same is not true about REF. When we are row reducing,
there is usually a point where we reach REF but are not yet at RREF. From this
point on as we further progress toward RREF, every matrix we produce will be
both in REF and row equivalent to the original matrix. So a matrix can be row
equivalent to many REF matrices.

Remark 2.5.3 We have defined the rank of a matrix to be the number of leading
ones in the RREF of the matrix. If we did not have uniqueness of RREFs, there
would be ambiguity in this definition from the possibility that different RREFs for
a given starting matrix could have different numbers of leading ones. With the
above theorem, we now know that there is no such possibility; the mathematical
jargon for this certainty is to say that the definition of rank is well-defined.

Though rank is defined in terms of the RREF of a matrix, from our experience
row reducing we can see that row operations cannot increase or decrease the
number of leading ones that we will ultimately end up with.

Proposition 2.5.4 Rank from REF. The rank of a matrix is equal to the number
of leading ones in any REF matrix to which it is row equivalent.

2.5.2 Solving systems using matrices
Using row operations to simplify and solve systems of equations works precisely
because of the following.

Theorem 2.5.5 Row equivalent matrices represent systems of equations that have
the same solution set.

Proof. We will delay proving this theorem until after we have developed more
matrix theory. (See Theorem 6.5.10 in Subsection 6.5.4.) ■

The reason for this is that elementary row operations do not change the
information inherently contained in the equations represented by the rows of a
matrix. They modify and combine how this information is expressed, but no new
information can be introduced through the elementary row operations, and also
no information is ever lost.

When determining solution sets, our experience in Discovery guide 2.1 leads
us to the following.

Proposition 2.5.6 Patterns of consistent/inconsistent systems.

1. A system is inconsistent precisely when the RREF for its augmented matrix
has a leading one in the “equals” column.

2. A consistent system has one unique solution precisely when the RREF for
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its augmented matrix has a leading one in every variable column.

3. A consistent system has infinite solutions when it requires parameters to
solve; that is, when the RREF for its augmented matrix has at least one
variable column that does not contain a leading one.

Warning 2.5.7 Ending up with a row of zeros in the RREF for a system’s aug-
mented matrix does not indicate that parameters will be needed. It is possible
for the RREF matrix for a consistent system to both satisfy Statement 2 of
Proposition 2.5.6 and to have a row of zeros.

Check your understanding. Can you write down an example of such an RREF
matrix as desribed in the Warning? In order to be able to do this, what must be
true about the “size” of the matrix?

We can restate Statement 2 and Statement 3 of Proposition 2.5.6 using the
notion of rank: a consistent system has a unique solution precisely when the
rank of its augmented matrix is equal to the number of variables, and has infinite
solutions precisely when the rank of its augmented matrix is strictly less than the
number of variables. For the infinite solutions case, we can be precise about the
number of parameters required.

Proposition 2.5.8 Number of required parameters. For a consistent system,
the number of parameters required to express the general solution in parametric
form satisfies

(number of parameters)= (number of variables)− (rank of augmented matrix).
We should also record what we learned about homogeneous systems in Dis-

covery 2.4.

Theorem 2.5.9 Consistency of homogeneous systems. A homogeneous
system always has the trivial solution x1 = 0, x2 = 0, . . . , xn = 0 in its solution set.
Thus, every homogeneous system is consistent.

In light of this, for a homogeneous system, we can ignore Statement 1 of
Proposition 2.5.6. Also, from our experience solving homogeneous systems so far,
in Statement 2 and Statement 3 of Proposition 2.5.6 we can replace the words
“augmented matrix” with “coefficient matrix”.



CHAPTER 3

Using systems of equations

3.1 Discovery guide

In this set of discovery activities, we look at some places where linear systems
naturally arise.

Discovery 3.1 Use the Law of Conservation (in this case, flow in equals flow
out at each point of intersection) in the flow network below to set up a system of
equations to determine the internal flow rates. (Do not solve your system.)

5

w

2

4

y

68

z

6

4

x

9

Discovery 3.2 Set up a system of equations to balance the chemical equation:

aNH3 +bO2 → cNO+dH2O.

Do not solve your system.

No shortcuts. You might have learned some procedure for balancing a chemical
equation in high school. We are not interested in that procedure. We would like
to see how attempting to balance a chemical equation has a linear system at its
root.

Discovery 3.3 Any two (distinct) points in the Cartesian plane determine a
unique line. Set up a system of equations that would let you solve for the slope
and y-intercept of the line y= mx+b that passes through the points (−3,4) and
(2,−1) (but do not solve the system). Write down the augmented matrix for your
system.

23
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Discovery 3.4 Any three (distinct, non-collinear) points in the Cartesian plane
determine a unique parabola. Set up a system of equations that would let you
solve for the coefficients a,b, c of the parabola y= ax2+bx+c that passes through
the points (−1,−4), (1,0), and (2,5) (but do not solve the system). Write down the
augmented matrix for your system.

Discovery 3.5 Based on the previous two activities and their answers, how
many points are necessary to determine a unique degree n polynomial y =
anxn +an−1xn−1 +·· ·+a1x+a0? If you knew such points

(x1, y1), (x2, y2), (x3, y3), . . . ,

and you used these points to create a linear system to determine the coefficients of
the polynomial, what would be the pattern in the rows of the resulting augmented
matrix for the system?
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3.2 Examples

In this section.

• Subsection 3.2.1 A simple example

• Subsection 3.2.2 Flow in networks

• Subsection 3.2.3 Balancing chemical equations

• Subsection 3.2.4 Polynomial interpolation

3.2.1 A simple example
Some of the first recorded uses of systems of equations in human history (without
all the modern algebraic symbolism, of course) were applications to agriculture
and commerce.

Problem 3.2.1 Nutrient profiles in horse feed. You have determined from
recommendations in reputable reference sources that your large working horse
requires 1150 g of protein, 36 g of calcium, and 25 g of phosphorous daily. You
have had samples of your hay, grain, and pasture analyzed and have determine
their nutritional components as percentages by mass.

Hay Grain Pasture
Protein 8.2 13.9 4.1
Calcium 0.46 0.06 0.15
Phosphorous 0.21 0.45 0.07

How much of each feed type should your horse consume daily?

Solution. Let H,G,P represent the amount in kilograms of the three types of
feed that the horse will be fed. Then each nutritional requirement leads to an
equation.

Protein: 0.082H + 0.139G + 0.041P = 1.150
Calcium: 0.0046H + 0.0006G + 0.0015P = 0.036
Phosphorous: 0.0021H + 0.0045G + 0.0007P = 0.025

Multiplying each equation by 104 to clear all decimals, we obtain an augmented
matrix for the system,  820 1390 410 11500

46 6 15 360
21 45 7 250


If one were to solve this system, it would be revealed that the horse needs to eat
close to 18 kg of pasture and be fed about 1.7 kg of hay and close to 2 kg of grain
daily. □

3.2.2 Flow in networks
In a traffic network, fluid network, communications network, etc., matter cannot
be created or destroyed. So at each node we can always apply some sort of law of
conservation: the number of units entering the node (whether cars, litres of fluid,
data packets, etc.) must be equal to the number of units exiting the node.
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Let’s apply this to the network in Discovery 3.1, starting at the top node and
working clockwise to form flow-in-equals-flow-out equations.

4+w = 2+ x
x+6= 9+ y
y+4= z+6

8+ z = w+5

In order to facilitate conversion to an augmented matrix, we usually write a
system of equations with all the variable terms on the left and collect all the
constant values on the right.

w − x = −2
x − y = 3

y − z = 2
−w z = −3

=⇒


1 −1 0 0 −2
0 1 −1 0 3
0 0 1 −1 2

−1 0 0 1 −3


Looking at the network diagram in Discovery 3.1, notice how all the external
legs are known, and the internal legs are unknown. In trying to measure the
behaviour of a system, it might be necessary to try to be as as unintrusive as
possible, so you might be confined to measuring behaviour at points leading in
or out of the overall system. Unfortunately, if you try to solve the system above,
you will find that at least one more measurement of one of the internal legs is
necessary in order to come to a definite solution.

3.2.3 Balancing chemical equations
Similarly to network analysis, there is a law of conservation at play in a chemical
reaction since atoms are not created, destroyed, or changed to other kinds of
atoms. So all of the atoms that make up the reactant particles must also be
present in the product particles.

Let’s apply this to the chemical reaction in Discovery 3.2, analyzing each
atom in turn to balance the number of that atom in the reactant particles with
the number of that atom in the product particles.

Nitrogen: a = c
Hydrogen: 3a = c+2d
Oxygen: 2b = c+d

Again, we move all the variables to one side, obtaining in this case a homogeneous
system, and then convert to a matrix.

a − c = 0
3a − c − 2d = 0

2b − c − d = 0
=⇒

 1 0 −1 0
3 0 −1 −2
0 2 −1 −1


This system must be consistent because it is homogeneous, but we have four
variables and only three equations, so the solution will require a parameter.
This makes sense physically, because we could always increase the number of
reactant particles and just produce a larger number of product particles, but
the parametric equations in the system solution will constrain the numbers of
particles to be in balance relative to each other. But usually we prefer to describe
the reaction as simply as possible by choosing the parameter value to be the
smallest positive integer that clears all fractions that may have arisen in the
solving process.
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3.2.4 Polynomial interpolation

It is a fundamental principle in plane geometry that given two distinct points
there is one unique line that passes through those points. And this principle
continues to higher degree polynomials.

Note. A line is a degree-one polynomial.

For three points in the plane with disinct x-values there exists one unique
parabola that passes through those points (where we consider a line as a de-
generate form of parabola in the case that the three points are collinear). For
four points with distinct x-values, there exists a unique cubic polynomial whose
graph passes through all four points. And so on.

It may seem that this is not a linear problem, since polynomial functions
involve powers of the variable x. But x is not the variable here — the unknown
coefficients that define the particular polynomial function are what we are trying
to solve for.

To illustrate how linear algebra can solve this problem, let’s work through
the associated discovery activities from Discovery guide 3.1.

Example 3.2.2 Linear interpolation. In Discovery 3.3, we would like to
determine the line y= mx+b that passes through the points (−3,4) and (2,−1).
A point in the plane is on a particular line precisely when its coordinates satisfy
the equation that defines the line. Requiring this gives us two equations, one for
each point:

4= m · (−3)+b,

−1= m ·2+b.

We already have the variables to one side, so we will just flip the equations
around. However, we have chosen to put the variables in the order b,m to
emphasize a pattern that will become evident as we do more examples.{

b − 3m = 4
b + 2m = −1

=⇒
[

1 −3 4
1 2 −1

]
Solving this system would lead to one unique solution, as expected. □

Example 3.2.3 Quadratic interpolation. In Discovery 3.4, we would like to
determine the parabola y= ax2 +bx+ c that passes through the points (−1,−4),
(1,0), and (2,5). Again, each point leads to an equation by requiring that the
point’s coordinates satisfy the parabola’s defining equation.

−4= a(−1)2 +b(−1)+ c

0= a(1)2 +b(1)+ c

5= a(2)2 +b(2)+ c

Again, we will reverse the order of the variables to highlight the patterns.
c + (−1)b + (−1)2a = −4
c + 1b + 12a = 0
c + 2b + 22a = 5

=⇒

 1 −1 (−1)2 −4
1 1 12 0
1 2 22 5


And again, solving this system would lead to one unique solution, as expected.

□
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General interpolation. Now let’s set up the solution to the general polynomial
interpolation problem, as in Discovery 3.5. We have undetermined, degree-n
polynomial equation y= anxn +an−1xn−1 +·· ·+a1x+a0 that we would to make
pass through the points (x1, y1), (x2, y2), . . . , (xn+1, yn+1).

Note. We always need one more point than the degree of the polynomial, because
that is the number of coefficients in the polynomial.

Hopefully the pattern is obvious now, allowing us to proceed directly to the
corresponding augmented matrix.

1 x1 x2
1 · · · xn

1 y1

1 x2 x2
2 · · · xn

2 y2
...

...
1 xn+1 x2

n+1 · · · xn
n+1 yn+1



3.3 Terminology and notation

Vandermonde matrix
an m× n matrix where the entries in each row form a sequence
1, xi, x2

i , x3
i , . . . , xn

i for some number xi, so that the full matrix has
form 

1 x1 x2
1 · · · xn

1
1 x2 x2

2 · · · xn
2

...
...

...
...

1 xm x2
m · · · xn

m



3.4 Theory

In this section.

• Subsection 3.4.1 Polynomial interpolation

3.4.1 Polynomial interpolation
We have seen that Vandermonde matrices naturally arise as coefficient matrices
in attempting to solve polynomial interpolation problems. Our geometric fact
that these problems always have solutions can be formulated as an algebraic
property of these matrices.

Theorem 3.4.1 Consistency of Vandermonde matrices. A linear system
whose coefficient matrix is a Vandermonde matrix is always consistent as long as
the number of equations is no more than the number of variables and the second
column contains no repeat entries. In the case that the number of equations is
equal to the number of variables, there is one unique solution to the system.

Corollary 3.4.2 Consistency of the polynomial interpolation problem.
Given n+1 points in the plane with different x-values, there is one unique polyno-
mial of degree n or less that passes through all of the points.



CHAPTER 4

Matrices and matrix operations

4.1 Discovery guide

Discovery 4.1 Consider matrices

A =
[

1 2 3
−1 3 2

]
, B =

 0 1
−1 4

1 0

 , C =
[ −6 1

1 2

]
.

For each matrix, how would you describe its size (or dimensions)?

Discovery 4.2 Consider matrices

A =
[

1 1 3
−1 3 2

]
, B =

[
x2 2x+3 3
−1 3 2

]
,

C =
[

1 1 3
x2 3 2

]
, D =

[
x2 2x+3
−1 3

]
.

(a) For what value(s) of x is B equal to A? C equal to A? D equal to A?

(b) Discuss what it means for two matrices to be equal.

Discovery 4.3 Consider matrices

A =
[

1 2 3
−1 3 2

]
, B =

[
0 2 1

−1 0 4

]
, C =

[ −6 1
1 2

]
.

(a) What should A+B mean? What should A−B mean?

(b) What should 3A mean?

(c) Now let’s consider the sum A+C.

(i) Compute A+C. Call this result matrix D. What are the dimensions
of D?

(ii) Now compute D− A. Do this numerically, not algebraically; that is,
forget where your result matrix D came from and actually compute
D− A using the same procedure that you used to subtract matrices in
Task a. What are the dimensions of this result?

(iii) Now let’s remember that D = A+C. Algebraically, what result would
you expect from computing (A +C)− A? Does your numerical com-
putation in the previous step agree with your algebraic expectation?

29
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(Keep in mind your answer to what it means for two matrices to be
equal from Task 4.2.b.)

(iv) Given how things worked out, how do you feel about performing A+C
in the first place?

Discovery 4.4 The number zero is important in algebra, it lets us do things like
the following.

a+5= 7

a+5−5= 7−5

a+0= 2

a = 2.

The critical step for us right now is the last simplification of the left-hand side:

a+0= a.

(a) What matrix do you think will act like zero in matrix addition? Is the
answer different for different dimensions?

(b) What will be the result if you multiply this special “zero” matrix by a
number (similarly to Task 4.3.b)?

Discovery 4.5

(a) Use your idea from Task b of Discovery 4.2 to turn the following single
matrix equation into a system of two equations in the unknowns c and d.
(Don’t bother to actually solve for the values of c and d.)[

c+2d
3d

]
=

[
5

−3

]
Careful: What sizes are the two matrices above?

(b) Now do the reverse of Task a: write the following system of equations as a
single matrix equation using a column matrix on each side of the equation:{

x1 − 3x2 − x3 = −4,
−2x1 + 7x2 + 2x3 = 9.

Again, be careful about the sizes of your matrices! If you have an equals
sign between two matrices, they must adhere to your principle from Task b
of Discovery 4.2.

(c) The simplest system of equations is one equation in one unknown, i.e.

ax = b.

But we don’t usually just think of this as left-hand side and right-hand
side, we think of it in the pattern

coefficient×unknown= constant.

Can we represent the system from Task b in a similar pattern using a
matrix equation

Ax=b?

(i) What should the coefficient matrix A be?
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(ii) What should the (column) matrix of unknowns x be?

(iii) What should the (column) matrix of constants b be?

(d) On the left-hand side of the matrix equation Ax=b, the operation matrix-
times-matrix should compute to a single matrix. What size of matrix should
this multiplication result be?

Hint. The result of computing Ax must make sense in the matrix equality
Ax=b, per the pattern of matrix equality you described in Task 4.2.b.

(e) Finally, we want Ax=b to represent in one matrix equation the full system
of two number equations from Task b. We already came up with a matrix
equation to represent that system in Task b. Looking at your matrices A
and x from Task c, and comparing with the left-hand side of your matrix
equation from Task b, what procedure should be used to carry out the
operation matrix A times column x?

(f) The values x1 = 2, x2 = 1, x3 = 3, represent a solution to the system in
Task b. Verify this by carrying out the multiplication Ax, using your
calculation procedure from Task e, and with the unknowns x1, x2, x3 in the
column matrix x replaced by these solution values. Then compare your
calculation result with b.

Discovery 4.6 Consider

A =
[

1 −3 −1
−2 7 2

]
, X =

 2 0 2
1 3 0
3 −1 −2

 .

Compute the product AX by considering X as a collection of three columns

X =

 | | |
x1 x2 x3

| | |


and using the procedure for “matrix times column” that you developed in Discov-
ery 4.5.

Discovery 4.7 We all know that 3 times 5 and 5 times 3 have the same result.
Algebraically, we write that ab = ba is true for all numbers a,b. What about
matrices?

(a) Try it with matrices

A =
[

1 0
1 −1

]
, B =

[
3 2
1 −1

]
.

(b) Look back at matrices A and X from Discovery 4.6, where you computed
the matrix product AX . Does multiplying X A in the opposite order even
make sense?

Discovery 4.8 Considering the previous three activities about matrix multi-
plication, what patterns have you observed about the required sizes of the two
matrices involved for things to work out?

In particular, if A has m rows and n columns, and B has k rows and ℓ columns,
what relationship must there be between these numbers for the matrix-times-
columns calculation method to make sense when computing AB? And in that
case, what size will the resulting product matrix AB be?
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Discovery 4.9 In the following, assume A,B are square matrices.

(a) What do you think A2 means? A3?

(b) Explain why the formula (AB)2 = A2B2 is wrong. What is the correct
formula?

Hint. What does (AB)2 mean? Then consider Discovery 4.7.

(c) Explain why the formula (A+B)2 = A2 +2AB+B2 is wrong. What is the
correct formula?

Hint. FOIL.
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4.2 Terminology and notation

(i, j)th entry of a matrix
the entry in the ith row and jth column of a matrix

size (or dimensions) of a matrix
the number of rows and columns in a matrix, usually written m×n
to mean m rows and n columns

equal matrices
matrices with the same size, and the same numbers in corresponding
entries

matrix addition
the new matrix obtained from two old matrices of identical sizes by
adding corresponding entries

scalar multiple
the new matrix obtained from an old matrix obtained by multiplying
every entry by the same number k; the common scale factor k is
called a scalar

Remark 4.2.1 We will encounter the geometric origin of the word scalar in
Chapter 11.

zero matrix
a matrix where every entry is zero, written 0

column vector
a matrix consisting of a single column

row vector
a matrix consisting of a single row

vector of unknowns
a column vector containing all of the variables in a system

vector of constants
a column vector containing all of the constants from the right-hand
sides of the equations in a system

square matrix
a matrix with the same number of columns as rows

main diagonal
the diagonal of entries in a square matrix from top left to bottom
right

transpose the new matrix obtained from an old matrix by turning rows into
columns and columns into rows; we usually write AT to mean the
transpose of the matrix A

4.3 Concepts

In this section.

• Subsection 4.3.1 Matrix entries

• Subsection 4.3.2 Matrix dimensions

• Subsection 4.3.3 Matrix equality
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• Subsection 4.3.4 Basic matrix operations

• Subsection 4.3.5 The zero matrix

• Subsection 4.3.6 Linear systems as matrix equations

• Subsection 4.3.7 Matrix multiplication

• Subsection 4.3.9 Transpose

4.3.1 Matrix entries
Matrices are big, unwieldy things, so we often use a letter as a placeholder for
a matrix, just as we might use a letter to represent a number in algebra. We
usually use uppercase letters for matrices, as in Discovery guide 4.1. (Though
sometimes we use a boldface lowercase letter to represent a column or row vector,
as in Discovery 4.5.) When we want to refer to a specific entry in a matrix, we
identify it by two indices: its row number and its column number, in that order.
For example, the (2,1)th entry of matrix A of Discovery 4.2 is −1. When we
have a matrix represented by an uppercase letter and want to also use letters
to represent its entries, we usually use the lowercase version of the same letter,
with the row and column indices in subscript. For example, for the matrix A of
Discovery 4.2, the (2,1)th entry is a21 =−1. Sometimes we might write [A]i j to
refer to the (i, j)th entry of matrix A, particularly when instead of a single letter
inside the square brackets, we have a formula of letters.

4.3.2 Matrix dimensions
Matrices have an obvious notion of size, but we need two numbers to describe it:
the number of rows and the number of columns. Again, by convention we always
list number of rows first. For example, matrix A of Discovery 4.2 is size 2×3,
meaning it has 2 rows and 3 columns. For a square matrix, the two numbers
describing the size of A are equal, so we might just say that a square matrix A
has size n to mean it is n×n.

4.3.3 Matrix equality
In Discovery 4.2, you explored what it means for two matrices to be equal. In
algebra involving numbers, we write a = b when variables a and b represent the
same number. That is, a and b are equal when they represent the same piece of
information. Similarly, two “variable” matrices are equal when they represent
the same information. In particular, two matrices are equal when they have
the same numbers in corresponding entries. But size is also important here: in
Discovery 4.2, matrix D can never be equal to matrix A no matter what value
we choose for variable x, because A will always contain more information than
D in its extra third column. So even before we compare entries, we require equal
matrices to have the same size.

4.3.4 Basic matrix operations
In Discovery 4.3, you probably decided that addition and subtraction of matrices
should be carried out in the obvious ways: we should just add or subtract
corresponding entries. See Example 4.4.1 and Example 4.4.2.

For matrices that have different sizes, it may be tempting to “fill out” the
smaller matrix with zeros so that it can be added to the larger. But this would
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add more information to the smaller matrix that it’s not supposed to have, creating
a different matrix prior to the addition. So we should resist this temptation; we
will only ever add or subtract matrices that have the same size, and addition/
subtraction of matrices of different sizes will remain undefined.

When we multiply a number a by 2 to get 2a, we are doubling the value of a.
In other words, we are scaling a by a scale factor (or scalar) of 2. Similarly, we
can use a scalar to “scale” a matrix by multiplying every entry in the matrix by
that number. If A is a matrix and k is a scalar (i.e. a number), then kA is the
scalar multiple of A by k. See Example 4.4.3.

4.3.5 The zero matrix
The number zero plays a special role with respect to addition of numbers: it is
the only number that has no effect when it is added to another number. For
addition of matrices of a particular size, there is only one kind of matrix that has
the same effect: a matrix filled with all zeros. We call such a matrix the zero
matrix, and write 0 to represent it.

Remark 4.3.1 There are many zero matrices, one of every possible size of matrix.
However, we still often say the zero matrix, because we are usually referring to
the zero matrix of a particular size.

The zero matrix will allow us to do the matrix version of the algebra in
the preamble to Discovery 4.4, since subtracting a matrix from itself will ob-
viously result in the zero matrix. For more properties of the zero matrix, see
Proposition 4.5.1 in Subsection 4.5.1.

4.3.6 Linear systems as matrix equations
Consider the system in Task b of Discovery 4.5:{

x1 − 3x2 − x3 = −4,
−2x1 + 7x2 + 2x3 = 9.

(*)

We would like to replace these two equations by a single matrix equation, which
is easy enough to do: [

x1 −3x2 − x3

−2x1 +7x2 +2x3

]
=

[ −4
9

]
. (**)

Note that both of these column matrices are 2×1 matrices — even though the
entries of the left-hand matrix seem to contain a lot of numbers, each row has
only a single entry because these formulas are calculation recipes that compute a
single number out of several numbers, some known and some unknown.

To make such a matrix equation more resemble the basic linear equation
pattern of

coefficient×unknown= constant,

we collect all the system coefficients into a coefficient matrix, all the variables
into the (column) vector of unknowns, and all the right-hand constants into
the (column) vector of constants:

A =
[

1 −3 −1
−2 7 2

]
, x=

x1

x2

x3

 , b=
[ −4

9

]
,

respectively.
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Remark 4.3.2 It may seem more natural to write the vector of unknowns as a
row vector instead of a column vector, but it is preferable mathematically to have
all of the vectors involved be (roughly) the same kind of vector (even though they
are often not exactly the same kind of vector, since they might not have the same
size).

We would like to express the system in (*) as one matrix equation Ax = b,
and to do this we need to decide how A times x should work. But we already
know how to represent the system as a single matrix equation (see (**)), so we
should have

Ax=
[

x1 −3x2 − x3

−2x1 +7x2 +2x3

]
,

or [
1 −3 −1

−2 7 2

]x1

x2

x3

=
[

x1 −3x2 − x3

−2x1 +7x2 +2x3

]
.

We can now see how a matrix times a column should proceed: multiply the
entries of the first row of the matrix against the corresponding entries in the
column, add these products, and put the result in the first entry of the result
column matrix. Then multiply the second row of the matrix against the column
in the same fashion and put the result in the second entry of the result column
matrix. And so on, if the matrix has more than two rows. See Subsection 4.3.7
below for a more detailed description on this process.

With the matrix product Ax defined in this way, the single matrix equation
Ax=b now contains all the same information as the multiple linear equations of
the original system.

4.3.7 Matrix multiplication
We can extend this row-times-column calculation procedure to define multiplica-
tion of two matrices (instead of just a matrix and a column vector) by thinking of
the second matrix as a collection of columns,

B =

 | | |
b1 b2 · · · bℓ
| | |

 =⇒ AB =

 | | |
Ab1 Ab2 · · · Abℓ
| | |

 . (***)

This matrix-times-columns way of defining matrix multiplication will be very
useful later. But right now, let’s drill down to individual entries of the result AB.

Let’s first consider the case of a 1× n row vector a times an n×1 column
vector b. In this case,

ab= [
a1 a2 · · · an

]


b1

b2
...

bn

= [
a1b1 +a2b2 +·· ·+anbn

]
. (†)

Notice that the result is a 1×1 matrix containing just a single entry.
Now let’s consider a matrix A times a column b, where we consider A as

being made of row vectors. Then,

Ab=


a1

a2
...

am

b=


a1b
a2b

...
amb

 ,
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where each entry aib in the result on the right is calculated by the row-times-
column pattern from (†). However, we do not actually have a 1×1 matrix in each
entry, but instead place the number that would be the sole entry in aib.

Finally, we can extend this to the case of matrix A times matrix B, by

AB =


a1

a2
...

am


 | | |

b1 b2 · · · bℓ
| | |

=


a1b1 a1b2 · · · a1bℓ
a2b1 a2b2 · · · a2bℓ

...
...

. . .
...

amb1 amb2 · · · ambℓ

 .

Pattern. The (i, j)th entry of matrix product AB is the result of a row-times-
column calculation, as in (†), using the ith row of A and the jth column of B.

In order for each row-times-column calculation to work, we need the number
of entries in a row of A to match up with the number of entries in a column of B.
(Just as in the definition of matrix addition, we do not “fill out” a matrix with
extra entries if these numbers do not match.) But the number of entries in a row
of A is the number of columns of A, and the number of entries in a column of B
is the number of rows of B.

Pattern. If A is m×n and B is k×ℓ, we can only compute AB if n and k are
the same; otherwise, we say that the product AB is undefined. In the case that
n and k are the same, the product AB has size m×ℓ.

An easy way to remember this is that if we want to multiply

m×n times k×ℓ,

it will only work if the “inside” dimensions n and k match, and result will be the
“outside” dimensions m×ℓ.

In Discovery 4.7, you found that one of the familiar rules of algebra is not true
for matrix algebra: matrices cannot be multiplied in any order, because different
orders of multiplication might yield different results. In fact, for non-square
matrices, often one of the two orders of multiplication is not even defined.

Warning 4.3.3 When manipulating algebraic expressions where the letters
represent matrices, be careful not to inadvertently use the algebra rule BA = AB,
because it is not true for matrices.

4.3.8 Matrix powers
As you probably decided in Discovery 4.9, we define powers of matrices in the
usual way: A2 means “A times A,” A3 means “A times A times A,” and so on.

Warning 4.3.4

• To compute A2, you need to carry out the computation AA using the “row
times column” definition of matrix multiplication. Just squaring every
entry of A will not give you the correct result! And similarly for A3,
A4, etc. — you need to carry out all the iterated multiplications. See
Subsection 4.4.2 for example calculations.

• As in the second pattern discussed in Subsection 4.3.8, we can only compute
the product A2 = AA if the number of columns of A is equal to the number
of rows of A. That is, matrix powers are only defined for square
matrices.

The fact that reversing the order of matrix multiplication can produce a
different result adds some extra wrinkles to the algebra of matrix powers. In
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Discovery 4.9.b and Discovery 4.9.c, we need to be careful about order of multi-
plication. By definition, (AB)2 means (AB)(AB), but we cannot simplify this to
A2B2 = (AA)(BB), because order of multiplication matters, and we so we cannot
in general change the order of multiplication of the inner B and A. Similarly,
when using FOIL to expand (A +B)2 = (A +B)(A +B) (which is valid matrix
algebra, see Subsection 4.5.1), for the O part of FOIL we get AB and for the I
part we get BA, but these cannot be combined into 2AB in general because order
matters for matrix multiplication.

4.3.9 Transpose
There is one more matrix operation that we did not explore in Discovery guide 4.1:
the transpose of a matrix. To compute the transpose of a particular matrix A,
take the entries of the first row of A and write them as the entries of the first
column in a new matrix. Then take the entries of the second row of A and write
them as the entries of the second column in the new matrix. And so on. The
resulting new matrix is called the transpose of A, and we write AT to mean this
new matrix obtained from the old matrix A. See Subsection 4.4.5 for examples of
computing transposes.

It is not possible at this stage to explain why we might want to use such an
operation. If we are thinking of matrices as coefficient or augmented matrices of
linear systems, why would we want all the coefficients in a particular equation
in a system to become the coefficients attached to a particular variable in a new
system? However, the transpose is such a simple operation that it is useful to
include its properties in our development at this early stage.

Here are some things to notice about the operation of transpose as you look
at the examples in Subsection 4.4.5. First, since we are taking rows of A and
making them columns in AT, the number of columns of AT must be the number
of rows of A. Also, the number of entries in a row of A becomes the number of
entries in a column of AT, so the same must be true about the number of rows
of AT versus the number of columns of A. That is, if A is size m×n, then AT is
size n×m. Second, instead of turning rows of A into columns of AT, notice that
we could take the columns of A and use them as rows in a new matrix, and the
result would be the same as AT. This symmetry means that if we compute the
transpose of AT, we will be back at A.

4.4 Examples

In this section.

• Subsection 4.4.1 Basic matrix operations

• Subsection 4.4.2 Matrix multiplication

• Subsection 4.4.3 Combining operations

• Subsection 4.4.4 Linear systems as matrix equations

• Subsection 4.4.5 Transpose

4.4.1 Basic matrix operations
Here are some basic examples of matrix addition, subtraction, and scalar multi-
plication. For subtraction, watch out for double negatives!
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Example 4.4.1 Matrix addition. 1 −2
3 4

−5 6

+

 0 1
1 −2

11 0

=

 1+0 −2+1
3+1 4+ (−2)

−5+11 6+0

=

 1 −1
4 2
6 6


□

Example 4.4.2 Matrix subtraction.[
1 −2 3
0 −4 −5

]
−

[
0 1 1

−2 11 −1

]
=

[
1−0 −2−1 3−1

0− (−2) −4−11 −5− (−1)

]
=

[
1 −3 2
2 −15 −4

]
□

Example 4.4.3 Scalar multiplication of a matrix.

(−5)
[

1 −2
−3 4

]
=

[ −5 10
15 −20

]
□

4.4.2 Matrix multiplication

Example 4.4.4 A detailed multiplication example. Let’s compute the matrix
product AB, for

A =

 3 −2
1 0

−4 5

 , B =
[

1 −2
−3 4

]
.

Notice that the sizes of A (3×2) and B (2×2) are compatible for multiplication in
the order AB, and that the result will be size 3×2. First let’s multiply A onto
the columns of B. 3 −2

1 0
−4 5

[
1

−3

]
=

3 ·1+ (−2) · (−3)
1 ·1+0 · (−3)
−4 ·1+5 · (−3)

=

 9
1

−19


 3 −2

1 0
−4 5

[ −2
4

]
=

3 · (−2)+ (−2) ·4
1 · (−2)+0 ·4
−4 · (−2)+5 ·4

=

 −14
−2
28


Combining these two computations, we get

AB =

 3 −2
1 0

−4 5

[
1 −2

−3 4

]
=

 9 −14
1 −2

−19 28

 .

With some practise at matrix multiplication, you should be able to compute a
product AB directly without doing separate computations for each column of the
second matrix.

In this matrix multiplication example, notice that it does not make sense to
even consider the possibility that BA = AB because the sizes of B and A are not
compatible for multiplication in the order BA, and so BA is undefined! □
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Check your understanding. Is it never true that BA = AB? It should be
obvious that it will be true if A is a square zero matrix and B is a square matrix
of the same size. Can you come up with an example of 2×2 matrices A and B
where neither is the zero matrix, and BA = AB is true?

Example 4.4.5 Matrix powers. Since powers of matrices only work for square
matrices, the power A2 is undefined for the 3×2 matrix A in the previous matrix
multiplication example. But we can compute B2 for the 2×2 matrix B from that
example.

B2 = BB =
[

1 −2
−3 4

][
1 −2

−3 4

]
=

[
1 ·1+ (−2)(−3) 1(−2)+ (−2) ·4
−3 ·1+4(−3) (−3)(−2)+4 ·4

]
=

[
7 −10

−15 22

]
To compute B3, we can compute either of

B3 = BBB = (BB)B = B2B

=
[

7 −10
−15 22

][
1 −2

−3 4

]
=

[
7 ·1+ (−10)(−3) 7(−2)+ (−10) ·4
−15 ·1+22(−3) −15(−2)+22 ·4

]
=

[
37 −54

−81 118

]
,

or

B3 = BBB = B(BB)= BB2

=
[

1 −2
−3 4

][
7 −10

−15 22

]
=

[
1 ·7+ (−2)(−15) 1(−10)+ (−2) ·22
(−3) ·7+4(−15) −3(−10)+4 ·22

]
=

[
37 −54

−81 118

]
,

and the result is the same. □

4.4.3 Combining operations
Example 4.4.6 Computing matrix formulas involving a combination of
operations. Let’s compute both A(B+kC) and AB+k(AC), for

A =
[

1 −2
−3 4

]
, B =

[
0 2
1 −1

]
, C =

[
5 5

−2 −2

]
, k = 3.

Keep in mind that operations inside brackets should be performed first, and as
usual multiplication (both matrix and scalar) should be performed before addition
(unless there are brackets to tell us otherwise).

A(B+kC)=
[

1 −2
−3 4

]([
0 2
1 −1

]
+3

[
5 5

−2 −2

])
=

[
1 −2

−3 4

]([
0 2
1 −1

]
+

[
15 15
−6 −6

])
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=
[

1 −2
−3 4

][
15 17
−5 −7

]
=

[
25 31

−65 −79

]

AB+k(AC)=
[

1 −2
−3 4

][
0 2
1 −1

]
+3

([
1 −2

−3 4

][
5 5

−2 −2

])
=

[ −2 4
4 −10

]
+3

[
9 9

−23 −23

]
=

[ −2 4
4 −10

]
+

[
27 27

−69 −69

]
=

[
25 31

−65 −79

]
□

Hopefully you’re not surprised that we got the same final result for both the
formulas A(B+ kC) and AB+ k(AC). From our familiar rules of algebra, we
expect to be able to multiply A inside the brackets in the first expression, and
then rearrange the order of multiplication by A and by k. However, we need to
be careful — our “familiar” rules of algebra come from operations with numbers,
and matrix algebra involves operations with matrices: addition, subtraction, and
two different kinds of multiplication, scalar and matrix. We should not blindly
expect all of our “familiar” rules of algebra to apply to matrix operations. We’ve
already seen that the matrix version of the familiar rule ba = ab is not true for
matrix multiplication! In Subsection 4.5.1, we list the rules of algebra that are
valid for matrix operations (which is most of our familiar rules from the algebra
of numbers), and for some of the rules, in that same subsection we verify that
they are indeed valid for matrices.

4.4.4 Linear systems as matrix equations

4.4.4.1 A first example

Example 4.4.7 A system as a matrix equation. Let’s again consider the
system from Task b of Discovery 4.5. To solve, we row reduce the associated
augmented matrix to RREF as usual.[

1 −3 −1 −4
−2 7 2 9

]
row−−−−→

reduce

[
1 0 −1 −1
0 1 0 1

]
Variable x3 is free, so assign a parameter x3 = t. Then we can solve to obtain the
general solution is parametric form,

x1 =−1+ t, x2 = 1, x3 = t.

Let’s check a couple of particular solutions against the matrix equation Ax=b
that represents the system. Recall that for this system, x is the 3×1 column
vector that contains the variables x1, x2, x3. The particular solutions associated
to parameter values t = 0 and t = 3 are

t = 0: x1 =−1, x2 = 1, x3 = 0;

and

t = 3: x1 = 2, x2 = 1, x3 = 3.
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Let’s collect the t = 0 solution values into the vector x and check Ax versus b:

LHS= Ax=
[

1 −3 −1
−2 7 2

] −1
1
0

=
[−1−3+0

2+7+0

]
=

[ −4
9

]
=b=RHS.

So the solution to the linear system we got by row reducing did indeed give us a
vector solution x to the matrix equation Ax=b. Let’s similarly check the t = 3
solution, as in Task f of Discovery 4.5:

LHS= Ax=
[

1 −3 −1
−2 7 2

] 2
1
3

=
[

2−3−3
−4+7+6

]
=

[ −4
9

]
=b=RHS.

Again, our system solution gives us a solution to the matrix equation. □

Check your understanding. Carry out the same verification as in Exam-
ple 4.4.7 for the general solution to the system, with the parameter t left variable.

4.4.4.2 Expressing system solutions in vector form

We may use matrices and matrix algebra to express the solutions to solutions
as column vectors. In particular, we can expand solutions involving parameters
into a linear combination of column vectors. Expressing solutions this way
allows us to see the effect of each parameter on the system.

Let’s re-examine the systems in the examples from Section 2.4 as matrix
equations, and express their solutions in vector form.

Example 4.4.8 Solutions in vector form: one unique solution. The system
from Discovery 2.1 can be expressed in the form Ax=b for

A =

 2 0 −2
1 −1 0
4 −2 −3

 , x=

x
y
z

 , b=

4
3
7

 .

We solved this system in Example 2.4.1 and determined that it had one unique
solution, x = 5, y= 2, and z = 3. In vector form, we write this solution as

x=

x
y
z

=

 5
2
3

 .

□

Example 4.4.9 Solutions in vector form: an infinite number of solutions.
The system from Discovery 2.2 can be expressed in the form Ax=b for

A =

 3 6 5
2 4 3
3 6 6

 , x=

x
y
z

 , b=

 −9
−5

−12

 .

We solved this system in Example 2.4.2, and determined that it had an infinite
number of solutions. We expressed the general solution to the system using
parametric equations

x = 2−2t, y= t, z =−3,
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In vector form, we expand this solution as

x=

x
y
z

=

2−2t
t
−3

=

 2−2t
0+ t

−3+0t

=

 2
0

−3

+

 −2t
t

0t

=

 2
0

−3

+ t

 −2
1
0

 .

Notice how the solution is the sum of a constant part 2
0

−3


and a variable part

t

 −2
1
0

 .

Further notice how the constant part is a particular solution to the system — it
is the “initial” particular solution associated to the parameter value t = 0. □

Example 4.4.10 Solutions in vector form: a homogenous system. The
system from Discovery 2.4 is homogeneous, so it can be expressed in the form
Ax= 0 for

A =

 3 6 −8 13
1 2 −2 3
2 4 −5 8

 , x=


x1

x2

x3

x4

 ,

where 0 is the 3×1 zero column vector. We solved this system in Example 2.4.4,
and determined that it had an infinite number of solutions. We expressed the
general solution to the system using parametric equations

x1 =−2s+ t, x2 = s, x3 = 2t, x4 = t.

In vector form, we expand this solution as

x=


x1

x2

x3

x4

=


−2s+ t

s
2t
t

=


−2s+ t
s+0t

0s+2t
0s+ t

=


−2s

s
0s
0s

+


t

0t
2t

t

= s


−2

1
0
0

+ t


1
0
2
1

 .

This time, the solution is a sum of two variables parts,

s


−2

1
0
0

 and t


1
0
2
1

 ,

since there are two parameters. And there is no constant part to the general
solution, because if we set both parameters to zero we obtain the trivial solution
x= 0. A homogeneous system will always work out this way. (So it would be more
accurate to say that the general solution to the system from Discovery 2.4 has
trivial constant part, instead of saying it has no constant part.) □

Example 4.4.11 Solutions in vector form: patterns for homogeneous
and nonhomogeneous systems with the same coefficient matrix. In
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Example 2.4.5, we solved a homogenous system Ax= 0 with

A =

 3 6 5
2 4 3
3 6 6

 , x=

x
y
z

 ,

and found an infinite number of solutions, with general solution expressed
parametrically as

x =−2t, y= t, z = 0.

In vector form, we express this as

x=

x
y
z

=

 −2t
t
0

=

 −2t
t

0t

= t

 −2
1
0

 .

This homogeneous system has the same coefficient matrix as in Example 4.4.9
above, so it is not surprising that their general solutions are related. In particular,
notice that both systems have the same variable part, but that the nonhomoge-
neous system from Example 4.4.9 has a non-trivial constant part. □

Compare. the pattern in Example 4.4.11 with the pattern in Example 2.4.5.

4.4.5 Transpose
Example 4.4.12 Computing transposes. Let’s compute some transposes.

A =
[
1 2 3
4 5 6

]
B =

 −1 2 3
5 0 4
6 7 1

 C =

0 1 2
1 0 3
2 3 0


AT =

1 4
2 5
3 6

 BT =

 −1 5 6
2 0 7
3 4 1

 CT =

0 1 2
1 0 3
2 3 0


The matrix A is size 2×3, so when we turn rows into columns to compute AT,
we end up with a 3×2 result. Matrices B and C are square, so each of their
transposes end up being the same size as the original matrix. But also, the
numbers for the entries in B and C were chosen to emphasize some patterns
in the transposes of square matrices. In interchanging rows and columns in B,
notice how entries to the upper right of the main diagonal move to the “mirror
image” position in the lower left of the main diagonal, and vice versa. So for
square matrices, we might think of the transpose as “reflecting” entries in the
main diagonal, while entries right on the main diagonal end up staying in place.
Finally, we might consider this same “reflecting-in-the-diagonal” view of the
transpose for C, except C has the same entries in corresponding “mirror image”
entries on either side of the diagonal, and so we end up with CT = C. □
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4.5 Theory

In this section.

• Subsection 4.5.1 Rules of matrix algebra

• Subsection 4.5.2 Linear systems as matrix equations

4.5.1 Rules of matrix algebra
When we want to work algebraically with letters that represent matrices, most
of the familiar rules from the algebra of numbers still hold. We collect many of
these rules of matrix algebra in the list below. We will not prove that all of these
rules are valid, but we will verify some of the rules to demonstrate the general
pattern of their proofs. For some of the proofs we will be more rigorous than
others, but in all of the proofs we want to verify that the matrix on the left-hand
side is equal to the one on the right-hand side.

Proposition 4.5.1 Matrix algebra. The following are valid rules of matrix
algebra. In each statement, assume that A,B,C are arbitrary matrices and 0 is a
zero matrix, all of appropriate sizes so that the matrix operations can be carried
out. In particular, in any rule involving a matrix power, the matrices involved are
assumed to be square. Also assume that k and m are scalars, and that p and q
are positive integers.

1. Basic rules of addition and multi-
plication.

(a) B+ A = A+B

(b) A+ (B+C)= (A+B)+C

(c) A(B+C)= AB+ AC

(d) (A+B)C = AC+BC

(e) A(BC)= (AB)C

2. Rules involving scalar multiplica-
tion.

(a) k(A+B)= kA+kB

(b) (k+m)A = kA+mA

(c) (kA)B = k(AB)

(d) A(kB)= k(AB)

(e) k(mA)= (km)A

(f) A−B = A+ (−1)B

3. Rules involving a zero matrix.

(a) A+0= A

(b) A− A = 0

(c) A0= 0

(d) 0B = 0

(e) k0= 0

4. Rules involving matrix powers.

(a) Ap Aq = Ap+q

(b) (Ap)q = Apq

(c) (kA)p = kp Ap

(d) 0p = 0

5. Rules involving the transpose.

(a) (AT)
T = A

(b) (A+B)T = AT +BT

(c) (kA)T = kAT

(d) (AB)T = BT AT

(e) (Ap)T = (AT)p

(f) 0T = 0

Proof of Rule 1.b. First, it’s important to remember what equality of matrices
means, so that we know what we should be verifying: two matrices are equal
when they have the same size and the same entries. And to be sure, while the
formulas on the left- and right-hand sides of the rule under consideration each
involve three matrices, the formulas themselves each represent a single matrix.
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Let’s also make sure we understand the difference between the left- and
right-hand sides. On the left, the brackets tell us that we should add B and C
first, and then add A to that result. The brackets on the right tell us that we
should add A and B first, and then add C to that result. Next, let’s compare sizes.
To be able to add A,B,C, they must be all the same size, and then the result
of adding them (in any combination) will also be that common size. So the left-
and right-hand results will be the same size of matrix. Finally, let’s make sure
each entry in the left-hand result is the same as the corresponding entry in the
right-hand result. Since we don’t actually know what the entries are or even
how many entries there are, we cannot verify this entry by entry. So we work in
general instead: consider what the (i, j)th entry of each side must be, where i, j is
a pair of row and column indices, in terms of the entries of A,B,C. For this, you
might want to review the conventions on referring to matrix entries described in
Subsection 4.3.1. On the left, we have

[B+C]i j = bi j + ci j,

and so [
A+ (B+C)

]
i j = [A]i j + [B+C]i j = ai j + (bi j + ci j).

A similar process on the right gives us[
(A+B)+C

]
i j = [A+B]i j + [C]i j = (ai j +bi j)+ ci j.

Since we know from high-school algebra that addition of ordinary numbers
satisfies the associativity rule

a+ (b+ c)= (a+b)+ c,

we can see that the (i, j)th entries of the matrices represented by the formulas on
the left- and right-hand sides of this rule will always match. ■

Proof of Rule 2.c. First, since scalar multiplication does not change the size of a
matrix, if A and B are compatible sizes for multiplication, then so are kA and
B, and the sizes of (kA)B and k(AB) will be the same. Next, consider the (i, j)th

entry of each side. Write ai for the ith row of A and b j for the jth column of B.
Using the row-times-column pattern of matrix multiplication, and noticing that
the ith row of kA is just kai, we have

[LHS]i j =
[
(kA)B

]
i j = (kai)b j, [RHS]i j =

[
k(AB)

]
i j = k(aib j).

So these two entries will be equal if the rule

(ka)b= k(ab)

is always true for 1×n row vector a and n×1 column vector b. In this new rule,
both sides are size 1×1, and indeed we have

New LHS= (ka)b

= (
k

[
a1 a2 · · · an

])


b1

b2
...

bn



= [
ka1 ka2 · · · kan

]


b1

b2
...

bn


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= [
(ka1)b1 + (ka2)b2 +·· ·+ (kan)bn

]
,

and

New RHS= k(ab)

= k

[
a1 a2 · · · an

]


b1

b2
...

bn




= k
[
a1b1 +a2b2 +·· ·+anbn

]
= [

k(a1b1)+k(a2b2)+·· ·+k(anbn)
]
.

We can now clearly see that the two sides will be equal using the associativity
rule (ka)b = k(ab) for numbers from high-school algebra. ■

Proof of Rule 4.a. We can prove this rule in the same manner as the corresponding
rule for powers of numbers from high-school algebra, without worrying about
individual entries of the matrices on either side of the equality. On the left we
are separately multiplying together p factors of A and q factors of A, and then
multiplying those two results together. Rule 1.e says that we can multiply all of
these factors of A together in any combinations and get the same result. Since
there are p+ q factors of A all together, the result will be the same as Ap+q. ■

Remark 4.5.2

• Algebra rules are not handed down from on high, they represent patterns
where two different sequences of computations always produce the same
result. For example, we can see that

2(3+5)= 2 ·3+2 ·5,

not from algebra but from computation:

LHS= 2(3+5)= 2(8)= 16, RHS= 2 ·3+2 ·5= 6+10= 16.

This example of different computations yielding the same result did not
depend on the numbers 2,3,5 but on the pattern of the sequences of com-
putations, and we capture this pattern algebraically in terms of letters as
the distributive rule a(b+ c)= ab+ac. The algebra rules above capture
similar universal patterns of different sequences of matrix operations that
always produce the same result.

• In the rules, the letters A,B,C are placeholders for any arbitrary matrices.
When we use these rules, we might need to apply them where a whole
formula of letters that computes to a single matrix takes the place of one of
A,B,C. For example, see the first step of the FOIL example below.

• In the preamble to the proposition, we stated that most of the familiar
rules from the algebra of numbers still hold for matrices. But there is
one important rule that does not hold! Remember that order of matrix
multiplication matters: AB and BA are not equal in general.

• As you read the rules, think about the point of the rule. For example,
consider Rule 1.b. Matrix addition is defined as an operation between two
matrices. If we write something like A +B+C, it is ambiguous what is
meant. Does it mean that A+B should be performed first, and then C added
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to that result? Or should B+C be performed first, and then A added to that
result? Mathematical notation is about communication of mathematical
ideas, patterns, and computations. Ambiguity in communication is bad. To
resolve the ambiguity in writing A+B+C, we would require brackets to
communicate which order of successive additions is meant. But the point
of Rule 1.b is that it doesn’t matter — either meaning will yield the same
end result. Rule 1.e establishes a similar pattern for matrix multiplication.

• Also, as you read the rules, try to think of the pattern each one is expressing
in words. For example, for Rule 3.a, reading out “A plus zero equals A” is a
lot less clear than interpreting the rule as “adding the zero matrix to any
matrix has no effect.”

• Rule 1.c and Rule 1.d are not redundant because order of matrix multipli-
cation matters. In particular, it’s important to be careful when using these
rules to factor a common multiple out of a sum. For example, AX +BX
cannot be factored as X (A+B), because then X is multiplying on the left
when originally it was multiplying both A and B on the right. The correct
factorization is AX +BX = (A +B)X . Even worse, AX + XB cannot be
factored at all.

• Because of Rule 2.f, all of the rules that involve addition are also valid for
subtraction (with the obvious exception of commutivity Rule 1).

• There are two things to note about the rules involving the transpose.
First, in Rule 5.f, the zero matrices on either side of the equality are not
necessarily of the same size (unless they are both square). Second, notice
how a transpose of a product reverses the order of multiplication in Rule 5.d.
This happens because in the product AB we are multiplying rows of A
against columns of B. If we were to compute the product of transposes
ATBT, we would be multiplying rows of AT (i.e. columns of A) against
columns of BT (i.e. rows of B). Obviously these two computations won’t
compare, and we need to reverse the order to BT AT so that rows of BT (i.e.
columns of B) multiply against columns of AT (i.e. rows of A), similarly to
AB.

Example 4.5.3 Using the rules. Here is an example of using some of the basic
rules to justify a slightly more involved rule like FOIL. Assume A,B,Y , Z are
square matrices of the same size.

(A+B)(Y +Z)= A(Y +Z)+B(Y +Z) (i)

= (AY + AZ)+ (BY +BZ) (ii)

= AY + AZ+BY +BZ (iii)

Here are the justifications for the numbered steps, using the algebra rules in
Proposition 4.5.1.

(i) right-distributive Rule 1.d, with C =Y +Z;

(ii) left-distributive Rule 1.c, used twice;

(iii) brackets can be omitted by associativity Rule 1.b.

□
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4.5.2 Linear systems as matrix equations
In the examples expressing system solutions in terms of column vectors in
Subsection 4.4.4, we noticed a pattern: the general solution of a consistent
system can always be expressed as a constant part plus a variable part, where
the constant part is a particular solution to the system (corresponding to setting
all parameters to 0) and the variable part involves the parameters. This is true
even for

• a system with one unique solution (as in Example 4.4.8), in which case we
consider the variable part to be zero; and

• a homogeneous system (as in Example 4.4.10), in which case we consider
the constant part to be zero (i.e. the trivial solution).

We further saw that the pattern goes a bit deeper when we explored the
pattern between the solutions to Example 4.4.9 and Example 4.4.11. These two
systems had the same coefficient matrix, but one was nonhomogeneous and the
other was homogeneous. We saw that the two solutions have exactly the same
variable part. This pattern will always emerge for a consistent system.

Lemma 4.5.4 Homogeneous/nonhomogeneous solution set patterns. If
x1 is a particular solution to system Ax = b, then every other solution to this
system can be expressed as the sum of x1 and some solution to the corresponding
homogeneous system Ax= 0.

Proof. We have solution x1 to system Ax=b. By definition, this means that the
matrix equation defining the system is valid when we substitute x= x1. That is,
we know that Ax1 =b. Suppose we have another solution x2. Again, this means
that Ax2 =b is also true. We would like to show that x2 is equal to the sum of x1
and some solution to the homogeneous system Ax= 0. Set x0 = x2 −x1. We claim
that x= x0 is a solution to Ax= 0. Let’s verify:

LHS= Ax0 = A(x2 −x1)= Ax2 − Ax1 =b−b= 0=RHS.

So x0 is a solution to the homogeneous system. Furthermore,

x1 +x0 = x1 + (x2 −x1)= (x1 −x1)+x2 = 0+x2 = x2.

Thus, x2 is equal to the sum of x1 and a solution to the homogeneous system (i.e.
x0), as desired. ■

We can also use the matrix algebra viewpoint of linear systems to definitively
answer Question 1.3.4.

Theorem 4.5.5 None, one, or infinite solutions. There are exactly three
possibilities for the number of solutions to a linear system: no solution, one unique
solution, or an infinite number of solutions.

Proof. We have seen in examples that it is possible for a system to have no
solution, and that it is also possible for a system to have one unique solution. We
will argue that an infinite number of solutions is the only remaining possibility.
If we are not in one of the first two cases, then our system must be consistent and
must have more than one solution. That is, there must be at least two different
solutions. Pick two different solutions, label them x1 and x2, and set x0 = x2 −x1.
The same algebra as in the proof of Lemma 4.5.4 verifies that x0 is a solution to
the homogeneous system Ax= 0. Let t be a parameter. We claim that for every
possible value of the parameter t, x1 + tx0 is a solution to Ax=b. Let’s verify:

LHS= A(x1 + tx0)= Ax1 + tAx0 =b+ t0=b+0=b=RHS.
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If x0 were secretly the zero vector, then x1+ tx0 would always equal x1 no matter
the value of t. But since x1 and x2 are different solutions to Ax = b, we have
x0 = x2 −x1 ̸= 0, and so different values of t produce different column vectors
x1 + tx0. Each of these column vectors is a solution to Ax=b, as verified above,
and so since there are infinity of possible values for t, there are infinite different
possibilities for x1 + tx0, and so infinite possible solutions to Ax=b.

Note. The expression x1+tx0 in the proof may not represent all possible solutions
to the system, since the system may require more than one parameter to solve.
But the need for at least one parameter in solving a system guarantees that there
will be an infinite number of solutions.

■



CHAPTER 5

Matrix inverses

5.1 Discovery guide

Discovery 5.1 The number one is important in algebra, it lets us do things like

5a = 15
1
5
·5 ·a = 1

5
·15

1a = 3

a = 3.

The critical step for us right now is the last simplification of the left-hand side:

1a = a.

(a) What matrix do you think will act similarly in matrix algebra for 2×2
matrices to how the number 1 acts in number algebra? To answer this, try
to fill in the first matrix below so that the matrix equality is always true,
no matter the values of a,b, c,d.[ ][

a b
c d

]
=

[
a b
c d

]

(b) Write I for your 2×2 matrix from Task a (for the I in Identity matrix).

(i) Does I A = A work for every 2×2 matrix A? For every 2×3 matrix A?
For every 2×ℓ matrix A, no matter the number ℓ of columns?

(ii) Does BI = B also work for every 2×2 matrix B? For every ℓ×2 matrix
B?

(c) Extend: What is the 3×3 version of I? The 4×4 version? The n×n version?

Discovery 5.2 In the preamble to Discovery 5.1, there were two ingredients
necessary to make the algebra work:

• there is a special number 1 so that 1a = a for all numbers a; and

• for a nonzero number like 5, there is a multiplicative inverse 1/5 so that
(1/5) ·5= 1.

Multiplicative inverses are very useful in algebra, so we would also like to have
them in matrix algebra.

51
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(a) Consider

A =
[

0 −1
1 2

]
.

Can you determine

B =
[
a b
c d

]
so that BA = I? If so, check that AB = I also.

Solve, don’t guess. Don’t just guess at matrix B, use the definition of
matrix equality applied to BA and I to set up equations and try to solve
for unknown entries a,b, c,d.

(b) Consider

A =
[
0 1
0 0

]
.

Can you determine

B =
[
a b
c d

]
so that BA = I?

Discovery 5.2 demonstrates that some square matrices have multiplicative
inverses (i.e. are invertible) and some do not (called singular in this case). If
square matrix A is invertible, write A−1 for its inverse. (But never write 1/A!)
This inverse is defined by its relationship to A and I: A−1 is the square matrix
of the same size as A so that both AA−1 = I and A−1 A = I are true.

Check your understanding. Do you understand why we must assert that both
AA−1 = I and A−1 A = I are true in defining the inverse A−1? Maybe look back
at Discovery 4.7.

Discovery 5.3 In the following, assume A,B,C are square invertible matrices,
all of the same dimension, and assume that k is a nonzero scalar. Do not just look
up the answers in the rest of this chapter, try to come up with them yourselves.

For this activity, it might be helpful to think of the pattern of the inverse in
the following way: given a square matrix M, the inverse of M is the square
matrix of the same size that can fill both of the boxes below to create true
matrix equalities..

M = I M = I (*)

(a) What do you think is the inverse of A−1? In other words, if you use M = A−1

in (*), what single choice of matrix can be used to fill in both boxes?

(b) Determine a formula for the inverse of kA in terms of k and A−1. In other
words, if you use M = kA in (*), what formula involving k and A−1 can be
used to fill in both boxes?

(c) Explain why the formula for the inverse of the product AB is not A−1B−1.
Then determine a correct formula in terms of A−1 and B−1. (Again, to
determine the correct formula for (AB)−1, use M = AB in (*), and then try
to figure out what single formula you can enter into both boxes so that both
left-hand sides reduce to I.)

(d) Extend: Determine a formula for the inverse of the product ABC in terms
of the inverses A−1, B−1, and C−1.

(e) What do you think A−2 means? There are two possibilities because the
notation implies the application of two different processes: squaring and
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inverting. Do they both work out to be the same? Try with A given below.
(For convenience, its inverse is also given.)

A =
[

0 −1
1 2

]
A−1 =

[
2 1

−1 0

]
Discovery 5.4

(a) In algebra, when AB = AC we would usually conclude that B = C. Try this
out for the matrices below.

A =
[
0 1
0 0

]
B =

[
1 1
2 3

]
C =

[ −1 −1
2 3

]
What is it about matrix A that is making the usual algebra of “cancellation”
fail?

Hint. Think about the “hidden” algebra behind the cancellation ab =
ac =⇒ b = c for numbers.

(b) In what circumstance is the algebra AB = AC =⇒ B = C valid? What
explicit algebra steps go into this deduction?

(c) Is the algebra AB = CA =⇒ B = C ever valid?

Discovery 5.5 If we have a linear system Ax=b with a square and invertible
coefficient matrix A, we can use matrix algebra to solve the system instead of
row reducing, by using A−1 to isolate x.

Here is an invertible 3×3 matrix A and its inverse:

A =

 0 1 −2
1 2 0

−2 −4 1

 , A−1 =

 −2 −7 −4
1 4 2
0 2 1

 .

Use matrix algebra (not row reducing!) to solve the system Ax=b for

b=

 −1
1
3

 .

Now use the same method to solve the system Ax=b for

b=

 −2
0
2

 .

Discovery 5.6 In general, for system Ax=b with a coefficient matrix A that is
square and invertible, how many solutions does the system have? Justify your
answer.

Hint. How many solutions did each of the systems in Discovery 5.5 have? Why?
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5.2 Terminology and notation

identity matrix
a square matrix with ones down the main diagonal and zeros every-
where else, usually represented by the letter I

Remark 5.2.1 There are many identity matrices, one of every possible size of
square matrix. But we still often say the identity matrix, because we are usually
referring to the identity matrix of a particular size. If we need to be clear about
what size of identity matrix, we will write In to mean the n×n identity matrix.

inverse (of a square matrix A)
a square matrix B of the same size as A so that both BA = I and
AB = I are true, where I is the identity matrix of the same size as A
and B

invertible matrix
a square matrix for which an inverse exists

singular matrix
a square matrix for which no inverse exists

5.3 Concepts

In this section.

• Subsection 5.3.1 The identity matrix

• Subsection 5.3.2 Inverse matrices

• Subsection 5.3.3 Matrix division

• Subsection 5.3.4 Cancellation

• Subsection 5.3.5 Solving systems using inverses

5.3.1 The identity matrix
The number one plays a special role with respect to multiplication of numbers:
it is the only number that has no effect when it is multiplied against another
number. In multiplication of matrices, there is only one kind of matrix that has
the same effect: a square matrix with all ones down the main diagonal and zeros
in every other entry. We call this matrix the identity matrix, and write I to
represent it.

The identity matrix is to multiplication what the zero matrix is to addition,
and it will allow us to (sometimes) do the matrix version of the algebra in the
preamble to Discovery 5.1. Except there is one wrinkle that we will explore in
this chapter and next: while we can always “cancel” a matrix to the zero matrix
by subtracting, unfortunately we will not always be able to “cancel” a matrix to
the identity by “dividing.”



5.3. CONCEPTS 55

5.3.2 Inverse matrices

If a is a nonzero number, we can use the inverse a−1 = 1/a to multiply a to 1. In
algebra, we often use this fact to “cancel” a number from an algebraic expression.
In matrix algebra, we can attempt to do the same thing for square matrices.
For a square matrix A, we would like to find a square matrix of the same size
that multiplies A to the identity I (where the identity is the matrix version of
the number 1). If we can determine such an inverse for A, we write A−1 for it.
Note that we need this inverse to multiply A to I from both sides, because order
of multiplication matters. That is, we need to be sure that both A−1 A = I and
AA−1 = I.

The only number that doesn’t have an inverse is 0. However, we saw in
Discovery 5.2 that some nonzero matrices do not have inverses (i.e. are singular).
While the singular example in Discovery 5.2.b only had one nonzero entry, it is
possible to come up with examples of singular matrices that have no entries that
are zero — see Subsection 5.4.1 for one example.

A look ahead.

• We will see in Section 5.5 that a square matrix can have only one inverse
matrix (Theorem 5.5.2), so writing A−1 to mean the inverse of an invertible
matrix A is unambiguous. We will also see in Section 6.5 that it is enough
to check only one of BA = I and AB = I in order to know that B = A−1

(Proposition 6.5.4 and Proposition 6.5.6).

• We will also see that a square matrix is singular when it has some rela-
tionship to another matrix that has too many zero entries to be invertible.

◦ In Chapter 6, we learn that a square matrix is singular precisely
when its RREF has too many zeros (Theorem 6.5.2).

◦ In a future linear algebra course, you may learn that a matrix is
singular precisely when it is similar to one that has too many zeros
(a fact closely related to Theorem 21.6.3).

5.3.3 Matrix division
In Chapter 4, we defined the operations of addition, subtraction, and multiplica-
tion of matrices (as well as scalar multiplication), but we did not define division
of matrices. Matrix inverses are similar to division in that they can be used to
cancel a square matrix to I, the matrix version of 1. But we need to be careful
with this analogy, because order of matrix multiplication matters. With numbers,
when we write division as a fraction a/b, it doesn’t matter if we mean ab−1 or
b−1a because both orders of multiplication yield the same result. For matrices,
it is ambiguous to write a fraction A/B because it is not clear whether AB−1 or
B−1 A should be meant, and it matters because AB−1 and B−1 A might not yield
the same result.

Warning 5.3.1 There is no such operation as division of matrices. Never write
fractions of matrices in matrix algebra — use matrix inverses instead.

5.3.4 Cancellation
In the algebra of numbers, if we have an equation ab = ac, we would usually
cancel the a from both sides to conclude that b = c. In Discovery 5.4, we see
that this doesn’t always work for matrices. When we cancel a from both sides
of ab = ac, what we are really doing algebraically is to divide both sides by a.
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However, we cannot do this if a is 0, and similarly we cannot cancel the A from
AB = AC if A is not invertible. If it is invertible, however, then we may cancel A
by applying A−1 to both sides:

AB = AC

A−1 AB = A−1 AC
IB = IC
B = C.

When we apply algebraic manipulations to an equation, we need to make sure
we perform the exact same operation on both sides of the equals sign. If we are
introducing a new matrix into an equation by multiplication, we need to make
sure we multiply the new matrix from the same side on both sides of the equation,
because order of matrix multiplication matters! So, when we were faced with
AB = CA in Task c of Discovery 5.4, it would be incorrect to cancel A here even if
A is invertible, because to cancel it on the left-hand side of the equation we need
to multiply by A−1 on the left, and to cancel on the right-hand side we need to
multiply A−1 on the right. These are different operations, and doing one on one
side of the equation and the other on the other side would violate the equals sign.
If we try to do both, we just go in circles:

AB = CA

A−1 AB = A−1CA (i)

IB = A−1CA (ii)

B = A−1CA

BA−1 = A−1CAA−1 (iii)

BA−1 = A−1CI

BA−1 = A−1C.

In the above steps:

(i) the same operation (i.e. multiplication by A−1 on the left) must be applied
to both sides;

(ii) the A−1 and A on the right do not cancel to I; and

(iii) the same operation (i.e. multiplication by A−1 on the right) must be applied
to both sides.

In more detail, when we have A−1CA on the right above, unfortunately we
cannot cancel the A−1 and A to I because we don’t have A−1 A = I, we have a
C between A and its inverse, and order of matrix multiplication matters! And
notice that after all this algebra, in the last line we are no further ahead than
when we began.

5.3.5 Solving systems using inverses
As we explored in Discovery 5.5, when the coefficient matrix of a linear system
is square and invertible, we can solve the system by matrix algebra instead of
row reducing. In this case, we can use the inverse to cancel the coefficient matrix
from the left-hand side of the system equation Ax=b:

Ax=b
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A−1 Ax= A−1b

Ix= A−1b

x= A−1b.

We will see in the next chapter that inverting a matrix is the same amount of
work as row reducing it, so solving a system this way is not a shortcut method.
But it can be faster if you want to solve several systems with the same coefficient
matrix A but different vectors of constants b, as we had in Discovery 5.5, so that
you only do the row reducing work (in computing A−1) once.

5.4 Examples

In this section.

• Subsection 5.4.1 Inverses of 2×2 matrices

• Subsection 5.4.2 Solving systems using inverses

• Subsection 5.4.3 Solving other matrix equations using inverses

5.4.1 Inverses of 2×2 matrices
There is a general formula for the inverse of a 2×2 formula:

A =
[
a b
c d

]
=⇒ A−1 = 1

ad−bc

[
d −b

−c a

]
.

The formula ad− bc in the denominator of the scalar multiple in this inverse
formula is called the determinant of A. Clearly the formula does not work when
the determinant of A is 0, since we cannot divide by zero. In fact, in Chapter 6 it
will be possible for us to prove that A is not invertible when ad−bc = 0. There
are similar formulas for inverses of larger matrices, but they are too complicated
to write down explicitly. We will study the general theory of determinants and
related inversion formulas in Chapters 8–10.

Example 5.4.1 Using the 2×2 inversion formula. Matrix A below is in-
vertible, and its inverse is given. Watch for double negatives when computing
ad−bc!

A =
[ −5 1

−3 2

]
=⇒ A−1 = 1

(−5)(2)− (1)(−3)

[
2 −1
3 −5

]
=−1

7

[
2 −1
3 −5

]
=

[ −2/7 1/7
−3/7 5/7

]
.

Let’s check that we have the correct inverse. To keep the computations simple,
we’ll leave the −1/7 as a scalar multiple when expressing A−1.

A−1 A =
(
−1

7

[
2 −1
3 −5

])[ −5 1
−3 2

]
AA−1 =

[ −5 1
−3 2

](
−1

7

[
2 −1
3 −5

])
=−1

7

[
2 −1
3 −5

][ −5 1
−3 2

]
=−1

7

[ −5 1
−3 2

][
2 −1
3 −5

]
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=−1
7

[ −10+3 2−2
−15+15 3−10

]
=−1

7

[−10+3 5−5
−6+6 3−10

]
=−1

7

[ −7 0
0 −7

]
=−1

7

[ −7 0
0 −7

]
=

[
1 0
0 1

]
=

[
1 0
0 1

]
So, we have both A−1 A = I and AA−1 = I, as required. □

Example 5.4.2 Sometimes the 2×2 inversion formula does not apply.
Consider matrix

B =
[
3 6
1 2

]
.

For this matrix, we have

ad−bc = 3 ·2−6 ·1= 6−6= 0.

So even though none of the entries of B are 0, it is not invertible. □

5.4.2 Solving systems using inverses

Just as we can solve the numerical equation ax = b as x = a−1b, we can solve a
system of equations that is represented as a matrix equation Ax=b using A−1.

Example 5.4.3 Consider the system{ −5x + y = 3,
−3x + 2y = −2.

The coefficient matrix for this system is

A =
[ −5 1

−3 2

]
,

which is conveniently the matrix for which we have already computed the inverse
using the 2×2 inversion formula in Subsection 5.4.1. So we can solve the system
as

Ax=b =⇒ x= A−1b

=
(
−1

7

[
2 −1
3 −5

])[
3

−2

]
=−1

7

[
2 −1
3 −5

][
3

−2

]
=−1

7

[
8

19

]
=

[ −8/7
−19/7

]
,

so that the system has one unique solution x =−8/7, y=−19/7. □
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5.4.3 Solving other matrix equations using inverses
We can similarly use matrix algebra and inverses to solve matrix equations in
general.

Example 5.4.4 Consider the matrix equation

3
[

1 1
−1 2

]
+ X

[
0 −3
2 1

]
= I.

Suppose we would like to solve this equation for the unknown 2×2 matrix X ,
where I is the 2×2 identity matrix.

One approach to this problem would be to express X in terms of unknown
entries,

X =
[
a b
c d

]
,

and then set up four equations in the four unknowns a,b, c,d. This would lead to
a system of equations that we could row reduce and solve. But it’s easier just to
use ordinary (matrix) algebra. Set

W =
[

1 1
−1 2

]
, Z =

[
0 −3
2 1

]
,

substitute these definitions into the given equation, and isolate X algebraically:

3W + X Z = I
X Z = I −3W

X ZZ−1 = (I −3W)Z−1

X = (I −3W)Z−1.

Of course, this method wouldn’t work if Z was not invertible, but it is, and we
can calculate

I −3W =
[
1 0
0 1

]
−3

[
1 1

−1 2

]
Z−1 = 1

0 ·1− (−3) ·2
[

1 3
−2 0

]
=

[
1 0
0 1

]
−

[
3 3

−3 6

]
= 1

6

[
1 3

−2 0

]
.

=
[ −2 −3

3 −5

]
,

From this we obtain

X = (I−3W)Z−1 =
[ −2 −3

3 −5

](
1
6

[
1 3

−2 0

])
= 1

6

[
4 −6

13 9

]
=

[
2/3 −1

13/6 3/2

]
.

□
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5.5 Theory

In this section.

• Subsection 5.5.1 Properties of the identity matrix

• Subsection 5.5.2 Properties of the inverse

5.5.1 Properties of the identity matrix
Here are some important facts about the identity matrix and inverses of matrices.
You could consider this proposition as a continuation of Proposition 4.5.1.

Proposition 5.5.1 Algebra rules involving the identity matrix. Let I
represent the n×n identity matrix.

1. For every m×n matrix A and every n× k matrix B, we have AI = A and
IB = B.

2. For every positive integer p, we have I p = I.

3. An identity matrix is its own inverse; i.e. I−1 = I.

4. An identity matrix is equal to its own transpose; i.e. IT = I.

Proof. We will leave the proof of these properties up to you, the reader. ■

5.5.2 Properties of the inverse
And now some first properties of the inverse. We will explore inverses more in
the next chapter.

Theorem 5.5.2 Uniqueness of inverses. A square matrix is either singular or
has one unique inverse.

Proof. A square matrix either has an inverse (i.e. is invertible) or it doesn’t (i.e. is
singular). We would like to know that in the invertible case, there can be only
one inverse. So suppose that A is a square matrix, and that B is an inverse for A.
Then, by definition we have both BA = I and AB = I (see Section 5.2). What if
we had another inverse for A? Suppose C was also an inverse for A, so that both
CA = I and AC = I were true. Here, all of A,B,C, I are square of the same size.
But then,

C = CI (i)

= C(AB) (ii)

= (CA)B (iii)

= IB (iv)

= B (v),

with justifications

(i) Rule 1 of Proposition 5.5.1;

(ii) B is an inverse for A;

(iii) Rule 1.e of Proposition 4.5.1;

(iv) C is an inverse for A; and
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(v) Rule 1 of Proposition 5.5.1.

So C and B must actually be the same inverse for A. Since we can apply the
same reasoning to any inverse for A, there can only be one inverse for A. ■

Proposition 5.5.3 Singularity of zero matrices. A square zero matrix is
always singular.

Proof. It should be obvious from Rule 3.c and Rule 3.d of Proposition 4.5.1 that it
is impossible for A = 0 to work in the definition of inverse from Section 5.2. ■

Let’s record the formula for 2×2 inverses that we encountered in Subsec-
tion 5.4.1.

Proposition 5.5.4 2×2 inversion formula. Consider general 2×2 matrix
A = [a b

c d
]
. If ad−bc ̸= 0, then A is invertible with inverse

A−1 = 1
ad−bc

[
d −b

−c a

]
.

Proof idea. You can check by direct computation that these two matrices multiply
to the identity matrix, in either order. ■

A look ahead. We will further explore the formula ad−bc and its connection to
invertibility of matrices in subsequent chapters.

Here are the properties of inverses we explored in Discovery 5.3. We have
changed some of the letters to avoid confusion with the A and B in the definition
of inverse in Section 5.2.

Proposition 5.5.5 Algebra rules involving inverses.

1. If M is an invertible square matrix, then its inverse M−1 is also invertible
with inverse (M−1)−1 = M.

2. If M is an invertible square matrix, then for every nonzero scalar k the
scalar multiple kM is also invertible with inverse (kM)−1 = k−1M−1.

3. If M and N are both invertible square matrices of the same size, then their
product MN is also invertible with inverse (MN)−1 = N−1M−1.

4. If M1, M2, . . . , Mℓ−1, Mℓ are all invertible square matrices of the same size,
then their product

M1M2 · · ·Mℓ−1Mℓ

is also invertible with inverse

(M1M2 · · ·Mℓ−1Mℓ)−1 = M−1
ℓ M−1

ℓ−1 · · ·M−1
2 M−1

1 .

5. If M is an invertible square matrix, then for every positive integer ℓ the
power Mℓ is also invertible with inverse

(
Mℓ

)−1 = (
M−1)ℓ.

Proof of Statement 1. We have a square matrix A = M−1 and would like to
determine an inverse B for it, so that both BA = I and AB = I are true. But we
already know this is true for B = M, since then

BA = MM−1 = I, and AB = M−1M = I.

■

Proof of Statement 2. We have a square matrix A = kM, with k ̸= 0, and would
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like to determine an inverse B for it. Let’s try B = k−1M−1:

BA = (k−1M−1)(kM) AB = (kM)(k−1M−1)

= (k−1k)(M−1M) = (kk−1)(MM−1)

= 1I = 1I
= I, = I,

where in the first steps we have applied Rule 2.c and Rule 2.d of Proposition 4.5.1.
Since both BA = I and AB = I are true, then B = k−1M−1 is the inverse of

A = kM. ■

Proof of Statement 3. We have a square matrix A = MN and would like to
determine an inverse B for it. Let’s try B = N−1M−1:

BA = (N−1M−1)(MN) AB = (MN)(N−1M−1)

= N−1(M−1M)N = M(NN−1)M−1

= N−1IN = MIM−1

= I, = I,

where in the first steps we have applied Rule 1.e of Proposition 4.5.1.
Since both BA = I and AB = I are true, then B = N−1M−1 is the inverse of

A = MN.

Order matters. In this proof, we were able to interchange the order of scalar
multiplication and matrix multiplication because of the rules for scalar multi-
plication in Proposition 4.5.1. However, it would have been incorrect to try to
make similar manipulations in the proof of Statement 3, because order of matrix
multiplication matters!

■

Proof of Statement 4. We leave this proof to you, the reader. ■

Proof of Statement 5. This is the special case of Statement 4 where each of
M1, M2, . . . , Mℓ−1, Mℓ is equal to M. ■

Remark 5.5.6 In light of Statement 5 of the proposition, for an invertible matrix
M and a positive integer k we can write M−k to mean either the inverse (Mk)−1

or the power (M−1)k, since they are the same. This answers the question in
Discovery 5.3.e.

We can turn some of the statements of Proposition 5.5.5 around to create new
facts about singular (i.e. non-invertible) matrices.

Proposition 5.5.7 Singular products have singular factors.

1. If the product MN is singular, where M and N are square matrices of the
same size, then at least one of M, N must be singular.

2. If the product
M1M2 · · ·Mℓ−1Mℓ

is singular, where M1, M2, . . . , Mℓ−1, Mℓ are square matrices of all the same
size, then at least one of these matrices must be singular.

3. If some power Mℓ is singular, where M is a square matrix and ℓ is a positive
integer, then M must be singular.
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Proof of Statement 1. If both M and N were invertible, then Statement 3 of
Proposition 5.5.5 says that the product MN would be invertible. But we are
assuming that the product MN is singular, so it is not possible for both M and N
to be invertible. ■

Outline of proof for Statement 2. The proof of this statement is similar to the one
above for Statement 1, relying on Statement 4 of Proposition 5.5.5 instead. We
leave the details to you, the reader. ■

Outline of proof for Statement 3. This proof again is similar to that above for
Statement 1, relying on Statement 5 of Proposition 5.5.5 instead. Alternatively,
one could view this as the special case of Statement 2 of the current proposition,
where each factor Mi is taken to be equal to M. ■

We did not explore this in our discovery guide, but we can add properties of
the inverse with respect to the transpose.

Proposition 5.5.8 Inverse of a transpose. If A is invertible, then so is AT,
with (

AT)−1 = (
A−1)T

.

Proof. Suppose A is an invertible square matrix, and write B for (A−1)T. If we
can show that both BAT = I and ATB = I, then by definition we will have shown
that AT is invertible, and by Theorem 5.5.2 we will have shown that the inverse
of AT is B = (A−1)T. Let’s check the first required equality:

LHS= BAT

= (A−1)
T

AT (i)

= (AA−1)
T

(ii)

= IT (iii)

= I (iv)

=RHS,

with justifications

(i) definition of B;

(ii) Rule 5.d from Proposition 4.5.1;

(iii) definition of inverse;

(iv) Rule 4 from Proposition 5.5.1.

The verification of AB = I is similar, and we leave it up to you, the reader. ■

Using Statement 5 of Proposition 5.5.5 along with Proposition 5.5.8, we can
expand the scope of our algebra rules for matrix powers.

Proposition 5.5.9 Algebra involving matrix powers with negative expo-
nents. With the convention that A0 should be equal to I for any invertible square
matrix A, the matrix algebra rules involving matrix powers in Proposition 4.5.1
(including the property of the transpose relative to powers in rule Rule 5.e) and in
Proposition 5.5.1 remain valid for all integers p and q, positive or negative (or
zero).

Finally, we will record the observation of Discovery 5.6.

Proposition 5.5.10 Consistency of invertible coefficient matrix. If the
coefficient matrix for a linear system is square and invertible, then the system has
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one unique solution.

Proof. Consider system Ax = b where the coefficient matrix A is square and
invertible. Then we can apply A−1 to both sides of this matrix equation just as
in Subsection 5.3.5 and in Example 5.4.3, to isolate x= A−1b. Thus, x= A−1b is
the only possible solution to the system. ■

A look ahead. It follows from a fact in the next chapter (Theorem 6.5.2) that the
logic of Proposition 5.5.10 goes the other way as well: if a system with a square
coefficient matrix has one unique solution, then that coefficient matrix must be
invertible.



CHAPTER 6

Elementary matrices

6.1 Discovery guide

Discovery 6.1 Consider the matrices

I =

1 0 0
0 1 0
0 0 1

 , E =

1 0 0
2 1 0
0 0 1

 , A =

 1 0 2 −1
1 2 3 4
0 −1 0 3

 .

(a) Remind yourself using the row-times-column pattern of matrix multiplica-
tion why I A = A is true.

(b) Notice how E is only one entry different from I. How does this change the
process of computing EA compared to computing I A?

Think of multiplication by E as “transforming” A into the result matrix EA.
How could you describe the transformation in this particular example?

Hint. In the “transformation” A → EA, which rows of A stay the same,
and which rows change? For the rows that change, how exactly do they
change?

(c) Do you think the same thing will happen when computing E times some
other matrix?

(d) We know that EI = E. But then consider EI in terms of the first two
parts of this discovery activity. So in terms of row operations, what is the
relationship between E and I?

Discovery 6.2 Create a 3×3 matrix E′ so that for every 3× n matrix A, the
result of E′A is the same as performing the row operation “multiply row 3 by −4”
on A.

Hint. What was the pattern you identified in Discovery 6.1.d?

Discovery 6.3 Create a 3×3 matrix E′′ so that for every 3×n matrix A, the
result of E′′A is the same as performing the row operation “swap rows 1 and 2”
on A.

Hint. What was the pattern you identified in Discovery 6.1.d?

Matrices E,E′,E′′ from the discovery activities so far are called elemen-
tary matrices. As the preceding activities demonstrate, every elementary row
operation has a corresponding elementary matrix.

65
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Discovery 6.4 Suppose we were to take a 3×ℓ matrix A and compute

E′′E′EA = E′′(E′(EA)
)
,

where E,E′,E′′ are as in Activities 6.1–6.3. How can we interpret this matrix
multiplication result in terms of row operations? (Careful of the order of opera-
tions!)

Discovery 6.5 Consider B =

 1 0 −3
0 0 2
0 1 0

.

(a) Determine elementary matrices E1,E2,E3 so that E3E2E1B is the identity
matrix.

(b) The matrix B happens to be invertible. Manipulate the formula E3E2E1B =
I algebraically to obtain a formula for B−1 involving your elementary
matrices.

(c) Tack an identity matrix I onto the right end of your formula for B−1 from
Task b. (Recall that multiplying by I has no effect.)

Using this new, modified formula for B−1 as inspiration, come up with
a procedure to use only row operations (and not elementary matrices) to
compute the inverse of a square matrix.

Hint. Where did your elementary matrices E1,E2,E3 come from? And
what are they now “doing” to the identity matrix, and in what order?

Discovery 6.6 Consider the general 2×2 matrix A = [a b
c d

]
.

(a) Assume that a ̸= 0. Use the method you developed in Discovery 6.5 to
determine the inverse of A.

(b) Where there any other assumptions about the entries of A (besides a ̸= 0)
that you needed to make for this to work? Why?

Hint. Division by zero is undefined.

(c) Repeat for the other case: assume a = 0.

Discovery 6.7 Complete the following tasks for each of the three types of ele-
mentary row operations, one at a time:

(i) swap two rows;

(ii) multiply a row by a nonzero constant;

(iii) add a multiple of one row to another.

(a) Suppose someone has performed the row operation you are currently con-
sidering on a matrix:

A row−−→
op

A′.

If you know only the operation and the result A′, how can you recover the
original matrix A?

A′ ?−→ A

(b) Suppose we consider Task a with A = I:

I row−−→
op

EI (a)−−→ E′EI,
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where

• (a) is the same “reverse” row operation you came up with in Task a

• E is the elementary matrix corresponding to the original row opera-
tion you are currently considering

• and E′ is the elementary matrix corresponding to the (a) row opera-
tion.

According to Task a, what should the final result E′EI be? What does this
say in general about the inverse of an elementary matrix of the type you
are currently considering?
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6.2 Terminology and notation

elementary matrix
a matrix obtained from the identity matrix by a single elementary
row operation

6.3 Concepts

In this section.

• Subsection 6.3.1 Elementary matrices

• Subsection 6.3.2 Inverses by elementary matrices

• Subsection 6.3.3 Inverses of elementary matrices

• Subsection 6.3.4 Decomposition of invertible matrices

• Subsection 6.3.5 Inverses by row reduction

Even though the title of this chapter is Elementary matrices, it is really
another about matrix inverses.

Goal 6.3.1 Obtain criteria that can be used to determine whether a square matrix
is invertible, and develop a method to compute inverses of invertible square
matrices.

Suppose A and B are square matrices of the same size, and A is invertible.
Start with B, multiply on the left by A to get AB, and then multiply that result
on the left by A−1 to get A−1 AB = IB = B, which is right back where we started.
The point being that an inverse matrix A−1 undoes or reverses multiplication by
A. So if we want to understand inverses, we need to understand how to reverse
matrix multiplication.

Now, our motivation for defining matrix multiplication in the way that we
did (i.e. rows times columns) was so that we could use matrix multiplication
to represent a system of equations by a single matrix equation Ax = b, with
both the vector of unknowns x and the vector of constants b as column vectors.
(See Discovery 4.5, and more generally Chapter 4.) Furthermore, for a system
Ax = b with a square invertible coefficient matrix A, we can solve the system
either by row reducing or by reversing the multiplication by A and algebraically
isolating x= A−1b. So there must be a connection between row operations, matrix
multiplication, and matrix inverses. And elementary matrices are precisely that
connection.

6.3.1 Elementary matrices
In Discovery guide 6.1–6.3, we discovered that we can create special square
matrices so that multiplying another matrix by that special matrix (on the left)
has the same effect as performing an elementary row operation, and we called
these special matrices elementary matrices. So if E is an elementary matrix
and A is another matrix of a compatible size (but not necessarily square), then
the result of computing the matrix product EA is the same as performing some
elementary row operation on A.

Applying this same reasoning with A replaced by I, we see that EI = E must
be the same result as applying that elementary row operation on the identity.
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This gives us an easy way to produce an elementary matrix for a particular
elementary row operation.

Procedure 6.3.2 To create the elementary matrix associated to a specific
row operation. Perform the desired elementary row operation on the identity
matrix of the appropriate size.

See Subsection 6.4.1 for some examples.
If each elementary row operation can be achieved by multiplication by an

elementary matrix, then a sequence of row operations can be achieved can be
achieved by iterated multiplication by elementary matrices, as in Discovery 6.4.
For example, suppose we were to perform the following sequence of operations
on some 3×ℓ matrix A:

A R2+2R1−−−−−−−−→ A′ −4R3−−−−−−→ A′′ R1↔R2−−−−−−−→ A′′′.

The first operation is the same as that corresponding to the elementary matrix
E from Discovery 6.1, so the first result A′ is equal to EA. Similarly, the second
operation is the same as that corresponding to the elementary matrix E′ from
Discovery 6.2, but this second operation is being applied to the first result A′. So
the second result A′′ is equal to

E′A′ = E′(EA).

Finally, the third operation is the same as that corresponding to the elementary
matrix E′′ from Discovery 6.3, and this third operation is being applied to the
second result A′′. So the third result A′′′ is equal to

E′′A′′ = E′′(E′(EA)
)
.

So our sequence of row operations is

A R2+2R1−−−−−−−−→ EA
−4R3−−−−−−→ E′EA R1↔R2−−−−−−−→ E′′E′EA,

where each new elementary matrix corresponds to the operation of the preceding
arrow. Notice the order of the elementary matrices in the final product —
the elementary matrices appear in right-to-left order compared to the order that
the operations have been performed. Make sure you understand why this is so.

In Discovery 6.5, we examined this kind of correspondence between row
operations and elementary matrices in a row reduction process. It is possible to
row reduce the matrix B in that activity to the identity matrix in three operations,
represented by elementary matrices E1,E2,E3:

B first−−−−−−−−→
operation

E1B second−−−−−−−−→
operation

E2E1B third−−−−−−−−→
operation

E3E2E1B.

See Subsection 6.4.2 for another example of determining elementary matrices
corresponding to the steps in a row reduction process.

6.3.2 Inverses by elementary matrices
As discussed above, in Discovery 6.5 we reduced a matrix B to the identity
matrix in three operations. In terms of elementary matrices, this means that
E3E2E1B = I, where E1,E2,E3 are the elementary matrices corresponding to
the three operations in the reduction sequence.

Assuming that matrix B is invertible, we could use B−1 to manipulate this
equality:

I = E3E2E1B
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=⇒ IB−1 = (E3E2E1B)B−1

=⇒ B−1 = E3E2E1(BB−1)

= E3E2E1I
= E3E2E1.

So if a matrix is invertible, we can compute its inverse by row reducing it to
the identity matrix and then multiplying together the elementary matrices that
correspond to the steps in that row reduction, in the proper order. But there is a
more direct way, as we will see in Subsection 6.3.5 below.

Remark 6.3.3 There are many different sequences of row operations that could
reduce a matrix to its RREF, and so when a matrix is invertible there are many
different ways we could compute its inverse via a product of elementary matrices.
These different ways can even involve different numbers of elementary matrices.

6.3.3 Inverses of elementary matrices

As we explored in Discovery 6.7, every elementary row operation has a reverse
operation.

Operation swap two rows
Ri ↔ R j

Reverse operation swap the rows again
Ri ↔ R j

Reverse of the reverse swap the rows again
Ri ↔ R j

Figure 6.3.4 Reversing row swaps.

Operation multiply a row by a nonzero constant
Ri → kRi

Reverse operation divide that row by the constant
Ri → 1

k Ri

Reverse of the reverse divide that row by the reciprocated constant
Ri → 1

1/k Ri = kRi

Figure 6.3.5 Reversing row scales.

Operation add a multiple of one row to another
Ri → Ri +kR j

Reverse operation subtract that multiple of the one row from the other
Ri → Ri + (−k)R j

Reverse of the reverse subtract that negative multiple of the one row from the other
Ri → Ri +

(−(−k)
)
R j = Ri +kR j

Figure 6.3.6 Reversing row combinations.

In each case, performing an operation on a matrix and then performing the
reverse operation on that result will return you to the original matrix. Also notice
that in each case the reverse operation of a reverse operation is the original
operation. So, if E is the elementary matrix corresponding to some operation,
and E′ is the elementary matrix corresponding to the reverse operation, then
also E corresponds to the reverse of the operation of E′.
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If we perform these operations on the identity matrix, we get

I
operation−−−−−−→ EI reverse−−−−−−→

operation
E′EI,

I reverse−−−−−−→
operation

E′I operation−−−−−−→ EE′I.

But in both situations we should be back at the identity matrix, because the sec-
ond operation reverses the first. Thus, E′E = I and EE′ = I, which by definition
says that E′ is the inverse of E. Hence, every elementary matrix is invertible, and
the inverse of an elementary matrix is the elementary matrix corresponding to the
reverse operation.

6.3.4 Decomposition of invertible matrices
Let’s go back to the matrix B from Discovery 6.5, for which we obtained matrix
equality E3E2E1B = I for some particular elementary matrices E1,E2,E3. We
have just learned in the preceding subsection (Subsection 6.3.3) that elementary
matrices are invertible, so we can use the algebra of matrix inverses to isolate B
as

B = E−1
1 E−1

2 E−1
3 .

Check your understanding. Do you understand why the inverses of the
elementary matrices appear in the reverse order on the right-hand side? Carry
out the steps in the matrix algebra

E3E2E1B = I

→ B = E−1
1 E−1

2 E−1
3

yourself if you are unsure.

Now, from the preceding subsection we know that each of E−1
1 ,E−1

2 ,E−1
3

is also an elementary matrix. So if we describe the pattern of the formula
B = E−1

1 E−1
2 E−1

3 in words, we might choose to ignore the inverses and say that
B can be expressed as a product of elementary matrices. Since a product of
elementary matrices represents performing the corresponding elementary row
operations in sequence (on the identity matrix, if you like), we might say that
a square matrix is invertible precisely when it represents some sequence of
elementary row operations, and so inverting it is the same as trying to reverse
that sequence of operations.

6.3.5 Inverses by row reduction
Still working with the matrix B from Discovery 6.5, consider the formula

B−1 = E3E2E1I,

from the computation in Subsection 6.3.2. We could simplify away the identity
matrix (as we did above), but as is often the case in mathematics, simplifying
hides patterns. Remember where the elementary matrices E1,E2,E3 came from
— our starting point in the computation above was the formula E3E2E1B = I,
which we obtained from the fact that these elementary matrices represented the
steps taken to reduce B to the identity. So when we compare the two formulas

E3E2E1B = I, E3E2E1I = B−1,
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we realize that the same sequence of operations that reduces B to I can be used to
“unreduce” I to B−1.

Now, it is inefficient to first row reduce a matrix to I, and then unreduce I to
B−1 afterward, because we will be doing the same operations, in the same order,
in both parts of the process. It would be faster to do both at once, one operation
at a time.

Procedure 6.3.7 Computing an inverse. To compute the inverse of a square
matrix A, augment that matrix with the identity matrix and row reduce until the
identity matrix is obtained on the left where there initially was A. The matrix on
the right where there was initially I will now be A−1.[

A I
] row−−−−→

reduce

[
I A−1 ]

If it is not possible to obtain the identity on the left (i.e. if the RREF of A is not I),
then A is not invertible.

The last statement of the procedure will be justified by Theorem 6.5.2 in
Subsection 6.5.2. See Subsection 6.4.3 for an example of carrying out this
procedure.

Pattern. Note that Procedure 6.3.7 keeps track of the elementary matrices
involved in row reducing a matrix A for us, and automatically applies them to
the identity (effectively multiplying them together) to produce the inverse on the
right: [

A I
] first−−−−−−→

operation

[
E1 A E1I

]
second−−−−−−→

operation

[
E2E1 A E2E1I

]

...

last−−−−−−→
operation

[
Eℓ · · ·E2E1 A Eℓ · · ·E2E1I

]= [
I A−1 ]

. (*)

6.4 Examples

In this section.

• Subsection 6.4.1 Elementary matrices and their inverses

• Subsection 6.4.2 Decomposing an invertible matrix and its inverse
into elementary matrices

• Subsection 6.4.3 Inversion by row reduction

6.4.1 Elementary matrices and their inverses
Let’s see examples of forming the elementary matrix that corresponds to an
elementary row operation, and then determining its inverse, for each of the three
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kinds of elementary operations. We use Procedure 6.3.2 to form these elementary
matrices.

Let’s do some 4×4 examples.

Example 6.4.1 Swapping rows. Consider the operation of swapping the second
and fourth rows of a 4×n matrix A. We can achieve the same result with a matrix
product EA where E is a 4×4 elementary matrix. To obtain E, we perform the
desired operation on the identity matrix:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 swap−−−→
rows

E =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

To obtain the inverse E−1, we perform the reverse operation. But that’s just
swapping the same two rows back again:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 swap−−−→
rows

E−1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

So, in this case, the inverse elemenatary matrix is the same as the original. □

Example 6.4.2 Multiplying a row by a constant. Now consider the operation
of swapping the second row of a 4×n matrix A by 5. We can achieve the same
result with a matrix product EA where E is a 4×4 elementary matrix. To obtain
E, we perform the desired operation on the identity matrix:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 multiply−−−−−−−→
second row

E =


1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1

 .

To obtain the inverse E−1, we perform the reverse operation, which in this case
is dividing the second row by 5 (which is the same as multiplying the second row
by 1/5):

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 divide−−−−−−−→
second row

E−1 =


1 0 0 0
0 1/5 0 0
0 0 1 0
0 0 0 1

 .

□

Example 6.4.3 Combining rows. Finally, consider the operation of adding
double the first row to the third row of a 4×n matrix A. We can achieve the same
result with a matrix product EA where E is a 4×4 elementary matrix. To obtain
E, we perform the desired operation on the identity matrix:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 combine−−−−−→
rows

E =


1 0 0 0
0 1 0 0
2 0 1 0
0 0 0 1

 .

Once again, to obtain the inverse E−1, we perform the reverse operation, which
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in this case is subtracting double the first row from the third:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 combine−−−−−→
rows

E−1 =


1 0 0 0
0 1 0 0

−2 0 1 0
0 0 0 1

 .

Comparing E and E−1 in this case, notice how the 2 becomes negated, which is
actually the additive inverse of the number two (since 2+(−2)= 0 and (−2)+2= 0).
This connection between inverting matrix multiplication and inverting numerical
addition is important in more advanced abstract algebra. □

Notice. In all three examples, we always start at the identity matrix to create an
elementary matrix, even when computing the inverse of an elementary matrix.

6.4.2 Decomposing an invertible matrix and its inverse into
elementary matrices

Again, let’s do a 4× 4 example. As we row reduce, we’ll keep track of the
corresponding elementary matrices. But that also means we need to make sure
we are performing elementary row operations, and only performing one at a time
— no shortcuts!

Example 6.4.4 Consider 4×4 matrix

A =


1 0 0 0
0 5 3 0
0 1 0 0

−2 0 0 1

 .

Row reduce.

A =


1 0 0 0
0 5 3 0
0 1 0 0

−2 0 0 1


R4 +2R1

(
E1 =

[1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 1

])

−→ E1 A =


1 0 0 0
0 5 3 0
0 1 0 0
0 0 0 1

R2 ↔ R3

(
E2 =

[1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

])

−→ E2E1 A =


1 0 0 0
0 1 0 0
0 5 3 0
0 0 0 1

R3 −5R2

(
E3 =

[1 0 0 0
0 1 0 0
0 −5 1 0
0 0 0 1

])

−→ E3E2E1 A =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 1
3 R3

(
E4 =

[1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1

])

−→ E4E3E2E1 A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Notice in this process that each elementary matrix is newly obtained by applying
a row operation to the identity matrix, not by applying a row operation to the
previous elementary matrix in the sequence.

We now have E4E3E2E1 A = I, which suggests that

A−1 = E4E3E2E1

=


1 0 0 0
0 1 0 0
0 0 1

3 0
0 0 0 1




1 0 0 0
0 1 0 0
0 −5 1 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
2 0 0 1



=


1 0 0 0
0 0 1 0
0 1

3 − 5
3 0

2 0 0 1

 .

To check that this is really is the correct inverse for A, you can check that this
matrix multiplied against A in the other order also results in the identity matrix
(i.e. that A(E4E3E2E1)= I as well).

Also, with some matrix algebra, from E4E3E2E1 A = I we can isolate

A = E−1
1 E−1

2 E−1
3 E−1

4

=


1 0 0 0
0 1 0 0
0 0 1 0

−2 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 5 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

 .

Recall that each of these inverse elementary matrices can each be obtained from
the identity matrix using the corresponding reverse operation. You may check
that the result of multiplying these inverses together is A. □

6.4.3 Inversion by row reduction
Let’s illustrate Procedure 6.3.7 using the matrix A from Subsection 6.4.2 above.
Since A is 4×4, we augment A with the 4×4 identity matrix and then row reduce,
being careful to apply our row operations through the entire augmented rows.

Example 6.4.5 We would like to compute the inverse of

A =


1 0 0 0
0 5 3 0
0 1 0 0

−2 0 0 1

 .

Augment with I and reduce.
1 0 0 0 1 0 0 0
0 5 3 0 0 1 0 0
0 1 0 0 0 0 1 0

−2 0 0 1 0 0 0 1


R4 +2R1

−→


1 0 0 0 1 0 0 0
0 5 3 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 0 1 2 0 0 1

R2 ↔ R3
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−→


1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 5 3 0 0 1 0 0
0 0 0 1 2 0 0 1

R3 −5R2

−→


1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 3 0 0 1 −5 0
0 0 0 1 2 0 0 1

 1
3 R3

−→


1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 1

3 − 5
3 0

0 0 0 1 2 0 0 1


The matrix on the right is now our desired inverse,

A−1 =


1 0 0 0
0 0 1 0
0 1

3 − 5
3 0

2 0 0 1

 ,

which agrees with our calculation of A−1 using elementary matrices in Exam-
ple 6.4.4. □

6.5 Theory

In this section.

• Subsection 6.5.1 Inverses of elementary matrices

• Subsection 6.5.2 Inverses versus row operations

• Subsection 6.5.3 More properties of inverses

• Subsection 6.5.4 Solution sets of row equivalent matrices

As mentioned, elementary matrices are precisely the connection we need
between systems of equations and row operations on one hand and matrix
multiplication and inverses on the other.

6.5.1 Inverses of elementary matrices

Let’s first record an important property of elementary matrices we encountered
in Section 6.3.

Lemma 6.5.1 Elementary is invertible. Every elementary matrix is invertible,
and its inverse is also an elementary matrix.

Proof. We have already essentially proved this statement in Subsection 6.3.3. ■

6.5.2 Inverses versus row operations

Now let’s connect inverses to row reduction via elementary matrices.
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Theorem 6.5.2 Characterizations of invertibility. For a square matrix A,
the following are equivalent.

1. Matrix A is invertible.

2. Every linear system that has A as a coefficient matrix has one unique
solution.

3. The homogeneous system Ax= 0 has only the trivial solution.

4. There is some linear system that has A as a coefficient matrix and has one
unique solution.

5. The rank of A is equal to the size of A.

6. The RREF of A is the identity.

7. Matrix A can be expressed as a product of some number of elementary
matrices.

Proof. We will show that each statement of the theorem implies the next.

Whenever Statement 1 is true, then so is Statement 2. We have already seen in
Proposition 5.5.10 that when A is invertible, then also every system with A as
coefficient matrix will have one unique solution.

Whenever Statement 2 is true, then so is Statement 3. If Statement 2 is true
about A, then every system Ax=b with A as coefficient matrix has one unique
solution. In particular, the homogeneous system Ax = 0 (i.e. in the case that
b= 0) has one unique solution. But we know that a homogeneous system always
has the trivial solution x= 0, so that must be the one unique solution.

Whenever Statement 3 is true, then so is Statement 4. We need to verify that
there is at least one example of a system Ax=b that has one unique solution. But
we are already assuming that the homogeneous system Ax= 0 has one unique
solution, so the required example is provided by taking b= 0.

Whenever Statement 4 is true, then so is Statement 5. Suppose that Statement 4 is
true, so that there is at least one example of a system Ax=b that has one unique
solution. Imagine trying to solve this system by row reducing the associated
augmented matrix: [

A b
] row−−−−→

reduce

[
RREF(A) b′ ]

,

where b′ is whatever appears in the “equals” column after all of our row oper-
ations. When we have arrived at the RREF of A in the coefficient matrix part
on the left, and are ready to solve the simplified solution, there should not be be
any free variables. Because free variables would lead to parameters, and hence
infinite solutions, whereas we are assuming that this particular system has only
one unique solution. So every column in the RREF of A must have a leading one.
By definition, the rank of A is equal to the number of leading ones in its RREF,
and so for this A the rank is equal to the number of columns. But A is square, so
the number of columns is the same as the size of A.

Whenever Statement 5 is true, then so is Statement 6. If A is square, so is its
RREF, and both matrices have the same size. And if the rank of A is equal to its
size, then every column in the RREF of A must have a leading one, and these
leading ones must march down the diagonal of A. In a RREF matrix, a column
that contains a leading one must have every other entry equal to zero. Thus, the
RREF of A must be the identity matrix.
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Whenever Statement 6 is true, then so is Statement 7. Suppose that Statement 6
is true, so that A can be reduced to the identity. That is, A can be reduced to I
by some sequence of elementary row operations. Each of these operations has
a corresponding elementary matrix, so there is some collection of elementary
matrices E1,E2, . . . ,Eℓ−1,Eℓ so that

EℓEℓ−1 · · ·E2E1 A = I. (*)

Recall. The elementary matrices need to be multiplied in reverse order because
we apply the first row operation to A by multiplying E1 A, and then the second
operation is applied to that result by multiplying E2(E1 A). And so on.

Now, by Lemma 6.5.1, each of E1,E2, . . . ,Eℓ−1,Eℓ is invertible. Therefore, so
is the product

EℓEℓ−1 · · ·E2E1,

with inverse
E−1

1 E−1
2 · · ·E−1

ℓ−1E−1
ℓ

(Rule 4 of Proposition 5.5.5).
Using this inverse, we can isolate A in (*) above:

Eℓ · · ·E2E1 A = I

(Eℓ · · ·E2E1)−1(Eℓ · · ·E2E1)A = (Eℓ · · ·E2E1)−1I

I A = (Eℓ · · ·E2E1)−1

A = E−1
1 E−1

2 · · ·E−1
ℓ .

So, we have A expressed as a product of the inverses of a collection of elementary
matrices. But by Lemma 6.5.1, each of these inverses is actually an elementary
matrix as well, and so we really have A expressed as a product of a collection of
elementary matrices, as desired.

Whenever Statement 7 is true, then so is Statement 1. If A is equal to a product
of elementary matrices, then since each of those elementary matrices is invert-
ible (Lemma 6.5.1), their product (and hence A) is also invertible (Rule 4 of
Proposition 5.5.5).

Conclusion. We now have a circle of logical deductions. Starting with the
knowledge that any one of the seven statements is true for a particular matrix
A, we can deduce from the logic above that the next statement is true for A, and
then from that, that the next statement is true for A, and so on. When we get
to the last statement, the logic above then requires that the first statement will
also be true for A, and we can continue from there on to the second statement,
and so on, until we are sure that all statements are true for A. Therefore, the
seven statements are equivalent. ■

Remark 6.5.3

• In this theorem, the claim that these seven statements are equivalent for a
particular matrix A means that if we know that any one of the statements
is true for A, then it must be that all seven statements are true for A. For
example, if we had a square matrix that we were able to row reduce to
the identity, then the theorem tells us that that matrix must be invertible,
that every linear system with that matrix as coefficient matrix has one
unique solution, and so on. On the other hand, if we know that any one
of the statements is false for a particular matrix A, then it must be that
all seven statements are false for A. As soon as one statement is known
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to be false for a particular square matrix, it becomes impossible for any of
the other statements to be true for that matrix, since knowing that this
other statement is true implies that all seven statements are true for it,
including the original statement that we already knew was false. And a
statement cannot be both true and false for a particular matrix A.

• It may seem unneccessary or even redundant to have all three of State-
ments 2–4 included in the list in Theorem 6.5.2, but these statements are
definitely not the same. The equivalence of Statement 1 and Statement 2
tells us that when a matrix is invertible, then every system corresponding
to that coefficient matrix has one unique solution, and vice versa. But the
reverse connection would be difficult to use in practice: would you want to
check that every system with a particular square coefficient matrix has one
unique solution in order to conclude that the matrix is invertible? There
are infinity of possible systems to check! The equivalence of Statement 4
and Statement 1 makes the reverse logic easier in practice: if you have just
one example of a linear system with a square coefficient matrix that has
one unique solution, then you can conclude that the matrix is invertible.
Even better, the equivalence of Statement 3 and Statement 1 tells you
that you can just check the corresponding homogeneous system as your one
example of a system with that particular coefficient matrix that has only
one unique solution. Furthermore, the equivalence of Statement 2 and
Statement 4 tells you that once you know one example of a system with
that particular coefficient matrix that has only one unique solution, then
you can conclude without checking that every system with that coefficient
matrix has only one unique solution.

• In the proof of Theorem 6.5.2, the most important link is the one between
Statement 6 and Statement 7, as this equivalence provides the link between
row reducing and elementary matrices. In practice, the link between
Statement 7 and Statement 1 is also important, as it helps us to compute
the inverse of a matrix. But in further developing matrix theory, the most
important link is the one between Statement 1 and Statement 3, as it will
allow us to obtain further general properties of inverses. In particular,
these statements will figure into the proofs of the propositions in the next
subsection.

6.5.3 More properties of inverses

Using our new connections between inverses and row operations, we can expand
our knowledge about inverses in general.

Proposition 6.5.4 Left inverse is inverse. Suppose A and B are square
matrices of the same size such that BA = I. Then A is invertible with A−1 = B.

Proof. We are assuming that we have square matrices A and B so that BA = I.
We would first like to check that A is invertible. By Theorem 6.5.2, we can
instead check that the homogeneous system Ax= 0 has only the trivial solution.
So suppose that x0 is a solution to this system, so that Ax0 = 0. But then we can
carry out two different simplifications of BAx0, one using the assumption BA = I
and one using the assumption Ax0 = 0:

BAx0 = (BA)x0 BAx0 = B(Ax0)

= Ix0 = B0
= x0, = 0.
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Since both simplifications are correct, we have x0 = 0. So what we have discovered
is that because there exists a matrix B so that BA = I, then whenever we think
we have a solution x0 to the system Ax = 0, that solution turns out to be the
trivial solution. Thus, Ax= 0 must have only the trivial solution, and hence A is
invertible (Theorem 6.5.2).

Now that we know that A is invertible, we can use its inverse to manipulate
the equality BA = I:

BA = I

(BA)A−1 = I A−1

B(AA−1)= A−1

BI = A−1

B = A−1.

So, we have that A is invertible and A−1 = B, as desired. ■

Remark 6.5.5 Recall that by definition, to verify that a matrix B is the inverse
of a matrix A, we would need to check that both BA = I and AB = I are true. We
needed both orders of multiplication in the definition of inverse matrix because
order of matrix multiplication matters, and we couldn’t be sure that both BA
and AB would produce the same result. Via the theory of elementary matrices,
we now have the above proposition that allows us to check an inverse by only
checking one order of multiplication: BA = I.

There is nothing special about BA = I versus AB = I. The previous and
following propositions combine to tell us we only need to verify only one of BA = I
or AB = I to check that B is the inverse of A.

Proposition 6.5.6 Right inverse is inverse. Suppose A and B are square
matrices of the same size such that AB = I. Then A is invertible with A−1 = B.

Proof. Here, we are assuming that we have square matrices A and B so that
AB = I, and we again would like to know that A is invertible and that B = A−1.
However, instead of appealing back to Theorem 6.5.2, we can use Proposition 6.5.4
with the roles of A and B reversed: since AB = I, Proposition 6.5.4 says that B
must be invertible and that A = B−1. But inverses are themselves invertible
(Rule 1 of Proposition 5.5.5), so A is invertible with

A−1 = (B−1)
−1 = B,

as desired. ■
In Proposition 5.5.5, we learned that products and powers of invertible ma-

trices are always invertible. It turns out that a product of matrices can only be
invertible if the matrices making up the product are all invertible, and a power
of a matrix can only be invertible if the base matrix is invertible.

Proposition 6.5.7 Invertible products have invertible factors.

1. If the product MN is invertible, where M and N are square matrices of the
same size, then both M and N must be invertible.

2. If the product
M1M2 · · ·Mℓ−1Mℓ

is invertible, where M1, M2, . . . , Mℓ−1, Mℓ are square matrices all of the same
size, then each of M1, M2, . . . , Mℓ−1, Mℓ must be invertible.

3. If power Mℓ is invertible, where M is a square matrix and ℓ is positive
integer, then M must be invertible.
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Proof of Statement 1. Suppose that MN is invertible. Then it has an inverse;
let’s call it X instead of (MN)−1. By definition, this means that

X (MN)= I.

Using Rule 1.e of Item 1, we may rewrite

(X M)N = I.

Applying Proposition 6.5.4 with B = X M and A = N, we may conclude that N is
invertible with inverse

N−1 = X M.

Similarly, since X is the inverse of MN, we may write

(MN)X = I

and rewrite
M(NX )= I.

Applying Proposition 6.5.6 this time, we may conclude that M is invertible with
inverse

M−1 = NX .

■

Proof of Statement 2. We leave the proof of this statement to you, the reader. ■

Proof of Statement 3. This is the special case of Statement 2 where each of
M1, M2, . . . , Mℓ−1, Mℓ is equal to M. ■

As in Proposition 5.5.7, we can turn the statements of Proposition 6.5.7
around to create new facts about singular (i.e. non-invertible) matrices. Note
that the statements below are new statements about singular matrices, related
but not equivalent to the statements in Proposition 5.5.7.

Proposition 6.5.8 Product of singular is singular.

1. If one or both of M or N are singular, where M and N are square matrices
of the same size, then the product MN will also be singular.

2. If one or more of the matrices M1, M2, . . . , Mℓ−1, Mℓ are singular, where
M1, M2, . . . , Mℓ−1, Mℓ are square matrices all of the same size, then the
product

M1M2 · · ·Mℓ−1Mℓ

will also be singular.

3. If M is a singular square matrix, then every power Mℓ (ℓ≥ 1) will also be
singular.

Proof of Statement 1. If the product MN were invertible, then Statement 1 of
Proposition 6.5.7 says that each of M and N would have to be invertible. But we
are assuming that at least one of them is not, so it is not possible for the product
MN to be invertible. ■

Proof of Statement 2. The proof of this statement is similar to the one above for
Statement 1, relying on Statement 2 of Proposition 6.5.7 instead. We leave the
details to you, the reader. ■

Proof of Statement 3. This proof again is similar to that above for Statement 1,
relying on Statement 3 of Proposition 6.5.7 instead. Alternatively, one could view
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this as the special case of Statement 2 of the current proposition, where each
factor Mi is taken to be equal to M. ■

Finally, we can use the link between Statement 1 and Statement 6 of Theo-
rem 6.5.2 to make Proposition 5.5.4 more precise.

Proposition 6.5.9 2×2 invertibility. The general 2×2 matrix A = [a b
c d

]
is

invertible if ad−bc ̸= 0, and is singular if ad−bc = 0.

A look ahead. We will encounter a version of Proposition 6.5.9 that is valid for
every size of square matrix in Chapter 10 (see Theorem 10.5.3).

Proof outline. We explored this in Discovery 6.6.
Start with the matrix A = [a b

c d
]

and row reduce to see whether it is possible
to get to the identity. But in the operations we choose, we need to be careful not
to divide by zero, because the variable entries could be any values, including
some zero. So it will be necessary to break into cases, such as a = 0 versus a ̸= 0,
and the row reduction steps chosen will differ in the different cases. Ultimately,
it will be possible to get the identity as the RREF of A precisely when ad−bc ̸= 0,
and it will be impossible when ad− bc = 0. From here, we may appeal to the
equivalence of Statement 1 and Statement 6 of Theorem 6.5.2. ■

6.5.4 Solution sets of row equivalent matrices
Elementary matrices also give us the tool we need to prove that row equivalent
matrices represent systems with the same solution set. We first recorded the
following as Theorem 2.5.5 in Subsection 2.5.2, but did not prove it there. We
repeat the theorem here, and include a proof.

Theorem 6.5.10 Row equivalent matrices represent systems of equations that
have the same solution set.

Proof. Consider systems A1x=b1 and A2x=b2, where augmented matrices

A′
1 =

[
A1 b1

]
, A′

2 =
[

A2 b2
]

are row equivalent. Then there exists a sequence of elementary row operations
that can be applied to A′

1 to produce A′
2. If we set E to be the product of all the

elementary matrices corresponding to the operations in this sequence, then we
have A′

2 = EA′
1. Because of the way matrix multiplication acts on columns, we

then have [
A2 b2

]= E
[

A1 b1
]= [

EA1 Eb1
]
,

and so we also have

A2 = EA1, b2 = Eb1.

Furthermore, we know that every elementary matrix is invertible (Lemma 6.5.1),
and that products of invertible matrices are invertible (Statement 4 of Proposi-
tion 5.5.5), so we conclude that E is invertible. Therefore, we also have

A1 = E−1 A2, b1 = E−1b2.

We are now in a position to verify that a solution to one system is also a
solution to the other system.

A solution to system A1x = b1 is also a solution to A2x = b2. Suppose
x= x1 solves system A1x=b1, so that A1x1 =b1 is true. Then,

A2x1 = (EA1)x1 = E(A1x1)= Eb1 =b2.

Thus, x= x1 is also a solution to system A2x=b2.
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A solution to system A2x = b2 is also a solution to A1x = b1. Suppose
x= x2 solves system A2x=b2, so that A2x2 =b2 is true. Then,

A1x2 = (E−1 A2)x2 = E−1(A2x2)= E−1b2 =b1.

Thus, x= x2 is also a solution to system A1x=b1.

Conclusion. Since we have now shown that every solution of one system is a
solution to the other system, both systems must have exactly the same solution
set. ■





CHAPTER 7

Special forms of square matrices

7.1 Discovery guide

Recall that the main diagonal of a square matrix refers to the entries on the
diagonal from top left to bottom right. Here are some special types of square
matrices for consideration.

scalar matrix
a scalar multiple of the identity matrix

diagonal matrix
all entries not on the main diagonal are zero

upper triangular matrix
all entries below the main diagonal are zero

lower triangular matrix
all entries above the main diagonal are zero

symmetric matrix
a matrix that is equal to its own transpose

Discovery 7.1 Carry out the following tasks for each of the special types of
matrices defined above. Think in general, and consider every possible size of
matrix, not just 2×2 and 3×3! You don’t need to prove each answer, but you
should be able to articulate an informal justification for each answer that doesn’t
rely on examples (unless it’s a counterexample).

Tip. When considering the questions in this activity for symmetric matrices,
rather than trying to figure things out with examples, it is much easier to work
algebraically with a letter A representing an arbitrary symmetric matrix, and
use the definition of symmetric: AT = A.

(a) Write down both a 2×2 and a 3×3 example of the type. Is it clear why this
type of matrix has been given its particular name?

(b) Does the (square) zero matrix have this type? Does an identity matrix?
Does every 1×1?

(c) If A is a matrix of this type, is every scalar multiple of A also of this type?
Is AT of this type?

(d) If A and B are matrices of this type and of the same size, is their sum of
this type? Their product? A power (with a positive exponent)?

85
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(e) [Omit this task for symmetric matrices.]

Recall that a matrix is invertible if and only if its RREF is the identity
matrix. Based on this, can you come up with a simple condition by which
you can determine whether a matrix of this type is invertible or not?

(f) If A is an invertible matrix of this type, is its inverse also of this type?

Hint (for symmetric matrices). For the case of symmetric matrices, it will
be too complicated to work by examples. Instead, consider the formula
(A−1)T = (AT)−1 from Proposition 5.5.8 and the definition of symmetric
matrix above.

(g) Come up with a condition or set of conditions on the entries ai j of a square
matrix A by which you can determine whether or not A is of this type.

Hint. Here is an example of the type of condition we’re looking for, using
the identity matrix: a square matrix A is equal to the identity matrix if
aii = 1 for all indices i, and ai j = 0 for all pairs of indices i, j with i ̸= j.

Discovery 7.2 Consider matrices

D =

2 0 0
0 3 0
0 0 5

 , A =

 1 1 1
−1 −1 −1

1 1 1

 .

(a) Compute DA. Describe the pattern: multiplying a matrix on the left by a
diagonal matrix is the same as .

(b) Compute AD. Describe the pattern: multiplying a matrix on the right by a
diagonal matrix is the same as .

Discovery 7.3 Consider the upper triangular matrix

U =

2 1 1
0 3 1
0 0 5

 .

(a) Can you decompose U into a sum U = D+P of a diagonal matrix D and a
“purely” upper triangular matrix P?

(b) Can you decompose U into a product U = DR of a diagonal matrix D and
an upper triangular matrix R in REF?

Discovery 7.4 Consider the upper triangular matrix

N =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

(a) Compute N2, N3, and N4. Do you notice a pattern?

(b) Without computing, what is N5? N99?

(c) Make a conjecture (i.e. a guess based on previous examples) about what
will happen if you compute powers of a 5×5 matrix of a similar form, with
all entries equal to 0 except for a line of 1s down the first “superdiagonal.”
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Discovery 7.5 This activity will guide you through proving that the sum of two
diagonal matrices is again diagonal.

Suppose that A and B are diagonal matrices of the same size. (But do not
assume that they have a particular size like 2×2 or 3×3 or etc.)

(a) Describe what our assumption that A is diagonal means about the entries
of A in terms of your answer to Discovery 7.1.g. Then do the same for B.

(b) Decide exactly what you need to check in order to be sure that the sum
A+B is diagonal, in terms of your answer to Discovery 7.1.g. Then carry
out that check, using your answer to Task a.

Discovery 7.6 This activity will guide you through proving that the sum of two
symmetric matrices is again symmetric. Unlike the proof in Discovery 7.5, we
will not need to consider individual entries, since the definition of symmetric
matrix does not refer to individual entries like the definition of diagonal matrix
does.

Suppose that A and B are symmetric matrices of the same size. (But do not
assume that they have a particular size like 2×2 or 3×3 or etc.)

(a) Express what it means for A to be symmetric in mathematical notation,
using the symbols A, T, and =. Then do the same for B.

(b) Express what it would mean for the sum A+B to be symmetric in mathe-
matical notation, similarly to Task a.

(c) Your expressions from Task a are things we are assuming to be true. Your
expression from Task b is the condition that needs to be verified. Carry out
this verification, making sure to use proper LHS vs RHS procedure. In this
verification, you will need to use your assumed knowledge from Task a as
well as an algebra rule from Proposition 4.5.1.
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7.2 Terminology and notation

scalar matrix
a square matrix that is equal to a scalar multiple of the identity
matrix

diagonal matrix
a square matrix where all entries that are not on the main diagonal
are equal to zero

upper triangular matrix
a square matrix where all entries that are below the main diagonal
are equal to zero

lower triangular matrix
a square matrix where all entries that are above the main diagonal
are equal to zero

symmetric matrix
a square matrix that is equal to its own transpose

7.3 Concepts

In this section.

• Subsection 7.3.1 Algebra with scalar matrices

• Subsection 7.3.2 Inverses of special forms

• Subsection 7.3.3 Decompositions using special forms

After writing down examples of these special forms of square matrices in
Discovery 7.1, it should be obvious what these kinds of matrices “look” like. But
we need to appreciate the difference between our conceptions and the technical
definitions of these forms. For example, when we think of an example of an upper
triangular matrix, we are likely to focus on the entries on and above the main
diagonal, because those are what form the “upper triangular” shape, and all the
other entries below the main diagonal are zero. But the technical definition of
upper triangular matrix provided in Section 7.2 focuses on those zero entries
below the main diagonal, and does not mention the entries on or above the main
diagonal at all.

Unlike a conception, a technical definition aims to capture the minimum
information necessary to identify an instance of the concept. For the purposes of
identifying an upper triangular matrix, the entries on or above the main diagonal
are irrelevant and only the zeros below the main diagonal matter, because if any
of those entries were nonzero the matrix in question would most certainly not
be upper triangular. But this minimalism in making technical definitions can
sometimes have surprising side effects, as we discovered in Discovery 7.1. For
example, a diagonal matrix is, by definition, also both upper and lower triangular,
because its entries below and above the main diagonal are all zero. As an extreme
example, a square zero matrix is simultaneously all three of diagonal, upper
triangular, and lower triangular.

Question 7.3.1 Why are these special forms important? □

At this stage, we can state a few reasons why we might be interested in
identifying these matrix forms with special names.
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• For the diagonal and triangular forms, the fact that many of their entries
are zero makes computing with them especially easy, whether with respect
to matrix operations or with respect to solving systems.

• With regards to solving systems, any square matrix in REF (or RREF)
must be upper triangular. And lower triangular is just the transposed
version of upper triangular, so it seems reasonable to identify it along with
the upper triangular form.

• Symmetric matrices play a special role in the geometry of the plane, of
space, and of higher-dimensional “hyperspaces,” as you may discover in a
second course in linear algebra.

• Finally, for each of these forms (including symmetric), you discovered
in Discovery 7.1 that adding or scalar multiplying matrices of the form
resulted in another matrix of the same form. This was also true for products,
powers and inverses, except that a product of two symmetric matrices
may not be symmetric. The fact that matrix operations on these forms
produce results of the same form is an important property in more advanced
abstract algebra.

7.3.1 Algebra with scalar matrices
In Discovery 7.1, you might have noticed how certain rules of matrix algebra
apply to scalar matrices:

kI +mI =(k+m)I
(Rule 2.b of Proposition 4.5.1);

kI −mI =(k−m)I
(Rule 2.b and Rule 2.f of Proposition 4.5.1 combined);

(kI)(mI)= (km)I
(Rule 2.c and Rule 2.d of Proposition 4.5.1 combined with Rule 2 of
Proposition 5.5.1);

(kI)p = kp I
(Rule 4.c of Proposition 4.5.1 combined with Rule 2 of Proposi-
tion 5.5.1);

(kI)−1 = k−1I
(Rule 2 of Proposition 5.5.5 combined with Rule 3 of Proposi-
tion 5.5.1).

So for scalar matrices there seems to be a pattern: the matrix operation can be
achieved by just performing the corresponding scalar operation. This essentially
gives us a way to “inject” the algebra of numbers into the algebra of square
matrices of any given size, an extremely important notion in more advanced
abstract algebra that you may encounter a taste of in a second linear algebra
course.

7.3.2 Inverses of special forms
In Discovery 7.1.e, we examined the invertibility of these various forms of ma-
trices. In Theorem 6.5.2 we learned that a matrix is invertible only if it can
be reduced to the identity. Now, scalar matrices, diagonal matrices, and upper
triangular matrices are already pretty close to being reduced, but we can see
that if any of the diagonal entries of these forms of matrix is zero, then there will
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be no hope of getting a leading one in that column, and so we won’t be able to
reduce to the identity. Thus, a scalar, diagonal, or upper triangular matrix is
only invertible if its diagonal entries are all nonzero. And, since the transpose
of a lower triangular is upper triangular, and since taking a transpose does
not affect invertibility (Proposition 5.5.8), then the same is true about lower
triangular matrices. Analyzing the invertibility of symmetric matrices is a little
more complicated, but in Discovery 7.1.f, we discovered that for each of these
special forms (including symmetric matrices), the inverse of a matrix of that
form is also of that form.

7.3.3 Decompositions using special forms
In Discovery 7.3 we discovered that an upper triangular matrix can be decom-
posed into a sum or a product of a diagonal matrix with a special kind of upper
triangular matrix. Using the matrix from that discovery activity as an example,
we have 2 1 1

0 3 1
0 0 5

=

2 0 0
0 3 0
0 0 5

+

0 1 1
0 0 1
0 0 0

 , (*)

2 1 1
0 3 1
0 0 5

=

2 0 0
0 3 0
0 0 5


1 1

2
1
2

0 1 1
3

0 0 1

 . (**)

The special upper triangular matrix in the product decomposition in (**) is called
a unipotent matrix because its powers will always have that line of ones down
the main diagonal. The special upper triangular matrix in the sum decomposition
in (*) is called a nilpotent matrix because its powers will always have that
line of zeros down the main diagonal, and in fact, just like the nilpotent matrices
you analyzed in Discovery 7.4, if you raise this matrix to an exponent equal to
its size you will get the zero matrix!

A look ahead. Nilpotent matrices play an important role in more advanced
theory of matrix forms, which you might encounter in a second linear algebra
course.

7.4 Examples

In this section.

• Subsection 7.4.1 Computation patterns

7.4.1 Computation patterns
Here we will concentrate mostly on computational patterns involving diagonal
matrices. (Computations involving upper triangular or lower triangular matrices
are somewhat similar — see further below.)

Example 7.4.1 Matrix operations involving diagonal matrices. Let’s look
at each of a sum, product, power, and inverse involving diagonal matrices, in the
3×3 case. 1 0 0

0 2 0
0 0 3

+

 4 0 0
0 −2 0
0 0 6

=

5 0 0
0 0 0
0 0 9


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1 0 0
0 2 0
0 0 3


 4 0 0

0 −2 0
0 0 6

=

 4 0 0
0 −4 0
0 0 18


1 0 0

0 2 0
0 0 3


2

=

1 0 0
0 4 0
0 0 9

=

12 0 0
0 22 0
0 0 32


1 0 0

0 2 0
0 0 3


−1

=

1 0 0
0 1

2 0
0 0 1

3


□

We can easily identify some patterns in the above example.

• We add diagonal matrices by adding corresponding diagonal entries.

• We multiply diagonal matrices by multiplying corresponding diagonal
entries.

• We exponentiate a diagonal matrix by exponentiating each of the diagonal
entries by the same exponent.

• We invert a diagonal matrix by inverting (i.e. taking the reciprocal of) each
of the diagonal entries.

We have some of the same patterns for upper and lower triangular matrices,
at least for the diagonal entries. We’ll demonstrate with some upper triangular
example computations.

Example 7.4.2 Basic matrix operations involving upper triangular ma-
trices. 1 1 1

0 2 1
0 0 3

+

 4 1 1
0 −2 1
0 0 6

=

5 2 2
0 0 2
0 0 9


1 1 1

0 2 1
0 0 3


 4 1 1

0 −2 1
0 0 6

=

4+0+0 1−2+0 1+1+0
0+0+0 0−4+0 0+2+6
0+0+0 0+0+0 0+0+18


=

 4 −1 2
0 −4 8
0 0 18


1 1 1

0 2 1
0 0 3


2

=

1 1 1
0 2 1
0 0 3


1 1 1

0 2 1
0 0 3


=

1+0+0 1+2+0 1+1+3
0+0+0 0+4+0 0+2+3
0+0+0 0+0+0 0+0+9


=

1 3 5
0 4 5
0 0 9


=

12 3 5
0 22 5
0 0 32





92 CHAPTER 7. SPECIAL FORMS OF SQUARE MATRICES

□
Computing the inverse of an upper triangular matrix is not as simple as for a

diagonal matrix — some row reduction will be required, using Procedure 6.3.7.

Example 7.4.3 Inverse of an upper triangular matrix. Augment with the
identity and reduce. 1 1 1 1 0 0

0 2 2 0 1 0
0 0 3 0 0 1

 1
2 R2
1
3 R3

−→

 1 1 1 1 0 0
0 1 1 0 1

2 0
0 0 1 0 0 1

3

R1 −R2

−→

 1 0 0 1 − 1
2 0

0 1 1 0 1
2 0

0 0 1 0 0 1
3

R2 −R3 −→

 1 0 0 1 − 1
2 0

0 1 0 0 1
2 − 1

3
0 0 1 0 0 1

3


With this reduction, we have calculated that1 1 1

0 2 2
0 0 3


−1

=

 1 − 1
2 0

0 1
2 − 1

3
0 0 1

3

 .

□
Again, in these two examples we see the same patterns on the main diagonal

as for diagonal matrices. Products, powers, and inverses of lower triangular
matrices would be similar.

Remark 7.4.4 More patterns with diagonal matrices. In the example
calculations of Discovery 7.2, we also found the following patterns.

• Multiplying a matrix A on the left by a diagonal matrix D multiplies each
row of A by the corresponding diagonal entry of D.

• Multiplying a matrix A on the right by a diagonal matrix D multiplies each
column of A by the corresponding diagonal entry of D.

A look ahead. The second of the patterns described in Remark 7.4.4 will be
important in Chapter 22.

7.5 Theory

In this section.

• Subsection 7.5.1 Algebra of special forms

• Subsection 7.5.2 Invertibility of special forms

Here we record properties of these special forms of matrices relative to the
various matrix operations.

7.5.1 Algebra of special forms
First, we summarize some of the algebra of working with these forms. We have
already explored proving parts of the proposition below in Discovery 7.5 and
Discovery 7.6, so below we provide similar proofs for a couple more parts.

Proposition 7.5.1

1. The result of adding two diagonal matrices, scalar multiplying a diagonal
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matrix, multiplying two diagonal matrices, taking an inverse of a diagonal
matrix, or taking a power (positive or negative) of a diagonal matrix is
always a diagonal matrix.

2. Statement 1 remains true

• when all occurrences of the word “diagonal” are replaced by “scalar,”
or

• when all occurrences of the word “diagonal” are replaced by “upper
triangular,” or

• when all occurrences of “diagonal” are replaced by “lower triangular.”

3. Statement 1 remains true when all occurrences of the word “diagonal” are
replaced by “symmetric,” except that the product of two symmetric matrices
may not be symmetric.

Partial proof of Statement 2. We will prove that the result of scalar multiplying
an upper triangular matrix is again upper triangular. As we discovered in
Discovery 7.1.g, an upper triangular matrix U is characterized by having all
entries ui j equal to 0 for i > j (i.e. entries below the main diagonal). The scalar
multiple kU has entries [kU]i j = kui j, so if ui j = 0 for i > j, then also kui j = 0 for
i > j, and the matrix kU is also upper triangular. ■

Partial proof of Statement 3. We will prove that the inverse of an invertible,
symmetric matrix is again symmetric. So suppose that A is both invertible and
symmetric. By definition of symmetry, this means that A is equal to its own
transpose. We would like to verify that A−1 is also symmetric; that is, that A−1

is equal to its own transpose. Let’s do that, using proper LHS vs RHS procedure
for the proposed equality (A−1)T = A−1:

LHS= (A−1)
T

= (AT)
−1

(i)

= (A)−1 (ii)

=RHS,

with justifications

(i) Proposition 5.5.8; and

(ii) AT = A by symmetric assumption.

■

7.5.2 Invertibility of special forms
Finally, we record our observations about the invertibility of some of these special
forms. The following fact was already discussed in Subsection 7.3.2, so we will
not formally prove it.

Proposition 7.5.2 An upper or lower triangular matrix is invertible precisely
when the entries on its main diagonal are all nonzero.

Special case. Since scalar and diagonal matrices are just particular forms of
triangular matrix, Proposition 7.5.2 applies to scalar and diagonal matrices as
well.





CHAPTER 8

Determinants

8.1 Discovery guide

Discovery 8.1 Consider the generic 2×2 matrix A and the “mixed up” version
Amix:

A =
[
a b
c d

]
, Amix =

[
d −c

−b a

]
.

(a) Compute AAT
mix. Then fill in the blank.

AAT
mix = ( )I (*)

(b) Modify equation (*) algebraically to fill in the blank.

A( )= I (**)

(c) Recall that if the product of two square matrices is equal to I, then those
matrices must be inverses of each other (Proposition 6.5.4 and Proposi-
tion 6.5.6). With this knowledge, compare equation (**) with Proposi-
tion 5.5.4.

(d) What needs to be true about a,b, c,d for the algebra in Task b to be valid?
Why?

The goal of this and the next two discovery guides (along with the correspond-
ing chapters) is to develop something similar to the results of the first discovery
activity above for larger square matrices. First, we will start by extending the
2×2 formula ad−bc. This formula determines whether a 2×2 matrix is invertible
or not, so we call it the determinant of the matrix.

We will actually start back at 1×1 matrices, and build up from there.

Discovery 8.2 Consider the generic 1×1 matrix A = [
a
]
.

(a) The inverse of A = [
a
]

is A−1 =
[ ]

, but this only works if

.

(b) So before attempting to compute A−1, we can determine whether this
attempt will be successful by looking at the matrix A = [

a
]

and considering
the single number .

(Make sure your response is always a number!)

95
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To build up to larger matrices, we need to take it step-by-step.

Discovery 8.3 For an n×n matrix with n > 1, the (i, j)th minor (denoted Mi j)
is the determinant of the smaller submatrix obtained by removing the row and
column that contain the (i, j)th entry.

Since you know how to compute 1×1 determinants, you can now compute all
four minors (M11, M12, M21, M22) of the matrix[ −1 3

−4 2

]
.

Discovery 8.4 The (i, j)th cofactor of a matrix (denoted Ci j) is defined to be
the (i, j)th minor, except that we multiply it by −1 when i+ j is odd. That is,
Ci j = (−1)i+ j Mi j. Compute all four cofactors (C11,C12,C21,C22) for the matrix
from Discovery 8.3. (You’ve already computed the minors, now you just need to
make some of them negative.)

Discovery 8.5 We now initially define the determinant of a matrix to be
a combination of entries and cofactors along the first row. To compute the
determinant, multiply each entry in the first row by its own cofactor, and then
add all these together. For a 2×2 matrix, the formula is

det A = a11C11 +a12C12.

Use this formula to compute the determinant of the matrix from Discovery 8.3.

Discovery 8.6 Use det A = a11C11 +a12C12 to compute the determinant of the
generic 2×2 matrix [

a b
c d

]
.

Surprised?

Discovery 8.7 Compute the determinant of the 3×3 matrix 3 1 0
−2 −2 1

0 1 −1

 .

Use the same sort of “cofactor expansion along the first row” as before; that is,
“entry times cofactor plus entry times cofactor plus entry times cofactor . . . ” along
the first row, except now your cofactor calculations will involve 2×2 determinants.

Tip. In light of Discovery 8.6, just use the ad−bc formula to calculate determi-
nants of 2×2 submatrices.

Discovery 8.8 For this activity, use the same matrix as Discovery 8.7.

(a) Try computing a cofactor expansion along a different row.

(b) Now try along a column.

What did you find in these calculations? Make a conjecture about cofactor
expansions along different rows or columns in a matrix in general.

Discovery 8.9 Recall the cofactor formula: Ci j = (−1)i+ j Mi j. The (−1)i+ j part
will be 1 when i+ j is even and −1 when i+ j is odd. In a 2×2 matrix this makes
a pattern:

[+ −− +
]
.

Make similar matrices of +/− for the patterns of cofactor signs in 3×3 and
4×4 matrices.
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Discovery 8.10

(a) Using your finding from Discovery 8.8 as appropriate, come up with sim-
ple formulas for the determinant of diagonal matrices, upper triangular
matrices, and lower triangular matrices.

Hint. In these special matrices, there are some rows/columns that are
easier to use in a cofactor expansion than others.

(b) What is det0? . . . det I? Are the answers the same for every size of zero/
identity matrix?
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8.2 Terminology and notation

(i, j)th minor of a square matrix A
the determinant of the smaller square matrix obtained from A by
removing the ith row and the jth column
— written Mi j

(i, j)th cofactor of a square matrix A
equal to either the corresponding minor of A or its negative, depend-
ing on whether i+ j is even or odd
— written Ci j

cofactor expansion along the ith row of square matrix A
the formula ai1Ci1 + ai2Ci2 + ·· · + ainCin, where Ci j denotes the
(i, j)th cofactor of A

cofactor expansion along the jth column of square matrix A
the formula a1 jC1 j +a2 jC2 j +·· ·+an jCn j, where again Ci j denotes
the (i, j)th cofactor of A

determinant
the common value of all cofactor expansions of a particular square
matrix
— written det A

det A notation to represent the value of the determinant of a square matrix
A

Alternative determinant notation. When computing cofactor expansions,
we are often performing determinant calculations inside determinant calcula-
tions, and it becomes awkward to have det symbols littered throughout our
intermediate calculations. So we will also write |A| to mean the determinant of a
matrix, especially for actual matrices. For example,

A =

1 2 3
4 5 6
7 8 9

 =⇒ det A =

∣∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣∣ .

8.3 Concepts

In this section.

• Subsection 8.3.1 Definition of the determinant

• Subsection 8.3.2 Determinants of 1×1 matrices

• Subsection 8.3.3 Determinants of 2×2 matrices

• Subsection 8.3.4 Determinants of larger matrices

• Subsection 8.3.5 Determinants of special forms

In Discovery 8.1, we discovered that for every 2×2 matrix A there is a related
matrix A′ so that the product AA′ is a scalar multiple of the identity matrix.
Call this scalar δ for now. If δ ̸= 0, we can do some algebra to get

AA′ = δI =⇒ A(δ−1 A′)= I,
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which means that A must be invertible with A−1 = δ−1 A′ (Proposition 6.5.6).

Goal 8.3.1 For a square matrix A of any size, determine a scalar δ and a matrix
A′ so that AA′ = δI.

Now, we could achieve this goal by always choosing δ= 0 and A′ = 0, but that
won’t help us replicate for larger matrices the patterns we discovered in the 2×2
case. We will find that there is a very particular procedure to achieve this goal
that works for every square matrix and recovers the 2×2 case above, so we will
tackle the goal in two parts:

1. determine the scalar δ for each square matrix A, and then

2. determine how to construct the matrix A′ that goes along with it.

The process of producing the scalar δ is then a function on square matrices.
For a particular square matrix A, we will call the output δ of this function the
determinant of A, and usually write det A instead of δ.

Idea 8.3.2 If AA′ = (det A)I, then in the case that det A ̸= 0, from

A
(
(det A)−1 A′)= I

and Proposition 6.5.6 we know both that A is invertible and its inverse must be
(det A)−1 A′, as in the 2×2 case discussed above. Also, we will learn in Chapter 10
that when det A = 0, then A must be singular. So the value of the determinant of
a matrix will determine whether or not it is invertible.

For now, we will concentrate on the first step and learn how to compute
determinants, as it turns out that the “companion” matrix A′ will be constructed
out of determinants of submatrices of A. We will discuss this special matrix and
complete our goal in Chapter 10.

8.3.1 Definition of the determinant
It may seem from Section 8.2 that the definition of determinant is circular — we
define the determinant in terms of entries and cofactors (via cofactor expansions),
where cofactors are defined in terms of minors, which are defined in terms of
. . . determinants? But the key word in the definition of minor is smaller —
determinants are defined recursively in terms of smaller matrices. In Discovery
guide 8.1, after first exploring the determinant of a 2×2 matrix as motivation, we
started afresh with a precise definition of the 1×1 determinant, and then defined
the 2×2 determinant in terms of 1×1 determinants. Then the 3×3 determinant
is defined in terms of 2×2 determinants, and so on. As we will see in examples in
Section 8.4, computing a determinant from this recursive definition will involve
unpacking it in terms of determinants of one smaller size, then unpacking those
in terms of determinants of one size smaller again, and so on. Technically, this
process should continue until we are down to a bunch of 1×1 determinants, but
since there is a simple formula for a 2×2 determinant, in direct computations
we will stop there.

Warning 8.3.3 Computing determinants by cofactor expansions is extremely
inefficient, whether by hand or by computer. For example, for a 10×10 matrix,
the recursive process of a cofactor expansion could eventually require you to
compute more than 1.8 million 2×2 determinants. In the next chapter we will
discover that we can also compute determinants by . . . you guessed it, row
reduction! (And there are other, more efficient methods for determinants by
computer — we will leave those to a numerical methods course.) But again, the
goal of this course is not to turn you into a super-efficient computer. We want to
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understand and be somewhat proficient at computing determinants by cofactor
expansions so that we can think about and understand them in the abstract
while we develop the theory of determinants.

8.3.2 Determinants of 1×1 matrices

Consider the general 1×1 matrix A = [
a
]
. We should expect the invertibility

of A to be completely determined by the value of the single entry a, since that
is all the information that A contains. And that is precisely the case, as A is
invertible when a ̸= 0, with A−1 = [

a−1]
, and A is singular when a = 0, because

then A would be the zero matrix. Since entry a determines the invertibility of A,
we set det

[
a
]= a.

8.3.3 Determinants of 2×2 matrices
In Discovery 8.6, we calculated the determinant of the general 2×2 matrix to be

det
[
a b
c d

]
= ad−bc,

using a cofactor expansion along the first row. (We leave it up to you, the reader,
to check that a cofactor expansion along a column or along the second row yields
the same result.) And we already verified by row reducing that a 2×2 matrix is
invertible precisely when ad−bc ̸= 0 (Proposition 6.5.9).

8.3.4 Determinants of larger matrices
In Discovery 8.2–8.7, we used an inductive process to build up from computing
1×1 determinants to 3×3 determinants. The inductive process continues for
larger matrices to provide a formula for the determinant of an n×n matrix for
every n via a cofactor expansion along the first row:

det A = a11C11 +a12C12 +a13C13 +·· ·+a1nC1n. (*)

And we saw in Discovery 8.8 that can replace the cofactor expansion in (*) with a
cofactor expansion along any row or column of our choosing and get the same
result.

Inductive versus recursive. Induction and recursion are two sides of the
same coin. Both are step-by-step processes. In an inductive process, we build
up step-by-step, using the results of the previous step to create the process for
the next step. Theoretically, we imagine this process could continue forever,
effectively establishing all infinity of the possible steps/cases. In a recursive
process, we work backwards from a particular step/case, repeatedly decomposing
the current case into a process/calculation of the type of the previous case. In
the case of calculations or algorithms, an inductive process usually leads to a
recursive algorithm. If you undertake further studies in mathematics and/or
computing science you will encounter induction and recursion frequently.

While we have a convenient general formula for 2×2 matrices in terms of
the four entry variables, we certainly wouldn’t want to attempt to write out
a general formula for the determinant of a 5×5 matrix in twenty-five entry
variables. Instead, for matrices larger than 2×2, computing a determinant for a
specific matrix from a cofactor expansion is a recursive process, since cofactors
are just minor determinants with some sign changes. A cofactor expansion for an
n×n matrix requires n cofactor calculations. Each of those cofactor calculations
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is a determinant calculation of some (n−1)× (n−1) “submatrices”. Each of those
determinants, if calculated by cofactor expansion, will require n−1 determinant
calculations of various (n−2)× (n−2) “submatrices”. And so on. As you can see,
the number of calculations involved grows out of hand quite quickly, even for
single-digit values of n.

We will work through some 3×3 and 4×4 cofactor expansions in Section 8.4,
but we will develop a more efficient determinant calculation procedure based on
row operations in Chapter 9. For now, let’s record the cofactor sign patterns from
Discovery 8.9. Remember that a cofactor is equal to either the corresponding
minor determinant or its negative, depending on whether the sum i+ j of row and
column indices is even or odd. This extra “sign” portion of the cofactor formula
in terms of minor determinants will alternate from entry to entry, since as we
move along a row or along a column, only one of i or j will change, and so i+ j
will flip from even to odd or vice versa. So the cofactor signs follow the patterns,

3×3:
[+ − +− + −+ − +

]
, 4×4:

[+ − + −− + − ++ − + −− + − +

]
, 5×5:

[+ − + − +− + − + −+ − + − +− + − + −+ − + − +

]
, (8.3.1)

and so on.

8.3.5 Determinants of special forms
In Discovery 8.10, we examined the determinant of diagonal and triangular
matrices. Let’s consider the case of a diagonal matrix:

D =


d1 0 · · · 0

0 d2
. . .

...
...

. . .
. . . 0

0 · · · 0 dn

 .

A cofactor expansion along the first column will look like

d1C11 +0 ·C21 +0 ·C31 +·· ·+0 ·Cn1.

Because of all of those zero entries, the only cofactor we actually need to compute
is C11, and the cofactor expansion collapses to just the entry d1 times its cofactor.
But the cofactor sign of the (1,1) entry is positive, so we really just get d1 times
its minor determinant:

detD = d1

∣∣∣∣∣∣∣∣∣∣∣

d2 0 · · · 0

0 d3
. . .

...
...

. . .
. . . 0

0 · · · 0 dn

∣∣∣∣∣∣∣∣∣∣∣
.

This minor determinant is again a diagonal matrix, so we can again expand
along the first column to get a similar result. And the pattern will continue until
we finally get down to a 1×1 minor

detD = d1d2

∣∣∣∣∣∣∣∣∣∣∣

d3 0 · · · 0

0 d4
. . .

...
...

. . .
. . . 0

0 · · · 0 dn

∣∣∣∣∣∣∣∣∣∣∣
= d1d2d3

∣∣∣∣∣∣∣∣∣∣∣

d4 0 · · · 0

0 d5
. . .

...
...

. . .
. . . 0

0 · · · 0 dn

∣∣∣∣∣∣∣∣∣∣∣
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= ·· · = d1d2 · · ·dn−2

∣∣∣∣dn1 0
0 dn

∣∣∣∣= d1d2 · · ·dn−1
∣∣[dn]

∣∣
= d1d2 · · ·dn−1dn.

So the determinant of a diagonal matrix is equal to the product of its diagonal
entries.

What if we apply this pattern to an n× n scalar matrix kI? Since such a
matrix has the entry k repeated down the diagonal n times, the determinant will
be n factors of k multiplied together, so that det(kI)= kn. Applying this formula
to the zero matrix (k = 0) and the identity matrix (k = 1), we have

det0= 0, det I = 1.

When computing the determinant of an upper triangular matrix, a similar
pattern of computation as in the diagonal case would arise, because choosing to
always expand along the first column would result in diagonal entry times an
upper triangular minor determinant. And the same pattern would repeat for
lower triangular matrices, but for those it is best to expand along the first row.

8.4 Examples

In this section.

• Subsection 8.4.1 Determinants of 2×2 matrices

• Subsection 8.4.2 Minors and cofactors of 3×3 matrices

• Subsection 8.4.3 Determinants of 3×3 matrices

• Subsection 8.4.4 Minors and cofactors of 4×4 matrices

• Subsection 8.4.5 Determinants of 4×4 matrices

8.4.1 Determinants of 2×2 matrices
An easy way to remember the 2×2 determinant formula is with a crisscross
pattern, as illustrated below for general 2×2 matrix A = [a b

c d
]
.

a b
c d

∣∣∣∣∣∣
∣∣∣∣∣∣det A = = ad−bc.

Example 8.4.1 Determinant of a 2×2 matrix. For A = [1 2
3 4

]
, we have

1 2
3 4

∣∣∣∣∣
∣∣∣∣∣det A = = 1 ·4−2 ·3= 4−6=−2.

□
Watch out for double negatives! The next example illustrates the occurrence

of a double negative in a determinant calculation.

Example 8.4.2 Another 2×2 determinant. For A = [ 1 2
−3 4

]
, we have

1 2
−3 4

∣∣∣∣∣
∣∣∣∣∣det A = = 1 ·4−2 · (−3)= 4+6= 10.

□
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8.4.2 Minors and cofactors of 3×3 matrices

8.4.2.1 Minors

A minor determinant is just a one-size-smaller determinant. To obtain that
smaller matrix, we remove one row and one column. Usually we specify which
to remove by focusing on a single entry and removing the row and column that
contain the entry.

Example 8.4.3 Minor determinants in a 3×3 matrix. Let’s compute a couple
of minor determinants in the matrix from Discovery 8.7: 3 1 0

−2 −2 1
0 1 −1

 .

The notation M11 means the minor associated to the (1,1) entry, so we should
remove both the first row and the first column, leaving behind a 2×2 matrix.

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣M11 = = −2 1

1 −1

∣∣∣∣∣
∣∣∣∣∣

We can now compute this minor determinant using the ad−bc pattern for
2×2 determinants.

−2 1
1 −1

∣∣∣∣∣
∣∣∣∣∣M11 = = (−2) · (−1)−1 ·1= 2−1= 1.

Now let’s try the M23 minor determinant. This time we should remove the
second row and the third column.

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣M23 = = 3 1

0 1

∣∣∣∣∣
∣∣∣∣∣

Again, from here we compute this minor determinant using the ad − bc
pattern.

3 1
0 1

∣∣∣∣∣
∣∣∣∣∣M23 = = 3 ·1−1 ·0= 3−0= 3.

□

8.4.2.2 Cofactors

A cofactor just takes a minor determinant and (sometimes) flips its sign: when
the corresponding entry is at an “even” position then the cofactor is equal to
the minor determinant value, and when the corresponding entry is at an “odd”
position then the sign is flipped.

Example 8.4.4 Cofactors in a 3×3 matrix. Let’s continue Example 8.4.3
above. The minor determinant M11 corresponds to the (1,1) entry in the matrix,
which is at an “even” position since 1+1= 2 is even. So the corresponding cofactor
value is equal to the minor determinant value:

C11 = M11 = 1.
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But the minor determinant M23 corresponds to the (2,3) entry in the matrix,
which is at an “odd” position since 2+3= 5 is odd. So the corresponding cofactor
value is equal to the negative of the minor determinant value:

C23 =−M23 =−3.

□

8.4.3 Determinants of 3×3 matrices
For a 3×3 matrix, we choose a single row or column and perform a cofactor
expansion. It’s usually best to choose the row or column with the most zeros,
since for a zero entry the “entry times cofactor” part of the expansion for that
entry will be zero no matter the value of the cofactor, and we don’t actually
have to calculate that cofactor. Also, we will use our cofactor sign patterns from
Subsection 8.3.4 (see Pattern (8.3.1)), instead of calculating (−1)i+ j explicitly.

Example 8.4.5 Determinant of a 3×3 matrix along a row. Let’s compute
the determinant of the matrix from Discovery 8.7: 3 1 0

−2 −2 1
0 1 −1

 .

Any of the first row or column or the third row or column would be good choices
as they all contain a zero entry. Let’s choose the third row, since it also contains
some 1s, which will simplify things a bit. Notice how we have also annotated
that row with the cofactor sign pattern.

3 1 0
−2 −2 1

0+ 1− −1+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A =

Now expand along that third row.

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A = 0 · − 1 ·

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ + (−1) ·

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

The minus sign between the first two terms in the expansion is the proper
cofactor sign for the middle entry of the third row. Also, recall that a cofactor
for an entry involves the minor for that entry — the determinant of the smaller
matrix obtained by removing the row and column in which that entry sits. We
have indicated each removal of a row or column by a strike-through. Since A
is 3×3, all of its minors are 2×2 determinants that we can compute with our
crisscross pattern. However, since the (3,1) entry is 0, there is no need to compute
the (3,1) minor.

3 0
−2 1

∣∣∣∣∣
∣∣∣∣∣det A = 0 − 1 · + (−1) · 3 1

−2 −2

∣∣∣∣∣
∣∣∣∣∣

Using our crisscross pattern for 2×2 determinants, we can now compute

det A = 0−1 · [3 ·1−0 · (−2)
]+ (−1) · [3 · (−2)−1 · (−2)

]
=−3+ (−1)(−4)

= 1.

□
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Just to check, let’s compute the determinant in the above example again
using a cofactor expansion along the second column.

Example 8.4.6 Determinant of a 3×3 matrix along a column. Let’s again
compute the determinant of the matrix from Discovery 8.7, but this time along
the middle column.

3 1− 0
−2 −2+ 1

0 1− −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A =

Expand along the chosen column.

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A =−1 · + (−2) ·

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ − 1 ·

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

In the expansion, the negative sign in front of the first term and the minus
sign between the second and third terms are from the cofactor sign pattern for
the second column.

Now reduce to a combination of 2×2 determinants.

−2 1
0 −1

∣∣∣∣∣
∣∣∣∣∣det A =−1 · + (−2) · 3 0

0 −1

∣∣∣∣∣
∣∣∣∣∣ − 1 · 3 0

−2 1

∣∣∣∣∣
∣∣∣∣∣

Apply the 2×2 crisscross pattern.

det A = (−1)(2−0)+ (−2)(−3−0)−1 · (3−0)

=−2+6−3

= 1.

□
In the end, we got the same result as our first calculation, which is not a

coincidence — see Theorem 8.5.1.

8.4.4 Minors and cofactors of 4×4 matrices
Applying the one-size-smaller pattern again, a minor determinant in a 4×4
matrix is the determinant of a 3×3 matrix obtained by removing one row and
one column. And again cofactor values are equal to minor determinant values,
except that we flip the signs for values associated to “odd” positions with the 4×4
matrix.

Example 8.4.7 Consider the matrix
−1 3 1 0
−5 6 7 8

2 −2 −2 1
2 0 1 −1

 .

To compute the M21 minor determinant, we remove the second row and the first
column.

−1 3 1 0
−5 6 7 8

2 −2 −2 1
2 0 1 −1

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
M21 = =

3 1 0
−2 −2 1

0 1 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
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You might recognize this 3×3 matrix as the same as the one from the examples
in Subsection 8.4.3, so we already know its determinant. Also, the (2,1) entry in
the original 4×4 matrix is in an “odd” position since 2+1= 3 is odd, so must flip
the sign to obtain the C21 cofactor value from the M21 minor determinant value:

M21 = 1, C21 =−M21 =−1.

□

8.4.5 Determinants of 4×4 matrices
Finally, here is a 4×4 example. We’ll do one with a few zeros, so that it doesn’t
get too out of hand.

Example 8.4.8 Determinant of a 4×4 matrix. Consider

A =


1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

 .

Let’s choose the third row, as that has two zero entries.

1 −1 2 1
2 0 1 1
0+ 1− 0+ −3−

1 −2 −1 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
det A =

The cofactor expansion along the chosen row will involve only two 3×3 minor
determinant calculations — minor determinants M31 and M33 will not be needed,
since their corresponding entries are 0.

1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
det A = 0 ·M31 −1 · + 0 ·M33 − (−3) ·

1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
Next we choose a row or column in each of the remaining minor determinants.

1 2 1+

2 1 1−

1 −1 0+

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A =− + 3 ·

1 −1 2
2− 0+ 1−

1 −2 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

Notice how the cofactor signs in the chosen row/column follow the 3×3 pattern,
not the 4×4 pattern from the original matrix.

Now expand each of these 3×3 minor determinants.

1 2 1
2 1 1
1 −1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣det A = − (1 · − 1 ·

1 2 1
2 1 1
1 −1 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ + 0 ·M33)

1 −1 2
2 0 1
1 −2 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣+ 3 · (−2 · + 0 ·M22 − 1 ·

1 −1 2
2 0 1
1 −2 −1

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ )
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Now reduce to a combination of 2×2 determinants.

2 1
1 −1

∣∣∣∣∣
∣∣∣∣∣det A =− ( − 1 2

1 −1

∣∣∣∣∣
∣∣∣∣∣ ) + 3 · (−2 · −1 2

−2 −1

∣∣∣∣∣
∣∣∣∣∣− 1 −1

1 −2

∣∣∣∣∣
∣∣∣∣∣ )

Finally, we can apply the 2×2 criss-cross pattern as illustrated above.

det A =−(
(−2−1)− (−1−2)

)+3
(
−2

(
1− (−4)

)− (−2− (−1)
))

=−(−3+3)+3(−10+1)

=−27.

□

8.5 Theory

In this section.

• Subsection 8.5.1 Basic properties of determinants

8.5.1 Basic properties of determinants
The following justifies our definition of the determinant as the common value of
all cofactor expansions of a matrix.

Theorem 8.5.1 Uniformity of cofactor expansions. Every cofactor expansion
of a given square matrix, whether along a row or a column, evaluates to the same
value.

Proof. The proof of this theorem is beyond the scope of this course; instead see [2,
3]. ■

Finally, let’s record the determinants of special forms of matrices we dis-
cussed in Subsection 8.3.5. However, we omit the proofs since we have already
considered in detail the patterns behind the proofs in that earlier discussion.

Proposition 8.5.2 Determinants of special forms.

1. For a matrix that is diagonal or triangular, the determinant is equal to the
product of the diagonal entries.

2. For a scalar matrix, det(kI)= kn.

3. det0= 0 for a square zero matrix.

4. det I = 1.





CHAPTER 9

Determinants versus row operations

9.1 Discovery guide

Discovery 9.1 What is det A if A is a square matrix with a row of zeros? Explain
by referring to a cofactor expansion.

Discovery 9.2 Consider the matrix1 1 1
2 1 1
3 1 0

 .

(a) Compute the determinant by cofactor expansion along the first row.

(b) Now swap the first and second rows, and compute the determinant of the
new matrix by cofactor expansion along the second row (which will now
have the entries of first row of the original matrix). Why do you think you
got the answer you did?

Hint. Do you remember the cofactor sign patterns? If not, see Pat-
tern (8.3.1).

(c) Do you think the same thing will happen if you swap the second and third
rows of the original matrix?

(d) What about if you swap the first and third rows of the original matrix?

(e) What if you swap the 1st and 2nd rows of the original matrix, then swap
the 2nd and 3rd rows of that matrix, and then swap the 1st and 2nd rows of
that matrix? Do you want to change your answer to Task d?

(f) Complete the rule: If B is obtained from A by swapping two rows, then
detB is related to det A by .

(g) Complete the rule: If E is an elementary matrix of the “swap two rows”
type, then detE = .

Hint. How do you create an elementary matrix?

Discovery 9.3 Suppose A is a square matrix with two identical rows. What
happens to the matrix when you swap those two identical rows? According to
Discovery 9.2, what is supposed to happen to the determinant when you swap
rows? What can you conclude about det A?

109
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Discovery 9.4 Consider the matrix from Discovery 9.2.

(a) Multiply the first row by 7, and compute the determinant of the new matrix.
Do you think the same will happen if you multiplied some other row of the
matrix by 7? Explain by referring to cofactor expansions.

(b) Complete the rule: If B is obtained from A by multiplying one row by k,
then detB is related to det A by .

(c) Complete the rule: If E is an elementary matrix of the “multiply a row by k”
type, then detE = .

Hint. How do you create an elementary matrix?

(d) Suppose you multiply the whole matrix by 7. What happens to the determi-
nant in that case?

Hint. How many rows are you multiplying by 7?

(e) Complete the rule: For scalar k and n×n matrix A, det(kA)= .

Hint. If you multiply a whole matrix by a scalar, you are in effect multi-
plying every row by that scalar.

Discovery 9.5 Suppose A is a square matrix where one row is equal to a multiple
of another. Combine your answer to Discovery 9.3 with a rule from Discovery 9.4
to determine det A.

Discovery 9.6 Consider the generic 3×3 matrixa11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Its determinant is a11C11 +a12C12 +a13C13.
Suppose we add k times the second row to the first:a11 +ka21 a12 +ka22 a13 +ka23

a21 a22 a23

a31 a32 a33

 .

(a) Has this row operation changed the cofactors of entries in the first row?

(b) Write out the cofactor expansion along the first row for the new matrix.
Then use some algebra to express this cofactor expansion as:

(some formula)+k(some other formula).

The first “some formula” should look familiar. Can you craft a 3×3 matrix
so that “some other formula” can be similarly interpreted?

(c) What is the value of the “some other formula” part from Task b?

Hint. Discovery 9.3

(d) Complete the rule: If B is obtained from A by adding a multiple of one row
to another, then detB is related to det A by .

(e) Complete the rule: If E is an elementary matrix of the “add a multiple of
one row to another” type, then detE = .

Hint. How do you create an elementary matrix?
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9.2 Concepts

In this section.

• Subsection 9.2.1 Swapping rows: effect on determinant

• Subsection 9.2.2 Multiplying rows: effect on determinant

• Subsection 9.2.3 Combining rows: effect on determinant

• Subsection 9.2.4 Column operations and the transpose

• Subsection 9.2.5 Determinants by row reduction

We would like to connect determinants to invertibility, and as always row
operations are the way to do so.

9.2.1 Swapping rows: effect on determinant
Swapping adjacent rows. In Discovery 9.2, we first explored what happens
to a determinant if we swap adjacent rows in a matrix, and we discovered the
following. Suppose we take square matrix A and swap row i with row i+1, which
are adjacent, obtaining new matrix A′. Compared to a cofactor expansion of
det A along row i, a cofactor expansion of det A′ along row i+1 has all the same
entries and minor determinants, because the (i+1)th row in A′ now contains the
entries from the ith row in A, and vice versa. However, the cofactor signs along
the (i+1)th row are all the opposite of those along the ith row. Therefore, all the
terms in the cofactor expansions of det A and det A′ are negatives of each other,
and so det A′ =−det A. We concluded that swapping adjacent rows changes
the sign of the determinant.

Swapping (possibly) non-adjacent rows. Now, it might seem that we might
sometimes get det A′ to be equal to det A if we swapped non-adjacent rows. In
particular, if we swapped two rows that were separated by a single other row
(as in Discovery 9.2.d), the two rows would have the same pattern of cofactor
signs, and our thinking above might would lead to det A′ = det A in this case.
However, it turns out that any swap of rows can be achieved by an odd number of
consecutive adjacent row swaps, and an odd number of sign changes will have a
net result of changing the sign. So any swap of a pair of rows changes the
sign of the determinant.

Matrices with two identical rows. In Discovery 9.3, we paused to consider
a consequence of this effect of swapping rows on the determinant. Suppose a
square matrix has two identical rows. If we swap those two particular rows,
then from our discussion above we expect the determinant of the new matrix
obtained from this operation to be the negative of the determinant of the original
matrix. But if those rows are identical, then swapping them has no effect and
the determinants of the new and old matrices should be equal. Since the only
number that remains unchanged when its sign is changed is zero, we conclude
that a square matrix with two (or more) identical rows has determinant
0.

Corresponding elementary matrices. Recall that elementary matrices are
obtained from the identity by a single row operation. So if we take the identity
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matrix (which has determinant 1) and swap two rows to obtain the elementary
matrix that corresponds to that operation, then that elementary matrix must
have determinant −1.

9.2.2 Multiplying rows: effect on determinant
Multiplying a single row by a scalar. In Discovery 9.4, we first explored
what happens to a determinant if we multiply a single row in a matrix, and we
discovered the following. Suppose we take square matrix A and multiply row i
by the constant k, obtaining new matrix A′. Compared to a cofactor expansion
of det A along row i, a cofactor expansion of det A′ along row i has all the same
minor determinants, because the entries in all the other rows are still the same
as in A. However, when we add up all the “entry times cofactor” terms in a
cofactor expansion of det A′ along row i, there is the new common factor of k
from the scaled entries of that row. If we factor that common k out, we are left
with exactly the cofactor expansion of det A along row i. Hence, multiplying a
single row in a matrix scales the determinant by the same factor.

Multiplying a whole matrix by a scalar. In Discovery 9.4.d and Discov-
ery 9.4.e, we also considered what happens if we multiply a whole matrix by a
constant. But scalar multiplying a matrix is the same as multiplying every row
by that scalar. If multiplying a single row by k changes the determinant by a
factor of k, then multiplying every row by k must change the determinant by n
factors of k, where n is the size of the matrix (and hence the number of rows).
That is, for a square n×n matrix A and a scalar k, we have det(kA)= kn det A.

Warning 9.2.1 It is very common for students to forget this lesson and incorrectly
remember the formula as det(kA) being equal to kdet A, just because that “looks”
correct. Don’t be one of those students!

Matrices with proportional rows. Let’s pause again to consider a conse-
quence of this effect of multiplying a row by a constant on the determinant.
Suppose A is a matrix where one row is equal to a multiple (by k, say) of another
row, as in Discovery 9.5. We can multiply that row by 1/k to obtain matrix A′
with determinant det A′ = (1/k)det A. But now A′ has two identical rows, so
det A′ = 0, which forces det A = 0. So we can extend our fact about matrices with
some identical rows to matrices with some proportional rows: a matrix with
two (or more) proportional rows has determinant 0.

Corresponding elementary matrices. Again, let’s consider elementary ma-
trices corresponding to this type of operation. If we take the identity matrix
(which has determinant 1) and multiply a row by a nonzero constant k to obtain
the elementary matrix that corresponds to that operation, then that elementary
matrix must have determinant k ·1= k.

9.2.3 Combining rows: effect on determinant
Now we move to the operation of adding a multiple of one row to another, explored
in Discovery 9.6. This is the most complicated of the three operations, so we will
just consider the 3×3 case, as in the referenced discovery activity. Consider the
general 3×3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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As in the discovery activity, suppose we add k times the second row to the first,
to get

A′ =

a11 +ka21 a12 +ka22 a13 +ka23

a21 a22 a23

a31 a32 a33

 .

The cofactors, C11,C12,C13, along the first row of A′ are exactly the same as the
cofactors along the first row in A, since calculating those cofactors only involve
entries in the second and third rows, which have not changed. If we do a cofactor
expansion of det A′ along the first row, we get

det A′ = (a11 +ka21)C11 + (a12 +ka22)C12 + (a13 +ka23)C13

= a11C11 +ka21C11 +a12C12 +ka22C12 +a13C13 +ka23C13

= (a11C11 +a12C12 +a13C13)+k(a21C11 +a22C12 +a23C13)

= (det A)+k(a21C11 +a22C12 +a23C13),

In the second term of the last line, we have sort of a “mixed” cofactor expansion
for A, where the entries are from the second row but the cofactors are from the
first row. This mixed expansion is definitely not equal to det A or det A′, but
could it be the determinant of some new matrix A′′? To have the same first-row
cofactors as A, this new A′′ matrix would have to have the same second and
third rows as A, since those entries are what are used to calculate the first-row
cofactors. If we also repeat the second row entries from A in the first row of A′′,
so that

A′′ =

a21 a22 a23

a21 a22 a23

a31 a32 a33

 ,

then a cofactor expansion of det A′′ along the first row gives us exactly the “mixed”
cofactor expansion in the second term of our last expression for det A′ above.
However, A′′ has two identical rows, so its determinant is 0. We can now continue
our calculation from above:

det A′ = det A+k(a21C11 +a22C12 +a23C13)

= det A+k(det A′′)
= det A+k ·0
= det A.

This result is fairly surprising: while the two simpler row operations affected the
determinant, the elementary row operation combining rows has no effect
at all on the determinant.

A look ahead. Recall Goal 8.3.1 from last chapter: for a given matrix B we are
trying to determine a scalar δ and a special matrix B′ so that BB′ = δI. (The
scalar δ will end up being detB). We will build the special matrix B′ in the next
chapter, but we will need to remember the discovery we have made here that a
“mixed” cofactor expansion always evaluates to 0.

Corresponding elementary matrices. Just as with the other two row opera-
tions, we can apply what we’ve learned to elementary matrices. If we take the
identity matrix and add a multiple of one row to another to obtain the elementary
matrix that corresponds to that operation, then that elementary matrix must
have the same determinant as the identity, which is 1.
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9.2.4 Column operations and the transpose

You could imagine that an alien civilization might also develop the theory of linear
algebra, but perhaps with some cosmetic differences. Perhaps they prefer to write
their equations vertically, and so when they convert equations to augmented
matrices, a column represents an equation and a row contains the coefficients
in each equation for a particular variable. In essence, their matrix theory is the
transpose of ours. They would then proceed to “column reduce” matrices in order
to solve the underlying system, instead of row reducing. Since determinants can
be computed by cofactor expansions along either rows or columns and yield the
same result, and since the cofactor sign patterns we determined in Pattern (8.3.1)
are symmetric in the main diagonal (i.e. the pattern is unchanged by a transpose),
this alien development of linear algebra would discover all the same things about
the relationships between column operations and the determinant as we have
about row operations and the determinant. We have recorded all these facts
about column operations in Subsection 9.4.1, alongside the corresponding facts
about row operations. And there is one more fact about the transpose, which is
the bridge between our matrix theory and the alien matrix theory: a transpose
has no effect on the determinant. You can easily see why this would be true,
since a cofactor expansion along a column in AT would work out the same as a
cofactor expansion along a row in A.

9.2.5 Determinants by row reduction

The relationships between row operations and the determinant that we have
explored in Discovery guide 9.1 and described above provide us with another
method of computing determinants. An REF for a square matrix must always
be upper triangular, since the leading ones must be either on or to the right
of the main diagonal. So when row reducing there is always a point where we
reach an upper triangular matrix. And from Statement 1 of Proposition 8.5.2
we know that determinants of upper triangular matrices are particularly easy
to compute. So starting with any square matrix, we can row reduce to upper
triangular, keeping track of how the determinant has changed at each step, and
then work backwards from the determinant of the upper triangular matrix to
determine the determinant of the original matrix. We’ll save doing an example
for Subsection 9.3.1.

Warning 9.2.2 When using this method, it is really important to stick to elemen-
tary row operations. In learning to row reduce, you may have discovered that you
can perform operations of the kind Ri → kRi +mR j and still get the correct set of
solutions to the corresponding system. However, this kind of operation is not ele-
mentary — it is actually a combination of two elementary operations performed
at once, and will change the determinant. It’s best just to avoid operations of this
kind for determinant calculations.

9.3 Examples

In this section.

• Subsection 9.3.1 Determinants by row reduction

• Subsection 9.3.2 Matrices of determinant zero
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9.3.1 Determinants by row reduction

As discussed in Warning 8.3.3, determinants by cofactor expansions are extremely
inefficient for matrices larger than 3×3. Here we provide an example of using
the row reduction method to compute a determinant.

Example 9.3.1 Using row reduction to compute a determinant. Let’s
recompute the determinant of

A =


1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

 ,

the same matrix from Example 8.4.8.
First, let’s row reduce. For the purposes of describing our thinking in using

the matrix reduction calculation to determine the determinant of A, we’ll label
our matrices as we go.

A =


1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

 R2 −2R1

R4 −R1

−→ A1 =


1 −1 2 1
0 2 −3 −1
0 1 0 −3
0 −1 −3 −1

 R2 ↔ R3

−→ A2 =


1 −1 2 1
0 1 0 −3
0 2 −3 −1
0 −1 −3 −1

 R3 −2R2

R4 +R2

−→ A3 =


1 −1 2 1
0 1 0 −3
0 0 −3 5
0 0 −3 −4

 − 1
3 R3

−→ A4 =


1 −1 2 1
0 1 0 −3
0 0 1 − 5

3
0 0 −3 −4


R4 +3R3

−→ A5 =


1 −1 2 1
0 1 0 −3
0 0 1 − 5

3
0 0 0 −9


We would need one more operation to get to REF, but we are already at upper
triangular so we don’t need to bother. And notice that we didn’t bother clearing
entries above leading ones, since our goal was to get to an upper triangular
matrix, which only requires entries below leading ones to be cleared.

Now we’ll work backwards to determine det A.

A5 This last matrix is upper triangular, so its determinant is equal to
the product of the diagonal entries: det A5 = 1 ·1 ·1 · (−9)=−9.

A4 Matrix A5 was produced from A4 by an operation that does not
change the determinant, so det A4 must be −9 as well.

A3 Matrix A4 was produced from A3 by multiplying a row, so det A4 =
− 1

3 det A3. Solving for det A3, we get det A3 =−3 · (−9)= 27.

A2 Matrix A3 was produced from A2 by an operation that does not
change the determinant, so det A2 must be 27 as well.

A1 Matrix A2 was produced from A1 by swapping rows, so these two
determinants have opposite signs. Thus, det A1 =−27.

A Matrix A1 was produced from A by a pair of operations, neither of
which changes the determinant, so finally we have det A =−27.

This analysis agrees with the calculation of det A by cofactor expansion in
Example 8.4.8. □
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9.3.2 Matrices of determinant zero
Example 9.3.2 Recognizing det A = 0. Here are a few examples of recognizing
matrices that have determinant 0.

(i)


1 −1 2 1
0 1 0 −3
0 1 0 −3
1 2 3 4



(ii)


1 −1 2 1
0 1 5 5
7 1 0 −3

−2 2 −4 −2



(iii)


1 −1 0 1
4 1 0 −3

−1 1 0 −3
1 2 0 4



(iv)


1 −1 2 −1
0 1 5 1
7 1 0 1

−2 2 −4 2


The first matrix has two identical rows, the second matrix has two propor-

tional rows (R4 =−2R1), the third matrix has a column of zeros, and the fourth
matrix has two identical columns. So the determinant of each of these matrices
is 0. □

9.4 Theory

In this section.

• Subsection 9.4.1 Effect of row operations on the determinant

• Subsection 9.4.2 Determinants of elementary matrices

Here we will recap all of the facts we discussed in Section 9.2, as well as add
in a fact from Discovery 9.1. We have already adequately discussed the ideas
behind most of these facts, so for most of them we will not include a proof.

9.4.1 Effect of row operations on the determinant
We begin by recording a fact that helped us in our exploration of the effect of
swapping rows on the determinant.

Lemma 9.4.1 Any row swap can be achieved by a sequence of an odd number of
adjacent row swaps.

Proof idea. Suppose you want to swap rows R and R′ in a matrix using only
adjacent row swaps, where R appears higher in the matrix than R′, and they
are separated by m other rows. First move R down, one adjacent row swap at
a time, until it is in the position just above R′. Then swap R and R′, which are
now adjacent. Finally, move R′ up, one adjacent row swap at a time, until it is in
the original position of R. Count the number of adjacent swaps that have been
made as an expression in m, and notice that it is odd. ■

Here are all the things we learned in Discovery guide 9.1.

Proposition 9.4.2 Determinants versus row operations. The following are
true for every square matrix.

1. If there is a row of zeros, then the determinant is 0.

2. If two rows are swapped, then

det(new matrix)=−det(old matrix).
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3. If there are two identical rows, then the determinant is 0.

4. If a row is multiplied by constant k, then

det(new matrix)= kdet(old matrix).

5. If a whole matrix A is scalar multiplied by a constant k, then det(kA) =
kn det A, where n is the size of the matrix.

6. If there are two proportional rows, then the determinant is 0.

7. If a multiple of one row is added to another row, then

det(new matrix)= det(old matrix).
And here are our connections between rows and columns with respect to the

determinant.

Lemma 9.4.3 Determinant of a transpose. For every square matrix A,
det(AT)= det A.

Proposition 9.4.4 Determinants versus column operations. The statements
of Proposition 9.4.2 remain true when every instance of the word “row” is replaced
by the word “column.”

9.4.2 Determinants of elementary matrices
Finally, we’ll record our discoveries about the determinants of elementary matri-
ces.

Proposition 9.4.5

1. An elementary matrix corresponding to swapping rows has determinant −1.

2. An elementary matrix corresponding to multiplying a row by a constant k
has determinant k.

3. An elementary matrix corresponding to adding a multiple of one row to
another has determinant 1.





CHAPTER 10

Determinants, the adjoint, and in-
verses

10.1 Discovery guide

Reminder.

The effects of the elementary row operations on the determinant are:

swapping rows
det(new)=−det(old);

multiplying a row by constant k
det(new)= kdet(old);

adding a multiple of one row to another
det(new)= det(old).

Discovery 10.1 Consider the general 3×3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Each entry ai j has a corresponding cofactor Ci j, creating a matrix of cofactors

CA =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 .

The transpose of this matrix is called the (classical) adjoint of A.

(a) Write out the (1,1) entry of the product ACT
A as a formula in the entries of

A and CA . Does the result look familiar?

(b) What do you think the other diagonal entries of ACT
A are?

(c) Write out the (1,2) entry of the product ACT
A as a formula in the entries

of A and CA . Does the result look familiar? What did we discover about
“mixed” cofactor expansions in Discovery 9.6 and Subsection 9.2.3?

(d) What do you think the other non-diagonal entries of ACT
A are?

(e) Refer back to Discovery 8.1. Have we finally achieved Goal 8.3.1?

119
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Discovery 10.2

(a) Suppose det A = 0. If you apply some elementary row operation to A, what
is the determinant of the new matrix? (Consider each of the three kinds of
operations.)

(b) If det A = 0 and you perform a whole sequence of row operations to A, what
is the determinant of the last matrix in the sequence?

(c) Recall that if A is invertible, then it can be row reduced to I (Theorem 6.5.2).
If det A = 0, could A be invertible?

Hint. Use your answer to Task b.

(d) Conversely, if A is invertible, could det A = 0?

Hint. No need to think about row reducing — combine your answer to
Task c with some logical thinking.

Discovery 10.3

(a) Suppose det A ̸= 0. Is there any elementary row operation you can apply to
A so that the new matrix has determinant 0? (Consider each of the three
kinds of operations.)

(b) If det A ̸= 0 and you perform a whole sequence of row operations to A, could
the last matrix in the sequence have determinant 0?

(c) Recall that if a matrix is singular (that is, not invertible), then it is not
possible to row reduce it to I (Theorem 6.5.2), and so its RREF must have
a row of zeros. If det A ̸= 0, could A be singular?

Hint. Use your answer to Task b.

(d) Conversely, if A is singular, is det A ̸= 0 possible?

Hint. No need to think about row reducing — combine your answer to
Task c with some logical thinking.

Discovery 10.4 Recall that for matrix A and elementary matrix E, the result of
EA is the same as the result of performing an elementary row operation on A
(namely, the operation corresponding to E). Verify the formula

det(EA)= (detE)(det A) (*)

for each of the three types of elementary matrices E (assuming A to be a square
matrix of the same size as E).

Helpful notes.

• To verify a formula, consider LHS and RHS separately, and argue that they
equal the same value. Do not work with the proposed equality directly,
since you don’t know it’s an equality yet.

• Do not just use examples; think abstractly instead.

• For each type of E, on the LHS consider the product of matrices EA and how
its determinant compares to det A using the rules for how row operations
affect determinant (explored in Discovery guide 9.1, and recalled for you
at the top of this activity section). For this, think of det A = det(old) and
det(EA)= det(new). Then, on the RHS, consider the value of detE and the
corresponding product of numbers (detE)(det A).
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Discovery 10.5 In this activity, we will verify the general formula

det(MN)= (det M)(det N) (**)

in the case that M is invertible (assuming M and N to be square matrices of the
same size).

(a) Recall that every invertible matrix can be expressed as a product of ele-
mentary matrices (Theorem 6.5.2). For now, suppose that M (which we
have assumed invertible) can be expressed as a product of three elementary
matrices, say M = E1E2E3. Use formula (*) to verify that

det(E1E2E3N)= (detE1)(detE2)(detE3)(det N).

Hint. Start with the LHS and apply formula (*) one step at a time. In
applying formula (*), what are you using for E and for A at each step?

(b) Now use formula (*) to verify that

(detE1)(detE2)(detE3)(det N)= (
det(E1E2E3)

)
(det N).

(c) Make sure you understand why parts (a) and (b) together verify formula
(**) for this M.

(d) Do you think the calculations in this activity would work out similarly no
matter how many E i ’s are required to express M as a product of elementary
matrices?

Discovery 10.6 If matrix A is invertible, by definition this means that AA−1 = I
(as well as A−1 A = I).

(a) Determine the value of det(AA−1) from the equality AA−1 = I.

(b) Starting with your answer to Task a, use formula (**) from Discovery 10.5
to obtain a formula for det(A−1) in terms of det A.

Recall. A fraction 1/A does not make sense for matrices. However, det A is
just a number, so you can do all the normal algebra you would like with it!

Discovery 10.7 In this discovery activity, we extend formula (**) to also be valid
in case that M is singular (assuming M and N to be square matrices of the same
size).

Recall that if M is singular (i.e. not invertible), then every product MN is
singular (Statement 1 of Proposition 6.5.8).

Combine this with your answer to Discovery 10.3.d to verify formula (**) in
the case that M is singular.

Reminder. To verify a formula, consider LHS and RHS separately, and argue
that they equal the same value. Do not work with the equality directly, since
you don’t know it’s an equality yet. Do not just use examples; think abstractly
instead.
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10.2 Terminology and notation

The following definitions apply to a square matrix A.

matrix of cofactors
the matrix obtained by replacing all the entries of A with the corre-
sponding cofactors of A, denoted CA

(classical) adjoint matrix
the transpose of the matrix of cofactors of A, denoted adj A

10.3 Concepts

In this section.

• Subsection 10.3.1 The classical adjoint

• Subsection 10.3.2 Determinants determine invertibility

• Subsection 10.3.3 Determinants versus matrix multiplication: case
of elementary matrices

• Subsection 10.3.4 Determinants versus matrix multiplication: in-
vertible case

• Subsection 10.3.5 Determinants versus matrix multiplication: sin-
gular case

• Subsection 10.3.6 Determinants versus matrix multiplication: all
cases

• Subsection 10.3.7 Determinant of an inverse

• Subsection 10.3.8 Cramer’s rule

Recall that in Section 8.3 we set a goal for ourselves: given a square matrix A,
determine a matrix A′ so that AA′ is a scalar multiple of the identity (Goal 8.3.1).
The adjoint finally fulfills this goal.

10.3.1 The classical adjoint
Before we dive in, a note about the adjective “classical.” In a second course in
linear algebra, you will probably learn that square matrices have a different kind
of “adjoint” matrix that is completely unrelated to the adjoint we will discuss
here. (The word “adjoint” gets used a lot in mathematics for many different
concepts.) So we are attaching the adjective “classical” to the adjoint matrix we
define here to distinguish it from that other one.

Terminology. Actually, a better adjective might be “algebraic” for this version of
adjoint matrix, as that other kind of adjoint matrix could reasonably be called
the “geometric” adjoint matrix.

Let’s remind ourselves how determinants are defined, by cofactor expansions.
For matrix A = [

ai j
]
, the cofactor expansion of det A along row i is

det A = ai1Ci1 +ai2Ci2 · · ·+ainCin,
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where the Ci j are the associated cofactors. This pattern of a sum of products
sure looks like matrix multiplication, where we are multiplying the ith row of A
against a column of some matrix. Since each position in A has a corresponding
cofactor, we can create a matrix of cofactors CA = [

Ci j
]
. Except the pattern of

indices for the Ci j in the cofactor expansion above progresses along a row of this
cofactor matrix, whereas when we multiply matrices we multiply rows against
columns. However, we know a way to turn rows into columns — the transpose.
We call the transpose of the matrix of cofactors the (classical) adjoint of A,
and write adj A to mean CT

A .
In Discovery 10.1, we explored what happens when we multiply out A times

adj A. We only worked with the 3×3 case, but the same patterns would emerge
for any size matrix. Remember that in a product like A(adj A) we get the (i, j)th

entry by multiplying the ith row of the first matrix against the jth column of the
second matrix. Since the second matrix is a transpose, its jth column will be
the jth row of the matrix of cofactors CA . Thus, for each diagonal entry (that is,
where j = i), we will be multiplying a row of A against the corresponding row of
cofactors, and we’ll get the value of det A repeated down the diagonal of A(adj A).
On the other hand, for an off-diagonal entry (that is, where j ̸= i), we’ll get a row
of A multiplied against the cofactors associated to a different row. In our analysis
of the operation of combining rows in Subsection 9.2.3, we determined that a
“mixed” cofactor expansion always evaluates to 0. So all off-diagonal entries of
A(adj A) are 0, and this product matrix is diagonal. Moreover, since the same
value det A is repeated down the diagonal, this product matrix is in fact scalar:

A(adj A)= (det A)I.

As mentioned at the start of this section, this fulfills Goal 8.3.1, with δ= det A
and A′ = adj A. In particular, this gives us a formula for the inverse of any matrix
that has nonzero determinant:

A−1 = 1
det A

adj A.

Remark 10.3.1 Just as cofactor expansions are an inefficient means to compute
determinants, calculating an inverse using the adjoint formula above is very
inefficient, since computing an adjoint for an n×n matrix involves computing n2

determinants of (n−1)× (n−1) matrices. You are much better off computing an
inverse by row reducing, as in Subsection 6.3.5 and Subsection 6.4.3. However,
the above formula is useful for further developing the theory of solving systems
by inverses, as we will soon see.

10.3.2 Determinants determine invertibility
Part of our motivation for developing determinants was to make sense of the
ad− bc formula that determines whether a 2×2 matrix is invertible, and ob-
tain a similar formula for larger square matrices. In completing Goal 8.3.1 by
obtaining the formula A(adj A)= (det A)I, we learn that whenever det A ̸= 0 then
A

[
(det A)−1(adj A)

]= I, and so A is invertible (Proposition 6.5.6).
To repeat, we now know that if det A ̸= 0, then A must be invertible.

Logically, that raises three related questions.

Question 10.3.2

• If A is invertible, must det A be nonzero?

• If det A = 0, must A be singular?

• If A is singular, must det A be zero?
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□
In the study of logic, the statement version of these three questions are

called the converse, inverse, and contrapositive, respectively, of the original
conditional statement that states:

If det A ̸= 0, then A is invertible.

And the study of logic tells us that the answers to these three questions are
not necessarily all affirmative just because the original statement is true. So
in Discovery 10.2 and Discovery 10.3 we considered these questions, as well
as the original statement, by considering the effects of row reducing on the
determinant. Here is what we discovered, in the order we considered them in
those two discovery activities, relying on our knowledge that a square matrix is
invertible if and only if its RREF is the identity matrix (Theorem 6.5.2)

If det A = 0. Since no elementary row operation can change a zero determinant
to a nonzero one, the RREF of A must also have determinant 0. But then the
RREF of A cannot be I, since det I = 1. So A is not invertible.

If A is invertible. Then det A cannot be zero, since then A wouldn’t be invertible,
as we just argued in the previous point.

If det A is nonzero. Since no elementary row operation can change a nonzero
determinant to a zero determinant (multiplying a row by 0 is not an elementary
operation), the RREF for A must also have nonzero determinant. But then that
RREF cannot have a row of zeros, because then its determinant would be 0. Since
it is square, that RREF matrix must have all of its leading ones, making it the
identity matrix, and so A is invertible.

If A is singular. Then det A must be zero, since if it were nonzero then A would
be invertible, as we just argued in the previous point.

10.3.3 Determinants versus matrix multiplication: case of
elementary matrices

In Discovery 10.4, we considered det(EA) for E an elementary matrix and A a
square matrix. Since there are three different kinds of elementary matrices, we
had three different cases to consider. In each case, we were able to combine the
appropriate part of Proposition 9.4.2 on the one hand with the appropriate part
of Proposition 9.4.5 on the other, in order to verify

det(EA)= (detE)(det A) (*)

is true in all cases of the type of elementary matrix E. (For the details of these
three cases, see the proof for Lemma 10.5.5, which appears in Subsection 10.5.3.)

Expressed in words, the equality above represents the pattern that a deter-
minant of a product is the product of the determinants, at least in the case
where the first matrix in the product is elementary (for now).

10.3.4 Determinants versus matrix multiplication: invert-
ible case

In Discovery 10.5, we progressed to considering determinants of a product of
matrices where the first matrix in the product is invertible. In particular, this
means that the first matrix can be expressed somehow as a product of elementary
matrices (Theorem 6.5.2), and so we can unravel the determinant of this product
one elementary matrix at a time, using the result of the previous subsection at
each step.
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As in Discovery 10.5, consider matrix N and invertible matrix M, where
M can be expressed as a product of three elementary matrices, M = E1E2E3.
The we can repeatedly use our rule (*) from the elementary matrix case in
Subsection 10.3.3 above to obtain

det(MN)= det(E1E2E3N)

= (detE1)
(
det(E2E3N)

)
(i)

= (detE1)(detE2)
(
det(E3N)

)
(ii)

= (detE1)(detE2)(detE3)(det N) (iii)

= (detE1)
(
det(E2E3)

)
(det N) (iv)

= (
det(E1E2E3)

)
(det N) (v)

= (det M)(det N),

with justifications

(i) apply rule (*) with E = E1 and A = E2E3N;

(ii) apply rule (*) with E = E2 and A = E3N;

(iii) apply rule (*) with E = E3 and A = N;

(iv) apply rule (*) with E = E2 and A = E3; and

(v) apply rule (*) with E = E1 and A = E2E3.

Of course, this sort of calculation could be repeated no matter how many elemen-
tary matrices went into a product expression for M. So we can make our final
statement of the last subsection a little stronger: a determinant of a product
is the product of the determinants, at least in the case where the first matrix
in the product is invertible (for now).

10.3.5 Determinants versus matrix multiplication: singular
case

Finally, in Discovery 10.7 we considered the determinant of a product of matrices
where the first matrix in the product is singular. It is fairly straightforward to
verify that again, in this case, a determinant of a product is the product of
the determinants whenever the first matrix in the product is singular. (See
the proof of the singular case for Statement 1 of Proposition 10.5.6, which will
appear in Subsection 10.5.3.)

10.3.6 Determinants versus matrix multiplication: all cases

The considerations in Subsection 10.3.4 and Subsection 10.3.5 together verify
the universal pattern

det(MN)= (det M)(det N)

for square matrices M and N of the same size, no matter whether M is invertible
or singular, and so the pattern that a determinant of a product is the product
of the determinants is true in all cases. In more sophisticated mathematical
language, we say that the determinant function is multiplicative.
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10.3.7 Determinant of an inverse
In Discovery 10.6, we used the fact that the determinant is multiplicative to
investigate the relationship between the determinants of an invertible matrix
and its inverse. By definition of inverse, we have AA−1 = I. Since the product
AA−1 is the same matrix as the identity, it must have the same determinant, so

det(AA−1)= 1

(Statement 4 of Proposition 8.5.2).
As well, we know that det A ̸= 0, since A is invertible. So,

det(AA−1)= 1

(det A)
(
det(A−1)

)= 1

det(A−1)= 1
det A

.

Thus, the determinant of an inverse is the inverse of the determinant.

Careful. Remember that we never write fractions or reciprocals of matrices.
However, det A is not a matrix — it is a number that we are assuming is nonzero
in this case, so we are justified in writing and using its reciprocal in these
calculations.

10.3.8 Cramer’s rule
While the adjoint inversion formula is not a good choice for computing inverses,
it does have applications. Here is one application to solving systems. Remember
that if Ax=b is a linear system with a square, invertible coefficient matrix A,
then there is one unique solution x= A−1b. Using the adjoint inversion formula,
we get

x= A−1b= 1
det A

(adj A)b. (**)

As usual, let’s consider this solution formula in the case that A is 3×3, in
which case both x and b are 3×1:

x=

x1

x2

x3

 , b=

b1

b2

b3

 .

The product (adj A)b will be a column matrix, whose top entry is obtained by
multiplying the first row of adj A against the column b. But adj A is the transpose
of the matrix of cofactors for A, so the first row of adj A contains the cofactors
from the first column of A, and we have[

(adj A)b
]
11 = C11b1 +C21b2 +C31b3. (***)

This looks like a cofactor expansion of some determinant! The cofactors are
from the first column of A, so their values only depend on the second and third
columns of A. But the entries are from b, so if we replace the first column in A
with b to get a new matrix

A1 =

 | | |
b a2 a3

| | |

 ,
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then a cofactor expansion of det A1 along the first column gives us exactly the
expression in (***) for the first entry in the product (adj A)b. Using this in (**),
and considering only the top entry on both sides, we get

x1 = 1
det A

[
(adj A)b

]
11 =

det A1

det A
.

Similar calculations would tell us that x2 = (det A2)/(det A), where A2 is the
matrix obtained by replacing the second column of A by b, and similarly for x3.
And the same pattern emerges for larger systems.

We will work out an example of using Cramer’s rule in Subsection 10.4.3.

10.4 Examples

In this section.

• Subsection 10.4.1 The 2×2 case

• Subsection 10.4.2 Computing an inverse using the adjoint

• Subsection 10.4.3 Cramer’s rule

10.4.1 The 2×2 case

Let’s compute the adjoint of the general 2×2 matrix A = [a b
c d

]
. First, the minors.

a b
c d

∣∣∣∣∣∣
∣∣∣∣∣∣M11 = = d

a b
c d

∣∣∣∣∣∣
∣∣∣∣∣∣M21 = = b

a b
c d

∣∣∣∣∣∣
∣∣∣∣∣∣M12 = = c

a b
c d

∣∣∣∣∣∣
∣∣∣∣∣∣M22 = = a

In the matrix of cofactors for a 2×2 matrix, the off-diagonal cofactors become
negative, and then the adjoint is the transpose of that.

CA =
[

d −c
−b a

]
adj A =

[
d −b

−c a

]
Compare. Look back at Amix and its transpose from Discovery 8.1 and compare
with this general 2×2 adjoint.

The inverse of A is then the reciprocal of the determinant times the adjoint,
so that

A−1 = 1
ad−bc

[
d −b

−c a

]
,

as promised in Proposition 5.5.4.

10.4.2 Computing an inverse using the adjoint
As mentioned, using the adjoint to compute the inverse of a matrix is not very
efficient for matrices larger than 2×2. In most cases, you are better off using the
row reduction method. However, there are situations where you might want to
use the adjoint instead, as in the example below.
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Example 10.4.1 Using the adjoint to compute an inverse. It can be tedious
to row reduce a matrix with variable entries. Consider

X =

 x 1 −1
x−1 0 x

0 x 1

 .

To row reduce X , our first step would be to obtain a leading one in the first
column. We might choose to perform R1 → 1

x R1, except that this operation would
be invalid in the case that x = 0. Or we might choose to perform R2 → 1

x−1 R2,
except that this operation would be invalid in the case that x = 1. So to row
reduce X we would need to consider three different cases, x = 0, x = 1, and
x ̸= 0,1, performing different row reduction sequences in each of these cases. And
when we get to the point of trying to obtain a leading one in the second column,
we might discover there are even more cases to consider.

So instead we will attempt to compute the inverse of X using the adjoint.
First, the minors.

M11 =
∣∣0 x

x 1
∣∣=−x2 M12 =

∣∣ x−1 x
0 1

∣∣= x−1 M13 =
∣∣ x−1 0

0 x
∣∣= x2 − x

M21 =
∣∣1 −1

x 1
∣∣= 1+ x M22 =

∣∣ x −1
0 1

∣∣= x M23 =
∣∣ x 1

0 x
∣∣= x2

M31 =
∣∣1 −1

0 x
∣∣= x M32 =

∣∣ x −1
x−1 x

∣∣= x2 + x−1 M33 =
∣∣ x 1

x−1 0
∣∣= 1− x

We obtain the matrix of cofactors by making certain minor determinants negative,
according to the 3× 3 pattern of cofactor signs, and then the adjoint is the
transpose.

CX =

 −x2 1− x x2 − x
−1− x x −x2

x −x2 − x+1 1− x



adj X =

 −x2 −1− x x
1− x x −x2 − x+1
x2 − x −x2 1− x


To compute the inverse of X , we still need its determinant. But we already
have all the cofactors, so a cofactor expansion will be easy. Let’s do a cofactor
expansion of det X along the third row. (Remember that the cofactors already
have the appropriate signs, so we are just summing “entry times cofactor” terms.)

det X = 0x+ x(−x2 − x+1)+1(1− x)= 1− x3 − x2

Notice. This determinant is not zero for either x = 0 or x = 1, so we really would
have had to consider all those different cases if we chose to compute X−1 by row
reducing.

□

Finally, we obtain a formula for the inverse of X that is valid for every value
of x for which the determinant is nonzero,

X−1 = 1
1− x3 − x2

 −x2 −1− x x
1− x x −x2 − x+1
x2 − x −x2 1− x

 .
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10.4.3 Cramer’s rule
Example 10.4.2 Using Cramer’s rule to compute individual variable
values in a system of equations. Consider the system

x1 − x2 + 2x3 + x4 = 1,
2x1 + x3 + x4 = 1,

x2 − 3x4 = 0,
x1 − 2x2 − x3 = 1,

with coefficient matrix and vector of constants,

A =


1 −1 2 1
2 0 1 1
0 1 0 −3
1 −2 −1 0

 , b=


1
1
0
1

 .

Conveniently, we have already computed det A = −27 in Example 8.4.8 (and
again in Example 9.3.1). Since det A ̸= 0, we know that A is invertible and so the
system has one unique solution. Suppose we want to know the value of x2 in the
solution. We can form the matrix A2, where the second column of A is replaced
by b,

A2 =


1 1 2 1
2 1 1 1
0 0 0 −3
1 1 −1 0

 ,

and compute det A2 by a cofactor expansion along the third row (expanding the
corresponding 3×3 minor determinant along the first row),

det A2 =−(−3)

∣∣∣∣∣∣∣
1 1 2
2 1 1
1 1 −1

∣∣∣∣∣∣∣
= 3

(
1

∣∣∣∣ 1 1
1 −1

∣∣∣∣−1
∣∣∣∣ 2 1

1 −1

∣∣∣∣+2
∣∣∣∣ 2 1

1 1

∣∣∣∣)
= 3

(
(−1−1)− (−2−1)+2(2−1)

)
= 9.

Thus, the value of x2 in the one unique solution to the system is

x2 = det A2

det A
= 9

−27
=−1

3
.

If we also want to know the value of x4, we form the matrix A4, where the fourth
column of A is replaced by b,

A4 =


1 −1 2 1
2 0 1 1
0 1 0 0
1 −2 −1 1

 ,

and compute det A4 (again by a cofactor expansion along the third row, followed
by an expansion along the first row of the corresponding 3×3 minor determinant),

det A4 =−1

 1 2 1
2 1 1
1 −1 1


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=−1
(
1

[
1 1

−1 1

]
−2

[
2 1
1 1

]
+1

[
2 1
1 −1

])
=−(

(1+1)−2(2−1)+ (−2−1)
)

= 3.

Thus, the value of x4 in the one unique solution to the system is

x4 = det A4

det A
= 3

−27
=−1

9
.

□

10.5 Theory

In this section.

• Subsection 10.5.1 Adjoints and inverses

• Subsection 10.5.2 Determinants determine invertibility

• Subsection 10.5.3 Determinant formulas

• Subsection 10.5.4 Cramer’s rule

We have discussed the reasoning behind many of the below facts in Sec-
tion 10.3, so we will omit some of the formal proofs.

10.5.1 Adjoints and inverses
First, we record the adjoint inversion formula we have discovered.

Theorem 10.5.1 Inversion by adjoint. If det A ̸= 0 then A is invertible, with
A−1 = 1

det A adj A.

Remark 10.5.2 Based on our computations for the 2×2 case in Subsection 10.4.1,
if A is 2×2 then the statement of the theorem above is exactly the same as
Proposition 5.5.4.

10.5.2 Determinants determine invertibility
As we saw in Subsection 10.3.2, there is a stronger connection between the
determinant and invertibility, which we now state here more formally by adding
a new statement to Theorem 6.5.2.

Theorem 10.5.3 Characterizations of invertibility. For a square matrix A,
the following are equivalent.

1. Matrix A is invertible.

2. Every linear system that has A as a coefficient matrix has one unique
solution.

3. The homogeneous system Ax= 0 has only the trivial solution.

4. There is some linear system that has A as a coefficient matrix and has one
unique solution.

5. The rank of A is equal to the size of A.
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6. The RREF of A is the identity.

7. Matrix A can be expressed as a product of some number of elementary
matrices.

8. The determinant of A is nonzero.

In particular, a square matrix is invertible if and only if its determinant is nonzero.

Remark 10.5.4 In the last sentence of the theorem, the connecting phrase “if
and only if” between the two conditions is just a different way to say that the two
conditions are equivalent. And recall that conditions are equivalent when they
have to be either all true or all false at the same time. Rephrasing in terms of
the “all false” scenario, we could also say that a square matrix is singular if
and only if its determinant is zero.

10.5.3 Determinant formulas
Here we collect the determinant formulas from Subsections 10.3.3–10.3.7. First
we look at a special case, previously considered in Discovery 10.4 and Subsec-
tion 10.3.3, of the multiplicative formula for determinants.

Lemma 10.5.5 Determinant is multiplicative: elementary case. If E is an
elementary matrix and A is a square matrix of the same size, then

det(EA)= (detE)(det A). (*)

Proof. There are three cases to consider here, based on the type of elementary
matrix we are dealing with.

Case E represents swapping rows. The product EA represents the result of
swapping two rows in A, so

det(EA)=−det A

(Part 2 of Proposition 9.4.2).
But also detE =−1 (Part 1 of Proposition 9.4.5), so

(detE)(det A)= (−1)(det A)=−det A

as well.
This establishes (*) in this case.

Case E represents multiplying a row by k. The product EA represents the result
of multiplying that row of A by k, so

det(EA)= kdet A

(Part 4 of Proposition 9.4.2).
But also detE = k (Part 2 of Proposition 9.4.5), so

(detE)(det A)= kdet A

as well.
This establishes (*) in this case.

Case E represents adding a multiple of one row to another. The product EA
represents the result of adding a multiple of a row to another in A, so det(EA) is
equal to det A. But also detE = 1 (Part 3 of Proposition 9.4.5), so

det(EA)= det A = (1)(det A)= (detE)(det A),

establishing (*) in this case. ■
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With the above lemma established, we can consider the general multiplicative
formula for determinants.

Proposition 10.5.6 Determinant is multiplicative: general case. A deter-
minant of a product of square matrices is the product of the determinants of those
matrices. In particular, the following hold.

1. If M and N are square matrices of the same size, then

det(MN)= (det M)(det N).

2. If M1, M2, . . . , Mℓ−1, Mℓ are square matrices of the same size, then

det(M1M2 · · ·Mℓ−1Mℓ)= (det M1)(det M2) · · · (det Mℓ−1)(det Mℓ).

Proof outline for Statement 1. There are two cases to consider.

Case M is invertible. In this case, M can be expressed as a product of elementary
matrices (Theorem 10.5.3), and so Lemma 10.5.5 can be repeatedly applied to
obtain the desired equality.

In Discovery 10.5 and Subsection 10.3.4, we worked under the assumption
that M could be expressed as a product of three elementary matrices, but the
calculations and logic used there would work no matter how many elementary
matrices were required in a product expression for M.

Comment. A more formal proof would require using the principal of mathe-
matical induction on the number of elementary matrices required in a product
expansion for M, but that is beyond the scope of this book.

Case M is singular. In this case, det M = 0 by our newly added statement in the
list of Theorem 10.5.3, so we have

RHS= (det M)(det N)= 0 ·det N = 0

as well. But we also know that if M is singular, then the product MN must
also be singular (Statement 1 of Proposition 6.5.8). So again we can apply the
equivalence of Statement 1 and Statement 8 of Theorem 10.5.3 to obtain

LHS= det(MN)= 0.

Since both LHS and RHS are equal to 0, they are equal to each other. ■

Proof outline for Statement 2. This result can be obtained by repeated applications
of the formula in Statement 1, one Mi at a time.

Comment. Again, a more formal proof would require mathematical induction on
the number of matrices in the product.

■

Remark 10.5.7 We can now understand the formula det(kA) = kn det A as a
special case of Proposition 10.5.6. Using M = kI and N = A, we have

det(kA)= det
(
(kI)A

)= (
det(kI)

)
(det A)= kn det A.

(See Statement 2 of Proposition 8.5.2.)
Lemma 10.5.5 and the proof of Proposition 10.5.6 connect to Proposition 9.4.2

(which includes the formula det(kA)= kn det A as one of its statements) by the
fact that an n×n scalar matrix kI is the product of n elementary matrices, one
for each of the n operations multiply row R j by k.
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Proposition 10.5.8 Determinant of an inverse. The determinant of an
inverse is the inverse of the determinant. That is, if N is an invertible matrix then
det(A−1)= (det A)−1.

10.5.4 Cramer’s rule
Finally, we formally record Cramer’s rule (discussed in Subsection 10.3.8).

Theorem 10.5.9 Cramer’s rule. If system Ax = b has invertible square coef-
ficient matrix A, then the value of variable x j in the one unique solution to the
system is

x j =
det A j

det A
,

where A j is the matrix obtained by replacing the jth column of A by b.
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CHAPTER 11

Introduction to vectors

11.1 Discovery guide

Discovery 11.1
(a) Plot points P(1,2) and Q(3,−1) in the xy-plane. Draw an arrow from P to

Q. This arrow is called the directed line segment
−−→
PQ.

(b) Fill in the components for this directed line segment:

−−→
PQ = (∆x,∆y)= ( , ).

(c) On the same axes you’ve been working on, plot the point R that has the
same coordinates as the components of

−−→
PQ, and draw the directed line

segment
−−→
OR where O is the origin. What do you notice about this arrow?

(d) This “common” arrow for
−−→
PQ and

−−→
OR (and all arrows in the xy-plane just

like it) is called a vector. Let’s label this vector v. Draw another “copy” of
v so that its initial point is S(−2,1). What will be the terminal point
for this copy of v?

Discovery 11.2

(a) Draw the vector u= (2,3) with its initial point at P(1,1). Label this vector
on your diagram, and label its terminal point as Q. Now draw the vector
v = (3,−1) with its initial point at Q. Label this vector on your diagram,
and label this second terminal point as R. Draw in vector w corresponding
to

−−→
PR.

(b) Compute the components of w using a (∆x,∆y) calculation between its
initial and terminal points in your diagram, similarly to Task 11.1.b.

Looking at the components of u and v, what do you notice about the
components of w? Based on this, we should call w the of u and v, and
write w=u v.

(c) Now work in the reverse order: on the same diagram you’ve been working
on, draw v starting at P, then draw u starting at that terminal point.
Where did the second terminal point end up? Turn this into a rule for
vector algebra: .

Hint. Your rule should be about the different ways to combine u and v
that you’ve explored so far in this activity.

137
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(d) What shape do the four vectors on the outside make? And what is
−−→
PR

relative to that shape (geometrically)?

Discovery 11.3

(a) How should you draw the vector 0= (0,0)?

(b) What happens if you draw 0 tail-to-head or head-to-tail with another vector
(as in Discovery 11.2)? Turn this into a rule for vector algebra: .

Discovery 11.4 We would reasonably expect v+ (−v)= 0 in vector algebra.

(a) Draw a geometric representation of this rule on a set of axes for v= (2,1)
(use the origin as the initial point for v).

(b) What should the components of −v be?

(c) On the same set of axes as before, draw −v with its initial point at the
origin.

Discovery 11.5 Draw an arbitrary vector in the plane, and label it u. Then
draw another arbitrary vector with its initial point at the terminal point of u
(but maybe have this new vector head off in a new direction). Label this second
vector v. Now draw in the sum vector w=u+v, similarly to Discovery 11.2.

(a) Which of your three vectors represents w−u?

(b) Draw in another vector for u−w.

(c) What is the point of this activity?

Discovery 11.6

(a) Draw a representative diagram for the vector sum v+v using v = (2,1)
(start with the first initial point at the origin). What are the components of
this sum vector?

From both the geometry of what you’ve drawn, and the result for the
components of the sum vector v+v, do you think it is reasonable to write
2v to mean v+v?

(b) Now draw each of the following, and determine their components: 3v, −2v,
1
2 v, − 5

4 v.

Discovery 11.7 Draw an arbitrary representative diagram for w=u+v (simi-
larly to how you started Discovery 11.5). On the same set of axes, draw a diagram
for 2u+2v, and compare with 2w. Express what you’ve discovered as a rule of
vector algebra, with 2 replaced by variable k: .

Discovery 11.8 On a set of xy-axes, draw the standard basis vectors: e1 =
(1,0) and e2 = (0,1), along with the vector v = (5,2). Then draw a geometric
representation of v as a linear combination v= 5e1 +2e2.

Discovery 11.9 All the vectors we’ve encountered so far are two-dimensional
vectors. Let’s bump everything up a dimension.

(a) Using u= (1,1,0) and v= (1,−1,2), draw the following on a set of xyz-axes:
u, v, u+v, −u, v−u, 2v.

(b) Now compute the components of each of the vectors from the previous part
of this activity.
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We can’t draw pictures of n-dimensional vectors if n > 3, but we can do all
the same algebra.

Discovery 11.10 Complete the following vector algebra formulas.

• (u1,u2, . . . ,un)+ (v1,v2, . . . ,vn)=

• (u1,u2, . . . ,un)− (v1,v2, . . . ,vn)=

• −(v1,v2, . . . ,vn)=

• k(v1,v2, . . . ,vn)=

• 0=
We can use vectors to represent other kinds of “displacements” besides posi-

tion displacements. Vectors can be used to represent change between states of
any collection of related variables.

Discovery 11.11 An investor sinks $10,000 into stock in each of companies A,
B, C, and D. After a year, the various items in her portfolio have the following
values: company A, $10,475; company B, $11,240; company C, $9,756; company
D, $10,054.

Represent the “displacement” in the collection of values of the investor’s
holdings, from initial state

(A,B,C,D)= (10000,10000,10000,10000)

to terminal state

(A,B,C,D)= (10475,11240,9756,10054)

as a four-dimensional vector.

Discovery 11.12 If we write two-dimensional vectors in the form u= [u1
u2

]
, in-

stead of the form u= (u1,u2), then we can use matrix algebra to do computations
with vectors.

(a) Does each rule of vector algebra that we’ve discovered today have a coun-
terpart rule in matrix algebra?

(b) Will the same be true for the algebra of higher-dimensional vectors? (That
is, if we consider using n×1 column matrices to represent n-dimensional
vectors?)
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11.2 Terminology and notation

directed line segment
a line segment between two points with an assigned direction from
one of the points to the other

Remark 11.2.1 We usually visualize a directed line segment as an arrow.

initial point (of a directed line segment)
the first point in a directed line segment (at the tail of the arrow)

terminal point (of a directed line segment)
the second point in a directed line segment (at the head of the arrow)

components (of a directed line segment)
the list of the changes in coordinates between initial point and termi-
nal point

vector the ordered collection of components of a directed line segment

Remark 11.2.2

• We won’t make too much of a fuss about the technical definition of a vector,
especially since we will vastly increase the number of things we allow
ourselves to call vector in Chapter 15.

• Notationally, we will typeset variables representing vectors in boldface,
just as we did previously for column vectors in the context of matrices and
systems of equations.

two-dimensional vector
a vector with two components v= (v1,v2), corresponding to a directed
line segment in the plane

three-dimensional vector
a vector with three components v = (v1,v2,v3), corresponding to a
directed line segment in space

n-dimensional vector
a vector with n components v= (v1,v2, . . . ,vn)

two-dimensional space (R2)
the collection of all two-dimensional vectors

three-dimensional space (R3)
the collection of all three-dimensional vectors

n-dimensional space (Rn)
the collection of all n-dimensional vectors

zero vector
the vector 0= (0,0, . . . ,0)

Remark 11.2.3 We refer to R2 as two-dimensional space because, just like a
map, the plane has two sets of directions — north/south and east/west. We refer to
R3 as three-dimensional space because we still have the north/south and east/
west sets of directions in the xy-plane, but we add a third set of directions of up/
down along the z-axis. In analogy with this, we refer to R4 as four-dimensional
space, R5 as five-dimensional space, and so on.
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A look ahead. In Chapter 19, we will make the concept of dimension of a
vector space more precise.

vector addition (of vectors u and v of the same dimension)
given a directed line segment corresponding to u, create a directed
line segment corresponding to v with initial point at the terminal
point for the segment for u, and then the sum vector u+v corre-
sponds to the directed line segment from the initial point for u to the
terminal point for v

negative (of a vector v)
given a directed line segment for v, the negative vector −v corre-
sponds to the same segment but in the opposite direction

vector subtraction
the result of adding a vector u to the negative of another v: u−v=
u+ (−v)

scalar multiple (of a vector v by scalar k)
given a directed line segment for v, the scalar multiple kv corre-
sponds to the directed line segment that has the same initial point
and changes position in the same direction, but whose length has
been scaled so that the terminal point is |k| times as far from the
initial point as the terminal point for u; if k is negative then the
terminal point is also moved to the “other side” of the initial point

parallel vectors
nonzero vectors that are scalar multiples of one another

linear combination of vectors v1,v2, . . . ,vm
a sum of scalar multiples of the vectors: k1v1 +k2v2 + . . .+kmvm

standard basis vectors (in Rn)
the vectors

e1 = (1,0,0, . . . ,0),

e2 = (0,1,0, . . . ,0),

. . . ,

en = (0,0, . . . ,0,1)

Remark 11.2.4 In physics, it is common to use i and j to mean e1 and e2 in
the plane, and to use i, j, and k to mean e1, e2, and e3 in space. However, this
alphabetic naming scheme would have to wrap back around to a in 19 dimensions,
and in 27 dimensions there wouldn’t be enough letters in the alphabet. So we
will (mostly) stick with the e1,e2, . . . ,en naming scheme.

11.3 Concepts

In this section.

• Subsection 11.3.1 Vectors

• Subsection 11.3.2 Vector addition

• Subsection 11.3.3 The zero vector

• Subsection 11.3.4 Vector negatives and vector subtraction

• Subsection 11.3.5 Scalar multiplication
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• Subsection 11.3.6 Vector algebra

• Subsection 11.3.7 The standard basis vectors

11.3.1 Vectors

A directed line segment (or arrow) could be thought of dynamically as describing a
change in position, from the initial point to the terminal point. A two-dimensional
vector in the plane or a three-dimensional vector in space captures just the change
part of “change in position,” leaving the position part (that is, the initial and
terminal points) unspecified. For example, in the plane, the instructions “move
two units right and three units down” describe a way to change positions, but
don’t actually specify from where or to where the change in position is occurring.
So a vector corresponds to an infinite number of directed line segments, where
each of these directed line segments has a different initial point but all of them
require the same “change” to change positions from initial point to terminal
point. Continuing our example, every change in position between some initial
and terminal points in the plane that requires moving two units right and three
units down can be represented by the same vector.

P1

Q1

u

2

3

P2

Q2

u

2

3

P3

Q3

u

2

3

P4

Q4

u

2

3

We describe a two-dimensional vector in the plane with a pair of numerical
components: the change in x and the change in y. If P(x1, y1) and Q(x2, y2) are
points in the plane, then the vector associated to the directed line segment

−−→
PQ

has components v = (∆x,∆y) = (x2 − x1, y2 − y1). (A three-dimensional vector in
space requires a third component as well: the change in z.)

Notice what happens when we use the origin O(0,0) as the initial point and
an arbitrary point R(x, y) as the terminal point in a directed line segment: the
vector associated to

−−→
OR is then (x−0, y−0) = (x, y). So when the initial point

is the origin, the components of the vector are exactly the coordinates of the
terminal point. In Discovery 11.1 we saw that this works in reverse as well.
That is, if we have a vector v = (v1,v2), then we could consider the numbers
v1,v2 as coordinates of a point R(x, y) with x = v1 and y= v2, and then the vector
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associated to
−−→
OR is just v again. In this way, every vector corresponds to one

unique directed line segment with initial point at the origin, and so that is sort
of the “natural position” of the vector as a directed line segment. But we will
find that it is often convenient to consider other directed line segments that
correspond to a particular vector.

We live in a three-dimensional world (or, at least, it appears that way to us),
and our little human brains cannot visualize points or arrows in four- or higher-
dimensional spaces. However, we can still describe such imaginary objects using
our experience from two- and three-dimensional points and vectors. For example,
if we had two points P and Q in an imaginary four-dimensional space, they would
each require four coordinates, so we would describe them as P(w1, x1, y1, z1) and
Q(w2, x2, y2, z2). Then the vector corresponding to the directed line segment

−−→
PQ

would have four components and we would compute it as v= (∆w,∆x,∆y,∆z)=
(w2 −w1, x2 − x1, y2 − y1, z2 − z1).

11.3.2 Vector addition

A vector describes a change in position. If we chain two changes in position
together, by making the initial point of the second vector the same as the terminal
point of the first vector, then we could consider the overall change in position.

P

Q

R
u

v

?

If these are points and vectors in the plane, then clearly the change in
position from P to R will be described by the total net change in x and the
total net change in y, as we discovered in Discovery 11.2. So, in the diagram
above, we obtain the components for the vector corresponding to

−−→
PR by adding

corresponding components of u and v. That is, if u = (u1,u2) and v = (v1,v2),
then the components of the dashed arrow labelled with a question mark are
(u1 +v1,u2 +v2). For obvious reasons, we call this the sum of u and v.

P

Q

R
u

v

u+v

In Discovery 11.2 we also considered the result of interchanging the order of
a pair of vectors that have been chained together.
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P

Q

Q′

R
u

v

v

u

u+v

v+u

In the diagram above, the vector for
−−→
PQ′ is the same as that for

−−→
QR, because

they represent the same change in position, just with a different initial point.
Accordingly, we have labelled both vectors with v. And the same applies to u
with respect to

−−→
PQ and

−−→
Q′R.

The diagram illustrates that if we start at P and chain together the change-
of-position instructions contained in vectors u and v, the order that we do so does
not matter — the overall change in position will be from P to R. Thus, the order
of vector addition doesn’t matter. Algebraically, we could have predicted that this
would be the case because it doesn’t matter what order you add components: the
identities u1 + v1 = v1 +u1 and u2 + v2 = v2 + v2 are both valid. But it’s useful
conceptually to have the above geometric picture of vector addition because,
whether you believe this about yourself or not, humans are spatial thinkers. And
the geometric version of the vector identity v+u=u+v makes a pretty picture
of a parallelogram, so we call it the parallelogram rule.

For three-dimensional vectors, we can imagine diagrams like the ones we
have drawn above floating in space, and the parallelogram rule would hold there
as well. In higher dimensions, we cannot draw pictures, but we could imagine
that they are similar. At any rate, the algebra of vector addition is the same in
any dimension: for u= (u1,u2, . . . ,un) and v= (v1,v2, . . . ,vn) in Rn, we have

u+v= (u1 +v1,u2 +v2, . . . ,un +vn).

11.3.3 The zero vector

There is one special change in position that is unlike any other — the one where
the initial and terminal points are the same, so that there is actually no change
in position. In two dimensions, this means there is no change in either x or y, so
the components are (0,0). Similarly, in any number of dimensions we have the
zero vector 0= (0,0, . . . ,0).

As we explored in Discovery 11.3, if we chain together a vector v, representing
some change in position, with the zero vector, which represents no change, then
the net result is just the change of v. That is, v+0= v, and also 0+v= v.

11.3.4 Vector negatives and vector subtraction

If we move from P to Q, and from there move from Q back to P, the net result is
no change in position, which is represented by the zero vector. This means if we
add the vector corresponding to

−−→
PQ to the one corresponding to

−−→
QP, the result is

0. So if we label the vector for
−−→
PQ as v, it seems reasonable to label the vector

for
−−→
QP as −v, the negative of v, so that we have v+ (−v)= 0.
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P

Q
v

−v

If we are to have v+ (−v)= 0, and the components of 0 are all 0, then since
we add vectors by adding corresponding components, the components of −v must
be the negatives of the components of v. For example, if v= (v1,v2) in the plane,
then −v= (−v1,−v2). In any dimension, we have

v= (v1,v2, . . . ,vn) =⇒ −v= (−v1,−v2, . . . ,−vn).

This relationship between the components of v and −v will lead to an identity
between the negative and a certain scalar multiple of a vector in Subsection 11.3.5
below.

A look ahead. In Section 11.2, we have defined a negative vector as having the
opposite direction to the original. However, when we introduce abstract vectors
in Chapter 15, we won’t have geometric notions like “opposite direction,” so we
will need to rely on the algebraic condition v+ (−v)= 0 to know what a “negative
vector” should be.

Remembering that the “natural” position for a vector is with its tail at the
origin, it’s useful to visualize negatives in the following manner.

O

R

R′

v

−v

That is, the negative of a vector will change positions by the same distance
but in the opposite direction.

To subtract vectors, we add to a vector the negative of another.

O

P

R

R′

Q

u

v

−v

−v

u−
v

Here, the diagonal vector labelled u−v is obtained by adding u and −v. As we
explored in Discovery 11.5, we get an interesting pattern if we draw in another
copy of the vector labelled u−v with its initial point at R.
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O

P

R

P ′

u

v

−v

−v

u−
v

u−
v

u

−v

Triangle △RP ′P creates the vector addition pattern u+ (−v) = u−v. But
notice that △ORP creates a vector addition pattern starting at O and ending up
at P, by v+ (u−v)=u. So we can think of a difference of two vectors as a vector
that runs between the heads of the two vectors in the difference when they share
the same initial point. Algebraically, we can think of the v and −v cancelling in
the expression v+ (u−v), leaving just u.

Of course, there are two vectors that run between the heads of u and v,
namely u−v and its negative.

O

P

P ′

R

u

−u

−u

v

v−
u

v−
u

v

−u

Now △PP ′R creates a vector addition pattern starting at P and ending up
at R, so that v+ (−u)=v−u. But also △OPR creates a vector addition pattern
starting at O and ending up at R, so that u+ (v−u)= v. And finally, the fact that
u−v and v−u both run between P and R, but in opposite directions, verifies
geometrically that −(u−v)= v−u, as we would expect algebraically.

11.3.5 Scalar multiplication

Geometrically, when we scalar multiply a vector we “stretch” or scale its length
by the scale factor. (If this scale factor is negative, then we also flip the vector
around in the opposite direction.) Here are some examples.
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v

2v

(−1)v 1
2 v

− 3
2 v

Notice how each of these vectors either points in the same direction as or in
the opposite direction to v. In particular, they are all parallel to one another.
This happens precisely when the vectors are scalar multiples of one another.

Thinking of the vectors in the diagram above as vectors in the plane, if we
scale v by a factor of 2, then our knowledge of similar triangles tells us that the
change in both x and y must be double.

v

2v

∆x

∆y
2∆y

2∆x

So if v = (v1,v2), then 2v = (2v1,2v2). This relationship between original
vector v and scaled vector kv holds in general, in any dimension, and even for
negative k:

v= (v1,v2, . . . ,vn) =⇒ kv= (kv1,kv2, . . . ,kvn).

In the case that k =−1, we obtain the identity (−1)v=−v, as promised earlier.

Remark 11.3.1 It may seem redundant to write (−1)v = −v, don’t both sides
mean the same thing? In terms of the effect on components of v, yes they are the
same. However, when we explore abstract vectors in Chapter 15, we won’t have
components or the geometric notion of “opposite direction” as means of seeing
this equality, and so there will initially be a subtle difference between the idea of
a vector having an additive negative (so that v+ (−v)= 0) and the operation of
scalar multiplying a vector by the particular scalar −1.

We can connect scalar multiplication to addition, as we explored in Discov-
ery 11.6. If we add a vector to itself, then the sum vector will be twice as long as
the original.

P

Q

R

v

v

v+v

So we have v+v= 2v.

11.3.6 Vector algebra
We have already discovered a few rules of vector algebra, such as

v+u=u+v, −(v−u)=u−v, v+v= 2v, (−1)v=−v.
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In Discovery 11.7, we explored a version of the distributive rule k(u+v)= ku+kv
in the case k = 2.

u

u
2u

v

u+v

u+v

v v

2v

2(u+v)= 2u+2v

u

We will provide more rules of vector algebra as Proposition 11.5.1 in Sub-
section 11.5.1. In Discovery 11.12, we decided that the algebra of vectors is the
same as the algebra of column matrices (which we have already been referring to
as column vectors), so we should be able to anticipate a number of the vector
algebra rules that will appear in that proposition.

A look ahead. The fact that the algebra of column matrices matches exactly with
the algebra (and geometry) of vectors is an important pattern, and recognizing
this pattern is the first step to employing the most powerful tool of mathematics:
abstraction. In Chapter 15 and beyond, we will extract these common algebraic
patterns into an abstract concept of a vector space, and then use logic to deduce
important properties of all collections of mathematical objects that follow the
same algebraic patterns.

Warning 11.3.2 There is no multiplication operation for vectors!
Algebraically, vectors in Rn are the same as column matrices, and you cannot

multiply two column matrices together because their sizes do not match up
(except in R1, but let’s ignore that for now). This also means that you cannot
square a vector, you cannot square-root a vector, you cannot invert a
vector, and you cannot divide by a vector. Do not try to use any of these
operations in vector algebra! In Chapters 12–13, we will encounter some opera-
tions tied to the geometry of vectors that we will call “vector products” and for
which we will use multiplication-like notation, but they will be for very specific
geometric purposes and do not really correspond to our idea of multiplication in
the algebra of numbers.

11.3.7 The standard basis vectors

In Discovery 11.8, we encountered two very special vectors in the plane, e1 = (1,0)
and e2 = (0,1). These two vectors could be considered the fundamental changes
in position in the plane — e1 represents a change by one unit right, and e2
represents a change by one unit up.
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x

y

(0,0)

(1,0)

(0,1)

e1

e2

Any change in position can be built out of these two fundamental changes in
position. Using the example in Discovery 11.8, the vector v= (5,2) represents a
change in position by 5 units right and 2 units up. We can achieve the “5 units
right” part with 5e1 = (5,0) and the “2 units up part” with 2e2 = (0,2). To get the
total change in position represented by v, we can combine these two building
blocks in the linear combination v= 5e1 +2e2.

v= 5e1+2e2

e1 e1 e1 e1 e1

e2

e2

As you can imagine, every vector in the plane can be decomposed into a
linear combination of e1 and e2 in this manner: for v = (v1,v2), we have v =
v1 e1 + v2 e2. For this reason, the two vectors e1,e2 together are called the
standard basis vectors in R2, as they form a basis from which every other
vector can be constructed. To use an analogy with chemistry, these two vectors
are the basic atoms of R2, and every other vector in R2 is a molecule built out
of a specific combination of these atoms. Since there are only two fundamental
directions in R2 (right/left and up/down), it is not surprising that we need only
two basis vectors to represent all possible directions. This is the reason we call
vectors in R2 two-dimensional vectors.

Note. Left is not considered a different direction from right, it is just the opposite
(or negative) direction: as e1 points right, −e1 points left. And similarly, up
and down are not different directions, just opposite. So there are only two
fundamental directions in the plane, not four.

In R3, there are three fundamental directions, two horizontal and one vertical.
We might use navigational terminology for the two horizontal directions and
describe them as north/south and east/west, and then we can refer to the vertical
direction as up/down. So we need three standard basis vectors in R3,

e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1),

which we can visualize as below.

x

y
z

(0,0,0)
(1,0,0)

(0,1,0)(0,0,1)

e1

e2e3

Note. In this diagram, you should view the z-axis as coming straight up out of
the xy-plane.

As before, any vector in R3 can be decomposed as a linear combination of
these three fundamental vectors. For example, the vector (1,−1,2) decomposes
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as
(1,−1,2)= 1e1 + (−1)e2 +2e3.

And we can repeat all this in Rn for any value of n, where there are n standard
basis vectors,

e1 = (1,0,0, . . . ,0), e2 = (0,1,0, . . . ,0), en = (0,0, . . . ,0,1).

In fact, given a vector v= (v1,v2, . . . ,vn) in Rn (whether n = 2 or n = 3 or higher),
when we try to decompose

v= e1 + e2 +·· ·+ en,

we find that there is only one unique combination of scalar values that can
fill in the blanks and create an equality between v on the left and the linear
combination on the right:

v= v1e1 +v2e2 · · ·+vnen.

A look ahead. The fact that every vector decomposes uniquely as a linear
combination of basis vectors is an important feature of the standard basis of Rn

that we will see repeated when we explore the concept of basis in abstract vector
spaces.

11.4 Examples

In this section.

• Subsection 11.4.1 Vectors in Rn

• Subsection 11.4.2 Vector operations

11.4.1 Vectors in Rn

Following Discovery 11.1, consider the vector v in R2 (that is, in the plane) that
represents changing position from P(1,2) to Q(3,−1).

x

y

1 2 3

−1

1

2
P(1,2)

Q(3,−1)

v

We can compute the components of v by computing the change in x and the
change in y in moving from P to Q:

v= (∆x,∆y)= (3−1,−1−2)= (2,−3).

We can see by looking at their coordinates that moving from point P to Q requires
moving 2 units right to get from x = 1 to x = 3 and moving 3 units down to get
from y= 2 to y=−1, and our calculation of v above agrees.
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The same vector with some other initial point will also have a terminal point
that is 2 units to the right and 3 units down from the initial point. In particular,
if we take the initial point to be the origin, then the terminal point will have
coordinates (2,−3), same as the components of v.

x

y

−2 −1 1 2 3

−3

−1

1

2

O(0,0)

R(2,−3)

v

P(1,2)

Q(3,−1)

v
S(−2,1)

T(0,−2)

v

Notice that these different representations of the vector v are parallel and
have the same length.

Vectors can be similarly computed from pairs of points by subtracting coor-
dinates in any dimension. For example, we compute the vector that represents
changing position in space from P(1,2,−3) to Q(3,−1,0) by

v= (∆x,∆y,∆z)

= (
3−1,−1−2,0− (−3)

)
= (2,−3,3).

Another example in four-dimensional space, with

P(1,2,−3,−4), Q(1,−1,1,−1),

yields

v=−−→
PQ = (∆x1,∆x2,∆x3,∆x4)

= (
1−1,−1−2,1− (−3),−1− (−4)

)
= (0,−3,4,3).

11.4.2 Vector operations

Here we’ll work through some of the computations of Discovery guide 11.1, and
provide the accompanying diagrams.

Example 11.4.1 Vector addition in R2. In Discovery 11.2, we were tasked
with geometrically adding vectors u= (2,3) and v= (3,−1) in the plane, starting
at initial point P(1,1).
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x

y

1 2 3 4 5 6

1

2

3

4

P(1,1)

Q(3,4)

R(6,3)
u

v

u+v

To add vectors geometrically, we put them head-to-tail. The vector u= (2,3)
instructs us to move 2 units right and 3 units up, so starting at P(1,1) we end
up at Q(3,4). Then the vector v= (3,−1) instructs us to move 3 units right and 1
unit down, so starting at Q we end up at R(6,3). The sum vector u+v represents
the overall change from P to R, which is 5 units right and 2 units up, so that
u+v= (5,2). We can also add the vectors algebraically by

u+v= (2,3)+ (3,−1)

= (
2+3,3+ (−1)

)
= (5,2).

Adding the vectors algebraically is obviously faster and easier than drawing
a diagram, but it’s good to have a mental picture of the geometric version of
addition — it will help conceptually later on. □

Example 11.4.2 Vector addition in higher dimensions. Our geometric
picture and algebraic computation of addition are similar for three-dimensional
vectors in space. In Rn with n > 3, we can’t draw a picture but we could imagine
vector addition would take same the familiar triangle shape, and the algebraic
computations are similar again. For example,

(1,2,3,4,5)+ (6,−2,4,0,1)= (
1+6,2+ (−2),3+4,4+0,5+1

)
= (7,0,7,4,6)

in R5. □

Example 11.4.3 Negative vectors. In Discovery 11.4, we explored the concept
of a negative vector as the vector that will return us to our initial point, after
changing positions along vector v = (2,1) in the plane, starting at the origin.
Recall that if a vector has its initial point at the origin, then the terminal point
has coordinates equal to the components of the vector.

x

y

1 2

1
R(2,1)

v

−v

If v represents moving 1 unit right and 2 units up, then to return to our
original position we must move 1 unit left and 2 units down, so that −v= (−2,−1).
Of course, the components of −v do not depend on what initial point we choose —
we would need to make the same reverse change of position no matter where v
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started.
As in Subsection 11.3.4, it is helpful to have a mental picture of a negative

vector where its initial point is the same as for the original vector. In this
orientation, the vector and its negative are parallel but oppositely directed.

x

y

−2 −1 1 2

−1

1
R(2,1)

R′(−2,−1)

v

−v

□

Example 11.4.4 Scalar multiplication. In Discovery 11.6, we explored scalar
multiplication geometrically in the plane, using v = (2,1), initially by relating
scalar multiplication to addition.

x

y

1 2 3 4

1

2

R(2,1)

R′(4,2)

v

v

2v

The above diagram illustrates that v+v = 2v, which we can also confirm
algebraically:

v+v= (2+2,1+1)

= (2,4)

= 2(2,1)

= 2v.

Geometrically, the scalar multiples 3v, −2v, 1
2 v, and − 5

4 v are all parallel to v but
with lengths stretched or compressed by the scale factor. Additionally, a negative
scalar multiple flips the vector around in the opposite direction.

x

y

1 2 3 4 5 6

1

2

3

R(2,1)

R′(6,3)
3v

v
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x

y

−4 −3 −2 −1 1 2

−2

−1

1 R(2,1)

R′(−4,−2)

v

−2v

x

y

1 2

0.5

1 R(2,1)

R′ (1, 1
2
)v1

2 v

x

y

−2.5 −2 −1 1 2

−1

1 R(2,1)

R′ (− 5
2 ,− 5

4
)

v

− 5
4 v

Since the initial point is the origin, each vector above has components equal
to the coordinates of its terminal point. In particular, we have

3v= 3(2,1)= (6,3), −2v=−2(2,1)= (−4,−2),
1
2

v= 1
2

(2,1)=
(
1,

1
2

)
, −5

4
v=−5

4
(2,1)=

(
−5

2
,−5

4

)
.

In higher dimensions, scalar multiplication works in exactly the same way
algebraically — we just multiply each component of the vector by the scale factor.
For example, for v= (1,−2,3,−4,5) in R5, we have

−17v= (−17,34,−51,68,−85).

□
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11.5 Theory

In this section.

• Subsection 11.5.1 Vector algebra

11.5.1 Vector algebra
Here we list the basic rules of algebra for vectors in Rn. There is no need to
prove these rules like we did for the rules of matrix algebra in Subsection 4.5.1,
because we know from Discovery 11.12 that vectors in Rn can be converted into
column matrices and then the vector operations of addition, negation, and scalar
multiplication all work as with matrices. And so, since the following rules are all
valid when the vectors are replaced by column matrices, they are all valid for
vectors in Rn.

Proposition 11.5.1 Rules of vector algebra in Rn. The following are valid
rules of vector algebra. In each statement, assume that u,v,w are arbitrary vectors
and 0 is a zero vector, all of the same dimension. Also assume that k and m are
scalars.

1. Rules of vector addition.

(a) v+u=u+v
(b) u+ (v+w)= (u+v)+w

2. Rules involving scalar multiplica-
tion.

(a) k(u+v)= ku+kv
(b) (k+m)v= kv+mv
(c) k(mv)= (km)v

(d) 1v= v

(e) (−1)v=−v

(f) u−v=u+ (−1)v

3. Rules involving a zero vector.

(a) v+0= v

(b) v−v= 0

(c) k0= 0
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Geometry of vectors

12.1 Discovery guide

Discovery 12.1
(a) Draw the vector u= (3,2) in the xy-plane, then draw a representation of

the decomposition u= 3e1 +2e2, where e1 and e2 are the standard basis
vectors in R2.

Then call on the help of some dead Greek dude to help you compute the
length of u.

(b) Does the same method work to determine the length of w= (3,−2)? (And
what is the point of checking this case?)

(c) In general, the formula for the length of a two-dimensional vector v =
(v1,v2) is .

(d) The same sort of formula works for in three or more dimensions. Fill in the
general formulas below.

• The length of v= (v1,v2,v3) is .

• The “length” of v= (v1,v2,v3,v4) is .

• The “length” of v= (v1,v2, . . . ,vn) is .

The quantity for which we developed formulas in Discovery 12.1 is called the
norm of v, and is denoted ∥v∥. (We don’t use the word “length” for n > 3 — how
do you measure length in four dimensions?)

Discovery 12.2

(a) Rewrite your last, general formula from Discovery 12.1.d:

for v= (v1,v2, . . . ,vn), ∥v∥ = .

Now square this formula:

for v= (v1,v2, . . . ,vn), ∥v∥2 = .

(b) Describe the pattern of your formula for ∥v∥2 in words without using any
letter variables:

the square of the norm of a vector is equal to

.

157
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Discovery 12.3 In this activity, make sure you can answer the questions for all
dimensions, and make sure you can justify your answer using the formula for
norm from Discovery 12.2, not just geometrically.

(a) Can ∥v∥ ever be negative?

(b) What is ∥0∥? Is 0 the only vector that has this value for its norm?

(c) Complete the formulas:

• ∥2v∥ = ∥v∥
• ∥−2v∥ = ∥v∥
• ∥kv∥ = ∥v∥

Discovery 12.4 A unit vector is one whose norm is equal to 1.

(a) Verify that the standard basis vectors are all unit vectors, in all dimensions.

(b) Fill in the blanks with an appropriate scalar multiple.

• If ∥u∥ = 1/2, then u is a unit vector.

• If ∥w∥ = 2, then w is a unit vector.

• For every nonzero v, kv is a unit vector for both k = and
k = .

Discovery 12.5 Plot points P(1,3) and Q(4,−1) in the xy-plane. Now draw in
the vectors u and v that correspond to

−−→
OP and

−−→
OQ. Complete the triangle by

drawing a vector between P and Q. Do you remember how to express this vector
as a combination of u and v? Now compute the distance between P and Q by
computing the norm of this third vector.

Recall that in math we measure angles in radians. Here are some common
conversions:

30◦ =π/6 rad, 90◦ =π/2 rad,

45◦ =π/4 rad, 180◦ =π rad.

60◦ =π/3 rad,

Discovery 12.6

(a) In the xy-plane, what is the angle between e1 and e2? . . . between e1 and
u= (1,1)? . . . between e1 and 2e1? . . . between e1 and −e2? . . . between
e1 and v= (1,−1)? . . . between e1 and −e1?

(b) Fill in the blanks: an angle θ between a pair of two-dimensional vectors
should satisfy ≤ θ ≤ .

Discovery 12.7 In the diagram below, consider u and v to be two-dimensional
vectors. Label the third vector with the appropriate combination of u and v, just
as you did in Discovery 12.5.

u

vθ
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There is a version of Pythagoras that applies here even though θ ̸= 90◦, called
the law of cosines:

a2 +b2 − c2 = 2abcosθ,

where a is the length of u, b is the length of v, and c is the length of the
“hypotenuse” across from θ. (If θ were 90◦, the right-hand side of this equality
would be zero and this law would “collapse” to the same equality as Pythagoras.)

Use the formulas from Discovery 12.2 to rewrite the left-hand side of the law
of cosines in terms of the components of u= (u1,u2) and v= (v1,v2), then simplify
until you get

2× (simple formula).
Using the new expression 2× (simple formula) from Discovery 12.7 as the

left-hand side in the law of cosines, and dividing both sides by 2ab, we get

cosθ = (simple formula)
∥u∥∥v∥ .

(Remember that a and b are the lengths of u and v, respectively.)
The “simple formula” part of this angle formula turns out to be an important

one — it is called the Euclidean inner product or standard inner product
(or just simply the dot product) of u and v, and written u •v.

Discovery 12.8 Let’s extend the computational pattern from Discovery 12.7.
In the two-dimensional case in Task a below, you should just enter the “simple
formula” you discovered above. In the subsequent tasks in higher dimensions, use
the pattern from the two-dimensional case to create a similar higher-dimensional
formula.

(a) In two dimensions.

For u= (u1,u2), v= (v1,v2): u •v= .

(b) In three dimensions.

For u= (u1,u2,u3), v= (v1,v2,v3): u •v= .

(c) In four dimensions.

For u= (u1,u2,u3,u4), v= (v1,v2,v3,v4): u •v= .

(d) Arbitrary dimension.

For u= (u1,u2, . . . ,un), v= (v1,v2, . . . ,vn): u •v= .

Discovery 12.9 What is the formula for the dot product of a vector with itself?
For v= (v1,v2, . . . ,vn), v •v= .
Compare your answer with Discovery 12.2.

Discovery 12.10 Using the formula for the dot product for two-dimensional
vectors, verify that it has the following properties.

Remember. When verifying an equality, make sure to use proper LHS versus
RHS procedure!

(a) v •u=u •v.

(b) u • (v+w).

(c) k(u •v)= (ku) •v=u • (kv).

(d) 0 •v= 0.

Do you think all these properties will still be true for higher-dimensional vectors?



160 CHAPTER 12. GEOMETRY OF VECTORS

Discovery 12.11

(a) For two-dimensional column vectors u = [u1
u2

]
and v = [ v1

v2

]
, compute the

matrix product (uT)v.

What do you notice? Do you think the same will happen for higher-
dimensional column vectors?

(b) Suppose u and v are n-dimensional column vectors and A is an n×n matrix.
Use what you discovered in Task a to fill in the blank:

(Au) •v=u • ( v).
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12.2 Terminology and notation

norm (of a vector v)
the quantity ∥v∥ =

√
v2

1 +v2
2 +·· ·+v2

n; also called the length or mag-
nitude of v

unit vector
a vector whose norm is equal to 1

normalization (of a vector v)

the unit vector
1

∥v∥ v

distance (between two vectors u and v)
the distance between the terminal points of the two vectors when
their initial points are placed at the same point; can be computed as
∥u−v∥ (or equivalently as ∥v−u∥)

dot product (of two vectors u and v of the same dimension)
the quantity

u •v= u1v1 +u2v2 +·· ·+unvn;

also referred to as the Euclidean inner product or standard
inner product of u and v

angle (between two vectors u and v of the same dimension)
the angle θ satisfying both

0≤ θ ≤π and cosθ = u •v
∥u∥∥v∥

12.3 Concepts

In this section.

• Subsection 12.3.1 Geometric length of a vector: the norm

• Subsection 12.3.2 Properties of the norm

• Subsection 12.3.3 Unit vectors and normalization

• Subsection 12.3.4 Distance between vectors

• Subsection 12.3.5 Angle between vectors in the plane and in space

• Subsection 12.3.6 Dot product

• Subsection 12.3.7 Angle between vectors in Rn

• Subsection 12.3.8 Dot product versus norm

• Subsection 12.3.9 Dot product as matrix multiplication

12.3.1 Geometric length of a vector: the norm

We can easily determine the length of a vector in the plane from its components
using the Pythagorean Theorem.
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v

∆x

∆y

If we let ℓ represent the length of v, then Pythagoras tells us that

ℓ2 = (∆x)2 + (∆y)2.

Remember. There is no such operation as squaring a vector, so it would be
incorrect to write v2 = (∆x)2 + (∆y)2.

We write ∥v∥ to mean the length of the vector v in the plane. Keep in mind
in all that follows that ∥v∥ is always a single number, since it measures a length.
If v has components v= (v1,v2) (where v1 =∆x and v2 =∆y), then solving for ℓ
in the Pythagorean equation above gives us

∥v∥ =
√

v2
1 +v2

2.

For a vector v= (v1,v2,v3) in R3, consider the vector v′ = (v1,v2,0) sitting in
the xy-plane.

x

y

z

v

v′

∆x
∆y

∆z

Applying the Pythagorean Theorem to the vertical triangle, we find

∥v∥2 = ∥∥v′∥∥2 + (∆z)2.

But v′ lies flat in the xy-plane, and we have already analyzed that case above:∥∥v′∥∥2 = (∆x)2 + (∆y)2.

Combining these, we get

∥v∥2 = (
(∆x)2 + (∆y)2

)+ (∆z)2 = v2
1 +v2

2 +v2
3,

so that
∥v∥ =

√
v2

1 +v2
2 +v2

3.

The word length ceases to have any meaning in R4, so in general we refer
to ∥v∥ as the norm of v in any dimension. We imagine that if we were able to
somehow measure length in Rn for n ≥ 4, then the pattern where we used length
in R2 to help us compute length in R3 would be repeated, and we would be able
to use length in R3 to help us compute “length” in R4, and then we would be able
to use “length” in R4 to help us compute “length” in R5, and so on. So it seems
reasonable to define the norm of a vector v= (v1,v2, . . . ,vn) in Rn to be

∥v∥ =
√

v2
1 +v2

2 +·· ·+v2
n.
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Square roots are annoying to work with algebraically, so we often work with the
square of a norm, for which we developed the formula

∥v∥2 = v2
1 +v2

2 +·· ·+v2
n

in Discovery 12.2.

12.3.2 Properties of the norm
We explored some other basic properties of the norm in Discovery 12.3. First,
when we take the square root of a nonzero number, we always take the positive
square root, so a norm is never a negative number. This property agrees with
our conception of norm as a length in R2 and R3, since in geometry we usually
require lengths to be nonnegative.

Second, the zero vector 0= (0,0, . . . ,0) always has norm 0 in every dimension,
since

∥0∥ =
√

02 +02 +·· ·+02 =
p

0= 0.

And it is the only vector that has norm 0, since as soon as one of the components
of a vector is nonzero, the sum of squares under the square root sign in the
norm formula will be a positive number. There is no possibility of cancellation to
zero under the square root, even if a vector has a mix of positive and negative
components, because squaring the components will never have negative results.

Finally, we considered the effect of a scalar multiplication on norm. Geomet-
rically, in R2 and R3 we think of scalar multiplication as scaling a vector’s length
by some scale factor k, so we should expect the numerical norm of a vector to be
multiplied by the scale factor. And that is (almost) exactly what happens:

∥v∥ =
√

v2
1 +v2

2 +·· ·+v2
n, ∥kv∥ =

√
(kv1)2 + (kv2)2 +·· ·+ (kvn)2

=
√

k2v2
1 +k2v2

2 +·· ·+k2v2
n

=
√

k2(v2
1 +v2

2 +·· ·+v2
n)

=
√

k2
√

v2
1 +v2

2 +·· ·+v2
n

=
√

k2 ∥v∥ .

We need to be a little careful with the last step, because it is not always true thatp
k2 = k. In particular, the result of

p
k2 is never negative, so if k is negative

then it is impossible for
p

k2 to be equal to k. The proper formula for all values
of k is

p
k2 = |k|, so our norm formula becomes

∥kv∥ = |k|∥v∥ .

12.3.3 Unit vectors and normalization
In the plane or in space, a vector with length 1 is convenient geometrically
because it can be used as a “meter stick” — every scalar multiple of that vector
will have length equal to the (absolute value of) the scale factor. For example, if
u has length 1, then both 3u and −3u have length 3. The same pattern will hold
in any dimension when we replace the word “length” with “norm.” A vector with
norm 1 is called a unit vector. One of the reasons the standard basis vectors are
so special is that each of them is a unit vector, as we saw in Discovery 12.4. Thus
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each standard basis vector can be used as a “meter stick” along the corresponding
axis.

We also explored how to scale a nonzero vector to a unit vector in Discov-
ery 12.4. For example, if a vector has norm 1/2, then we can scale it up to a unit
vector by multiplying it by 2 to double its norm. Conversely, if a vector has norm
2, we can scale it down to a unit vector by multiplying it by 1/2 to halve its norm.
In general, we can scale any nonzero vector v in Rn up or down to a unit vector
by multiplying it by scale factor k = 1

∥v∥ , since then∥∥∥∥ 1
∥v∥ v

∥∥∥∥=
∣∣∣∣ 1
∥v∥

∣∣∣∣ ∥v∥ = 1
∥v∥ ∥v∥ = 1.

In the above, we have used the formula for the norm of a scalar multiple, ∥kv∥ =
|k|∥v∥, with k = 1

∥v∥ . The absolute value brackets on this particular scalar k can
be removed because norms are never negative, and so |k| = k in this case.

Remember. We should never divide by a vector because there is no such vector
operation (see Warning 11.3.2). But ∥v∥ is a number, not a vector, so k = 1

∥v∥ is
valid.

In fact, every nonzero vector v is parallel to exactly two corresponding unit
vectors, because kv and −kv always have the same norm. So

u1 = 1
∥v∥ v, and u2 =− 1

∥v∥ v

are always unit vectors, as long as v ̸= 0.

12.3.4 Distance between vectors

As we saw in Subsection 11.3.4, if we position u and v to share the same initial
points, then the difference vectors u−v and v−u run between the terminal
points of u and v.

u

v

u−v
v−u

So we can measure the distance between the terminal points of u and v by
computing ∥u−v∥ or ∥v−u∥, as we discovered in Discovery 12.5. This process is
even more straightforward when the common initial point of u and v is chosen to
be the origin, so that the components of u and v are the same as the coordinates
of their respective terminal points.

Remark 12.3.1 The analysis above illustrates a useful strategy to compute
distances in the plane or in space: determine some vector that traverses the
distance in question, and then compute the norm of that vector to obtain the
desired distance. Combined with some of the vector geometry that we will develop
in the next few chapters, this strategy is often easier than trying to determine
the coordinates of the points at the endpoints of the desired distance. You should
remember this strategy when we explore the geometry of lines and planes in
Chapters 13–14.
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12.3.5 Angle between vectors in the plane and in space
Two vectors in the plane, when given the same initial point, have two angles
between them.

u

v
θ1

θ2

We only need to know one of these two angles, since the other can be computed
from the knowledge that the sum of the two angles is 2π radians. We generally
prefer to avoid ambiguity in math, so it would be nice to have a systematic way
to choose one of the two angles between a pair of vectors that we can refer to as
the angle between the vectors. We will not distinguish between clockwise and
counterclockwise, because those terms will become meaningless when we move
up a dimension. Instead we will always choose the smaller angle to be the angle
between the two vectors.

u1

v1

θ

�Aθ

u2 v2

θ

�Aθ

Thus, the angle between two vectors in the plane will always be between 0
and π radians. Note that it is possible for the angle to be exactly 0 radians or
exactly π radians, in the case the the two vectors are parallel.

u1v1

θ = 0 rad

u2

v2

θ =π rad

How can we measure the angle between vectors in three-dimensional space?

x

yz

u

v

θ

Figure 12.3.2 Diagram of the angle between vectors in space, embedded in a
plane.

In space, two vectors that are positioned to share the same initial point can be
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completed to a triangle, and that triangle will lie in a plane. The angle between
the two vectors can then be taken to be the smaller of the two angles between
the two vectors in that shared plane.

Note. In Figure 12.3.2, you should imagine the shaded surface passing through
the origin, with the two vectors u and v lying flat in it.

12.3.6 Dot product
In Discovery 12.7, we combined vector geometry with some high school geometry
to determine a formula for the (cosine of the) angle between two plane vectors.
Recall from Subsection 11.3.4 that a vector that runs between the terminal points
of two vectors that share an initial point is a difference vector.

u a

v
b

u−v
c

θ

The lengths of the sides of the triangle formed by these three vectors are just
the norms of the vectors:

a = ∥u∥ , b = ∥v∥ , c = ∥u−v∥ .

The Law of Cosines applied to this triangle says that a2 +b2 − c2 = 2abcosθ.

Careful. It would be nonsense to write this as u2 +v2 − (u−v)2 = 2uvcosθ,
because there are no such operations as multiplying or squaring vectors.

Let’s give our plane vectors some components so that we can work with this
equality:

u= (u1,u2), v= (v1,v2), u−v= (u1 −v1,u2 −v2).

Now we have

a2 = ∥u∥2 b2 = ∥v∥2 c2 = ∥u−v∥2

= u2
1 +u2

2, = v2
1 +v2

2, = (u1 −v1)2 + (u2 −v2)2

= u2
1 −2u1v1 +v2

1 +u2
2 −2u2v2 +v2

2,

and so after some cancelling we have

a2 +b2 − c2 = 2u1v1 +2u2v2.

Using the expression on the right above for the left-hand side of the equality
a2 + b2 − c2 = 2abcosθ for cosθ, solving for cosθ, and then substituting a = ∥u∥
and b = ∥v∥ leads to

cosθ = u1v1 +u2v2

∥u∥∥v∥ . (*)

The expression on the left and the denominator on the right are both familiar —
we have the ordinary cosine function from trigonometry and we have some vector
norms. However, before we worked through Discovery 12.7, the expression in the
numerator on the right-hand side was unknown.
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Earlier in this chapter, we mentioned how two vectors in space with their
initial points at the origin lie inside a common flat plane (see Figure 12.3.2).
If we repeated the above geometric analysis of vector angle in this flat surface
inside space, we would come to a similar conclusion:

cosθ = u1v1 +u2v2 +u3v3

∥u∥∥v∥ . (**)

There is an obvious pattern to the numerators on the right-hand sides of equa-
tions (*) and (**). And it seems that the value that these numerator formulas
compute is important, since it provides a link between the two most important
quantities in geometry: length and angle. So we give it a name, the dot product
(or the Euclidean inner product), and use the symbol • between two vectors
to represent this quantity. The formula can obviously be extended to higher
dimensions than just the plane R2 and space R3, so we will do just that:

u •v= u1v1 +u2v2 +·· ·+unvn.

Warning 12.3.3 The result of the computation u •v is a number, which is im-
portant to keep in mind if you are working algebraically with an expression
containing a dot product. See Proposition 12.5.3 in Subsection 12.5.1 for alge-
braic rules involving the dot product.

12.3.7 Angle between vectors in Rn

Even though we can’t “see” geometry in Rn for n > 3, we have already seen that
we can perform computations related to geometry in these spaces. We can attach
the number ∥v∥ to a vector v in Rn that can be interpreted as its “length.” And
for two vectors u and v in Rn, we can compute the number u •v that is somehow
related to the geometric relationship between u and v. We have seen that in the
plane and in space, u •v links the lengths of u and v to the angle between them.
But do higher-dimensional vectors have angles between them? Is there some
number that we can attach to u and v that “measures” the angle between them,
even if we can’t see or measure this angle directly?

The equalities in (*) and (**) suggest a pattern we can copy into Rn in general.
We define the angle between u and v to be the unique angle θ, between 0 and π,
that makes

cosθ and
u •v

∥u∥∥v∥ (***)

equal.

Question 12.3.4

• For every pair of vectors u and v in Rn, can we always determine a suit-
able angle θ in the domain 0 ≤ θ ≤ π that works (i.e. that makes the two
quantities in (***) equal)?

• For some pair of vectors u and v in Rn, might it be possible that there are
several values of θ in the domain 0≤ θ ≤π that work?

□
Fortunately, for a pair of (nonzero) plane vectors or space vectors, there is

exactly one number (once we restrict to the domain 0 ≤ θ ≤ π) that gets to call
itself the angle between the vectors. It would not bode well for the possibility of
somehow doing geometry in higher-dimensional spaces if there were sometimes
two numbers that could be reasonably called “the angle” between a pair of vectors,
or sometimes none at all. Luckily neither of these is possible.
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First, for a pair of nonzero vectors in Rn, the formula
u •v

∥u∥∥v∥
can always be computed, and the result of the computation is always a single,
definite number.

Second, looking at the provided graph of y= cosθ, there are no instances in
the domain 0 ≤ θ ≤ π where cosθ computes to the same value for two different
values of θ.

θ

y

π

π
2

−1

1 y= cosθ

On this domain, we call the graph one-to-one. So a pair of vectors in Rn can
never have two angles in the domain 0≤ θ ≤π between them, because there are
never two solutions to the equation

cosθ = u •v
∥u∥∥v∥ (†)

in that domain.
But is there always some solution to equation (†)? No matter what domain

you work on, cosθ never evaluates to a number greater than 1 or less than −1.
Perhaps if we tried hard enough we could discover some unlucky pair of vectors
u and v in R13 where u •v

∥u∥∥v∥
computed to a number greater than 1 or to a number less than −1. In that case,
it would be impossible for cosθ to be equal to that number, and u and v would
have no angle between them. It turns out that forming such an unlucky pair of
vectors is impossible, and we know this courtesy of a couple of dead guys.

Theorem 12.3.5 The Cauchy-Schwarz inequality. For every pair of vectors u
and v in Rn, the quantity

u •v
∥u∥∥v∥

is always between −1 and 1 (inclusive).

Note. The “inequality” part of the Cauchy-Schwarz inequality is usually stated
as |u •v| ≤ ∥u∥∥v∥, which for nonzero vectors u and v is equivalent to

−1≤ u •v
∥u∥∥v∥ ≤ 1.

Since the graph y= cosθ passes through every possible y-value in the range
−1≤ y≤ 1, and does so only once, equation (†) always has one unique solution for
a pair of nonzero vectors.

12.3.8 Dot product versus norm
We have already seen that the dot product is intimately tied to the geometry of
Rn, acting as a link between norm (length) and angle. But as we discovered in
Discovery 12.9, it is also directly linked to the norm by the observation

∥v∥2 = (
√

v2
1 +v2

2 +·· ·+v2
n)2 v •v= v1v1 +v2v2 +·· ·+vnvn
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= v2
1 +v2

2 +·· ·+v2
n, = v2

1 +v2
2 +·· ·+v2

n.

So we obtain a very convenient formula: ∥v∥2 = v •v.

Remark 12.3.6 Really, this “new” link between dot product and norm is just the
special case of equation (†) where u is taken to be equal to v, since in this case
the angle between u and v (i.e. between v and itself) is zero, and cos0= 1.

12.3.9 Dot product as matrix multiplication
The pattern in the formula for the dot product of two vectors should look vaguely
familiar to you — it is a sum of products, which is exactly the pattern of the left-
hand side of a linear equation, and so also the pattern in our “row-times-column”
view of matrix multiplication in Subsection 4.3.7. In fact, the dot product can
be defined in terms of matrix multiplication if we take our vectors to be column
vectors and use the transpose to turn one of the columns into a row. Indeed, for

u=


u1

u2
...

un

 , v=


v1

v2
...

vn

 ,

we have

vTu= [
v1 v2 · · · vn

]


u1

u2
...

un


= v1u1 +v2u2 +·· ·+vnun

= u1v1 +u2v2 +·· ·+unvn

=u •v.

So we obtain a matrix formula for dot product: u •v= vTu.

Remark 12.3.7

• Technically, the result of multiplying the 1× n matrix vT and the n×1
matrix u should be a 1×1 matrix. But algebraically there is no difference
between numbers and 1× 1 matrices with respect to the operations of
addition, subtraction, and multiplication, so it is common to think of a 1×1
matrix as just a number, as we did above.

• It might seem more natural to use

u •v = uTv = [
u1 u2 · · · un

]


v1

v2
...

vn

 = u1v1 +u2v2 +·· ·+unvn

(as we did in Discovery 12.11), instead of the seemingly pointless reversal of
order in the formula u •v= vTu. However, if you continue on in your study
of linear algebra beyond this course, you will discover that this reversal of
order is necessary when studying complex vectors (that is, vectors where
the components are complex numbers). Since this reversal of order is
harmless here, we will start using it now so as to avoid confusion later.
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12.4 Examples

In this section.

• Subsection 12.4.1 The norm of a vector

• Subsection 12.4.2 Dot product and the angle between vectors

12.4.1 The norm of a vector

Example 12.4.1 Basic computation examples. Here are a few examples of
computing the norm of a vector, in various dimensions.

1. Consider u= (1,2) in R2. Then,

∥u∥ =
√

12 +22 =
p

5.

2. Consider v= (1,2,−1) in R3. Then,

∥v∥ =
√

12 +22 + (−1)2 =
p

6.

3. Consider w= (1,2,−1,5) in R4. Then,

∥w∥ =
√

12 +22 + (−1)2 +52 =
p

31.

□

Example 12.4.2 Norms of the standard basis vectors. The standard basis
vectors in Rn are always unit vectors:

∥e1∥ =
√

12 +02 +·· ·+02 =
p

1= 1,

∥e2∥ =
√

02 +12 +02 +·· ·+02 =
p

1= 1,
...

∥en∥ =
√

02 +·· ·+02 +12 =
p

1= 1.

□

Example 12.4.3 Normalizing vectors. We can scale any nonzero vector to a
unit vector by dividing by its norm, and this normalized version of the vector
will always be parallel to the original.

Let’s carry this out for the vectors from Example 12.4.1 above.

1. We computed the norm of u= (1,2) to be ∥u∥ =p
5. Therefore, the scaled

vector
u′ = 1p

5
u=

(
1p
5

,
2p
5

)
is a unit vector (i.e.

∥∥u′∥∥= 1).

2. We computed the norm of v= (1,2,−1) to be ∥v∥ =p
6. Therefore, the scaled

vector
1p
6

v=
(

1p
6

,
2p
6

,− 1p
6

)
is a unit vector.
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3. We computed the norm of w= (1,2,−1,5) to be ∥w∥ =p
31. Therefore, the

scaled vector
1p
31

v=
(

1p
31

,
2p
31

,− 1p
31

,
5p
31

,
)

is a unit vector.

□

12.4.2 Dot product and the angle between vectors
Here is an example of using the dot product to determine the angle between
vectors.

Example 12.4.4 Computing angle from dot product. What is the angle
between vectors u= (1,2) and v= (−1,3) in R2?

From Discovery 12.7, we know that the angle θ between u and v satisfies

cosθ = u •v
∥u∥∥v∥ .

Also see. Subsection 12.3.7 and Corollary 12.5.5 in Subsection 12.5.2.

So compute

u •v= 1 · (−1)+2 ·3= 5, ∥u∥ =
√

12 +22 =
p

5, ∥v∥ =
√

(−1)2 +32 =
p

10.

Therefore,

cosθ = 5p
5
p

10
= 1p

2
.

The only angle in the domain 0≤ θ ≤π with this cosine value is θ =π/4. □

12.5 Theory

In this section.

• Subsection 12.5.1 Norm and dot product

• Subsection 12.5.2 Vector geometry inequalities and uniqueness of
vector angles

12.5.1 Norm and dot product
We’ll begin with algebraic properties of norm and dot product.

Proposition 12.5.1 Properties of the norm. The following are true for all
vectors u and v in Rn and all scalars k.

1. ∥v∥ ≥ 0, and ∥v∥ = 0 only for v= 0.

2. ∥−v∥ = ∥v∥.

3. ∥kv∥ = |k|∥v∥.

4. ∥v−u∥ = ∥u−v∥.

Warning 12.5.2 The norm is not additive; that is, it is not true in general that
∥u+v∥ is equal to ∥u∥+∥v∥. Sometimes the two quantities are equal, as you
are asked to consider below, but the best we can say about the norm of a sum is
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contained in Theorem 12.5.6 below.

Proposition 12.5.3 Algebra rules of the dot product. The following are true
for all vectors u, v, and w in Rn, and all scalars k.

1. v •u=u •v.

2. u • (v+w)=u •v+u •w.

3. u • (v−w)=u •v−u •w.

4. (u+v) •w=u •w+v •w.

5. (u−v) •w=u •w−v •w.

6. (ku) •v= k(u •v).

7. u • (kv)= k(u •v).

8. v •v= ∥v∥2.

9. Both v •0= 0 and 0 •v= 0.

12.5.2 Vector geometry inequalities and uniqueness of vec-
tor angles

The Cauchy-Schwarz inequality. Here we will state the Cauchy-Schwarz
inequality in its usual form. Note that this version applies to every pair of vectors,
even if one is (or both are) the zero vector.

Theorem 12.5.4 The Cauchy-Schwarz inequality. For every pair of vectors u
and v in Rn, we have |u •v| ≤ ∥u∥∥v∥.

Proof. We will show that (u •v)2 ≤ (∥u∥∥v∥)2. Once this is established, then for
u •v to have a smaller square than ∥u∥∥v∥, it must be smaller in magnitude.
That is, (u •v)2 ≤ (∥u∥∥v∥)2 can only be true if |u •v| ≤ |∥u∥∥v∥| is true. But since
neither ∥u∥ nor ∥v∥ can be negative, we have |∥u∥∥v∥| = ∥u∥∥v∥, and so

|u •v| ≤ ∥u∥∥v∥
will be established.

So, we will try to prove that (u •v)2 ≤ (∥u∥∥v∥)2 is always true for every pair
of vectors u and v in Rn. We might as well assume that v is nonzero, since if it is
zero then both (u•v)2 and (∥u∥∥v∥)2 are 0, and the required inequality is true. In
the case that v is nonzero, then also ∥v∥ ̸= 0 (Statement 1 of Proposition 12.5.1),
and we can form the vector

w=u−av, where a = u •v
∥v∥2

without worry that we’ve accidentally divided by zero. We will find that ∥w∥2 is
related to the inequality we are trying to prove, so compute

∥w∥2 =w •w (i)

= (u−av) • (u−av) (ii)

= (u−av) •u− (u−av) • (av) (iii)

=u •u− (av) •u− (
u • (av)− (av) • (av)

)
(iv)

=u •u−a(v •u)−a(u •v)+a
(
a(v •v)

)
(v)

=u •u−a(u •v)−a(u •v)+a2(v •v) (vi)

= ∥u∥2 −2a(u •v)+a2 ∥v∥2 (vii)

= ∥u∥2 −2
(

u •v
∥v∥2

)
(u •v)+

(
u •v
∥v∥2

)2
∥v∥2 (viii)

= ∥u∥2 −2
(u •v)2

∥v∥2 + (u •v)2

∥v∥2 ,

= ∥u∥2 − (u •v)2

∥v∥2 ,
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with justifications

(i) Rule 8 of Proposition 12.5.3;

(ii) using the definition of w above;

(iii) Rule 2 of Proposition 12.5.3;

(iv) Rule 4 of Proposition 12.5.3;

(v) Rule 6 and Rule 7 of Proposition 12.5.3;

(vi) Rule 1 of Proposition 12.5.3;

(vii) Rule 8 of Proposition 12.5.3; and

(viii) using the definition of a above.

Now, ∥w∥2 cannot be negative, so we have

0≤ ∥u∥2 − (u •v)2

∥v∥2

(u •v)2

∥v∥2 ≤ ∥u∥2

(u •v)2 ≤ ∥u∥2 ∥v∥2 ,

where multiplying both sides of the second inequality by the non-negative quan-
tity ∥v∥2 does not change the direction of the inequality.

Because u •v could be negative, we will change our last inequality above to

|u •v|2 ≤ (∥u∥∥v∥)2.

Note. Squaring turns negative into positive anyway, so it doesn’t matter if we
introduce absolute value brackets to do that first.

In words, this inequality says that the square of one number is less than or
equal to the square of another number. But when we square two numbers, the
bigger number will always result in the bigger square (as long as neither number
is negative). Since neither |u •v| nor ∥u∥∥v∥ can be negative, the bigger number
must be ∥u∥∥v∥ to result in a bigger square (or the two numbers could be equal).
That is,

|u •v| ≤ ∥u∥∥v∥ .

■

Corollary 12.5.5 Uniqueness of angle measures. For every pair of nonzero
vectors u and v in Rn, there is one unique angle value θ in the domain 0≤ θ ≤π
so that

cosθ = u •v
∥u∥∥v∥ .

The triangle inequality. Here is another commonly used inequality. Remem-
bering our view of sums of vectors as a chain of changes in position, it basically
says that the shortest path between two points in Rn is the direct path.

Theorem 12.5.6 Triangle inequality. For every pair of vectors u and v in Rn,
we have ∥u+v∥ ≤ ∥u∥+∥v∥.
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u

v

u+v

Check your understanding. Can you think of a situation where ∥u+v∥ and
∥u∥+∥v∥ are exactly equal? Is this the only way this would happen?

Proof. As mentioned in this chapter, working with square roots algebraically
is inconvenient, so we will work with the square of the norm ∥u+v∥, and use
Proposition 12.5.3 to avoid working directly with the components of our vectors.

We have

∥u+v∥2 = (u+v) • (u+v) (i)

= (u+v) •u+ (u+v) •v (ii)

=u •u+v •u+u •v+v •v (iii)

=u •u+2u •v+v •v (iv)

= ∥u∥2 +2u •v+∥v∥2 (v),

with justifications

(i) Rule 8 of Proposition 12.5.3;

(ii) Rule 2 of Proposition 12.5.3;

(iii) Rule 4 of Proposition 12.5.3;

(iv) Rule 1 of Proposition 12.5.3; and

(v) Rule 8 of Proposition 12.5.3.

Now, keep in mind that u •v is a number, and it may be positive, negative, or
zero. But every number x satisfies

x ≤ |x| , (*)

since if x is positive or zero then the two sides are equal, and if x is negative
then obviously the negative number x must be less than the positive number |x|.
Applying this for x =u •v, we have u •v≤ |u •v|, and so

∥u+v∥2 = ∥u∥2 +2u •v+∥v∥2 (i)

≤ ∥u∥2 +2 |u •v|+∥v∥2 (ii)

≤ ∥u∥2 +2∥u∥∥v∥+∥v∥2 (iii)

= (∥u∥+∥v∥)2 (iv),

with justifications

(i) continued from above;

(ii) rule (*);

(iii) The Cauchy-Schwarz inequality; and

(iv) FOIL in reverse.
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Following the chain of equalities and inequalities from beginning to end, we now
have

∥u+v∥2 ≤ (∥u∥+∥v∥)2.

In words, this says that the square of one number is less than or equal to the
square of another number. But when we square two numbers, the bigger number
will always result in the bigger square (as long as neither number is negative).
Since neither ∥u+v∥ nor ∥u∥+∥v∥ can be negative, the bigger number must be
∥u∥+∥v∥ to result in a bigger square (or the two numbers could be equal). That
is,

∥u+v∥ ≤ ∥u∥+∥v∥ .

■





CHAPTER 13

Orthogonal vectors

13.1 Discovery guide

Recall that for u = (u1,u2, . . . ,un) and v = (v1,v2, . . . ,vn), the dot product of u
and v is defined by the formula given below on the left. It is an important formula
because if θ is the angle between two nonzero vectors u and v, then θ satisfies
both 0≤ θ ≤π and the formula given below on the right.

u •v= u1v1 +u2v2 +·· ·+unvn cosθ = u •v
∥u∥∥v∥

Discovery 13.1 Based on the graph of y = cosθ on domain 0 ≤ θ ≤ π provided
below, what can you say about u •v in the case that θ is acute? . . . obtuse? . . .
right?

θ

y

π

π
2

−1

1 y= cosθ

Extending the concept of perpendicular to higher dimensions, vectors u
and v are called orthogonal if u •v= 0.

Discovery 13.2

(a) Can you guess a vector v= (v1,v2) that is orthogonal to u= (1,−3) in the
plane? Make sure your guess satisfies the definition of orthogonal: you
need u •v= 0.

(b) What relationship to your initial guess v will other vectors in the plane
that are orthogonal to u have?

Hint. Draw a diagram of your vectors u and v, both with initial points
at the origin. On your diagram, how can you modify your intial guess v
geometrically while still maintaining orthogonality with u?

(c) Turn the pattern of your guess from Task a into a general pattern for
vectors in the plane: if u= (a,b), then an example of a vector orthogonal to
u is

v= ( , ).

177
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Discovery 13.3

(a) Draw the vector a= (3,1) in the xy-plane with its tail at the origin. Now
imagine you were to also draw in every possible scalar multiple of a (pos-
itive, negative, zero, fractional, etc.). What geometric shape would these
scalar multiples of a trace out? Draw this shape on your diagram.

(b) Plot the point Q(4,4) on your diagram. On the line defined by a that you
drew in the first part of this activity, draw in the point that you think is
closest to Q. Label this point P. Now draw

−−→
PQ, and label this vector as n.

What is the relationship between n and the line? What is the value of n •a?

(c) Vector
−−→
OP is parallel to a, so

−−→
OP is a scalar multiple of a. Our goal is

to determine the scalar k so that the head of ka lies at P. Complete the
triangle in your diagram by drawing in the vector u=−−→

OQ.

Then express n as a combination of u and ka.

Remember. ka=−−→
OP.

(d) Substitute your expression for n from Task c into your equation for n •a
from Task b, and then solve for k as a formula in u and a.

Now complete the general formula:

ka=
( )

a

(where in the brackets you should fill in a formula in the variable letters
u and a, without using their actual numerical components, that describes
how to compute ka from u and a).

The vector ka in Discovery 13.3 is called the orthogonal projection of u
onto a, and we write proja u to mean this vector. It is also sometimes called the
vector component of u parallel to a. The vector n=u−proja u is called the
vector component of u orthogonal to a.

Note. The reason these vectors are called components of u is that the original
vector u can be rebuilt out of these “components” by u= proja u+ (u−proja u).

The same problem can be solved in higher dimensions by the same formula
for proja u.

Discovery 13.4

(a) Suppose u is orthogonal to a. What is proja u? What is the component of u
orthogonal to a?

(b) Answer the same two questions in the case that u is parallel to a.

Discovery 13.5 If ℓ is the line through the origin and parallel to a vector a, and
u is some other vector, then our construction in Discovery 13.3 guarantees that
proja u represents the closest point on ℓ to the terminal point of u.

The distance between a point and a line is defined as the shortest (i.e. per-
pendicular) distance between the two. Use the orthogonal projection to come up
with a procedure to determine the distance between the line ℓ : y= x/2 and the
point Q(2,4).

Discovery 13.6 The homogeneous linear equation 2x+3y = 0 defines a line
through the origin in R2 (i.e. the xy-plane).

(a) Recall that a point (x, y) lies on the line if and only if its coordinates satisfy
the given equation. Let’s consider such a point as the terminal point of
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the vector x= (x, y) with its initial point at the origin. Does the left-hand
side of the equation for the line look like the formula for some quantity
related to x and some other vector? Perhaps some quantity that we’ve been
exploring in detail recently?

(b) In light of the first part of this activity, what does the right-hand side of the
equation for the line say about the relationship between a vector x= (x, y)
that lies along the line and the other special vector you identified in the
previous part?

Terminology. This special vector for the line is called a normal vector
for the line.

Discovery 13.7 The non-homogeneous linear equation 2x+3y= 8 defines a line
through the point P(1,2) in R2.

(a) Draw the line and label the point P(1,2). Choose another arbitrary point
on the line and label it Q(x, y). Draw the vector v = −−→

PQ along the line.
Express the components of v as formulas in x and y.

(b) Draw the vector n= (2,3) (from the coefficients in the line equation, just
as in Discovery 13.6) with its tail at P. What do you notice about the
relationship between this normal vector and the vector v parallel to the
line? Express this relationship in terms of the dot product, and then expand
out this dot product.

Terminology. The equation involving the dot product that you obtain is
called the point-normal form for the line.

The same sort of analysis can be carried out for a plane in space determined
by algebraic equation ax+ by+ cz = d. The coefficients form a normal vector
n= (a,b, c) that is perpendicular to the plane (i.e. orthogonal to every vector that
is parallel to the plane), and given some specific point x0 = (x0, y0, z0) that lies on
the plane, the plane can be described by the point-normal form n • (x−x0)= 0.

Discovery 13.8 Consider the planes Π1, Π2, and Π3 described algebraically
below.

Π1 : x− y+2z = 2 Π2 : 2x−2y+4z = 7 Π3 : x− y+3z = 2

Use the concept of normal vector to justify the claim that Π1 and Π2 are parallel,
but that Π3 is not parallel to either of Π1 or Π2.

Orthogonal projection onto a plane in space is a little more complicated, and is
likely something you would learn about in a second course in linear algebra. But
it’s possible to use a different strategy to determine the distance between a point
and a plane by using the fact that a plane has one unique normal “direction.”

Discovery 13.9

(a) Using the diagram below as inspiration, come up with a procedure to
determine the distance d between a point Q and a plane Π.

Hint. Determine a vector that represents an equivalent distance, and
then d will be the norm of this vector.

(b) Come up with a procedure using vectors to determine the distance between
parallel planes. Do not assume that either of the planes passes through
the origin.

Hint. Find a way to reduce this problem to the problem in the first part
of this activity.
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Π

n

Q

P R

u

d
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13.2 Terminology and notation

orthogonal vectors
a pair of vectors whose dot product evaluates to 0

normal vector (to a line or a plane)
a vector that is orthogonal to the object of interest (i.e. the line or
plane being considered)

orthogonal projection (of a vector u onto a second vector a)
the special scalar multiple of a,

proja u= ka, where k = u •a
∥a∥2 ;

sometimes called the vector component of u parallel to a

When the initial point of proja u is placed at the origin, the terminal point
will be the point closest to u on the line passing through the origin and parallel
to a.

0

u

a

proja u

u−proja u

vector component of a vector u orthogonal to a second vector a
the vector u−proja u

When the initial point of the vector u−proja u is placed at the terminal point
of proja u, it points towards the terminal point of u, at a right angle to the line
that passes through the origin and is parallel to a. (See the diagram above.)

point-normal form (of a line in R2)
the vector equation n • (x−x0) = 0, where x0 is a vector from the
origin to a known point on the line, n is a known normal vector for
the line, and x is a variable vector representing an arbitrary point
on the line (again as a vector from the origin)

point-normal form (of a plane in R3)
the vector equation n • (x−x0) = 0, where x0 is a vector from the
origin to a known point on the plane, n is a known normal vector for
the plane, and x is a variable vector representing an arbitrary point
on the plane (again as a vector from the origin)

cross product (of vectors u and v in R3)
a particular vector in R3 that is orthogonal to both u and v; written
u×v
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13.3 Concepts

In this section.

• Subsection 13.3.1 Values of u •v

• Subsection 13.3.2 Orthogonal vectors

• Subsection 13.3.3 Orthogonal projection

• Subsection 13.3.4 Normal vectors of lines in the plane

• Subsection 13.3.5 Normal vectors of planes in space

• Subsection 13.3.6 The cross product

13.3.1 Values of u •v
In Discovery 13.1, we compared the graph of the cosine function on the domain
0≤ θ ≤π with the formula

cosθ = u •v
∥u∥∥v∥ , (*)

where θ is the angle between nonzero vectors u and v. On the right of equation
(*), the denominator is always positive, so whether the whole fraction is positve,
negative, or zero depends entirely on the dot product in the numerator. On the
left, the cosine function is positive, negative, or zero precisely when the angle θ
is acute, obtuse, or right. So we come to the following conclusions.

θ u •v
acute: 0≤ θ <π/2 positive
right: θ =π/2 zero
obtuse: π/2< θ ≤π negative

Figure 13.3.1

13.3.2 Orthogonal vectors
Right angles are extremely important in geometry, and from Figure 13.3.1 we
see that the dot product gives us a very convenient way to tell when the angle θ
between two nonzero vectors u and v is right: we have θ =π/2 precisely when
u •v= 0. In the plane or in space, u and v will be perpendicular when θ =π/2
and u •v= 0. Since we can’t “see” right angles and perpendicular lines in higher
dimensions, in general we say that u and v are orthogonal when u •v= 0.

13.3.2.1 Orthogonal vectors in R2

In Discovery 13.2, we tried to find a pattern to the task of choosing some vector
that is orthogonal to a given one in the plane. Rather than struggle with the
geometry, we unleash the power of algebra: given vector u= (a,b), we are looking
for a vector v so that u •v= 0. Expanding out the dot product, we are looking to
fill in the blanks in the following equation with components for v:

a · +b · = 0.

Two numbers add to zero only if one is the negative of the other. We can make
both terms in the sum the same number by entering b in the first blank and a in
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the second, so we can make the sum cancel to zero by also flipping the sign of
one of those entries. For example,

a · b +b · (−a) = 0.

We have now answered the question in Discovery 13.2.c.

Pattern 13.3.2 Orthogonal vectors in the plane. Given vector u= (a,b) in
the plane, two examples of vectors that are orthogonal to u are v= (b,−a) and
−v= (−b,a), and every vector that is orthogonal to u is some scalar multiple of
this example v.

Note 13.3.3 For patterns of orthogonal vectors in R3, see Subsection 13.3.6.

13.3.3 Orthogonal projection
Orthogonal projection is a vector solution to a problem in geometry.

Question 13.3.4 Given a line through the origin in the plane, and a point not on
the line, what point on the line is closest to the given point? □

In Question 13.3.4, write ℓ for the line through the origin and Q for the point
not on that line. Consider the point P on ℓ at the foot of the perpendicular to ℓ
from Q . Any other point P ′ on ℓ will form a right triangle with P and Q, making
it farther from Q than P, since the distance P ′Q is the length of the hypotenuse
in the right triangle.

ℓ

O

Q

P

P ′

All we know about P is that it is on line ℓ and it is at the vertex of a right
angle with ℓ and Q. But if we introduce some vectors to help tackle this problem,
then maybe we can use what we know about the dot product and right angles to
help determine P.

ℓ

O

Q

P
u

a

p

n

In this diagram, u is the vector corresponding to directed line segment
−−→
OQ,

and p is the vector corresponding to the directed line segment
−−→
OP, where P

is our unknown closest point. Since p is placed with its tail at the origin, the
components of p are precisely the coordinates of P. So determining p will solve
the problem.
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We are assuming that the line ℓ is known, and it would be nice to also have
a vector means of describing it. But the vectors created by the points on this
line (using the origin as a universal tail point) will all be parallel to each other,
so (as we discovered in Discovery 13.3.a) line ℓ could be described as all scalar
multiples of a particular vector a. This vector can be arbitrarily chosen as any
vector parallel to the line. Once we have chosen a, we have reduced our problem
from determining the two unknown components of the vector p to determining a
single unknown scalar k so that p= ka.

As mentioned, since P is the closest point, the directed line segment
−−→
PQ

must be perpendicular to ℓ. On the diagram above, we have used the vector n
to represent this direct line segment. As in Discovery 13.3.b, we know that n •a
must be zero — this is the perpendicular condition. However, the vector n is
unknown as well, since we don’t know its initial point. But we can also use the
triangle formed by u, n, and p to replace n:

p+n=u =⇒ n=u−p=u−ka

Replacing n by this expression in the condition n •a = 0 gives us an equation
of numbers that we can solve for the unknown scale factor k, as we did in
Discovery 13.3.d:

k = u •a
∥a∥2 .

This vector p= ka pointing from the origin to the desired closest point P is called
the projection of u onto a or sometimes the vector component of u parallel
to a, and we write proja u to represent it.

Procedure 13.3.5 Closest point on a line (orthogonal projection). Given a
line ℓ through the origin and point Q that does not lie on ℓ, compute the point P
on ℓ that is closest to Q as follows.

1. Choose any point P ′ on the line (excluding the origin), and form the parallel
vector a=−−→

OP ′.

2. Form the vector u=−−→
OQ.

3. Compute the projection vector

p= proja u= u •a
∥a∥2 a.

This projection vector will now point from the origin to the desired closest point P,
parallel to the line ℓ, so that p=−−→

OP.

Remark 13.3.6 It is not actually necessary that Q be external to the line. If you
were to carry out the procedure above in the case that Q lies on ℓ, the calculations
would end up with p = u, confirming that Q was already the point on the line
that is closest to itself.

The normal vector n in the diagram above is sometimes called the vector
component of u orthogonal to a. Together, the projection vector and corre-
sponding normal vector are called components of u (relative to a) because they
represent an orthogonal decomposition of u:

u=p+n,

where p is parallel to a and n is orthogonal to a. While this decomposition is
relative to a, it is really only the direction of a that matters — if a′ is parallel to
a (even possibly opposite to a), then both

p= proja u= proja′ u, n=u−p=u−proja u=u−proja′ u
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will be true.

Procedure 13.3.7 Shortest distance to a line. Given a line ℓ through the
origin and point Q that does not lie on ℓ, compute the shortest distance from Q to
the line as follows.

1. Compute the projection vector p= proja u as in Procedure 13.3.5.

2. Compute the normal vector n=u−p.

3. Compute the norm ∥n∥.

The computed norm is the distance from the closest point P to the point Q.

Remark 13.3.8

1. These procedures and calculations can be easily modified to work for lines
that do not pass through the origin: simply choose some arbitrary “initial”
point R on the line to “act” as the origin.

2. All of these calculations can be performed in higher dimensions as well. In
higher dimensions, it is true that there is no longer one unique perpendicu-
lar direction to a given vector a, but the calculation of n as above will pick
out the correction direction to extend from the line to the point Q at a right
angle to the line.

13.3.4 Normal vectors of lines in the plane

Consider the line 2x+3y= 0 that we investigated in Discovery 13.6. The point
(3,−2) is on this line, since

2 ·3+3 · (−2)= 0. (**)

The left-hand side of this calculation looks a lot like a dot product — we could
reinterpret equation (**) as

(2,3) • (3,−2)= 0.

So verifying that the point (3,−2) is on the line is equivalent to checking that the
corresponding vector v= (3,−2) (with its tail at the origin) is orthogonal to the
vector n= (2,3) whose components are the coefficients from our line equation.

x

y

2x+3y= 0

P(3,−2)
v

n
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Every other point x= (x, y) on the line satisfies the same relationship, as the
equation for the line could be rewritten in a vector form as

n •x= 0. (***)

The vector n is called a normal vector for the line. Note that normal vectors for
a line are not unique — every nonzero scalar multiple of n will also be normal
to the line, and this is equivalent to noting that we could multiply the equation
2x+3y= 0 by any nonzero factor to obtain a different equation that represents
the same line in the plane.

In Discovery 13.7 we considered a line defined by a nonhomogeneous equation
2x+3y= 8. This line has the same slope as the line defined by 2x+3y= 0 that
we investigate above, and so the vector n= (2,3) obtained from the coefficients
on x and y in the equation must still be normal. The constant 8 just changes the
y-intercept.

x

y

2x+3y= 8

Q(1,2)

R(4,0)
v

n

x0

x1

In the homogeneous case, vectors from the origin determined by a point on
the line were also parallel to the line. Since things have shifted away from the
origin in the nonhomogeneous case, to get a vector parallel to the line we need to
consider two vectors from the origin to points on the line. Two convenient points
for this the line are Q(1,2) and R(4,0), with corresponding vectors x0 = (1,2) and
x1 = (4,0). Then the difference vector

v= x1 −x0 = (3,−2)

is parallel to the line, as in the diagram above. In fact, this vector v is the same
as previous vector v that appears parallel to the line through the origin in the
diagram for the homogeneous case above, so we know it satisfies n •v= 0.

Is there a way to use the normal vector n to create a vector condition by
which we can tell if a vector x represents a point on the line, as we did with
equation (***) in the homoegenous case? We need two points on the line to create
a parallel difference vector, but we could compare the variable vector x with a
arbitrarily chosen fixed vector representing a point on the line (like x0, say).
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x

y

x−x0 n

x0

x

Every such difference vector x−x0 is parallel to the line and hence orthogonal
to the normal vector n, so that we can describe the line as all points where the
corresponding vector x satisfies

n • (x−x0)= 0. (†)

This is called the point-normal form for the line, referring to the point on the
line at the terminal point of x0 and the normal vector n.

Pattern 13.3.9 Point-normal form for a line in R2. If (x0, y0) is a point on
the line ℓ : ax+by= d (that is, ax0 +by0 = d is true), then ℓ can alternatively be
described as all points (x, y) that satisfy

(a,b) •
(
(x, y)− (x0, y0)

)= 0.

Remark 13.3.10 It may seem like the line parameter d has disappeared in
converting from algebraic form ax+ by = d to point-normal form. But it has
merely be replaced by the point (x0, y0), since d = ax0 + by0. In fact, if we use
the algebraic properties of the dot product to expand the left-hand side of the
point-normal form equation, we can recover the original algebraic equation:

(a,b) •
(
(x, y)− (x0, y0)

)= 0

(a,b) • (x, y)− (a,b) • (x0, y0)= 0

(ax+by)− (ax0 +by0)= 0

(ax+by)−d = 0

ax+by= d.

13.3.5 Normal vectors of planes in space
A similar analysis can be made for an equation ax+ by+ cz = d describing a
plane in space. The coefficients form a normal vector n = (a,b, c). For vectors
x0 and x1 that both have initial point at the origin and terminal points on the
plane, then the difference vector x1 −x0 is parallel to the plane, hence normal to
n. If we keep a fixed choice of x0 but replace x1 by a variable vector x, we can
describe the plane as all points whose difference is orthogonal to n, giving us a
point-normal for a plane just as in equation (†).

Pattern 13.3.11 Point-normal form for a plane in R3. If (x0, y0, z0) is a point
on the plane Π : ax+by+ cz = d (that is, ax0 +by0 + cz0 = d is true), then Π can
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alternatively be described as all points (x, y, z) that satisfy

(a,b, c) •
(
(x, y, z)− (x0, y0, z0)

)= 0.

Remark 13.3.12 A line in space does not have a point-normal form, because it
does not have one unique normal “direction” like a line in the plane or a plane in
space does. To describe a line in space in a similar fashion you would need two
normal vectors. We will see several more convenient ways to describe a line in
space in the next chapter.

13.3.6 The cross product

Seeing how the algebraic equation for a plane in R3 is connected to a normal
vector to the plane, a basic problem is how to quickly obtain a normal vector.
If we know two vectors that are parallel to the plane in question, the problem
reduces to the following.

Question 13.3.13 Given two nonzero, nonparallel vectors in R3, determine a
third vector that is orthogonal to each of the first two. □

u v

x

So if u= (u1,u2,u3) and v= (v1,v2,v3) are our starting vectors, we would like
to simultaneously solve the equations

u •x= 0, v •x= 0,

for the unknown vector x = (x, y, z). Expanding out the dot products, we get
(surprise!) a system of linear equations:{

u1x + u2 y + u3z = 0,
v1x + v2 y + v3z = 0.

Specifically, we get a homogeneous system of two equations in the three unknown
coordinates x, y, z. Now, since this system is homogeneous, it is consistent. But
its general solution will also require at least one parameter, since its rank is at
most 2, while we have three variables. In the diagram above, we can see what
the “freedom” of a parameter corresponds to — we can make x longer or shorter,
or turn it around to be opposite of the way it is pictured, and it will remain
orthogonal to u and v. Our end goal is a calculation formula and procedure
that will compute one particular solution to this problem, so let’s introduce a
somewhat arbitrary additional equation to eliminate the need for a parameter in
the solution. 

x + y + z = 1,
u1x + u2 y + u3z = 0,
v1x + v2 y + v3z = 0.

In matrix form, this system can be expressed as Ax=b, with

A =

 1 1 1
u1 u2 u3

v1 v2 v3

 , b=

1
0
0

 . (††)

Assuming that det A ̸= 0, Cramer’s rule tells us the solution to this system.

x = 1
det A

∣∣∣∣∣∣∣
1 1 1
0 u2 u3

0 v2 v3

∣∣∣∣∣∣∣ y= 1
det A

∣∣∣∣∣∣∣
1 1 1
u1 0 u3

v1 0 v3

∣∣∣∣∣∣∣ z = 1
det A

∣∣∣∣∣∣∣
1 1 1
u1 u2 0
v1 v2 0

∣∣∣∣∣∣∣
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= 1
det A

∣∣∣∣u2 u3

v2 v3

∣∣∣∣ = −1
det A

∣∣∣∣u1 u3

v1 v3

∣∣∣∣ = 1
det A

∣∣∣∣u1 u2

v1 v2

∣∣∣∣
Now, each of x, y, z has a common factor of 1/det A, and all this common factor
does is scale the length of our solution vector x without affecting orthogonality
with u and v. Even worse, det A depends on that extra equation we threw in,
and we would like our solution to depend only on u and v. So let’s remove it and
use solution

x=
(∣∣∣∣u2 u3

v2 v3

∣∣∣∣ , −
∣∣∣∣u1 u3

v1 v3

∣∣∣∣ ,
∣∣∣∣u1 u2

v1 v2

∣∣∣∣) .

We call this the cross product of u and v, and write u×v instead of x. There
is a trick to remembering how to compute the cross product: if we replace the top
row of A by the standard basis vectors i, j, k in R3, then the cross product will
be equal to its determinant expanded by cofactors along the first row. That is,
setting

u×v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣ (†††)

and expanding the determinant along the first row yields

u×v =
∣∣∣∣u2 u3

v2 v3

∣∣∣∣ i −
∣∣∣∣u1 u3

v1 v3

∣∣∣∣ j +
∣∣∣∣u1 u2

v1 v2

∣∣∣∣ k,

as desired. See Example 13.4.4 in Subsection 13.4.3 for an example of using
formula (†††) to compute cross products.

The cross product follows the right-hand rule — if you orient your right
hand so that your fingers point in the direction of u and curl towards v, then
your thumb will point in the direction of u×v.

Check your understanding. Compute the cross products of the standard basis
vectors in the various combinations

i× j, j× i,
j×k, k× j,
i×k, k× i,

and verify that the right-hand rule holds in these cases.

Computing v×u instead of u×v should still produce a vector that is orthogonal
to both u and v, but the right-hand rule tells that the two should be opposite to
each other. From equation (†††) we can be even more specific. Computing v×u
would swap the second and third rows of the special matrix in equation (†††),
and we know that the resulting determinant would be the negative of that for
the matrix for computing u×v, and so

v×u=−u×v.

See Proposition 13.5.5 in Subsection 13.5.3 for more properties of the cross
product.

Remark 13.3.14 There is one more thing to say about our development of the
cross product — Cramer’s rule can only be applied if det A is not zero, where A is
the matrix in (††). However, the coefficients in the extra equation we introduced
did not figure into our final solution. So if det A ended up being zero for some
particular vectors u and v, we could just change the variable coefficients in that
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extra equation (but keep the 1 in the equals column) so that det A is not zero, and
we would still come to the same formula for u×v. And it follows from concepts
we will learn in Chapter 20 that it is always possible to fill in the top row of this
matrix A so that its determinant is nonzero, as long as we start with nonparallel
vectors u and v.

13.4 Examples

In this section.

• Subsection 13.4.1 Orthogonal vectors

• Subsection 13.4.2 Orthogonal projection

• Subsection 13.4.3 Cross product

13.4.1 Orthogonal vectors

Example 13.4.1 Testing for orthogonality. As in Discovery 13.2, and as
discussed in Subsection 13.3.2, it’s fairly easy to form orthogonal vectors in R2.
And it’s not that much more difficult in R3.

1. The vectors u= (3,7) and v= (−7,3) are orthogonal in R2, because

u •v= 3 · (−7)+7 ·3=−21+21= 0.

2. The vectors u= (3,7,1) and v= (−7,2,7) are orthogonal in R3, because

u •v= 3 · (−7)+7 ·2+1 ·7=−21+14+7= 0.

□

Example 13.4.2 Orthogonality of the standard basis vectors. In Rn, the
standard basis vectors are always orthogonal to each other. When we compute
ei •e j with i ̸= j, the 1 in the ith component of ei won’t line up with the 1 in the
jth component of e j, and we’ll get a computation something like

ei •e j = 0 ·0+·· ·+0 ·0+
ith times ith︷︸︸︷

1 ·0 +0 ·0+·· ·+0 ·0+
jth times jth︷︸︸︷

0 ·1 +0 ·0+·· ·+0 ·0
= 0.

□

13.4.2 Orthogonal projection

Let’s complete the computations from Discovery 13.3.

Example 13.4.3 Using orthogonal projection to compute distance from
a point to a line in R2. The line through the origin and parallel to a = (3,1)
consists of all scalar multiples of a. We would like to know the following.

• What is the point on this line closest to the point Q(4,4)?

• What is the distance from Q to the line?

We know that the point we are looking for is at the terminal point of proja u,
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where u=−−→
OQ = (4,4). So compute

proja u= 4 ·3+4 ·1
32 +12 (3,1)= 8

5
(3,1)=

(
24
5

,
8
5

)
,

which tells us that the point on the line closest to Q is P(24/5,8/5). Now, the
vector

n=−−→
PQ = (−4/5,12/5)

will be a normal vector for the line, extending from P to Q, and so the norm of
this vector represents the (perpendicular) distance between Q and the line:

d = ∥n∥ =
√(

−4
5

)2
+

(
12
5

)2
=

√
160
25

= 4
p

10
5

.

□

13.4.3 Cross product
Here is an example of using the cross product to answer a geometry question in
R3.

Example 13.4.4 Using cross product to determine the equation of a plane
in R3. Suppose we would like to determine the equation of the plane in R3 that
passes through the point (3,3,3) and is parallel to the vectors u= (1,2,−3) and
v= (0,2,5).

The equation we are looking for is of the form ax+by+ cz = d. We know that
a,b, c can be taken to be the components of any normal vector for the plane. A
normal vector for the plane must be orthogonal to the plane, and hence must be
orthogonal to each of u and v. We can use the cross product to compute such a
vector:

n=u×v=

∣∣∣∣∣∣∣
i j k
1 2 −3
0 2 5

∣∣∣∣∣∣∣
= i

(
2 ·5− (−3) ·2)− j

(
1 ·5− (−3) ·0)+ k(1 ·2−2 ·0)

= 16i−5j+2k.

So we can use 16x−5y+2z = d as the equation of the plane, for some as-yet-to-
be-determined value of d. But we also know that the plane passes through the
point (3,3,3), so we must have

16 ·3−5 ·3+2 ·3= d =⇒ d = 39.

Thus, the plane can be described algebraically by the equation 16x−5y+2z = 39,
or in point-normal form by the equation n • (x−x0)= 0, where n is as computed
above, x0 is the “base” point (3,3,3), and x= (x, y, z) is a variable point. □
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13.5 Theory

In this section.

• Subsection 13.5.1 Properties of orthogonal vectors and orthogonal
projection

• Subsection 13.5.2 Decomposition of a vector into orthogonal com-
ponents

• Subsection 13.5.3 Properties of the cross product

13.5.1 Properties of orthogonal vectors and orthogonal pro-
jection

First we record a few properties of orthogonal vectors and orthogonal projection.

Proposition 13.5.1 Orthogonality versus vector operations. The following
apply to vectors in Rn.

1. If u is orthogonal to v, then it is orthogonal to every scalar multiple of v.

2. If u is orthogonal to both v and w, then it is also orthogonal to v+w.

3. If u is orthogonal to each of v1,v2, . . . ,vm, then u is also orthogonal to every
linear combination of those vectors.

Proof. These properties of orthogonal vectors follow directly from the definition
of orthogonality (i.e. dot product equals 0) and from the algebraic properties of
the dot product listed in Proposition 12.5.3, so we will omit detailed proofs. ■

Proposition 13.5.2 Properties of orthogonal projection. Suppose u, v, and
a are vectors in Rn, with a ̸= 0, and k is a scalar. The the following hold.

1. proja 0= 0.

2. proja(ku)= k(proja u).

3. proja(u+v)= proja u+proja v.

4. For nonzero scalar k, proj(ka) u=
proja u.

5. If u is parallel to a, then proja u=
u.

6. If u is orthogonal to a, then
proja u= 0.

7.
∥∥proja u

∥∥= |u •a|
∥a∥ .

Proof of Rule 4. Starting with the formula we determined for orthogonal projec-
tion, and using Rule 3 of Proposition 12.5.1 and Rule 7 of Proposition 12.5.3, we
have

proj(ka) u= u • (ka)
∥ka∥2 (ka)

= k(u •a)
|k|2 ∥a∥2 (ka)

=��k2(u •a)

��k2 ∥a∥2
a

= u •a
∥a∥2 a

= proja u.

■
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Proof of Rule 5. If u is parallel to a, then it is a scalar multiple of a: u= ka for
some scalar k. Then, using Rule 6 and Rule 8 of Proposition 12.5.3, we have

proja u= u •a
∥a∥2 a

= (ka) •a
∥a∥2 a

= k(a •a)
∥a∥2 a

= k
∥a∥2

∥a∥2 a

= ka
=u.

■

Proofs of other rules. The rest of these properties of orthogonal projection follow
from the properties of the dot product in Proposition 12.5.3 and from the formula

proja u= u •a
∥a∥2 a,

so we will leave the remaining proofs to you, the reader. ■

13.5.2 Decomposition of a vector into orthogonal compo-
nents

The following fact says that the decomposition of one vector into components
(parallel and orthogonal) relative to another vector is unique.

Theorem 13.5.3 Uniqueness of orthogonal decomposition. Suppose a is
a nonzero vector in Rn. Given another vector u in Rn, there is one unique way to
decompose u into a sum

u=pa +na,

where pa is parallel to a and na is normal (i.e. orthogonal) to a.

Proof. Clearly such a decomposition exists — see Remark 13.5.4 below. But
suppose we have two such decompositions,

u=pa +na, u=p′
a +n′

a,

where both pa,p′
a are parallel to a and both na,n′

a are orthogonal to a. Then
each of na,n′

a are also orthogonal to each of pa,p′
a (Rule 1 of Proposition 13.5.1).

We can use the two decompositions to obtain two expressions for each of pa •u
and p′

a •u:

pa •u=pa • (pa +na) p′
a •u=p′

a • (p′
a +n′

a)

=pa •pa +pa •na =p′
a •p′

a +p′
a •n′

a

= ∥pa∥2 +0 = ∥∥p′
a
∥∥2 +0

= ∥pa∥2 , = ∥∥p′
a
∥∥2 ,

pa •u=pa • (p′
a +n′

a) p′
a •u=p′

a • (pa +na)

=pa •p′
a +pa •n′

a =p′
a •pa +p′

a •na

=pa •p′
a +0 =pa •p′

a +0
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=pa •p′
a, =pa •p′

a.

Since the bottom two calculations yield the same result, the quantities they begin
with must be equal:

pa •u=p′
a •u.

But these are also the beginning quantities of the top two calculations, so those
two calculations must have the same result,

∥pa∥2 = ∥∥p′
a
∥∥2 .

Therefore, we can conclude that pa and p′
a are the same length. Since these two

vectors are also parallel (because they are both parallel to a), we must have that
either they are the same vector or are negatives of each other. However, if they
were negatives of each other (i.e. p′

a =−pa), tracing through the two calculations
of pa •u above would tell us that

∥pa∥2 =pa •u=pa •p′
a =pa • (−pa)=−(pa •pa)=−∥pa∥2 ,

which is only possible if ∥pa∥ = 0, in which case pa = 0, and then also p′
a =−pa = 0.

Thus, in every case we have p′
a =pa. But then

n′
a =u−p′

a =u−pa =na.

So the two decompositions we started with are actually the same decomposition,
and it is not possible to have more than one such decomposition. ■

Remark 13.5.4 Clearly, in this decomposition we have pa = proja u and na =
u−proja u.

13.5.3 Properties of the cross product
Finally, we record a few properties of the cross product.

Remember. The cross product is only defined for vectors in R3.

Proposition 13.5.5 Suppose u, v, and w are vectors in R3, and k is a scalar.
Then the following hold.

1. u • (u×v)= 0.

2. v • (u×v)= 0.

3. u×0= 0.

4. 0×v= 0.

5. v×u=−u×v.

6. (ku)×v= k(u×v).

7. u× (kv)= k(u×v).

8. (u+v)×w=u×w+v×w.

9. u× (v+w)=u×v+u×w.

10. u×u= 0.

11. If u and v are parallel, then u×
v= 0.

Proof idea. The first two statements just reflect the design goal in inventing the
cross product: we were looking for a vector that was orthogonal to each of the
two input vectors. The rest of the statements follow easily from the determinant
formula (†††) for the cross product expressed in Subsection 13.3.6 combined
with the properties of the determinant contained in Proposition 9.4.2. We leave
detailed proofs to you, the reader. ■
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Geometry of linear systems

14.1 Discovery guide

Discovery 14.1 Begin with a set of xy-axes. Draw the vector x0 = (3,0) with its
tail at the origin, and then draw the vector p= (2,1) with its tail at the head of
x0.

(a) Consider the expression x= x0 + tp in the parameter t. Think of x as a
variable vector: using different values of t, x evaluates to different vectors.
Draw the vector x for t = 1 on your diagram with its tail at the origin and
using a dashed line for the shaft of the arrow. Then do the same for t = 2,
t =−1, t = 1/2, t =−3.

Note. You shouldn’t have to compute any coordinates to be able to draw
these vectors, you should be able to just use your initial diagram of x0 and
p to know where x ends up for these various values of t.

(b) Suppose you continued sketching in the different possible x vectors forever,
using every possible value for the parameter t. What shape would be traced
out by all of the points at the heads of the different versions of x?

Discovery 14.2 The equation x−2y= 3 defines a line ℓ in R2. We can also view
this equation as a system of linear equations. Its solution requires one parameter.

(a) Set y= t and then compute the parametric equation for x. Set x to be the
variable vector x = [ x

y
]
. Fill in the vectors at below. Then compare with

Discovery 14.1.

x =
[

x
y

]
=

[
t

]
=

[ ]
+ t

[ ]

(b) Use the line equation x−2y = 3 to verify that the point (4,1/2) lies on ℓ.
Then determine the value of the parameter t so that x= (4,1/2).

Discovery 14.3 Consider the two planes

Π1 : 2x− y+5z =−5, Π2 : x+2y−5z = 10

in R3.

(a) Verify that Π1 and Π2 are not parallel.

Hint. Compare their normal vectors.

(b) Two nonparallel planes must intersect in a line. Describe the line of
intersection of Π1 and Π2 in the form x= x0 + tp.

195
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Hint. Any point in the intersection must lie on both planes at once.
That is, any point in the intersection must be a solution to the system of
equations formed by the two plane equations.

Discovery 14.4 The equation x− y+5z =−5 defines a plane in R3. We can also
view this equation as a system of linear equations.

(a) Similarly to Discovery 14.2, determine vectors x0, p1, and p2 so that

x=
[ x

y
z

]
= x0 + sp1 + tp2

describes all solutions to the equation (and hence all points on the plane).

(b) Use the plane’s equation x− y+5z = −5 to verify that the point (1,1,−1)
lies on the plane.

Then determine the values of the parameters s and t so that the formula

x= x0 + sp1 + tp2

results in this point x= (1,1,−1).

Discovery 14.5 Draw a grid over the xy-plane, with a vertical line at each
integer value of x and a horizontal line at each integer value of y. Then draw e1
and e2 on your diagram.

What does the decomposition (3,2)= 3e1 +2e2 look like on your grid?
How about (−1,2)= (−1)e1 +2e2?
How about (3/2,−2)= (3/2)e1 + (−2)e2?

Discovery 14.6 Draw a “grid” over the xy-plane as follows: at each integer value
along the x-axis, draw both a vertical line and a slant line parallel to the line
y= x. Then draw u= (1,1) and e2 on your diagram.

What does the decomposition (3,2)= 3u+ (−1)e2 look like on your grid?
How about (−1,2)= (−1)u+3e2?
How about (3/2,−2)= (3/2)u+ (−7/2)e2?

Discovery 14.7 The set of all solutions to the homogeneous equation x−2y+3z =
0 forms a plane in R3. We can solve this equation by assigning parameters y= s
and z = t, so that all solutions can be described parametrically by

(x, y, z)= s(2,1,0)+ t(−3,0,1).

Discuss how the vectors p1 = (2,1,0) and p2 = (−3,0,1) create a “grid” on the plane
defined by x−2y+3z = 0, similarly to the grids you worked with in Discovery 14.5
and Discovery 14.6.

Note. Since the plane equation

x−2y+3z = 0

is homogeneous, this plane passes through the origin.

Discovery 14.8 Determine the point of intersection of the line ℓ, described
parametrically below left, and the plane Π, described algebraically below right.

ℓ : x= (2,0,3)+ t(−1,1,1) Π : 2x+ y−3z = 7

Hint. The point of intersection is simultaneously on the line and on the plane.
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Discovery 14.9 Set up a system of equations whose solution is the point of
intersection of the line ℓ and the plane Π, described parametrically below.

ℓ : x= (2,0,3)+ t(−1,1,1) Π : x= (3,1,0)+ r(1,1,1)+ s(3,0,2)

Hint. The point of intersection is simultaneously on the line and on the plane.
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14.2 Terminology and notation

point-parallel form (of a line in Rn)
the vector equation x=x0 + tp, where x0 is a vector from the origin
to a known point on the line, p is a known parallel vector for the
line, x is a variable vector representing an arbitrary point on the
line (again as a vector from the origin), and t is a scalar parameter
that varies as the arbitrary vector x varies

point-parallel form (of a plane in Rn)
the vector equation x = x0 + sp1 + tp2, where x0 is a vector from
the origin to a known point on the plane, p1,p2 are known parallel
vectors for the plane that are not parallel to each other, x is a variable
vector representing an arbitrary point on the plane (again as a vector
from the origin), and s, t are scalar parameters that vary as the
arbitrary vector x varies

14.3 Concepts

In this section.

• Subsection 14.3.1 Lines in the plane

• Subsection 14.3.2 Lines in space

• Subsection 14.3.3 Planes in space

• Subsection 14.3.4 Parallel vectors as a “basis” for lines and planes

• Subsection 14.3.5 Summary

14.3.1 Lines in the plane

When we view a single linear equation in two variables as a (very simple) system
of equations, we require a single parameter to solve. We’ve previously seen
that we can use matrix algebra to express the general solution to a system of
equations as a linear combination of column matrices, where the parameters
appear as coefficients.

See. Examples 4.4.8–4.4.11 in Subsection 4.4.4. But we also reminded ourselves
of this in Discovery 14.2.

When we interpret the column matrices in such a linear combination as
vectors, we can investigate the geometry of the set of solutions, as we did in
Discovery 14.1. For a general solution to ax+by= c of the form

x= x0 + tp,

the vector x0 corresponds to the particular solution for t = 0, and we can think
of its terminal point as an “base” point on the line. When we vary the value of
the parameter t, we get solutions that are vector sums of the base point x0 and
scalar multiples of p. Geometrically, these vector sums all involve tacking some
scaled copy of p onto the end of x0.
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0

t =−2

t =−1

t = 0

t = 1

t = 2

t = 3

x
0

p

x 0
+1

p

x0
+2p

x
0 −

12 p

x
0 − p

2p

The terminal points of all such vectors x trace out the line parallel to p that
passes through the terminal point of x0. Since p is parallel to the line, we might
think of p as a “direction” vector for the line.

14.3.2 Lines in space
Two nonparallel planes in space must intersect in a line, as in Discovery 14.3.
If we have algebraic equations a1x+b1 y+ c1z = d1 and a2x+b2 y+ c2z = d2 for
these planes, then solving for the points of intersection is the same as solving the
linear system formed by these two equations. The assumption that the planes
are not parallel guarantees that we will need one (and only one) parameter to
solve the system, and then the general solution can be expressed in a vector form

x= x0 + tp,

just as in the previous case of a line in the plane. To visualize, we can imagine
the diagram in the previous subsection above as floating in space instead of lying
in the plane.

14.3.3 Planes in space
When we view a single linear equation in three variables as a system of equations,
we require two parameters to solve. As before, we can use matrix algebra to
express the general solution as a linear combination of column matrices, where
the parameters appear as coefficients.

Recall. We explored this situation in Discovery 14.4.

Similarly to the vector description of a line, a parametric vector expression

x= x0 + sp1 + tp2

can be interpreted as follows. The terminal point of the vector x0 is an “base”
point on the plane, corresponding to parameter values s = 0 and t = 0. The
vectors p1 and p2 are parallel to the plane. Similarly to the vector description of
a line, as we vary the values of s and t we obtain other points on the plane by
tacking on linear combinations of p1 and p2 to the end of x0.

0

x0

sp1

tp2

x

p1

p2
sp1 + tp2
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Note. In this diagram, all of the vectors lie flat in the shaded plane (and so,
parallel to it) except for x0 and x, which point from the origin into the plane.

14.3.4 Parallel vectors as a “basis” for lines and planes

In a vector description x = x0 + tp for a line, the “base” point at the head of x0
gets you onto the line, and then one can get to any other point on the line by
following a scalar multiple of the parallel vector p. In this way, the parameter t
effectively places a coordinate system on the line, where the integers are spaced
apart by the length of p.

See. the line diagram earlier in Subsection 14.3.1.

Values of the parameter t are mapped to specific positions on the line, just as
when we visualize the set of real numbers R along the real number line, where
each real number represents a position on a line. This idea of a coordinate system
along the line is more natural when the line passes through the origin, so that
we can take x0 = 0. In this case we have x = tp, so that all points on the line
correspond to scalar multiples of the parallel vector p, and parameter value t = 0
corresponds to the origin. So the vector p tells us pretty much all we need to
know about the line, and any other line that is parallel to this line could use the
same parallel vector p, it would just need a different “base point” vector x0.

t =−2

t =−1

t = 0

0 t = 1

t = 2

t = 3

p

In the plane, the standard basis vectors e1,e2 play the same role for the
whole plane, representing our xy-coordinate system and setting up a grid as in
Discovery 14.5.

Recall. We have previously explored how vectors in the plane can be decomposed
as linear combinations of the standard basis vectors: in Discovery 11.8, and
further back in Subsection 11.3.7.

x

y

P(a,b)

ae1e1

be2

e2 ae1+
be2

Notice. In this diagram, vertical grid lines appear at multiples of e1, and
horizontal grid lines appear at multiples of e2.

When we have a vector description x = x0 + sp1 + tp2 for a plane in space,
scalar multiples of the vectors p1 and p2 form a grid on the plane in the same
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way (except that the grid lines will not be at right angles to each other if p1 and
p2 are not).

0

x0

x

sp1

tp2

p1

p2
sp1 + tp2

The vectors p1 and p2 set up an st-coordinate system on the plane, where
every point on the plane corresponds to a particular pair of parameter values,
and vice versa, by adding the linear combination sp1 + tp2 onto x0. If the plane
passes through the origin (as in Discovery 14.7), then we can take x0 to be the
zero vector, so that the origin corresponds to (s, t)= (0,0). Then every other point
in the plane could be constructed as a linear combination of p1 and p2.

14.3.5 Summary
Combining with our knowledge of normal vectors from the previous chapter, we
now have several ways to describe lines and planes in R2 and R3.

Algebraic Geometric Vector

line in R2 ax+by= c n • (x−x0)= 0

where n= (a,b)
x= x0 + tp

plane in R3 ax+by+ cz = d n • (x−x0)= 0

where n= (a,b, c)
x= x0 + sp1 + tp2

line in R3

intersection of

planes

a1x+b1 y+ c1z = d1

and

a2x+b2 y+ c2z = d2

common x
that satisfy

n1 • (x−x0)= 0

and

n2 • (x−x0)= 0

where

n1 = (a1,b1, c1),

n2 = (a2,b2, c2)

x= x0 + tp

Figure 14.3.1

Remark 14.3.2

• In both the Geometric and Vector columns, the vector x0 represents a fixed
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“base” point that is on the line or plane.

• In the Geometric column, the n vectors are normal vectors to the line
or plane, and their components are precisely the coefficients from the
corresponding entry in the Algebraic column. Note that in R3, there are
360◦ of normal directions to a line, so we need two normal vectors (n1 and
n2) to be able to specify the direction of the line — and then the line is
parallel to n1 ×n2. While the normal vector n for a line in R2 or a plane in
R3 are essentially unique (for a specific line or plane, it can only be replaced
by a nonzero scalar multiple), the pair of normal vectors for a line in R3 is
not unique (there are many pairs of normal vectors that are not just scalar
multiples of other pairs that would describe the same line). We can say
something about n1 and n2 though — for a given line in R3, every such pair
of normal vectors must be parallel to a plane that is normal to the line.

• In the Vector column, the p vectors are parallel to the line or plane. For a
line in either R2 or R3, we would just need to know a second “base point”
vector x1, and the we could take p = x1 −x0. Or, for a line in R3, we
could start with two known, nonparallel normal vectors n1,n2 for the line,
and then we could take p = n1 ×n2. For a plane in R3, we need three
“known” points total, represented by some vectors x0, x1, x2. As long as
these “known” points are not noncollinear, we can get the necessary vectors
parallel to that plane by taking p1 = x1 −x0 and p2 = x2 −x0.

• We can realize similar geometric “shapes” in R4, R5, and higher dimensions,
even though we can’t “see” them. A line or plane in higher dimensions
would have the same kind of vector description. The algebraic and geomet-
ric descriptions of lines in R2 and planes in R3, if adapted to be used in
higher dimensions, would describe a hyperplane — some sort of “subspace”
of n-dimensional space that is of one dimension lower. For example, simi-
larly to how we might think of a plane in R3 as a “copy” of the plane (R2)
sitting inside space (R3), we might imagine a hyperplane in R4 as a “copy”
of R3 sitting inside R4.

14.4 Examples

In this section.

• Subsection 14.4.1 Describing lines and planes parametrically

• Subsection 14.4.2 Determining points of intersection

14.4.1 Describing lines and planes parametrically
First we will work out some of the activities from Discovery guide 14.1 that
involve describing lines and planes parametrically.

Example 14.4.1 Parametrically describing a line in R2. In Discovery 14.2,
we considered the equation x−2y= 3 for a line in the plane. Setting parameter
y= t and isolating x in this equation leads to general solution

x=
[

x
y

]
=

[
3+2t

t

]
=

[
3
0

]
+ t

[
2
1

]
.

Geometrically, the vector x0 = (3,0) represents an “base” point on the line, and
algebraically represents the particular solution to the system obtained from
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parameter value t = 0. The vector p = (2,1) represents a vector parallel to the
line, and every other point on the line (i.e. every other solution to the system)
can be obtained by adding a scalar multiple of p to x0. For example, the point
x= (4,1/2) lies on the line, as we can verify by checking

4−2 · 1
2
= 4−1= 3,

so that the coordinates of the point satisfy the line equation x−2y= 3. We can
solve for t in the vector equation[

4
1
2

]
=

[
3
0

]
+ t

[
2
1

]
to see exactly how this point is a multiple of p away from x0:[

4
1
2

]
−

[
3
0

]
=

[
1
1
2

]
=

[
2t
t

]
=⇒ t = 1

2
. (*)

Finally, we have [
4
1
2

]
= x+ 1

2
p.

□

Warning 14.4.2 In the previous example, we determined the value of the param-
eter t that corresponds to the point (4,1/2) on the line by solving vector equation
(*). When you are solving vector equations for parameters like this, make sure
you check that your solution works in every coordinate! For example, in (*) we
see that t = 1/2 immediately from comparing the second coordinate on left and
right. But it is important to check that this parameter value also works in the
first coordinate (which it does).

Example 14.4.3 Parametrically describing the intersection of two planes
in R3. In Discovery 14.3, we considered a system consisting of two equations in
three variables, {

2x − y + 5z = −5,
x + 2y − 5z = 10.

Geometrically, each of the equations represents a plane in space, and solutions to
the system represent points that are in common to both planes (that is, points
in the intersection of the two planes). From the coefficients of the equations we
may take n1 = (2,−1,5) and n2 = (1,2,−5) as normal vectors for the two planes,
respectively. Since these normal vectors are not parallel, neither are the planes,
and so they must intersect. Algebraically, this means that the coefficient parts of
the two equations are not multiples of each other, so when we row reduce we will
find two leading ones, representing the two independent equations with which
we started. And so we will only require one parameter to express the general
solution, which will then take the form of a line. The free variable in this system
is z, so setting z to parameter t and solving we get

x=

x
y
z

=

 −t
5+3t

t

=

0
5
0

+ t

 −1
3
1

 .

Here, the “base” point corresponding to t = 0 is x0 = (0,5,0), and the vector
p= (−1,3,1) is parallel to the line. □
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Example 14.4.4 Parametrically describing a plane in R3. When we have
just a single plane in space, as in Discovery 14.4, we can view its equation as
a system of equations, just as we did with the line in Discovery 14.2. In that
activity, we worked with equation x− y+5z =−5. For this equation, we will need
two parameters to express the general solution, and each parameter will provide
us with a vector parallel to the plane. Setting y= s and z = t, we can then use the
plane equation to express x in terms of these parameters. This leads to general
solution, in vector form:

x=

x
y
z

=

−5+ s−5t
s
t

=

 −5
0
0

+ s

1
1
0

+ t

 −5
0
1

 .

Here, the “base” point on the plane is x0 = (−5,0,0), which corresponds to param-
eter values s = t = 0. Every other point on the plane corresponds to other choices
of parameter values. For example, as in the discovery activity, the point (1,1,−1)
is on the plane. We can verify this by checking

1−1+5(−1)=−5,

so that the coordinates of the point satisfy the plane equation x− y+5z =−5. We
can also describe this point using the vector equation

x= x0 + sp1 + tp2

as follows:  1
1

−1

=

 −5
0
0

+ s

1
1
0

+ t

 −5
0
1

 .

Solving this vector equation for s and t leads to a . . . system of linear equations! 1
1

−1

−

 −5
0
0

=

s
s
0

+

−5t
0
t


 6

1
−1

=

s−5t
s
t

 .

From the second and third coordinates we immediately see s = 1 and t = −1.
However, it’s important to also verify that s−5t = 6 for this choice of parameter
values, to satisfy the equality of the two first coordinates on right and left. □

14.4.2 Determining points of intersection
When lines and/or planes are described using algebraic equations, determining
points of intersection only requires solving the linear systems that those equa-
tions form together. Here we will demonstrate determining points of intersection
when some or all of the lines and/or planes involved are described parametrically
by working out some of the activities from Discovery guide 14.1.

Example 14.4.5 Intersection of a parametrically-described line and
an algebraically-described plane in R3. In Discovery 14.8, we have a line
described by a vector equation and a plane described algebraically, and would
like to determine their point of intersection (if there is one). Any such point of
intersection must be on the line, and so its coordinates can be described in terms
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of the parameter t:

x=

x
y
z

=

2
0
3

+ t

 −1
1
1

=

2− t
t

3+ t

 .

If this point is also on the plane, its coordinates must satisfy the equation for the
plane:

2x+ y−3z = 7

2(2− t)+ t−3(3+ t)= 7

−5−4t = 7

t =−3.

Substituting this parameter value in our expression for x gives us the point of
intersection:  5

−3
0

 .

Check your understanding. What if the line and plane had been parallel with
no point of intersection? What would have happened when we tried to solve for
t? Or, what if the line and plane had been parallel, but with the line lying inside
the plane? How would this have become evident from the algebra of attempting
to solve for t?

□

Example 14.4.6 Intersection of parametrically-described line and plane
in R3. In Discovery 14.9, we again want to determine the point of intersection
(if any) of a line and a plane, but this time both line and plane are described by
vector equations. If a point lies on both line and plane, its coordinates must have
a simultaneous description by both vector equations in terms of parameters:

x=

x
y
z

=

2
0
3

+ t

 −1
1
1

=

2− t
t

3+ t

 ,

x=

x
y
z

=

3
1
0

+ r

1
1
1

+ s

3
0
2

=

3+ r+3s
1+ r
r+2s

 .

Now, this point can only have one set of coordinates, so these two descriptions
must actually be the same. This lets us set up a . . . system of linear equations!

x : 2− t = 3+ r+3s,
y : t = 1+ r,
z : 3+ t = r+2s,

=⇒


r + 3s + t = −1,
r − t = −1,
r + 2s − t = 3.

We could put this system in a matrix and row reduce, but we only really care
about the value of parameter t in the solution, because knowing t allows us to
determine x from the vector description for the line. So we can use Cramer’s rule
instead. Write A for the coefficient matrix of this system, and A3 for the matrix
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obtained by replacing the third column of A by the vector of constants. Then,

det A3 =

∣∣∣∣∣∣∣
1 3 −1
1 0 −1
1 2 3

∣∣∣∣∣∣∣=−12,

det A =

∣∣∣∣∣∣∣
1 3 1
1 0 −1
1 2 −1

∣∣∣∣∣∣∣= 4

=⇒ t = det A3

det A
=−3.

Now that we have t =−3, we can determine the point of intersection:

x=

2− t
t

3+ t

=

 5
−3

0

 .

Note. We got the same answer as in the previous example because the lines
and planes in the two discovery activities are actually the same, but the plane is
described in two different ways in the two examples.

□
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Abstract vector spaces

15.1 Discovery guide

Suppose you have a collection of mathematical objects. The objects in the collec-
tion may satisfy all/some/none of the following rules, depending on the objects.
In the rule statements, bold variable letters represent arbitrary objects in the col-
lection, and ordinary variable letters represent arbitrary scalars (i.e. numbers).

List 15.1.1 (A) Addition rules

1. The objects can be added (two
at a time), and the resulting
“sum” is always equal to an-
other in the collection of ob-
jects.

2. Every v,w satisfy

w+v= v+w.

3. Every u,v,w satisfy

u+ (v+w)= (u+v)+w.

4. There is a special zero ob-
ject in the collection, so that
every v satisfies v+0= v.

5. Every v has an opposite ṽ so
that v+ ṽ= 0.

List 15.1.2 (S) Scalar multiplication rules

1. The objects can be scaled by
a numerical factor (called a
scalar), and the resulting
“scaled object” is always equal
to another in the collection of
objects.

2. Every k,v,w satisfy

k(v+w)= kv+kw.

3. Every k,m,v satisfy

(k+m)v= kv+mv.

4. Every k,m,v satisfy

k(mv)= (km)v.

5. Every v satisfies 1v= v.

Discovery 15.1 Read and briefly discuss the rules in your group. In particular,
make sure everyone in your group understands the differences between the LHS
and RHS in each of Rule A 2, Rule A 3, Rule S 2, Rule S 3, and Rule S 5.

It may help to come up with expressions for these algebra rules in plain

207



208 CHAPTER 15. ABSTRACT VECTOR SPACES

English rather than letters and variables. For example, Rule A 2 states that
order doesn’t matter in adding objects.

Discovery 15.2 These rules are modelled on the properties of vectors in Rn.
Convince yourself that all the rules are true when the collection of mathematical
objects considered is “all vectors in R2.” In particular, make sure you know what
the zero object is in the collection (Rule A 4), and how to determine an object’s
opposite (Rule A 5).

Discovery 15.3 For each of the following collections of objects, convince yourself
that all the rules are true. In particular, make sure you know what the zero
object is in the collection (Rule A 4), and how to determine an object’s opposite
(Rule A 5).

(a) All 2×2 matrices.

(b) All m×n matrices. (Here m and n are some specific but unknown numbers.)

(c) All polynomials in the variable x.

(d) All polynomials in the variable x of degree 2 or less (i.e. no x3 or higher
allowed).

(e) All real numbers.

Careful. In the last example collection, both objects and scalars are num-
bers. Don’t get mixed up!

Discovery 15.4 Suppose you have a collection of objects that satisfies all of the
rules. (Don’t pick a specific example collection, just think in the abstract.)

(a) For an object v, is it necessarily always true that 0+v= v?

Hint. Look at Rule A 2 and Rule A 4.

(b) For an object v and its opposite ṽ, is it necessarily always true that ṽ+v= 0?

Hint. Look at Rule A 2 and Rule A 5.

(c) By Rule A 5, every object has an opposite which itself is an object. What is
the opposite of an opposite? Make sure you can justify that your answer
satisfies the definition of opposite contained in Rule A 5.

(d) Suppose v is an object. What object do you think 0v should be equal to? Do
the rules provide direct evidence to support your guess?

(e) Here is a justification of your guess from Task d. (Assuming you guessed
correctly!) Fill in the blanks with the identifier of the rule that justifies
each step, working down the left-hand side first. Make sure you understand
how and for what objects that rule is being applied.

v+ ṽ= 0 0v+ (1v+ ṽ)= 0

1v+ ṽ= 0 0v+ (v+ ṽ)= 0

(0+1)v+ ṽ= 0 (arithmetic) 0v+0= 0

(0v+1v)+ ṽ= 0 0v= 0

(f) Use the rules to “simplify” the expression v+ (−1)v. Make sure each step is
justified by a specific rule, similarly to Task e.

Note. As well as the rules from the top of this discovery guide, you may
also use your newly justified rule from Task e. This is a useful pattern:
every time we use existing rules to create a new rule, that new rule can be
freely used to help create even more rules.
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Hint. Start by using Rule S 5 backwards, as used to transform the first
line to the second in Task e.

(g) Take v+ (−1)v= X , where X is your final simplified expression from Task f.
We can “cancel” the v from the LHS by adding ṽ to both sides of the equality.
Based on the resulting equality after doing that, what do you think is a
better name for ṽ than opposite of v?

Discovery 15.5 Nominate one member of your group to become an object, and
consider the collection of objects that consists of just one object (namely, the group
member you nominated).

(a) Can you come up with some sort of addition so that Rule A 1 is true?

(b) Can you come up with some sort of scaling operation so that Rule S 1 is
true?

(c) Check whether the other eight rules hold true with the operations you have
devised in this activity.
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15.2 Motivation

The rules of vector algebra listed in Proposition 11.5.1 are valid whether we take
a geometric view (using directed line segments) or an an algebraic view (using
column vectors) of vector addition and scalar multiplication. But all these rules
have counterparts in matrix algebra in Proposition 4.5.1, which suggests that
these algebra patterns might be more universal — are there other collections of
algebraic objects that can be added and scaled and that follow the same rules of
algebra when we do so?

If we observe similar algebraic patterns elsewhere (and we will), then it
is worth the effort to abstract the concepts of vector and vector algebra — to
disassociate them from any specific ideas of what they are, and deal with them as
abstract concepts. This is ultimately where mathematics becomes most powerful:
when it recognizes, describes, and analyzes patterns in familiar contexts that
can then be recognized and exploited in new contexts.

The cycle of life of a mathematical idea is as follows.

• Extract common patterns from familiar model systems (on the left in
Figure 15.2.1 below).

• Describe the core features of these common patterns and use them as the
basis for an abstract system.

• Deduce new properties of the abstract system based on the aspects of the
underlying patterns that describe it.

• Recognize the common patterns described by the abstract system in new
systems (on the right in Figure 15.2.1 below).

• Interpret the new abstract properties back in the known systems, new and
old, and apply these properties to solve problems.

Since the abstract properties are logically deduced from the underlying patterns
that defines the abstract system, every specific system that follows these common
patterns must have the same properties.
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Figure 15.2.1 The cycle of abstract mathematical models.

Following this cycle for systems that follow the patterns of the rules of algebra
for vector addition and scalar multiplication is our task for the next few
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chapters. In this chapter, we begin our study of the abstract system we can
extract from our familiar model systems of vectors in Rn and m×n matrices, both
of which satisfy the same rules of algebra with respect to addition and scalar
multiplication.

15.3 Terminology and notation

vector addition
a rule for associating to a pair of objects v and w a third object v+w

scalar multiplication
a rule for associating to a number k and an object v another object
kv

vector space
a collection of mathematical objects, along with appropriate concep-
tions of vector addition and scalar multiplication, that satisfies the
Vector space axioms

vector an object in a vector space
zero vector

the special vector 0 in a vector space that satisfies vector addition
Axiom A 4

negative vector (of a vector v)
the special vector −v that satisfies vector addition Axiom A 5 relative
to v

vector subtraction
for vectors v and w, write v−w to mean v+ (−w)

trivial vector space
a vector space that consists of a single object, which then must be
the zero vector in that space; also called the zero vector space

Here follows the notation we will use for some common vector space examples.

Rn the usual vector space of n-tuples of real numbers that we have been
studying in Chapters 11–14

Mm×n(R) the vector space of all m× n matrices with entries that are real
numbers; when m = n we sometimes just write Mn(R) to mean the
vector space of all square n×n matrices

P(R) the vector space of all polynomials with real coefficients in a single
variable

Pn(R) the vector space of all polynomials with real coefficients in a single
variable that have degree n or less

F(D) the vector space of all real-valued functions that are defined on the
domain D
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15.4 Concepts

In this section.

• Subsection 15.4.1 The ten vector space axioms

• Subsection 15.4.2 Instances of vector spaces

15.4.1 The ten vector space axioms

A vector space consists of a collection of objects, which are usually all of the
same kind. For example, the collection of all vectors in R2, or the collection of
all 3×5 matrices. To do the type of vector algebra we are familiar with, we need
two operations that can be performed with these objects: some sort of addition,
and some sort of scalar multiplication. So that algebra with these objects
and operations works the way we expect, we demand that the operations always
conform to the following rules, called axioms. Essentially, these rules consist
of our “favourite” properties of algebra with vectors in Rn and of algebra with
matrices, and we would like to explore whether similar algebraic systems can be
found elsewhere.

Definition 15.4.1 Vector space axioms. A collection of objects is called a
vector space, and the objects inside are then referred to as vectors, if the
collection satisfies all ten of the following axioms. In the axiom statements,
bold variable letters represent arbitrary objects in the collection, and ordinary
variable letters represent arbitrary scalars (i.e. numbers).

List 15.4.2 (A) Addition axioms

1. The objects can be added (two
at a time), and the resulting
“sum” is always equal to an-
other in the collection of ob-
jects.

2. Every v,w satisfy

w+v= v+w.

3. Every u,v,w satisfy

u+ (v+w)= (u+v)+w.

4. There is a special zero ob-
ject in the collection, so that
every v satisfies v+0= v.

5. Every v has a negative −v
so that v+ (−v)= 0.

List 15.4.3 (S) Scalar multiplication axioms

1. The objects can be scaled by
a numerical factor (called a
scalar), and the resulting
“scaled object” is always equal
to another in the collection of
objects.

2. Every k,v,w satisfy

k(v+w)= kv+kw.

3. Every k,m,v satisfy

(k+m)v= kv+mv.

4. Every k,m,v satisfy

k(mv)= (km)v.

5. Every v satisfies 1v= v.
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♢

Remark 15.4.4

• In Axiom A 5, the negative symbol does not mean that we are multiplying
the vector by −1. It is literally just a negative symbol, and should be read
as “the negative of.” So for a vector v in a vector space, the symbols −v
mean “the vector that is the negative of v,” defined by the property that it
adds with v to the special zero vector.

A look ahead. The algebra of vectors will lead to a connection between
the negative of a vector with respect to addition, and the scalar multiple
of a vector by the scalar −1. See Rule 2.e from Proposition 15.6.2 in
Subsection 15.6.2.

• Many of these axioms describe two different ways of performing the opera-
tions, and state that the different ways always produce the same result.

◦ For example, in Axiom A 3, the brackets on the left-hand side tell us
to add vectors v and w first, in whatever way addition is defined in
that space, and then to add that resulting sum vector to u. On the
right, the brackets tell us to add vectors u and v first, and then to add
that resulting sum vector to w. The equals sign in the middle means
that we require the two different addition processes to always have
the same result.

◦ For another example, in Axiom S 2, the brackets on the left tell us to
add v and w, and then scale that sum vector by scalar k, whereas the
brackets on the right tell us to scale each of v and w by k separately
first, and then add those two scaled vectors together. The equals sign
in the middle means that we require the add-then-scale process on
the left to always have the same result as the scale-then-add process
on the right.

When we first encounter a new collection of objects for which we have some
ideas of addition and scalar multiplication, we don’t know that the two
different orders of operations will always have the same result. Before we
can call our new collection a vector space, we need to verify all of these
sorts of things.

15.4.2 Instances of vector spaces
The vector space Rn. One set of prototypical examples of vector spaces are
the collections of vectors we have been studying in Chapters 11–14: R2, R3, and
the higher-dimensional spaces Rn, n ≥ 4. In these spaces,

• adding vectors or scalar multiplying a vector results in a vector in the same
space, satisfying Axiom A 1 and Axiom S 1;

• the zero vector is 0= (0,0, . . . ,0) as usual;

• the negative of a vector is the parallel vector of the same length in the
opposite direction; and

• we know that the rest of the axioms hold true from our knowledge of vector
algebra in these spaces (Proposition 11.5.1).

In Discovery 15.3.e, we discovered that even the collection of real numbers itself
can be considered as a vector space. We might think of this space as R1, and
visualize its vectors as directed line segments lying along the real number line.
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The vector space Mm×n(R). Another set of prototypical examples of vectors
spaces are the collections of matrices of given dimensions, Mm×n(R). But these
matrix spaces represent our first expansion of the word vector to include other
kinds of objects — since all ten axioms hold true here, we can justifiably refer to
any matrix, of any size, as a vector. In these spaces,

• adding matrices or scalar multiplying a matrix does not change its di-
mensions, so these operations always result in a vector in the same space,
satisfying Axiom A 1 and Axiom S 1;

• the zero vector is the zero matrix of the appropriate size;

• the negative of a vector is the matrix of the same dimensions where all the
entries are the negatives of those of the original matrix; and

• we know that the rest of the axioms hold true from our knowledge of matrix
algebra (Proposition 4.5.1).

Spaces of polynomials. In Discovery 15.3, we also explored some new exam-
ples of vector spaces consisting of polynomials as vectors. First, we considered
the collection P(R) of polynomials with real coefficients of arbitrary degree in
Discovery 15.3.c. Here are some observations on the vector space axioms for this
space.

• We add polynomials algebraically, by adding like terms. For example,

(5x3 +3x2 +2x−1)+ (6x101 −3x3 + x+1)= 6x101 +2x3 +3x2 +3x.

Clearly, the result of adding polynomials is another polynomial, satisfying
Axiom A 1.

• We scalar multiply a polynomial by distributing the scalar across the
addition of the polynomials terms. For example,

−2(6x101 −3x3 + x+1)= 12x101 +6x3 −2x−2.

The result of multiplying a polynomial by a scalar is another polynomial,
satisfying Axiom S 1.

• The zero vector is the constant (i.e. degree zero) polynomial p(x)= 0.

• The negative of a vector is the polynomial of the same degree where all the
coefficients are the negatives of those of the the original polynomial.

• The rest of the axioms are familiar rules of algebra involving polynomial
expressions.

Next, we considered the collection P2(R) of polynomials with real coefficients of
maximum degree 2 (Discovery 15.3.d). Everything here works the same as in
P(R), except that we need to reconsider Axiom A 1 and Axiom S 1. We define
vector addition and scalar multiplication for polynomials as before, but we need
to make sure that the result of each of these operations is always equal to another
in the collection of objects. But neither of the operations can increase the degree
of a polynomial, so their results will always again be a polynomial of degree 2 or
less.
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The space of functions. This instance of a vector space is a generalization of
the space of polynomials. We let F(D) represent the collection of all functions,
not just polynomials, defined on a domain D of real numbers. Our first task is
define how the two operations will work.

To create a new “sum” function out of two old functions, or to create a new
“scaled” version of an old function, we first need understand how to create new
functions. To define a new function, we must describe the input-output process. If
we have two functions, f and g, then these functions have an already defined
input-output process, but addition must somehow take these two processes and
create a new one that is the sum of the old. The natural thing to do would be to
add outputs of the two old process. That is, we define the sum function f + g by
the input-output rule

( f + g)(x)= f (x)+ g(x). (*)

For example, if function f produces output 5 at input 3 (i.e. f (3)= 5), and function
g produces output 2 at input 3 (i.e. g(3) = 2), then the sum function f + g will
produce output 7 at input 3:

( f + g)(3)= f (3)+ g(3)= 5+2= 7.

Similarly, to scale a function we should scale its outputs. That is,

(kf )(x)= kf (x). (**)

For example, if function f produces output 5 at input 3 (i.e. f (3)= 5), then the
scaled function

p
2 f will produce output 5

p
2 at input 3:

(
p

2 f )(3)=
p

2
(
f (3)

)=p
2(5)= 5

p
2.

Both of these processes result in a new function with the same domain as the
old, so Axiom A 1 and Axiom S 1 are satisfied.

In this space, the zero vector is the zero function, whose outputs are always
zero: 0(x)= 0 for all x. And the negative of a function is obtained by negating all
of its outputs: (− f )(x)=− f (x).

See Subsection 15.5.2 for examples of carrying out the verification of some of
the vector axioms in this space.

The trivial vector space. In Discovery 15.5, we explored the possibility of a
vector space with just one vector in it. But Axiom A 4 requires that every vector
space have a zero vector, so that single vector inside must be it. And when we
add this vector to itself or try to scale this vector, the condition that “the result
is always equal to another in the collection” in both Axiom A 1 and Axiom S 1
requires that the result is actually always equal to that one vector, because there
are no other vectors in the collection to choose from.

This simple vector space consisting of just a zero vector is called the zero
vector space or the trivial vector space.

A weird instance of a vector space. To emphasize the fact that the words
vector, addition, and the phrase scalar multiplication can potentially mean
anything, let’s consider a weird example.

We’ll take our collection of objects to be the collection of positive numbers.
(But our scalars can still be any number, whether positive, negative, or zero.)
To help distinguish between a vector and a scalar, we’ll put brackets around a
number if it is to mean a vector (as if we were considering R1). And to make sure
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we don’t get mixed up with ordinary addition and multiplication of numbers,
we’ll use the symbols ⊕ and ⊙ to mean vector addition and scalar multiplication,
respectively.

To define vector addition in this space, we’ll actually use ordinary multipli-
cation of numbers. That is, for numbers a,b > 0, we will add the vectors (a), (b)
according to the rule

(a)⊕ (b)= (ab). (†)

This definition satisfies Axiom A 1 because multiplying two positive numbers
results in another positive number.

To define scalar multiplication in this space, we’ll use exponentiation. That
is, for number a > 0 and scalar k (also a number), we will scale the vector (a) by
the scale factor k according to the rule

k⊙ (a)= (ak), (††)

with the usual conventions that a0 = 1 and a−1 = 1/a. This definition satisfies
Axiom S 1 because a power of a positive number results in another positive
number.

What is the zero vector in this space? For Axiom A 4 to hold true, we need a
vector (z) so that

(a)⊕ (z)= (a)

for all other vectors (a). But we can’t use z = 0, because the vectors in our
space must all be positive numbers. Inserting the definition of ⊕ as ordinary
multiplication, we need a positive number z so that

(az)= (a)

for all a > 0. But we only get az = a for all a > 0 when z = 1. So in this weird
space, the zero vector is the number one.

Comment. The identity of the zero vector in this space should actually not be
that surprising — the number one is to multiplication what the number zero is
to addition.

What is the negative of a vector in this space? Given positive a > 0, the
negative of vector (a) can’t be (−a), because all our vectors have to be positive
numbers. To repeat, in this case, −(a) is not equal to (−a). We know that every
vector in this space is represented by a single positive number. That is, the
negative of (a) must be equal to (b) for some positive number b. To satisfy Axiom
A 5, this negative vector must satisfy

(a)⊕ (−(a)
)= 0.

So we need b > 0 so that
(a)⊕ (b)= 0.

Inserting the definition of ⊕ as ordinary multiplication, and inserting 0 = (1)
from above, we see we need

(ab)= (1).

That is, we need ab = 1, so that b = 1/a (which is positive since a is positive). So
we have

−(a)= (
a−1)

.

In this weird space, the negative (i.e. additive inverse) of a vector corresponds to
the reciprocal (i.e. multiplicative inverse) of the positive number representing
that vector.

In Subsection 15.5.1, we will verify some of the other vector space axioms for
algebra in this space.
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15.5 Examples

In this section.

• Subsection 15.5.1 Verifying axioms: the space of positive numbers

• Subsection 15.5.2 Verifying axioms: the space of functions

15.5.1 Verifying axioms: the space of positive numbers
Here we will continue our “weird” example from the end of Subsection 15.4.2,
and verify some of the other axioms for vectors in that space.

Let’s start with Axiom A 2. Here we would like to verify that the vector
equality v+w = w+v is always true when the vectors are positive numbers
and vector addition is defined to be ordinary multiplication, as defined in (†) in
Subsection 15.4.2.

Verifying an equality. When verifying an equality, we make sure to always
consider the left- and right-hand expressions separately.

For this space, vectors are positive numbers, so we should take v= (a) and
w= (b) for arbitrary, unspecified positive numbers a and b (where again we use
brackets to distinguish between numbers that are vectors and numbers that are
scalars). Then,

LHS= v+w RHS=w+v
= (a)⊕ (b) = (b)⊕ (a)

= (ab), = (ba).

Now, we know that ordinary multiplication of numbers can be performed in
either order, so ba = ab, and thus LHS=RHS as desired.

Verifying axioms. It’s important that we verify axioms using arbitrary vectors
and scalars, so that we know our verifications will be true regardless of the
specific vectors and scalars considered. A vector axiom being sometimes true, for
specific example vectors and scalars, is not good enough — we need the axioms to
always be true, for all possible vectors in the collection, and all possible scalars.

We will leave the other addition axioms up to you, but let’s verify one of
the scalar multiplication axioms. Consider Axiom S 2. We need to verify that
k(v+w)= kv+kw is always true for all scalars k and all vectors v and w, where
scalar multiplication is defined as in (††) in Subsection 15.4.2. When considering
the left- and right-hand sides of this vector equality, we need to be sure to pay
attention to the order of operations on each side. Again, take v= (a) and w= (b)
for arbitrary, unspecified positive numbers a and b. Then,

LHS= k(v+w) RHS= kv+kw
= k⊙ (

(a)⊕ (b)
) = (

k⊙ (a)
)⊕ (

k⊙ (b)
)

= k⊙ (ab) =
(
ak

)
⊕

(
bk

)
=

(
(ab)k

)
, =

(
akbk

)
.

We can now see that LHS=RHS as desired because of the exponent law (ab)k =
akbk from the algebra of ordinary numbers.
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Check your understanding. Verify Axiom A 3 and Axioms S 3–5 for our “weird”
example space, using a similar procedure as in this subsection.

15.5.2 Verifying axioms: the space of functions
Here we will verify some of the axioms for vectors in the space F(D). We will be
verifying equality of functions, so we need to make sure we know what it means
for two functions to be equal.

Definition 15.5.1 Equality of functions. Two functions are equal when the
input-output processes they represent always produce the same outputs. That is,
functions f and g are equal if f (x)= g(x) for all possible input x-values. ♢

Let’s start with Axiom A 3. Here we would like to verify that the vector
equality u+ (v+w)= (u+v)+w is always true when the vectors are functions
and addition is defined in F(D) as in (*) in Subsection 15.4.2.

Let’s take u = f , v = g, and w = h, where f , g,h are arbitrary, unspecified
functions that are all defined on the domain D. From Definition 15.5.1 above,
we see that we need to verify that the sum functions f + (g+h) and ( f + g)+h
always produce the same output when fed the same input. So suppose x is an
input value in the domain D. Then,

LHS= (
f + (g+h)

)
(x)

= f (x)+ (g+h)(x) (i)

= f (x)+ (
g(x)+h(x)

)
, (ii)

RHS= (
( f + g)+h

)
(x)

= ( f + g)(x)+h(x) (iii)

= (
f (x)+ g(x)

)+h(x), (iv)

with justifications

(i) definition of the sum of f and g+h;

(ii) definition of the sum of g and h;

(iii) definition of the sum of f + g and h; and

(iv) definition of the sum of f and g.

Now, f (x), g(x),h(x) are just numbers — they are the output y-values produced by
the functions from the input value x — and we know that we can group numbers
with brackets in any combination when adding. So LHS=RHS as desired.

Now let’s verify Axiom A 5, using the definition (− f )(x)=− f (x) from Subsec-
tion 15.4.2 (where we have also defined 0(x)= 0). We must verify that the sum
function f + (− f ) is the same as the zero function 0, which means we must verify
that these functions always have the same outputs. So suppose x is an input
value in the domain D. Then,

LHS= (
f + (− f )

)
(x)

= f (x)+ (− f )(x) (i)

= f (x)+ (− f (x)
)

(ii)

= f (x)− f (x) (iii)

= 0 (iv)

= 0(x) (v)

=RHS,

as desired, with justifications
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(i) definition of the sum of f and − f ;

(ii) definition of the negative of f ;

(iii) algebra of numbers;

(iv) algebra of numbers; and

(v) definition of the zero function.

As a last example, let’s verify Axiom S 3 in this space. We need to verify that
(k+m)v= kv+mv is always true for all scalars k and m and all vectors v when
the vectors are functions and the vector operations are defined in F(D) as in (*)
and (**) in Subsection 15.4.2. And when considering the left- and right-hand
sides of this vector equality, we need to be sure to pay attention to the order of
operations on each side.

Again, take v= f for arbitrary, unspecified function f . Then we actually need
to verify that the function (k+m) f always produces the same outputs as the
function kf +mf . So suppose x is an input value in the domain D. Then,

LHS= (
(k+m) f

)
(x)

= (k+m) f (x), (i)

RHS= (kf +mf )(x)

= (kf )(x)+ (mf )(x) (ii)

= kf (x)+mf (x), (iii)

with justifications

(i) definition of scalar multiplication of f by k+m;

(ii) definition of the sum of kf and mf ; and

(iii) definition of scalar multiplication of f by k and by m.

Again, f (x) is just a number, and k,m are also numbers, and we know that
we can distribute the multiplication of f (x) across the sum of k and m in the
expression (k+m) f (x). Therefore, LHS=RHS as desired.

Check your understanding. Verify Axiom A 2, Axiom S 2, Axiom S 4, and
Axiom S 5, using a similar procedure as in the examples of this subsection. Also
verify that in Subsection 15.4.2, we have chosen the correct zero vector and the
correct concept of negative vector in this space (Axiom A 4 and Axiom A 5).

15.6 Theory

In this section.

• Subsection 15.6.1 Uniqueness of the zero vector and of negatives

• Subsection 15.6.2 Basic vector algebra rules
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15.6.1 Uniqueness of the zero vector and of negatives
Notice that Axiom A 4 and Axiom A 5 only say that there is a zero vector, and
that every vector has some negative — they don’t say that there is only one zero
vector, or that every vector has only one negative. There is no need to make these
axioms that strong — we can instead just logically deduce these properties from
the weaker axioms we already have.

Proposition 15.6.1

1. In a vector space, there is one unique zero vector.

2. A vector in a vector space has one unique negative vector.

Proof of Statement 1. Suppose there were two vectors, 01 and 02, that could each
fulfill the requirement of Axiom A 4. But then we would have both

01 +02 = 01 (i),

and

01 +02 = 02 +01 (ii)

= 02 (iii),

with justifications

(i) Axiom A 4 with v= 01 and 0= 02;

(ii) Axiom A 2; and

(iii) Axiom A 4 with v= 02 and 0= 01.

Since 01 +02 equals both 01 and 02, we must have 01 = 02. So there can’t really
be more than one zero vector, since multiple zero vectors would end up having to
be equal to each other. ■

Proof of Statement 2. Suppose a vector v could have two negatives, (−v)1 and
(−v)2. But then,

(−v)2 = (−v)2 +0 (i)

= (−v)2 +
(
v+ (−v)1

)
(ii)

= (
(−v)2 +v

)+ (−v)1 (iii)

= (
v+ (−v)2

)+ (−v)1 (iv)

= 0+ (−v)1 (v)

= (−v)1 +0 (vi)

= (−v)1 (vii),

with justifications

(i) Axiom A 4;

(ii) Axiom A 5 with −v= (−v)1;

(iii) Axiom A 3;

(iv) Axiom A 2;

(v) Axiom A 5 with −v= (−v)2;

(vi) Axiom A 2; and
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(vii) Axiom A 4.

So v can’t really have more than one negative vector, since multiple negative
vectors would end up having to be equal to each other. ■

15.6.2 Basic vector algebra rules
There was also no need to include the condition 0+v = v in Axiom A 4 or the
condition −v+v = 0 in Axiom A 5, as these can be deduced from the axioms
we have, as we did in Discovery 15.4.a and Discovery 15.4.b. Let’s record these
properties, and some others that can be deduced from the axioms.

Keeping it simple. We want the axioms to be as simple as possible, to reduce
the amount of work it takes to verify that an example collection of objects is
actually a vector space. The stronger we make the axioms, the more we have
to check in examples. So, wherever possible, we leave conditions that seem
“axiom-like” to be left as properties to be logically deduced from the axioms. This
way, these extra properties become automatically true, without checking, in every
collection that we have successfully checked the ten axioms.

Proposition 15.6.2 Suppose that u,v,w are vectors in a vector space, and that k
is a scalar. Then the following are always true.

1. Additional rules of the zero vec-
tor.

(a) 0+v= v.

(b) 0v= 0.

(c) −0= 0.

(d) k0= 0.

(e) If kv = 0, then either k = 0
or v= 0 (or both).

2. Additional rules of vector nega-
tives.

(a) −v+v= 0.

(b) −(u+v)= (−u)+ (−v).

(c) −(−v)= v.

(d) −(kv)= k(−v).

(e) (−1)v=−v.

(f) (Cancellation) If u+w= v+
w, then u= v.

Proofs of Rules 1.a–1.b, Rule 2.c, and Rule 2.e. We have already considered these
rules in Discovery 15.4. ■

Proof of Rule 1.c. The zero vector is a special vector, but it’s still a vector so it must
have a negative because of Axiom A 5. Now, Statement 2 of Proposition 15.6.1
with v= 0 tells us that the only way to fill the blank in

0 + = 0

is with the negative −0. But Axiom A 4 with v= 0 says that we may also fill this
blank with plain 0. Therefore, we must have 0=−0, as desired. ■

Proof of Rule 1.d. We need to verify the equality k0= 0:

LHS= k0
= k

(
0+ (−0)

)
(i)

= k
(
0+ (−1)0

)
(ii)

= k0+k
(
(−1)0

)
(iii)

= k0+ (−k)0 (iv)

= (
k+ (−k)

)
0 (v)

= 00 (vi)
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= 0 (vii)

=RHS,

as desired, with justifications

(i) Axiom A 5 with v= 0;

(ii) Rule 2.e;

(iii) Axiom S 2;

(iv) Axiom S 4;

(v) Axiom S 3;

(vi) algebra of numbers; and

(vii) Rule 1.b.

■

Proof of Rule 1.e. Suppose kv= 0. Regardless of this starting assumption, either
k is equal to 0 or it is not. If it is, then the desired conclusion “either k = 0 or
v= 0” is true, regardless of whether v is zero of not. On the other hand, if k is
not equal to 0, then the reciprocal k−1 exists, and so we can use it to compute

v= 1v (i)

= (k−1k)v (ii)

= k−1(kv) (iii)

= k−10 (iv)

= 0, (v)

with justifications

(i) Axiom S 5;

(ii) algebra of numbers;

(iii) Axiom S 4;

(iv) assumption kv= 0; and

(v) Rule 1.d.

In this case, the desired conclusion “either k = 0 or v= 0” is true again. ■

Proof of Rule 2.f. Suppose u+w= v+w. Starting with u, we can use the axioms
to work in a w and then convert to v:

u=u+0 (i)

=u+ (
w+ (−w)

)
(ii)

= (u+w)+ (−w) (iii)

= (v+w)+ (−w) (iv)

= v+ (
w)+ (−w)

)
(v)

= v+0 (vi)

= v, (vii)

as desired, with justifications
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(i) Axiom A 4;

(ii) Axiom A 5;

(iii) Axiom A 3;

(iv) assumption u+w= v+w;

(v) Axiom A 3;

(vi) Axiom A 5; and

(vii) Axiom A 4.

■

Remark 15.6.3 Again, keep in mind the difference between the left- and right-
hand sides in Rule 2.e in the proposition above. The left-hand side is the scalar
multiple of v by the scalar −1, while the right-hand side is the special negative
vector that adds with v to the zero vector. These are two different processes of
obtaining a new vector from the old vector v, and the point of the rule is to verify
our intuition that these two processes should always return the same result. One
of the advantages of this rule is that it eliminates any ambiguity in our definition
of vector subtraction, since now it doesn’t matter if we interpret v−w to mean
v+ (−w) or v+ (−1)w.





CHAPTER 16

Subspaces

16.1 Discovery guide

Recall that a vector space is a collection of objects (called vectors) that satisfies
all of the axioms in Definition 15.4.1.

Discovery 16.1 Sometimes you have a subcollection of vectors inside a larger
vector space, and would like to know whether the subcollection is also a vector
space, all on its own.

Definition. A subcollection is a collection of objects, each of which is a member
of some “larger” collection. For example, the collection of even numbers is a
subcollection of the collection of whole numbers.

(a) In the large vector space, you would already know (from having checked)
that all ten axioms are true. Because all the vectors in the subcollection
also “live” in the large vector space, six of the axioms will automatically be
true for the subcollection (and the remaining four may or may not be true).
Identify these six axioms that are automatically true.

Hint. It is easier to identify the six that are definitely true rather than
the four that might be false.

(b) Using R2 as the large vector space, for each of the following subcollec-
tions, which of those four remaining axioms are true and which are false?
(Consider all vectors as positioned with initial point at the origin.)

(i) All points on the line y= x.

(ii) All points on the line y= x+1.

(iii) All points on the circle of radius 1 centred at the origin.
In Proposition 16.5.1, we will prove that the task of checking the four “possibly

false” axioms you identified in Discovery 16.1 for a particular subcollection can
be refined to the following test.

The Subspace Test.

(i) Nonempty.

The subcollection contains at least one vector.

(ii) Closed under vector additition.

The sum of two vectors in the subcollection is always equal to another
vector in the subcollection.

225
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(iii) Closed under scalar multiplication.

A scalar multiple of a vector in the subcollection is always equal to another
vector in the subcollection.

Discovery 16.2 In each of the following, check each part of the Subspace Test
for subcollection W inside vector space V .

• If you think a part of the Subspace Test is true, justify it without resort-
ing to examples.

• If you think a part of the Subspace Test is false, provide an explicit
example that demonstrates it.

Logic 101. To demonstrate that a general statement is true, we work in the
abstract with arbitrary objects, so that our justification is valid no matter what
objects one considers. But to demonstrate that a general statement is false, all
we have to do is demonstrate a specific counterexample, because one exception
is all that is needed to prove the general rule to be false.

(a) V =R3; W = the xy-plane.

(b) V =R3; W = the plane parallel to the xy-plane at height z = 1.

(c) V = all 10×10 matrices; W = diagonal 10×10 matrices.

(d) V = all 12×12 matrices; W = those 12×12 matrices with a 7 in the (1,1)
entry.

(e) V = all 6×4 matrices; W = those 6×4 matrices with 0 in each of the four
corner entries.

(f) V = all polynomials; W = those polynomials of degree 2 or less.

(g) V = all polynomials; W = those polynomials of degree exactly 2.

(h) V = all polynomials; W = those polynomials with constant term equal to 0.

(i) V =R3; W = all column vectors x that satisfy the matrix equation Ax= 0,
where A is some fixed 2×3 matrix.

Hint. You don’t need to know the entries of the matrix A to carry out
the Subspace Test — use matrix algebra instead to test a sum or scalar
multiple in the equation Ax= 0.

(j) V = R3; W = all possible linear combinations of vectors u = (1,1,1) and
v= (3,2,−1).

As we will see from Proposition 16.5.5 in Subsection 16.5.2, the pattern in
Discovery 16.2.j always works: if V is a vector space and S is a set of vectors in
V , then the subcollection W of all possible linear combinations of vectors from S
is a subspace of V , called the span of S, and we write W =SpanS.

Discovery 16.3 In each of the following, determine if the given vector v is a mem-
ber of SpanS. That is, determine if v can be expressed as a linear combination of
the vectors in S.

Hint. Don’t guess at it, set up equations and solve! The unknowns in your
equations will be the scalars in the linear combination of the S-vectors to try to
make the vector v. Start with a vector equation

v= linear combination of S-vectors with variables as scalars.
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This should somehow lead to a (gasp!) system of linear equations in your un-
known scalars.

(a) V =R3, S = {
(1,0,1), (2,1,−1)

}
, v= (1,−1,4).

(b) V = all 2×3 matrices, S = {[0 1 1
0 0 0

]
,
[0 0 0

1 1 0
]
,
[0 0 0

0 0 1
]}

, v= [0 2 2
3 −3 −3

]
.

(c) V = all polynomials, S = {1,1+ x,1+ x2}, v= 2− x+3x2.

Discovery 16.4 In each of the following, try to convince yourself that V =SpanS.
That is, convince yourself that every vector in V can be expressed as a linear
combination of the vectors in S.

Remember. You can’t rely on specific examples to verify a general statement!

(a) V =R5, S = {e1,e2,e3,e4,e5}.

(b) V = all 2×2 matrices, S = {[1 0
0 0

]
,
[0 1

0 0
]
,
[0 0

1 0
]
,
[0 0

0 1
]}

.

(c) V = all polynomials of degree 3 or less, S = {1, x, x2, x3}.
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16.2 Terminology and notation

subspace a subset of vectors in a vector space that itself is a vector space under
the same addition and scalar multiplication operations as the parent
vector space

trivial subspace
the subspace of a vector space consisting of only the zero vector

linear combination (of a collection of vectors v1,v2, . . . ,vm)
a vector that can be expressed as

k1v1 +k2v2 +·· ·+kmvm

for some collection of scalars k1,k2, . . . ,km

subspace generated by a set of vectors S
the subspace of a vector space consisting of all possible linear com-
binations of vectors in S; also called the span of S, and written
SpanS

spanning set (for a vector space)
a set of vectors in a vector space (or subspace of a vector space) where
the subspace generated by the set is in fact the whole space; could
also be called a generating set of vectors for the space

solution space of homogeneous system Ax= 0
the subspace of Rn (where n is the number of columns of A) consisting
of all solutions to the system

16.3 Concepts

In this section.

• Subsection 16.3.1 Recognizing subspaces

• Subsection 16.3.2 Building subspaces

• Subsection 16.3.3 The subspaces of Rn

• Subsection 16.3.4 Recognizing when two subspaces are the same

When faced with any big problem, mathematical or otherwise, it is often
a good idea to break the big problem up into smaller parts. In a vector space,
the “smaller parts” are smaller vector spaces inside the larger space, called
subspaces.

16.3.1 Recognizing subspaces

How can we recognize subspaces? To be a subspace, a subcollection of vectors
must satisfy all ten vector space axioms on its own. But Axiom A 2, Axiom A 3,
and Axioms S 2–5 all concern the algebra of vectors, and don’t really take into
account where the vectors are considered to “live”. Since these algebra axioms
are true about all vectors in the larger space, they are automatically true about
the vectors in the subcollection. So that leaves Axiom A 1, Axiom A 4, Axiom A 5,
and Axiom S 1.
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For axioms Axiom A 1 and Axiom S 1, we already have addition and scalar
multiplication of vectors defined as in the large space. But when we are consider-
ing whether the smaller collection is a vector space all on its own, the vectors not
in this collection are no longer relevant. So the parts of these axioms that say
“the result is always equal to another in the collection of objects” now refer to the
subcollection of vectors under consideration. That is, we need to make sure that
when vectors in the subcollection are added or scalar multiplied, then the result
is again in the subcollection, not somewhere else in the vector space at large. We
call this property being closed under the vector operations.

Similarly, for Axiom A 5, we already know that every vector in the large space
has a negative, hence so does every vector in the subcollection. But we need to
check that the subcollection is closed under taking negatives — that the negative
of a vector in the subcollection is again in the subcollection. And we know that
there is a zero vector in the large space, but the subcollection needs a zero vector
too, to satisfy Axiom A 4. The zero vector from the larger space already satisfies
the property that v+0= v for all vectors, but again we need the zero vector to be
in the subcollection.

As we will prove in Proposition 16.5.1, we really only need to check a sub-
collection for closure under addition and scalar multiplication in order to verify
that it is also a vector space.

Procedure 16.3.1 Subspace Test. To test whether a subcollection of vectors in
a vector space is a subspace (that is, a vector space on its own), check whether all
three of the following conditions are met.

(i) Nonempty.

The subcollection contains at least one vector.

(ii) Closed under vector addition.

Given vectors w1 and w2 in the subcollection, the sum w1 +w2 is also in
the subcollection.

(iii) Closed under scalar multiplication.

Given vector w in the subcollection and scalar k, the scaled vector kw is
also in the subcollection.

Remark 16.3.2

• The first condition might seem unnecessary. But in math it is possible
to accidentally be considering some collection of objects that in reality
contains no objects. For example, consider M1(R), the vector space of all
1×1 matrices. We could try to determine whether the subcollection of all
1×1 matrices whose square is equal to

[−1
]

is a subspace of of M1(R), but
we’d be wasting our time because there are no such matrices.

• The logic of the test works in reverse as well: every subspace satisfies the
three statements of the test because it is a vector space all on its own and
thus satisfies the ten vector space axioms. (This is the “and only if” part
of Proposition 16.5.1.) So a subspace is always nonempty because it must
contain a zero vector (Axiom A 4), and it is always closed under the vector
operations (Axiom A 1 and Axiom S 1).

See Section 16.4 for examples of applying the Subspace Test to verify that
certain subcollections of vectors in vector spaces form subspaces.



230 CHAPTER 16. SUBSPACES

16.3.2 Building subspaces
Suppose we are studying a problem for which certain vectors in a certain vector
space are important. We would like to do linear algebra with these certain special
vectors, so the fact that they are part of a vector space is essential, but perhaps
not all of the vector space in which they live is relevant to the problem. Can we
form a smaller subspace which contains these important vectors? Even better,
can we determine the smallest subspace which contains these important vectors?

As stated above, every subspace must satisfy the three parts of the Subspace
Test. So if a subspace contains our special vectors, then it must also contain
all scalar multiples of those vectors. And it must also be closed under vector
addition, so it must also contain all sums of scalar multiples of the special vectors.
Therefore, it must contain every linear combination of the special vectors. (In
other words, subspaces are also closed under taking linear combinations.)

As we noted in Discovery guide 16.1, and will verify in Subsection 16.5.2
(Proposition 16.5.5), the subcollection of a vector space consisting of all linear
combinations of a set of vectors S is always a subspace, called the span of S and
written SpanS. So the process of taking all possible linear combinations of a set
of vectors can be used to build subspaces. And sometimes, as in Discovery 16.4,
the space that span builds ends up being the whole larger space.

A look ahead. In Subsection 16.5.2, we will see that every vector space (whether
a subspace of a larger space or not) can be described as the span of some set of
vectors (Statement 3 of Proposition 16.5.5). And in Chapters 17–19 we will study
optimal ways for doing so.

16.3.3 The subspaces of Rn

We saw in Subsection 14.3.2 that a line through the origin in Rn can be described
in vector form as x= tp for some vector p that is parallel to the line (and taking
“initial” point x0 = 0, since the line passes through the origin). Similarly, we
saw that a plane through the origin in R3 can be described in vector form as
x = sp1 + tp2 for some vectors p1 and p2 that are parallel to the plane but not
parallel to each other. With our new, more sophisticated view of vector spaces
and subspaces, we can now recognize a line x= tp as the subspace Span{p}, and
a plane x= sp1 + tp2 as the subspace Span{p1,p2}.

In fact, every (nontrivial) subspace of Rn has a geometric interpretation as a
line or a plane or some sort of higher-dimensional hyperplane. In particular,

• the subspaces of R2 are precisely

◦ the zero space {0},

◦ Span{p} for a nonzero vector p, which builds a line through the origin,
and

◦ Span{p1,p2} for two nonzero, nonparallel vectors p1 and p2, which
builds the whole plane R2;

• the subspaces of R3 are precisely

◦ the zero space {0},

◦ Span{p} for a nonzero vector p, which builds a line through the origin,

◦ Span{p1,p2} for two nonzero, nonparallel vectors p1 and p2, which
builds a plane through the origin, and

◦ Span{p1,p2,p3} for three nonzero, non-coplanar vectors p1, p2, and
p3, which builds all of space R3;
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• the subspaces of R4 are precisely

◦ the zero space {0},

◦ Span{p} for a nonzero vector p, which builds a line through the origin,

◦ Span{p1,p2} for two nonzero, nonparallel vectors p1 and p2, which
builds a plane through the origin,

◦ Span{p1,p2,p3} for three nonzero, non-coplanar vectors p1, p2, and
p3, which builds a hyperplane through the origin, and

◦ Span{p1,p2,p3,p4} for four nonzero, non-cohyperplanar vectors p1,
p2, p3, and p4, which builds all of four-dimensional space R4;

• etc.

16.3.4 Recognizing when two subspaces are the same
One of the goals of the next few chapters is to determine how to describe vector
spaces using spanning sets in an optimal fashion. In this endeavour, we will
want to know when a refinement of a spanning set still spans the space we are
trying to describe. So, in particular, we will need to know when two spanning
sets generate the same subspace. Since spans are defined by linear combinations,
and subspaces are closed under linear combinations, this will not be as difficult
as it sounds, and we provide a test for this situation as Proposition 16.5.6 in
Subsection 16.5.3.

16.4 Examples

In this section.

• Subsection 16.4.1 The Subspace Test

• Subsection 16.4.2 Important subspace examples

• Subsection 16.4.3 Determining if a vector is in a span

• Subsection 16.4.4 Determining if a spanning set generates the
whole vector space

16.4.1 The Subspace Test
First, let’s practise applying the Subspace Test.

Remark 16.4.1 Since every vector space must have a zero vector (Axiom A 4),
so too must a subspace. But since the vector operations of a subspace are the
same as the operations of the larger space, it will turn out that the zero vector in
a subspace must always be the same as the zero vector in the larger space (see
Proposition 16.5.2). So often the best way to check the Nonempty clause of the
Subspace Test is to verify that it contains the zero vector.

Here are some examples from Discovery guide 16.1.

Example 16.4.2 A plane through the origin in R3. In Discovery 16.2.a, we
considered the subcollection of vectors in R3 consisting of all vectors from the
origin with terminal point in the xy-plane. Note that any such vector must have
a 0 as its z-component.

Let’s apply the Subspace Test.

Nonempty. We know that the xy-plane is nonempty; in particular, it contains
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the zero vector since it contains the origin.

Closed under vector addition. If vectors u1 and u2 are both in the xy-plane, then
their z-components are both zero. So we can write these vectors as

u1 = (x1, y1,0), u2 = (x2, y2,0).

Then,
u1 +u2 = (x1 + x2, y1 + y2,0).

Since this sum vector also has zero z-component, it is again in the xy-plane, as
required.

Closed under scalar multiplication. If vector u is in the xy-plane, then its
z-component is zero, so we can write it as

u= (x, y,0).

Then for every scalar k, we have

ku= (kx,ky,0).

Since this scaled vector also has zero z-component, it is again in the xy-plane, as
required.

Conclusion. Since all parts of the Subspace Test pass, the xy-plane is a subspace
of R3. □

Example 16.4.3 A subspace of matrices. In Discovery 16.2.d, we considered
the subcollection of M12(R) consisting of all those 12×12 matrices that have a 7
in the (1,1) entry.

Let’s apply the Subspace Test.

Nonempty. This collection is clearly not empty, since the 12×12 matrix with 7
in every entry is in the collection.

Note. The zero matrix is clearly not in the collection, so we could conclude right
now that this subcollection is not a subspace. But since the Subspace Test itself
has not yet failed, we will continue.

Closed under vector addition. If matrices A1 and A2 are both in the subcollection,
then they each have a 7 in the (1,1) entry. But then A1 + A2 has 14 in the (1,1)
entry, not 7. So the sum vector is not in the subcollection.

Conclusion. There is no need to check the third clause of the Subspace Test,
since the second has already failed to pass. But it shouldn’t be too difficult to see
that scalar multiples of such a matrix will also fail to remain in the subcollection
(except when the scalar is 1). □

Example 16.4.4 Restricting degree creates a subspace of polynomials.
In Discovery 16.2.f, we considered the subcollection of P(R) consisting of those
polynomials that have degree 2 or less.

Let’s apply the Subspace Test.

Nonempty. Clearly this subcollection is nonempty, as any constant polynomial
has degree 0, which is less than 2. In particular, the zero polynomial 0(x) = 0
(which is the zero vector in this space) also has degree less than 2.

Closed under vector addition. Suppose p1 and p2 are two polynomials in this
subcollection. Then the degree of each of these polynomials is 2 or less, so we can
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write

p1(x)= a1x2 +b1x+ c1, p2(x)= a2x2 +b2x+ c2.

Note. Even though each expression has an x2 term, the degree could still be less
than 2 because the leading coefficient ai could be zero.

Then,

p1(x)+ p2(x)= (a1x2 +b1x+ c1)+ (a2x2 +b2x+ c2)

= (a1 +a2)x2 + (b1 +b2)x+ (c1 + c2).

Since this sum polynomial also has degree 2 (or less, since a1 and a2 could cancel
or could both be zero), it is again in the subcollection, as required.

Closed under scalar multiplication. Suppose p is a polynomial in this subcollec-
tion. Then the degree of this polynomial is 2 or less, so we can write

p(x)= ax2 +bx+ c.

Then for every scalar k, we have

kp(x)= kax2 +kbx+kc.

Since this scaled polynomial also has degree 2 (or less, since either k or a could
be zero), it is again in the subcollection, as required.

Conclusion. Since all parts of the Subspace Test pass, the collection of all
polynomials of degree 2 or less is a subspace of P(R). □

Remark 16.4.5 Similar to this last example, the Subspace Test can be used
to verify that Pn(R), the subcollection of P(R) consisting of all polynomials with
degree n or less, is a subspace for every fixed value of positive integer n.

16.4.2 Important subspace examples

Here are a few more important examples of subspaces.

Example 16.4.6 The trivial subspace. Consider the subcollection in a vector
space consisting of just the zero vector. Since we already know that the zero
vector space is, indeed, a vector space, there is no need for the Subspace Test. In
every vector space, the zero space {0} is always a subspace. □

Example 16.4.7 The full subspace. Consider the subcollection in a vector
space consisting of every vector. (This may not seem like a subcollection, but every
vector in this subcollection is in the original vector space.) Since it is obviously
true that the collection of all vectors in a vector space forms a vector space, we
have that every vector space is a subspace of itself . □

Example 16.4.8 The solution space of a homogeneous system. Suppose
A is a fixed m× n matrix. Solutions to the homogeneous system Ax = 0 can
be considered as (column) vectors in Rn, so the solution set to this system is a
subcollection of a vector space. Is it a subspace? Let’s apply the Subspace Test,
similarly to Discovery 16.2.i.

Nonempty. Since a homogeneous system is always consistent, the solution set is
nonempty. In particular, the solution set contains the zero vector, since this is
the vector corresponding to the trivial solution.
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Closed under vector addition. Suppose x1 and x2 are two solutions to this system.
Then both

Ax1 = 0 and Ax2 = 0.

To check if the sum vector is also in the solution set, we need to check whether
x= x1 +x2 satisfies the matrix equation Ax= 0:

A(x1 +x2)= Ax1 + Ax2 = 0+0= 0.

So the sum vector is indeed in the solution set.

Closed under scalar multiplication. Suppose x0 is a solution to this system.
Then Ax0 = 0. For a scalar k, to check whether the scaled vector kx0 is also in
the solution set, we need to check whether x= kx0 satisfies the matrix equation
Ax= 0:

A(kx0)= kAx0 = k0= 0.

So the scaled vector is indeed in the solution set.

Conclusion. Since all parts of the Subspace Test pass, the solution set of the
homogeneous system Ax= 0 is a subspace of Rn. □

Remark 16.4.9 Every subspace is somehow defined by a homogeneous condition
or a set of homogeneous conditions. In the solution space example above, this
was explicit — the subcollection was directly defined as the solution set of a
homogeneous matrix equation Ax= 0. On the other hand, it’s easy to see that
the solution set of a nonhomogeneous system Ax=b would not be a subspace of
Rn, since it would not contain the zero vector.

Let’s reconsider some of the examples of Discovery 16.2 from this perspective.

• In Discovery 16.2.a, the xy-plane is a subspace of R3, and it corresponds to
the homogeneous condition z = 0. However, in Discovery 16.2.b, the plane
parallel to the xy-plane in R3 but shifted one unit upward is not a subspace,
and it corresponds to the nonhomogeneous condition z = 1.

• In Discovery 16.2.c, the collection of 10×10 diagonal matrices is a subspace
of M10(R), and it corresponds to the homogeneous conditions that the off-
diagonal entries be zero. However, in Discovery 16.2.d, the collection of
those 12×12 matrices with a 7 in the (1,1) entry is not a subspace of
M12(R), and this collection corresponds to the nonhomogeneous condition
of requiring the top-left entry be 7.

• In Discovery 16.2.f, the collection P2(R) of polynomials of degree 2 or less
is a subspace of P(R), and it corresponds to the homogeneous conditions
of requiring the coefficient on every power xn, n ≥ 3, be zero. However, in
Discovery 16.2.g, the collection of polynomials of degree exactly 2 is not a
subspace. While this subcollection requires the same homogeneous condi-
tions as those defining P2, it also requires the nonhomogeneous condition
that the coefficient on x2 be nonzero.

16.4.3 Determining if a vector is in a span

In Discovery 16.3, we explored the question of determining whether a given
vector was in the subspace generated by a specified spanning set. For this to be
true, that vector must be a linear combination of vectors in the spanning set.
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Example 16.4.10 A span of R3-vectors. This example corresponds to Dis-
covery 16.3.a. Working in R3, we would like to determine if v = (1,−1,4) is in
SpanS for S = {

(1,0,1), (2,1,−1)
}
. Let’s try to express v as a linear combination

of vectors in the spanning set, and see if it works out. Set

(1,−1,4)= s(1,0,1)+ t(2,1,−1),

for unknown scalars s, t. Combining the linear combination on the right into a
single vector and comparing components on each side, we get (surprise!) a linear
system of equations: 

1 = s + 2t,
−1 = t,

4 = s − t.

Now, we don’t actually care about the solution to this system — we only care if
the system is consistent or not, because if it’s consistent then there is a way to
express v as a linear combination of the spanning vectors, so that v is in SpanS.
And, as you can check for yourself, this system is consistent.

There is an interesting pattern to note if we actually convert the system above
into an augmented matrix:  1 2 1

0 1 −1
1 −1 4

 .

Notice that the columns in the coefficient matrix are precisely the vectors
in the spanning set, and the column of constants is precisely the vector
that we are testing as being in SpanS or not. □

Example 16.4.11 A span of matrices. This example corresponds to Discov-
ery 16.3.b. Working in M2×3(R), we would like to determine if v= [0 2 2

3 −3 −3
]

is in
SpanS, for

S =
{[

0 1 1
0 0 0

]
,
[
0 0 0
1 1 0

]
,
[
0 0 0
0 0 1

]}
.

Here, we can see more directly that v is not in SpanS. Notice that the nonzero
entries of the matrices in S do not overlap. From this, we can see that every
linear combination of these spanning matrices will have the first two entries in
the second row equal to each other. But the entries of v do not have this property.

If we didn’t notice this, we could carry out a similar procedure as in the
previous example, beginning with the vector equation[

0 2 2
3 −3 −3

]
= r

[
0 1 1
0 0 0

]
+ s

[
0 0 0
1 1 0

]
+ t

[
0 0 0
0 0 1

]
in the unknown scalars r, s, t. Combining the linear combination on the right
into one matrix, and then comparing entries on each side, we get a linear system
with augmented matrix 

0 0 0 0
1 0 0 2
1 0 0 2
0 1 0 3
0 1 0 −3
0 0 1 −3


.

Notice. The pattern in the columns versus the vectors in our problem again!

In this matrix, the inconsistency is obvious in the fourth and fifth rows. □
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Example 16.4.12 A span of polynomials. This example corresponds to
Discovery 16.3.c. Working in P(R), we would like to determine if the vector
v = 2− x+3x2 is in SpanS for S = {1,1+ x,1+ x2}. Again, we set up a vector
equation expressing v as a linear combination in the vectors of S with unknown
scalars:

2− x+3x2 = r ·1+ s(1+ x)+ t(1+ x2).

Two polynomials are only equal if they have the same degree and all the same
coefficients. From this, we get the following linear system:

constant term: 2 = r + s + t,
x term: −1 = s,

x2 term: 3 = t,

which can be converted into augmented matrix 1 1 1 2
0 1 0 −1
0 0 1 3

 .

Notice. the pattern in the columns versus the vectors in our problem again!

This system is consistent, so v is indeed in SpanS. □

16.4.4 Determining if a spanning set generates the whole
vector space

In Discovery 16.4, we attempted to determine whether a given spanning set
generated the entire vector space. In other words, we attempted to answer: is
every vector in the vector space somehow a linear combination of spanning set
vectors? In the three examples of that discovery activity, the answer was very
clearly yes.

Example 16.4.13 A spanning set for R5. In Discovery 16.4.a, clearly every
vector in R5 can be decomposed as a linear combination of the standard basis
vectors:

(a,b, c,d, e)= ae1 +be2 + ce3 +de4 + ee5.

□

Example 16.4.14 A spanning set for M2(R). In Discovery 16.4.b, every vector
in M2(R) can be decomposed as a linear combination of the provided spanning
set vectors: [

a b
c d

]
= a

[
1 0
0 0

]
+b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+d

[
0 0
0 1

]
.

□

Example 16.4.15 A spanning set for P3(R). In Discovery 16.4.c, every vector
a+bx+ cx2+dx3 in P3(R) is naturally expressed as a linear combination of 1 and
the powers of x up to x3, where the scalars in the linear combination are just the
coefficients of the polynomial. □

Remark 16.4.16 In each of the spaces in the examples above, there are analogues
for other “dimensions” of vectors.

1. In Rn, the standard basis vectors e1,e2, . . . ,en always form a spanning set
for the entire vector space.
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2. In Mm×n(R), the set of “standard basis vectors,” consisting of those matrices
that have all zero entries except for a single 1 in one specific entry, is always
a spanning set for the entire vector space.

3. When we write a polynomial, we naturally write it as a linear combination
of the constant polynomial 1 and powers of x. So in Pn(R), the “standard
basis vectors” 1, x, x2, . . . , xn form a spanning set for the entire vector space.

In more complicated examples, the question “Is SpanS equal to the whole
space?” may be more difficult to answer with the concepts we have accumulated
so far. We will make this question more manageable through a deeper study of the
relationships of vectors to one another with respect to linear combinations, and
by attaching a notion of “size” to subspaces. In the meantime, see Example 16.6.2
in Section 16.6 for a preliminary method of answering this question.

16.5 Theory

In this section.

• Subsection 16.5.1 The Subspace Test

• Subsection 16.5.2 Universal examples of subspaces

• Subsection 16.5.3 Equality of subspaces created via spanning sets

16.5.1 The Subspace Test
First we formally state the Subspace Test, and provide a proof.

Proposition 16.5.1 Subspace Test. A subcollection of vectors in a vector space
is a subspace if and only if all three of the following conditions are met.

(i) The subcollection is nonempty. That is, it contains at least one vector.

(ii) The subcollection is closed under vector addition. That is, given vectors
w1 and w2 in the subcollection, the sum w1+w2 is also in the subcollection.

(iii) The subcollection is closed under scalar multiplication. That is, given
vector w in the subcollection and scalar k, the scaled vector kw is also in
the subcollection.

Proof. Suppose we have a subcollection of vectors in a vector space that satisfies
the three conditions of the Subspace Test. We would like to verify that this
subcollection is a vector space all on its own, using the same vector addition
and scalar multiplication operations as the larger space. But as explored in
Discovery 16.1 and discussed in Subsection 16.3.1, we don’t need to verify all
ten vector space axioms — we get the six algebra axioms for free from knowing
that is how vector algebra works in the larger space. The remaining four axioms
are Axiom A 1, Axiom A 4, Axiom A 5, and Axiom S 1, so we really only need
to verify that the subcollection contains the zero vector, and is closed under
vector addition, scalar multiplication, and taking negatives. Furthermore, from
Condition ii and Condition iii of the test, we already know that the subcollection
is closed under addition and scalar multiplication. So we are down to checking
the zero vector and negatives.

To show that the subcollection must contain the zero vector, consider that
Condition i of the test guarantees that the subcollection contains some vector v.
But then Condition iii of the test tells us that the subcollection must also contain
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every scalar multiple of v. In particular, by applying Rule 1.b of Proposition 15.6.2
we may say that the subcollection must contain 0v= 0, as desired.

To show that the subcollection must be closed under taking negatives, consider
a vector w in the subcollection. Again, Condition i of the test says that the
subcollection must also contain every scalar multiple of w. In particular, by
applying Rule 2.e of Proposition 15.6.2 we may say that the subcollection must
contain (−1)w=−w, as desired.

Finally, we will consider the “only if” part of the statement. Suppose we have
a subcollection of vectors in a vector space that we already know is a subspace. A
subspace is itself a vector space, so it must be nonempty (since it at least contains
some zero vector by Axiom A 4), it must be closed under vector addition (Axiom
A 1), and it must be closed under scalar multiplication (Axiom S 1). In other
words, it must pass the Subspace Test. ■

As per the proposition above, every subspace satisfies the conditions of the
Subspace Test. But we can go a little further.

Proposition 16.5.2 Properties of subspaces. Every subspace of a vector space
contains the zero vector of that space, and is closed under vector addition, scalar
multiplication, taking negatives, and taking linear combinations.

Proof. We have already established that a subspace is closed under the vector
operations. Verifying that it also contains the zero vector and is closed under
taking negatives is exactly as in the proof of Proposition 16.5.1 above, since we
know that a subspace always passes the Subspace Test.

It remains to show that a subspace is closed under linear combinations. So
suppose that v1,v2, . . . ,vℓ are vectors in the subspace. Since the subspace is
closed under scalar multiplication, the vectors k1v1,k2v2, . . . ,kℓvℓ are all also
in the subspace. And then, since the subspace is also closed under addition, the
linear combination k1v1 +k2v2 +·· ·+kℓvℓ is also in the subspace. ■

From the first property of subspaces listed above, we can deduce our observa-
tion about the best way to verify Condition i of the Subspace Test.

Corollary 16.5.3 Subspaces must contain the zero vector. If a subcollection
of a vector space does not contain the zero vector of the larger space, then it cannot
be a subspace.

16.5.2 Universal examples of subspaces

Here we recognize examples of subspaces that occur in every vector space.

Proposition 16.5.4 The trivial and full subspaces. In every vector space,
both the zero space {0} and the whole space are subspaces.

Proof. We verified these examples of subspaces in Example 16.4.6 and Exam-
ple 16.4.7 of Subsection 16.4.2. ■

Proposition 16.5.5 Creating subspaces via spanning sets.

1. If S is a nonempty collection of vectors in a vector space, then SpanS is a
subspace of that vector space, and it contains every vector in S.

2. The subspace SpanS is the smallest subspace that contains every vector in
S in the following sense: every other subspace that contains the vectors of S
must also contain SpanS as a subspace.

3. Every vector space (and hence, every subspace of a vector space) has a
spanning set.
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Proof of Statement 1. Recall that SpanS is the collection of all possible linear
combinations of vectors in S. First we verify that SpanS contains every vector in
S. Indeed, if v is a vector in S, then it is trivially a linear combination of vectors
in S by v= 1v.

Let V represent the vector space from which the collection of vectors S is
taken. First, we know that every vector in SpanS is a vector in V , because the
vectors in SpanS are linear combinations of the vectors in S, and V is closed
under taking linear combinations (Proposition 16.5.2, where V is considered as a
subspace of itself using Proposition 16.5.4). So SpanS is a subcollection of V .

Now let’s apply the Subspace Test to SpanS.

Nonempty. We know SpanS is nonempty because it contains each of the vectors
of S.

Closed under vector addition. Suppose u and v are vectors in SpanS. Then each
is a linear combination of vectors in S, say

u= k1u1 +k2u2 +·· ·+ksus,

v= m1v1 +m2v2 +·· ·+mtvt,

where each of u1,u2, . . . ,us and v1,v2, . . . ,vt are vectors in S. Then,

u+v= k1u1 +k2u2 +·· ·+ksus

+m1v1 +m2v2 +·· ·+mtvt,

which is again a linear combination of vectors in S, so u+v is also in SpanS.
This shows that SpanS is closed under vector addition.

Closed under scalar multiplication. Suppose v is a vector in SpanS. Then it is a
linear combination of vectors in S, say

v= m1v1 +m2v2 +·· ·+mℓvℓ,

where each of v1,v2, . . . ,vℓ are vectors in S. Then for every scalar k,

kv= k(m1v1 +m2v2 +·· ·+mtvℓ)

= km1v1 +km2v2 +·· ·+kmℓvℓ,

which is again a linear combination of vectors in S, so kv is always also in SpanS.
This shows that SpanS is closed under scalar multiplication.

Conclusion. Since SpanS passes the Subspace Test, it is a subspace of V . ■

Proof of Statement 2. We wish to show that every other subspace that contains
the vectors of S must also contain SpanS as a subspace. So suppose we have
another subspace that contains the vectors of S. Then it must contain every
linear combination of the vectors in S, since subspaces are closed under taking
linear combinations (Proposition 16.5.2). That is, if a subspace contains all of the
vectors in S, then it must also contain all of the vectors in SpanS.

Note. There is no need to use the Subspace Test to prove that SpanS is a
subspace of this other subspace — we already know from Statement 1 that
SpanS is a subspace of V , the vector space from which the vectors S are taken.
So SpanS is a vector space all on its own, hence will be a subspace of any space
that contains all of its vectors. (See the definition of subspace in Section 16.2.)

■
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Proof of Statement 3. A vector space V always has an obvious spanning set —
itself! That is, we claim that V =SpanV is always true. To verify this, we must
demonstrate that each vector in the collection V is also in the collection SpanV ,
and vice versa, so that they are exactly the same collection of vectors. However,
by applying Statement 1 we can immediately say that SpanV is a subspace of
V (implying every vector in SpanV is in V ) that contains every vector of the
spanning set V (i.e. every vector in V is in SpanV ). ■

16.5.3 Equality of subspaces created via spanning sets
Finally, we provide a way to determine when two spanning sets generate the
same subspace.

Proposition 16.5.6 Comparing spanned spaces. Suppose S and S′ are two
sets of vectors in a vector space.

1. If each vector in S can be expressed as a linear combination of the vectors in
S′, then SpanS is a subspace of SpanS′.

2. If each vector in S can be expressed as a linear combination of the vectors
in S′, and each vector in S′ can be expressed as a linear combination of the
vectors in S, then SpanS and SpanS′ are the same space.

Proof of Statement 1. Recall that SpanS′ is the collection of all possible linear
combinations of the vectors in S′. So assuming that each vector in S can be
expressed as a linear combination of the vectors in S′ is the same as assuming
that each vector in S is in SpanS′. But Statement 2 of Proposition 16.5.5 tells us
that SpanS is the smallest subspace that contains all the vectors in S, and that
SpanS must therefore be a subspace of SpanS′. ■

Proof of Statement 2. Now we assume both that each vector in S can be expressed
as a linear combination of the vectors in S′ and that each vector in S′ can
be expressed as a linear combination of the vectors in S. Then we can apply
Statement 1 of this proposition twice, first to conclude that SpanS is a subspace
of SpanS′, and second to conclude that SpanS′ is a subspace of SpanS. But then
SpanS is a subcollection of the vectors in SpanS′, and also vice versa. This can
only happen if they are in fact the same collection of vectors. ■

16.6 More examples

Before concluding this chapter, we’ll illustrate the uses of Proposition 16.5.6 with
two examples.

Example 16.6.1 Recognizing when two subspaces are the same. Consider
the sets of vectors S = {(1,0,0), (0,1,0)} and S′ = {(1,1,0), (1,0,0), (1,−1,0)} in R3.
It should be clear that SpanS is the xy-plane in R3. Does SpanS′ generate the
same subspace?

To answer this question, we use Statement 2 of Proposition 16.5.6, which
gives us two new questions to answer.

• Can each vector in S be expressed as a linear combination of the vectors in
S′? Yes, because 1

0
0

= 0

1
1
0

+1

1
0
0

+0

 1
−1

0

 ,
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0
1
0

= 1
2

1
1
0

+0

1
0
0

+
(
−1

2

) 1
−1

0

 .

• Can each vector in S′ be expressed as a linear combination of the vectors
in S? Yes, because 1

1
0

= 1

1
0
0

+1

0
1
0

 ,

1
0
0

= 1

1
0
0

+0

0
1
0

 ,

 1
−1

0

= 1

1
0
0

+ (−1)

0
1
0

 .

Since both questions have been answered in the affirmative, Statement 2 of
Proposition 16.5.6, tells us that SpanS and SpanS′ are the same space. □

Example 16.6.2 Determining if a spanning set generates the whole vector
space. Consider the set of vectors S = {A1, A2, A3, A4} in M2(R), where

A1 =
[

0 −1
2 1

]
, A3 =

[
0 1

−2 0

]
,

A2 =
[

1 2
4 −1

]
, A4 =

[
0 0
1 −2

]
.

Is this set a spanning set for all of M2(R)? That is, is M2(R) = SpanS? We
already know a spanning set for M2(R) — the set of standard basis vectors
B= {E11,E12,E21,E22}, where

E11 =
[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
,

E21 =
[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
.

That is, we already know that M2(R)=SpanB. So we can turn our question into:
is SpanS =SpanB? With this new version of our problem, we can use the same
method as in the previous example. However, we don’t need to explicitly verify
that each vector in S can be expressed as a linear combination of the vectors
in B. Besides being obvious, this fact is already implied by our assertion that
M2(R) = SpanB, since clearly each vector in S is a vector in M2(R). So it just
remains to verify that each vector in B can be expressed as a linear combination
of the vectors in S. Let’s begin with vector E11. We use the same strategy as in
the examples in Subsection 16.4.3: express E11 as a linear combination of the
vectors in S with unknown scalar coefficients, set up equations in those unknown
scalars, and determine whether the resulting linear system is consistent.[

1 0
0 0

]
= k1

[
0 −1
2 1

]
+k2

[
1 2
4 −1

]
+k3

[
0 1

−2 0

]
+k4

[
0 0
1 −2

]
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=
[

k2 −k1 +2k2 +k3

2k1 +4k2 −2k3 +k4 k1 −k2 −2k4

]
Comparing entries on left and right sides leads to the system of equations

k2 = 1,
−k1 + 2k2 + k3 = 0,
2k1 + 4k2 − 2k3 + k4 = 0,

k1 − k2 − 2k4 = 0,

which can be put in an augmented matrix and reduced.
0 1 0 0 1

−1 2 1 0 0
2 4 −2 1 0
1 −1 0 −2 0

 row−−−−→
reduce


1 0 0 0 −15
0 1 0 0 1
0 0 1 0 −17
0 0 0 1 −8


Notice. Once again, we have a pattern in the columns of the initial augmented
matrix versus the vectors involved.

The reduced augmented matrix above tells us that

k1 =−15, k2 = 1, k3 =−17, k4 =−8,

and so[
1 0
0 0

]
=−15

[
0 −1
2 1

]
+

[
1 2
4 −1

]
−17

[
0 1

−2 0

]
−8

[
0 0
1 −2

]
,

though we only cared about the existence of a solution, not the actual solution
itself.

In a similar manner, one can calculate that[
0 1
0 0

]
= 4

[
0 −1
2 1

]
+5

[
0 1

−2 0

]
+2

[
0 0
1 −2

]
,

[
0 0
1 0

]
= 2

[
0 −1
2 1

]
+2

[
0 1

−2 0

]
+

[
0 0
1 −2

]
,

[
0 0
0 1

]
=

[
0 −1
2 1

]
+

[
0 1

−2 0

]
.

We have now verified that each vector in B can be expressed as a linear combina-
tion of the vectors in S. As discussed above, we already knew that each vector
in S can be expressed as a linear combination of the vectors in B. Therefore,
Statement 2 of Proposition 16.5.6 tells us that SpanS =SpanB. Since we already
knew that SpanB is equal to the entire space M2(R), we must also have SpanS
equal to this entire space. □
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Linear independence

17.1 Discovery guide

Discovery 17.1 Consider the vectors v1 = (1,0,1), v2 = (1,1,2), and v3 = (1,−1,0).
(a) Do you remember what Span means? Explain why the vector

x= 3v1 +2v2 −v3

is in Span{v1,v2,v3}.

Note. You can compute x if you like, but it is not necessary.

(b) Actually, v2 can be expressed as a linear combination of v1 and v3 — do
you see how?

Use this and the expression for x in Task a to express x as a linear combi-
nation of just v1 and v3.

(c) Task b shows that x is in Span{v1,v3}. Do you think that similar cal-
culations and the same reasoning can be carried out for every vector in
Span{v1,v2,v3}?

What does this say about Span{v1,v2,v3} versus Span{v1,v3}?
Discovery 17.1 demonstrates a common pattern: when one of the vectors

in a spanning set can be expressed as a linear combination of the others, that
vector becomes redundant, and a smaller spanning set can be used in place of the
original one. We’ll give this situation a name: a set of vectors is called linearly
dependent if (at least) one of the vectors in the set can be written as a linear
combination of other vectors in the set; otherwise the set of vectors is called
linearly independent. However, it can be tedious to check each vector in a set
one-by-one to see if it is a linear combination of others. Luckily, for a finite set of
vectors, there is a way to check all of them all at once.

Test for Linear Dependence/Independence. To test whether vectors

v1,v2, . . . ,vm

are linearly dependent or independent, set up the vector equation

k1v1 +k2v2 +·· ·+kmvm = 0, (*)

where the coefficients k1,k2, . . . ,km are (scalar) variables.

• If vector equation (*) has a nontrivial solution in the variables k1,k2, . . . ,km,
then the vectors v1,v2, . . . ,vm are linearly dependent.

243
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• Otherwise, if vector equation (*) has only the trivial solution k1 = 0,k2 =
0, . . . ,km = 0, then the vectors v1,v2, . . . ,vm are linearly independent.

Check your understanding. Do you see why equation (*) always has at least
the trivial solution?

Discovery 17.2

(a) Use the test to verify that v1,v2,v3 from Discovery 17.1 are linearly depen-
dent.

Note. Forming vector equation (*) using the three vectors of Discov-
ery 17.2.a should lead to a homogeneous linear system in variables k1,k2,k3.
Look at the columns in your matrix for this homogeneous ystem — what
pattern do you notice?

(b) Use the test to verify that v1,v3 from Discovery 17.1 are linearly indepen-
dent.

The next discovery activity will help you understand the Test for Linear
Independence/Dependence. To keep it simple, we’ll consider just three vectors at
a time.

Discovery 17.3

(a) Consider abstract vectors u1,u2,u3, and suppose the vector equation

k1u1 +k2u2 +k3u3 = 0 (**)

has a nontrivial solution. This means that there are values for the scalars
k1,k2,k3, at least one of which is not zero, so that equation (**) is true.

Use some algebra to manipulate equation (**) to demonstrate that one of
the vectors can be expressed as a linear combination of the others (and
hence, by definition, the vectors u1,u2,u3 are linearly dependent).

Careful. Make sure you don’t accidentally divide by zero!

(b) Consider abstract vectors w1,w2,w3, and suppose the vector equation

k1w1 +k2w2 +k3w3 = 0 (***)

has only the trivial solution. We would like to see why this means that
w1,w2,w3 are linearly independent.

Suppose they weren’t: for example, suppose w3 = c1w1 + c2w2 were true
for some scalars c1, c2. Manipulate this expression for w3 until is says
something about equation (***). Do you see now why w1,w2,w3 cannot
satisfy the definition of linearly dependence, and hence must be linearly
independent?

Discovery 17.4 In each of the following vector spaces, practise using the Test
for Linear Dependence/Independence of the given set of vectors.

(a) V =M2(R), S =
{ [

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
0 1

] }
.

(b) V =M2(R), S =
{ [

1 0
0 1

]
,

[
1 0
0 −1

]
,

[
3 0
0 −2

] }
.

(c) V =P(R), S = {1+ x,1+ x2,2− x+3x2}.

Hint. After setting up the vector equation from the test for linear de-
pendence/independence, you are solving for the scalars k1,k2,k3, not for x.
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On the right-hand side, the zero represents the zero vector, which in this
space is the zero polynomial. What are the coefficients on powers of x in
the zero polynomial? The left-hand side, being equal, must have the same
coefficients.

(d) V =P(R)S = {1, x, x2, x3}

Discovery 17.5

(a) Do you think it’s possible to have a set of three linearly independent vectors
in R2? Why or why not?

(b) Do you think it’s possible to have a set of four linearly independent vectors
in R3? Why or why not?

Discovery 17.6

(a) What does the definition of linear dependence say in the case of just two
vectors?

(b) If the test for linear dependence/independence is to remain true in the
case of a “set” of vectors consisting of just one vector, how should we define
linear dependence/independence for such a set?
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17.2 Terminology and notation

linearly dependent set of vectors
a set of vectors in which there is at least one example of a vector that
can be expressed as a linear combination of other vectors in the set;
we also consider the set of vectors consisting of only the zero vector
as linearly dependent

linearly independent set of vectors
a set of vectors that is not linearly dependent; that is, a set of vectors
in which no vector can be expressed as a linear combination of other
vectors in the set

17.3 Concepts

In this section.

• Subsection 17.3.1 Reducing spanning sets

• Subsection 17.3.2 Linear dependence and independence

• Subsection 17.3.3 Linear dependence and independence of just one
or two vectors

• Subsection 17.3.4 Linear dependence and independence in Rn

Statement 3 of Proposition 16.5.5 guarantees that every vector space has a
spanning set. To prove this statement, we verified that every vector space is
trivially generated by itself, i.e. V =SpanV .

But this doesn’t give us a useful description of the vector space V , it basically
just says “to build all the vectors in V out of some vectors in V , use all the vectors
in V .” The point of a spanning set is to give you a set of building-block vectors
that can be used to construct every other vector in the space through linear
combinations. To make an analogy to chemistry, the vectors in a spanning set act
like atoms, and linear combinations are then like molecules built out of different
combinations of different quantities of those atoms. So we would like our set of
building blocks to be as simple as possible — that is, we would like to get down
to some sort of optimal description of a vector space in terms of a spanning set.
Linear dependence and independence are precisely the concepts we will need in
order to judge whether we have such an optimal spanning set.

17.3.1 Reducing spanning sets
Suppose we have a spanning set S for a space V , so that V = SpanS. This
equality of spaces says that every vector in the space V can somehow be expressed
as a linear combination of vectors in S.

Suppose further that one of the vectors in S can be expressed as a linear
combination of some of the others, say

w= k1u1 +k2u2 +·· ·+kmum, (*)

where each of w,u1,u2, . . . ,um is a vector in S.

Note. This was basically the situation for Discovery 17.1, where v2 played the
role of w.
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Then w is not actually needed when expressing vectors in V as linear combi-
nations of vectors in S.

Indeed, consider a vector x in V expressed as a linear combination of vectors
in S, including w, say

x= cw+ c1v1 + c2v2 +·· ·+kmvn,

where each of v1,v2, . . . ,vn is a vector in S. But then we could substitute the
expression in (*) for w to obtain

x= c(k1u1 +k2u2 +·· ·+kmum)+ c1v1 + c2v2 +·· ·+kmvn

= ck1u1 + ck2u2 +·· ·+ ckmum + c1v1 + c2v2 +·· ·+kmvn.

Here, each of the ui vectors and the v j vectors are in S, making this an expression
for x as a linear combination of vectors in S but not including w.

If w isn’t needed to express vectors in V as linear combinations of vectors in
S, then we should have SpanS =SpanS′, where S′ is the set of all vectors in S
except w. That is, we can discard w from the spanning set for V , and still have a
spanning set.

See. Lemma 17.5.4 in Subsection 17.5.2.

This pattern will help us reduce down to some sort of optimal spanning
set: we can keep removing these redundant spanning vectors that are linear
combinations of other spanning vectors until there are none left.

17.3.2 Linear dependence and independence
A set of vectors is called linearly dependent precisely when it is non-optimal as
a spanning set in the way described above: when one of the vectors in the set is a
linear combination of others in the set. However, it is usually not obvious that
some vector is redundant in this way — checking each vector in turn is tedious,
and also would not be a very convenient way to reason with the concept of linear
dependence in the abstract.

However, having an expression for a vector w as a linear combination of other
vectors u1,u2, . . . ,um, such as

w= k1u1 +k2u2 +·· ·+kmum, (**)

is equivalent to having a nontrivial linear combination of these vectors equal to
the zero vector:

k1u1 +k2u2 +·· ·+kmum + (−1)w= 0. (***)

And vice versa, since if we have a nontrivial linear combination of these vectors
that results in the zero vector, say

k1u1 +k2u2 +·· ·+kmum +kw= 0,

and the coefficient k on w is nonzero, then we can rearrange to get

w=−k1

k
u1 +

(
−k2

k

)
u2 +·· ·+

(
−km

k

)
um,

an expression for w as a linear combination of the others.
Again, the advantage of checking for linear combinations equal to the zero

vector is that in a collection of vectors S, we usually don’t know ahead of time
which one will be the odd one out (that is, which one will play the role of w
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as above). In a nontrivial linear combination equalling 0, we can take as the
redundant vector w any of the vectors whose coefficient is nonzero (which is
required to perform the step of dividing by k in the algebra isolating w above).

Now, we can always take the trivial linear combination, where all coefficients
are 0, to get a result of 0. But if this is the only linear combination of a set of
vectors by which we can get 0 as a result, then none of the vectors can act as
the redundant w as above, because an expression like (**) always leads to an
equality like (***), involving a nontrivial linear combination.

This logic leads to the Test for Linear Dependence/Independence.

Procedure 17.3.1 Test for Linear Dependence/Independence. To test
whether vectors v1,v2, . . . ,vm are linearly dependent/independent, solve the ho-
mogeneous vector equation

k1v1 +k2v2 +·· ·+kmvm = 0

in the (scalar) variables k1,k2, . . . ,km.
If this vector equation has a nontrivial solution for these coefficient variables,

then the vectors v1,v2, . . . ,vm are linearly dependent.
Otherwise, if this vector equation has only the trivial solution k1 = 0,k2 =

0, . . . ,km = 0, then the vectors v1,v2, . . . ,vm are linearly independent.

17.3.3 Linear dependence and independence of just one or
two vectors

For a pair u,v of vectors to be linearly dependent, one must be a linear combina-
tion of the other. But a linear combination of one vector is just a scalar multiple,
and so a pair of vectors is linearly dependent if one is a scalar multiple of the
other. If both vectors are nonzero, that scalar must also be nonzero and so could
be shifted to the other side as its reciprocal:

u= kv ⇐⇒ 1
k

u= v (for k ̸= 0).

So nonzero vectors u,v are linearly dependent if and only if each is a scalar
multiple of the other. In Rn, we would have called such vectors parallel.

What about a set containing a single vector? Our motivation for creating the
concept of linear dependence/independence was to measure whether a spanning
set contained redundent information or whether it was somehow “optimal.” A
spanning set consisting of a single nonzero vector cannot be reduced to a smaller
spanning set, so it is already optimal and we should refer to that spanning set
as linearly independent. This coincides with the result of the test for linear
dependence/independence for a single vector v: if v is nonzero, then there are no
nontrivial solutions to the vector equation kv= 0.

See. Rule 1.e of Proposition 15.6.2.

But what about the zero vector by itself? Scalar multiples of 0 remain 0,
so Span{0} is the trivial vector space consisting of just the zero vector. Is {0}
an optimal spanning set for the trivial space, or can it be reduced further?
By convention, we also consider Span{} to be the trivial vector space (where {}
represents a set containing no vectors, called the empty set), because we always
want the Span process to return a subspace of the vector space in which we’re
working. So the spanning set {0} can be reduced to the empty set, and still span
the same space. This line of reasoning leads us to consider the set of vectors
containing only the zero vector to be linearly dependent.
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And. We should consider the empty set to be linearly independent, since it
cannot be reduced.

17.3.4 Linear dependence and independence in Rn

Independent directions. In Subsection 16.3.3, we discussed how a nonzero
vector in Rn spans a line through the origin. If a second vector is linearly
dependent with the vector spanning the line, then as discussed in the previous
subsection (Subsection 17.3.3), that second vector must be parallel with the first,
hence parallel with the line. To get something linearly independent, we need to
branch off in a new direction from the line.

0 p

v (linearly independent from p)

u (linearly dependent with p)

In Subsection 16.3.3, we also discussed how a pair of nonzero, nonparallel
vectors in Rn span a plane through the origin. If a third vector is linearly
dependent with those two spanning vectors, it is somehow a linear combination
of them and so lies in that plane. To get something linearly independent, we
need to branch off in a new direction from that plane.

0 p1

p2
u (linearly dependent with p1 ,p2 )

v (linearly independent from p1 ,p2 )

This idea that we can enlarge an independent set by including a new vector
in a new direction works in abstract vector spaces as well, as we will see in
Proposition 17.5.6 in Subsection 17.5.2.

Maximum number of linearly independent vectors. In Discovery 17.5, we
considered the possible sizes of linearly independent sets in R2 and R3. We can
certainly have two linearly independent vectors in R2, since clearly the standard
basis vectors e1 and e2 form a linearly independent set in R2. Could we have
three? Two linearly independent vectors would have to be nonparallel, and so
they would have to span a plane — i.e. they would have to span the entire plane.
Geometrically, a third linearly independent vector would have to branch off in
a “new direction,” as in our discussion above. But in R2 there is no new third
direction in which to head — we can’t have a vector breaking up out of the plane
“into the third dimension,” because there is no third dimension available in R2.
Algebraically, if we had three vectors u= (u1,u2), v= (v1,v2), w= (w1,w2) in R2
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and attempted the test for dependence/independence, we would start by setting
up the vector equation

k1u+k2v+k3w= 0.

Combining the linear combination on the left back into one vector, and comparing
coordinates on either side, we would obtain linear system{

u1k1 + v1k2 + w1k3 = 0,
u2k1 + v2k2 + w2k3 = 0,

in the unknown coefficients k1,k2,k3. Because there are only two equations,
the reduced form for the coefficient matrix for this system can have no more
than two leading ones, so it requires at least one parameter to solve, which
means there are nontrivial solutions. So three vectors in R2 can never by linearly
independent.

We come to a similar conclusion in R3 using both geometric and algebraic
reasoning — three independent vectors in R3 is certainly possible (for example,
the standard basis vectors), but a set of four vectors in R3 can never be linearly
independent. Geometrically, once you have three independent vectors pointing
in three “independent directions,” there is no new direction in R3 for a fourth
independent vector to take. Algebraically, we could set up the test for indepen-
dence with four vectors in R3 and it would lead to a homogeneous system of three
equations (one for each coordinate) in four variables (one unknown coefficient
for each vector). Since the system would have more variables than equations, it
would require parameters to solve, leading to nontrivial solutions.

And the pattern continues in higher dimensions — a collection of more than
four vectors in R4 must be linearly dependent, a collection of more than five
vectors in R5 must be linearly dependent, and so on. In fact, this pattern can also
be found in abstract vectors spaces — see Lemma 17.5.7 in Subsection 17.5.2.
And this pattern will help us transplant the idea of dimension from Rn to
abstract spaces.

17.4 Examples

In this section.

• Subsection 17.4.1 Testing dependence/independence

• Subsection 17.4.2 Linear independence of “standard” spanning
sets

17.4.1 Testing dependence/independence
Here we will carry out examples of applying the Test for Linear Dependence/
Independence.

Example 17.4.1 Testing dependence/independence in Rn. Are the vectors
(1,0,0,1), (1,1,0,−1), (2,1,0,0), (5,1,0,5) in R4 linearly dependent or independent?
Set up the test:

k1(1,0,0,1)+k2(1,1,0,−1)+k3(2,1,0,0)+k4(5,1,0,5)= (0,0,0,0).

Notice how we have used the proper zero vector in this space on the right-hand
side. On the left-hand side, we want to combine the expression into one vector so
that we can compare with the zero vector.

(k1,0,0,k1)+ (k2,k2,0,−k2)+ (2k3,k3,0,0)+ (5k4,k4,0,5k4)= (0,0,0,0)
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(k1 +k2 +2k3 +5k4,k2 +k3 +k4,0,k1 −k2 +5k4)= (0,0,0,0)

Comparing components on either side, we obtain a system of four equations in
the unknown scalars from the linear combination:

k1 + k2 + 2k3 + 5k4 = 0,
k2 + k3 + k4 = 0,

0 = 0,
k1 − k2 + 5k4 = 0.

Now we’ll solve this homogeneous system by row reducing its coefficient matrix.
1 1 2 5
0 1 1 1
0 0 0 0
1 −1 0 5

 row−−−−→
reduce


1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

 (*)

Note that here it was not necessary to reduce all the way to RREF, as we are
not actually interested in the solutions to this system — we only need to know
whether there exist nontrivial solutions. From the reduced matrix, we can see
that k3 is a free variable and would be assigned a parameter in the general
solution. The necessity of a parameter means there are an infinite number of
solutions, which in particular means there are nontrivial solutions. Therefore,
this collection of vectors is linearly dependent. □

Remark 17.4.2 Notice how the vectors from R4 that we were testing in the
previous example ended up as columns in the coefficient matrix in (*) — we
saw a similar pattern in Example 16.4.10 (and in the other examples in Subsec-
tion 16.4.3), where we tested whether a particular vector was in the span of some
collection of vectors.

Example 17.4.3 Testing dependence/independence in Mm×n(R).

1. Consider the matrices in Discovery 17.4.a. First we set up the Test for
Linear Dependence/Independence. Again, we use the proper zero vector on
the right-hand side, and then we combine the expression on the left-hand
side into one vector so that we may compare against the zero vector.

k1

[
1 0
0 1

]
+k2

[
0 1
1 0

]
+k3

[
0 0
0 1

]
=

[
0 0
0 0

]
[
k1 0
0 k1

]
+

[
0 k2

k2 0

]
+

[
0 0
0 k3

]
=

[
0 0
0 0

]
[
k1 k2

k2 k1 +k3

]
=

[
0 0
0 0

]
There is no need to set up a system of equations here — we can see from
comparing the top rows on either side that k1 = 0 and k2 = 0. Then, from
the (2,2) entries, we see that k1 +k3 = 0. But since we already have k1 = 0,
we get k3 = 0 as well. So there is only the trivial solution, and these vectors
are linearly independent.

2. Consider the matrices in Discovery 17.4.b. Again, we start by setting up
the Test for Linear Dependence/Independence using the appropriate zero
vector.

k1

[
1 0
0 1

]
+k2

[
1 0
0 −1

]
+k3

[
3 0
0 −2

]
=

[
0 0
0 0

]
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As before, this will lead to a homogeneous system of equations in the
unknown scalars k1,k2,k3, and the coefficient matrix of this system will
have the entries of the three vectors as columns:

1 1 3
0 0 0
0 0 0
1 −1 −2

 row−−−−→
reduce


1 0 1/2
0 1 5/2
0 0 0
0 0 0

 .

From the reduced matrix, we see that k3 is a free variable and will be
assigned a parameter in the general solution. The necessity of a parameter
implies nontrivial solutions, so these vectors are linearly dependent.

The reduced matrix can also be used to tell us exactly how these vectors
are linearly dependent. Since k3 is free, we obtain a solution to the system
for every possible value we assign to it. To get a simple nontrivial solution,
let’s set k3 = 1. Then solving the equations represented by the nonzero
rows of the reduced matrix gives us k1 =−1/2 and k2 =−5/2. Putting these
back into the vector equation from when we first set up the Test for Linear
Dependence/Independence, we get(

−1
2

)[
1 0
0 1

]
+

(
−5

2

)[
1 0
0 −1

]
+

[
3 0
0 −2

]
=

[
0 0
0 0

]

=⇒
[

3 0
0 −2

]
= 1

2

[
1 0
0 1

]
+ 5

2

[
1 0
0 −1

]
.

From this we see exactly how one of the vectors in our collection can be
expressed as a linear combination of others in the collection.

□

Example 17.4.4 Testing dependence/independence in Pn(R). Consider the
polynomials from Discovery 17.4.c. Are they linearly dependent or independent?
Set up the test, using the zero polynomial as the zero vector on the right-hand
side:

k1(1+ x)+k2(1+ x2)+k3(2− x+3x2)= 0.

As usual, we simplify the linear combination on the left-hand side into one vector.
Here, this means collecting like terms.

(k1 +k2 +2k3)+ (k1 −k3)x+ (k2 +3k3)x2 = 0.

The polynomial on the left can only be equal to the zero polynomial if all its
coefficients are zero, leading to the following system of equations:

k1 + k2 + 2k3 = 0,
k1 − k3 = 0,

k2 + 3k3 = 0.

Once again, we reduce the coefficient matrix to determine if there are nontrivial
solutions:  1 1 2

1 0 −1
0 1 3

 row−−−−→
reduce

1 0 −1
0 1 3
0 0 0

 .

Compare. The columns of the initial coefficient matrix with the vectors being
tested.
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Since variable k3 is free, there exist nontrivial solutions and the vectors are
linearly dependent. □

Example 17.4.5 Testing dependence/independence in F(D). Let’s do an
example in a function space. Consider vectors f (x) = x, g(x) = sin(πx/2) and
h(x)= cos(πx/2) in F(R), the space of functions defined on the whole real number
line. Are these functions linearly dependent or independent? Let’s start the test
by setting up the vector equation

k1x+k2 sin(πx/2)+k3 cos(πx/2)= 0.

Here, there is no algebraic way we can simplify the expression on the left-hand
side. However, remember that the 0 on the right-hand side represents the zero
function, and that functions are only equal when they always produce the same
output given the same input (Definition 15.5.1). So let’s try substituting some
input x-values into the functions on either side of our vector equation above:

x = 0: k1 ·0+k2 ·0+k3 ·1= 0,

x = 1: k1 ·1+k2 ·1+k3 ·0= 0,

x = 2: k1 ·2+k2 ·0+k3 · (−1)= 0.

From the first equation we see k3 = 0. Combining this with the third equation
we also get k1 = 0. Then combining that with the second equation we finally
get k2 = 0. Since only the trivial solution is possible, these vectors are linearly
independent. □

17.4.2 Linear independence of “standard” spanning sets

Finally, let’s check the “standard” spanning sets of our favourite example vector
spaces.

Example 17.4.6 Independence of the standard basis vectors in Rn. The
standard basis vectors e1,e2, . . . ,en form a spanning set for Rn, and they are also
linearly independent, as we see if we apply the test:

k1e1 +k2e1 +·· ·+knen = 0 =⇒ (k1,k2, . . . ,kn)= (0,0, . . . ,0).

So clearly each scalar k j must be zero, which means there is only the trivial
solution. □

Example 17.4.7 Independence of the standard spanning vectors in
Mm×n(R). In Remark 16.4.16, we noted that there is also a “standard” set
of spanning vectors in Mm×n(R), consisting of those matrices that have all zero
entries except for a single 1 in one specific entry. We might call these “standard
basis vectors” for Mm×n(R). Write E i j for the matrix of this type with a 1 in
the (i, j)th entry. These spanning vectors are also linearly independent. Here,
when we apply the Test for Linear Dependence/Independence, it is best if we
enumerate our scalars with the same scheme as the vectors:

k11E11 +k12E12 +·· ·+kmnEmn = 0 =⇒ [ki j]= 0.

Again, we immediately see that only the trivial solution is possible. □

Example 17.4.8 Independence of the standard spanning vectors in Pn(R).
Also in Remark 16.4.16, we noted that the powers of x (along with the constant
polynomial 1) form a spanning set for Pn(R). We might call these “standard basis
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vectors” for Pn(R). Are they linearly independent? Apply the Test:

k0 ·1+k1x+k2x2 +·· ·+knxn = 0.

If any of these coefficients are nonzero, the polynomial on the left-hand side will
be nonzero, so only the trivial solution is possible. Therefore, powers of x are
always linearly independent in Pn(R). □

17.5 Theory

In this section.

• Subsection 17.5.1 Basic facts about linear dependence and inde-
pendence

• Subsection 17.5.2 Linear dependence and independence of span-
ning sets

17.5.1 Basic facts about linear dependence and indepen-
dence

First we’ll formally record our test, but we will let our discussion in Subsec-
tion 17.3.2 serve as a proof.

Proposition 17.5.1 Test for Linear Dependence/Independence. Vectors
v1,v2, . . . ,vm are linearly dependent if the vector equation

k1v1 +k2v2 +·· ·+kmvm = 0

has a nontrivial solution in the (scalar) variables k1,k2, . . . ,km. Otherwise, if this
vector equation has only the trivial solution k1 = 0,k2 = 0, . . . ,km = 0, then the
vectors v1,v2, . . . ,vm are linearly independent.

We will further explore the connection between linear independence and
spanning sets in the next subsection below, but for now recall that we introduced
these new concepts to help us determine when a spanning set could be reduced.
The next statement reflects the fact that the zero vector does not help span
anything other than itself, so it is not useful as a member of a spanning set.

Proposition 17.5.2 Zero is linearly dependent. Any set of vectors that
contains the zero vector is linearly dependent.

Proof. Suppose S is a set of vectors containing the zero vector. We’ll break into
cases depending on what else is in S besides 0.

S consists of only the zero vector. Then S is linearly dependent by definition.

S contains at least one nonzero vector v. But then 0 can be expressed as
the linear combination 0 = 0v. Since we have found a vector in S that can be
expressed as a linear combination of another vector in S, the set of vectors is
linearly dependent.

Note. This does not violate Proposition 17.5.1, since in the equality 0= 0v, vector
0 is acting as a vector in S. This equality is equivalent to 1 ·0+0 ·v= 0, which
is an equality of a nontrivial linear combination of vectors from S and the zero
vector, as required by Proposition 17.5.1.

■
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Here are some facts about how linear dependence and independence behave
when enlarging/reducing collections of vectors.

Proposition 17.5.3 Dependence/independence versus subcollections.

1. A collection of vectors that contains a subcollection that is linearly dependent
is itself linearly dependent.

2. In a linearly independent collection of vectors, every subcollection is also
linearly independent.

Proof of Statement 1. Suppose S is a collection of vectors in a vector space, and
S′ is a linearly dependent subcollection of S. Then some vector in S′ can be
expressed as a linear combination of other vectors in S′. But because S′ is a
subcollection of S, all these vectors in S′ are also vectors in S. So we can also say
that some vector in S can be expressed as a linear combination of other vectors
in S, making S a linearly dependent set. ■

Proof of Statement 2. Suppose S is a linearly independent collection of vectors in
a vector space. Then no subcollection of S can be linearly dependent, because
if S contained such a linearly dependent subcollection then Statement 1 of this
proposition would imply that S itself is linearly dependent, which we assume it
is not. So every subcollection of S must be linearly independent. ■

17.5.2 Linear dependence and independence of spanning
sets

First we’ll record our observation about preserving spans when reducing span-
ning sets. Then, in the following proposition, we’ll take this idea to its logical
conclusion.

Lemma 17.5.4 Dependent spanning sets can be reduced. Suppose S is a
set of vectors in a vector space and w is both a vector in S and expressible as a
linear combination of vectors in S besides itself. Then SpanS =SpanS′, where S′
is the one-smaller set of vectors obtained by removing w from S.

Proof. Using Statement 2 of Proposition 16.5.6, we just need to show that every
vector in S can be expressed as a linear combination of vectors in S′, and vice
versa. However, S and S′ are the same set of vectors except that S contains w
while S′ does not. So from the trivial expression v = 1v, we immediately have
that every vector v in S (other than w) is a linear combination of itself (which is
a vector in S′), and vice versa. And we have also assumed that w is expressible
as a linear combination of vectors in S besides itself. Since the vectors in such
a linear combination are also in S′, we know that w is expressible as a linear
combination of vectors in S′. ■

Proposition 17.5.5 Fully reducing finite spanning sets. Every finite span-
ning set can be reduced to a linearly independent spanning set. That is, if S is
a spanning set for a vector space and contains a finite number of vectors, then
some subcollection of vectors in S will both span that vector space and be linearly
independent.

Clarification. In this proposition, we consider the hypothetical “can be reduced”
to allow the possibility of not reducing the set at all, in case the initial spanning
set is already linearly independent.

Proof. If S is already linearly independent, then we have our desired linearly
independent spanning set. Otherwise, there is some vector w in S that is a linear
combination of the other vectors in S. If we set S′ to be the subcollection of S
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consisting of every vector except w, then from Lemma 17.5.4 we know that S′
will remain a spanning set for the vector space. If S′ is linearly independent,
then we have our desired linearly independent spanning set. Otherwise, we can
continue removing linearly dependent vectors in this way until we end up with a
linearly independent spanning set. And since we assumed there were a finite
number of vectors in S, this one-by-one removal process must indeed come to an
end at some point. ■

Just as a vector that points up out of a plane in R3 must be linearly inde-
pendent from vectors parallel to the plane, in any vector space we can enlarge
a linearly independent set by including new vectors that are not linear combi-
nations of the old. The next statement encapsulates this idea, and will help us
in the next chapter to develop a “bottom-up” approach to building an optimal
spanning set for a vector space, as opposed to the “top-down” approach made
possible by Lemma 17.5.4 and Proposition 17.5.5.

Proposition 17.5.6 Enlarging independent sets. If S is a linearly indepen-
dent set of vectors and vector v is not in SpanS, then the set of vectors containing
both v and every vector in S is still linearly independent.

Proof. Write S′ for the set of vectors containing both the vector v and every
vector in S. The set S′ will be linearly independent if none of its vectors can be
expressed as a linear combination of other vectors in the set.

So suppose w is a vector in S′. There are two cases to consider.

Case w= v. In this case, we already know that w cannot be a linear combination
of other vectors in S′, because the other vectors in S′ are the vectors in S, and
we assumed that v is not in SpanS.

Case w ̸= v. In this case, w is in the set S. Since S is assumed to be linearly
independent, we know that w cannot be a linear combination of other vectors
from just S. Could it be a linear combination involving other vectors in S and v?
Suppose we had

w= k1u1 +k2u2 +·· ·+kmum +kv,

for some vectors u1,u2, . . . ,um in S and scalars k1,k2, . . . ,km,k (assuming k ̸= 0
so that v is indeed involved in the linear combination). But then we could isolate
v as

v= 1
k

w− k1

k
u1 − k2

k
u2 −·· ·− km

k
um,

a linear combination of vectors in S, which is not possible because we have
assumed that v is not in SpanS. ■

The final fact below records our observation in Discovery 17.5 and Subsec-
tion 17.3.4 that after a certain number, a collection of vectors can be too numerous
to be linearly independent.

Lemma 17.5.7 Too-large sets must be dependent. If a vector space can be
spanned by n vectors, then every collection containing more than n vectors must
be linearly dependent.

Proof. Suppose S is a set of n vectors in a vector space so that S is a spanning set
for the space. By Proposition 17.5.5, there are vectors v1,v2, . . . ,vn′ in S that are
both linearly independent and also a spanning set for the vectors space. Since
this is a subcollection of S, we must have n′ ≤ n. We’ll refer to this subcollection
of S as S′.

Now further suppose we have a collection of vectors w1,w2, . . . ,wm in the
vector space, with m > n. Since S′ is a spanning set, we can express each wi as a
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linear combination of the vectors in S:

w1 = a11v1 +a21v2 +·· ·+an′1vn′ ,

w2 = a12v1 +a22v2 +·· ·+an′2vn′ ,
...

wm = a1mv1 +a2mv2 +·· ·+an′mvn′ .

Let’s apply the Test for Linear Dependence/Independence to w1,w2, . . . ,wm:
suppose there are scalars k1,k2, . . . ,km so that

k1w1 +k2w2 +·· ·+kmwm = 0.

If we substitute in the above expressions for each wi in terms of the vectors in S′
and collect like terms, we get

(a11k1 +a12k2 +·· ·+a1mkm)v1 + (a21k1 +a22k2 +·· ·+a2mkm)v2

+·· ·+ (an′1k1 +an′2k2 +·· ·+an′mkm)vn′ = 0.

If we set c1 to be the coefficient expression on v1 in the expression above, and c2
to be the coefficient expression on v2, and so on, then we obtain a vector equality

c1v1 + c2v2 +·· ·+ cn′vn′ = 0.

But the vectors in this linear combination are the vectors in S′, and we have
assumed that S′ is a linearly independent set. So this vector equality can only be
true for the trivial solution where each ci = 0. This leads to homogeneous system

a11k1 + a12k2 + ·· · + a1mkm = 0,
a21k1 + a22k2 + ·· · + a2mkm = 0,

...
an′1k1 + an′2k2 + ·· · + an′mkm = 0,

in the variables k1,k2, . . . ,km. Now, we have assumed m > n ≥ n′, so we have
more variables than equations in the homogeneous system above. But then the
solution will require parameters, which means there are nontrivial solutions.
Thus, the Test for Linear Dependence/Independence tells us that the collection
w1,w2, . . . ,wm is linearly dependent. ■





CHAPTER 18

Basis and Coordinates

18.1 Discovery guide

Suppose V is a vector space and S is a finite spanning set for V (i.e. V =SpanS).
In the previous chapter, we saw that if S is linearly dependent, then (at least)
one vector can be removed from S, and the resulting smaller set will still be a
spanning set. You can imagine repeating this process until finally you are left
with a spanning set that is linearly independent.

See. Lemma 17.5.4 and Proposition 17.5.5.

This leads to the following definition.

basis for a vector space
a linearly independent spanning set for the space

Discovery 18.1 In each of the following, determine whether S is a basis for V .
If it is not a basis, make sure you know which property S violates, independence
or spanning.

Note. A specific example could violate both, but we only need to know it violates
one of the two properties to know it’s not a basis.

(a) V =R3, S = {(1,0,0), (1,1,0), (1,1,1), (0,0,2)}.

(b) V =R3, S = {(1,0,0), (1,1,0), (0,0,2)}.

(c) V =M2(R), S = { [2 0
1 0

]
,

[1 0
0 −1

]
,

[0 0
1 1

] }
.

(d) V = the space of 2×2 upper triangular matrices,

S = { [1 0
0 1

]
,

[1 1
0 1

]
,

[1 2
0 1

]
,

[1 3
0 1

] }
.

(e) V = the space of 3×3 lower triangular matrices,

S =
{ [1 0 0

0 0 0
0 0 0

]
,

[0 0 0
1 0 0
0 0 0

]
,

[0 0 0
0 1 0
0 0 0

]
,

[0 0 0
0 0 0
1 0 0

]
,

[0 0 0
0 0 0
0 1 0

]
,

[0 0 0
0 0 0
0 0 1

] }
.

(f) V =P3(R), the space of all polynomials of degree 3 or less, S = {1, x, x2}.

(g) V =P3(R), S = {1, x, x2, x3}.
As discussed in the introduction to this discovery guide above, a spanning set

that is not linearly independent contains redundant information in the form of
vectors that are not actually needed to form a spanning set. This redundancy
manifests itself in other ways, as the next discovery activity will demonstrate.

259
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Discovery 18.2 Consider the set S = {(1,0), (1,1), (1,−1)} of vectors in R2. This
set spans R2 but is not linearly independent.

(a) Since S spans R2, it is possible to express vector (3,−3) as a linear combi-
nation of the vectors in S.

Demonstrate a way to do this:

(3,−3) = (1,0) + (1,1) + (1,−1).

(b) Here is the redundant part. Demonstrate a different way to express (3,−3)
as a linear combination of the vectors in S:

(3,−3) = (1,0) + (1,1) + (1,−1).

(c) How many different ways do you think there are to do this?
The next discovery activity will demonstrate that the redundancies of Discov-

ery 18.2 cannot happen for a basis.

Discovery 18.3 Suppose V is a vector space, S = {v1,v2,v3} is a basis for V , and
w is a vector in V .

Since S is a spanning set, there is a way to express w as linear combinations
of the vectors in S:

w= a1v1 +a2v2 +a3v3.

Suppose there were a different such expression:

w= b1v1 +b2v2 +b3v3.

Use the vector identity
w−w= 0

and the two different expressions for w above to show that having these two
different expressions violates the linear independence of S.

Discovery 18.3 shows that when we have a basis S = {v1,v2, . . . ,vn} for a vector
space V , each vector in V has one unique expression as a linear combination of
the vectors in S. For w= c1v1 + c2v2 +·· ·+ cnvn, the coefficients c1, c2, . . . , cn are
called the coordinates of w relative to S. Since these coordinates consist of n
coefficients, we sometimes relate w to a vector in Rn by collecting its coordinates
into an n-tuple:

(w)S = (c1, c2, . . . , cn).

This is called the coordinate vector of w relative to S.

Discovery 18.4 In each of the following, determine the coordinate vector of w
relative to the provided basis S for V .

(a) V =M2(R), S = { [1 0
0 0

]
,

[0 1
0 0

]
,

[0 0
1 0

]
,

[0 0
0 1

] }
, w= [−1 5

3 −2
]
.

(b) V =M2(R), S = { [1 0
0 0

]
,

[1 1
0 0

]
,

[0 0
1 0

]
,

[0 0
1 1

] }
, w= [−1 5

3 −2
]
.

(c) V =P3(R), S = {1, x, x2, x3}, w= 3+4x−5x3.

(d) V =R3, S = {(−1,0,1), (0,2,0), (1,1,0)}, w= (1,1,1).

(e) V =R3, S = {(1,0,0), (0,1,0), (0,0,1)}, w= (−2,3,−5).

Discovery 18.5 In each of the following, determine which vector w in V has the
given coordinate vector (w)S .

(a) V =M2(R), S = { [1 0
0 0

]
,

[0 1
0 0

]
,

[0 0
1 0

]
,

[0 0
0 1

] }
, (w)S = (3,−5,1,1).
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(b) V =M2(R), S = { [1 0
0 0

]
,

[1 1
0 0

]
,

[0 0
1 0

]
,

[0 0
1 1

] }
, (w)S = (3,−5,1,1).

(c) V = P3, S = {1, x, x2, x3}, (w)S = (−3,1,0,3).

(d) V =R3, S = {(−1,0,1), (0,2,0), (1,1,0)}, (w)S = (1,1,1).

(e) V =R3, S = {(1,0,0), (0,1,0), (0,0,1)}, (w)S = (−2,3,−5).

Discovery 18.6 Coordinate vectors let us transfer vector algebra in a space V to
the familiar space Rn.

For example, consider the basis

S =
{ [

1 0
0 0

]
,

[
1 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
1 1

] }
for the space M2(R) from Task 18.5.b.

(a) In Task 18.5.b you have already determined the vector w in M2(R) that
has coordinate vector (w)S = (3,−5,1,1). Now do the same to determine the
vector v in M2(R) that has coordinate vector (v)S = (−1,2,0,3).

(b) Do some algebra in M2(R):

Using your vectors v from Task a, and w from Task 18.5.b compute the
linear combination 2v+w.

Note: Vectors v and w “live” in the space M2(R), so your computation in
this task should involve 2×2 matrices, and should also result in a 2×2
matrix.

(c) Do the same algebra in R4:

Compute 2(v)S + (w)S , using the coordinate vectors (v)S and (w)S provided
to you in Task 18.6.a.

Note: These coordinate vectors “live” in the space R4, so your computation
in this task should involve four-dimensional vectors, and should also result
in a four-dimensional vector.

(d) Compare your results:

Consider your four-dimensional result vector from Task c as a coordinate
vector for some vector in M2(R) relative to S. Similarly to your computa-
tions in Task 18.5.b and Task a, determine the matrix in M2(R) that has
coordinate vector equal to your result vector from Task c. Then compare
with your result matrix from Task 18.6.b. Surprised?
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18.2 Terminology and notation

basis for a vector space
a linearly independent spanning set

ordered basis
a basis where the basis vectors are always written in a particu-
lar order, and linear combinations of the basis vectors are always
expressed in that order

coordinates of a vector w relative to a basis B= {v1,v2, . . . ,vn}
the unique set of scalars c1, c2, . . . , cn so that w= c1v1 + c2v2 +·· ·+
cnvn

coordinate vector associated to a vector w relative to a basis B
the vector (c1, c2, . . . , cn) in Rn formed by the coordinates of w relative
to B

(w)B notation to mean the coordinate vector (c1, c2, . . . , cn) in Rn for the
vector w, relative to the basis B for the vector space that contains w

[w]B notation to mean the coordinate vector in Rn for the vector w, relative
to the basis B for the vector space that contains w, realized as a
column vector (i.e. as a column matrix)

18.3 Concepts

In this section.

• Subsection 18.3.1 Basis as a minimal spanning set

• Subsection 18.3.2 Basis as a maximal linearly independent set

• Subsection 18.3.3 Basis is not unique

• Subsection 18.3.4 Ordered versus unordered basis

• Subsection 18.3.5 Coordinates of a vector

18.3.1 Basis as a minimal spanning set
The purpose of a spanning set for a vector space is to be able to describe every
vector in the space systematically in terms of linear combinations of certain
specific vectors. But to be able to do this as simply as possible, we would like our
spanning set to be “optimal” for this purpose. We have seen that spanning sets
can contain redundant information — when a spanning set is linearly dependent,
then one of its vectors can be expressed as a linear combination of others, and
so that particular vector is not needed for the purpose of describing every vector
in the vector space in terms of linear combinations of spanning vectors. Even
worse, we saw in Discovery 18.2 that a linearly dependent spanning set allows for
other types of redundancy. In particular, if a spanning set is linearly dependent,
then every vector in the vector space will have an infinite number of different
descriptions as linear combinations of spanning vectors. Clearly such a situation
is not “optimal.”

However, Lemma 17.5.4 and Proposition 17.5.5 tell us that we can remove this
redundancy while still keeping a spanning set. By eliminating linearly dependent
vectors from a spanning set one at a time, we can eventually reduce to a linearly
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independent spanning set — a basis for the space. As we saw in Discovery 18.3,
a basis will no longer exhibit the second kind of redundancy discussed above,
so that in terms of a basis, every vector in the space has one unique description
as a linear combination (where we do not consider reorderings of the linear
combination expression, or insertion or removal of basis vectors with a zero
coefficient, as different expressions). And since a basis is linearly independent, it
seems that it cannot contain any of the first kind of redundancy discussed above,
because none of its vectors can be expressed as a linear combination of others. So
it would be reasonable to guess that a basis is minimal in the sense that it cannot
be reduced any further while still remaining a spanning set. And this is exactly
true, as we will see in Statement 1.a of Theorem 18.5.2 in Subsection 18.5.2.

18.3.2 Basis as a maximal linearly independent set
As above, a spanning set that is not linearly independent can be reduced to
one that is, making it a basis, and a basis cannot be reduced any further while
still remaining a spanning set. But perhaps we can also work the other way.
A linearly independent set that does not span the whole vector space can be
enlarged using Proposition 17.5.6; perhaps we could continue to enlarge the set
until it does span the whole vector space, at which point it would become a basis.

A look ahead. We will pursue this idea of enlarging a linearly independent set
to a basis further in Chapter 19.

But we know from Lemma 17.5.7 that a collection of vectors that is larger
than a known (finite) spanning set must be linearly dependent. Since a basis
is, by definition, a special kind of spanning set, a basis is also maximal in
the sense that it cannot be enlarged any further while still remaining linearly
independent.

18.3.3 Basis is not unique
It is important to note that a vector space will not have just one basis. In fact,
except for the trivial vector space, every vector space has an infinite number of
different possible bases. But often spaces have an obvious, preferred basis, called
the standard basis for the space. We will see examples of standard bases for
various spaces in Subsection 18.4.2.

18.3.4 Ordered versus unordered basis
In mathematics, usually a collection or set of objects is considered to be un-
ordered — all that matters is the inclusion of the members of the collec-
tion, not the order in which those members are written down. For example, if
V =Span{u,v,w} for some collection of vectors u,v,w in V , saying that {w,v,u}
is a spanning set for V is the same as saying that {u,v,w} is a spanning set for
V . However, we usually prefer one uniform way to describe vectors in V as linear
combinations of spanning vectors. It would be inconsistent to write

x= a1u+a2v+a3w

for some vector x in V , and then to write

y= b1w+b2v+b3u

for some other vector y in V . So usually we take a spanning set to have a partic-
ular order, and to always express linear combinations in that order, especially
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when our spanning set is a basis. To emphasize that a basis has such a preferred
ordering, we might refer to it as an ordered basis. But you should assume from
this point forward that every basis is an ordered one.

18.3.5 Coordinates of a vector

18.3.5.1 Basic concept of coordinates relative to a basis

Suppose we have a basis for a vector space. Since a basis is a spanning set, every
vector in the space has a decomposition as a linear combination of these basis
vectors. But, as we saw in Discovery 18.3, a vector in the space cannot have more
than one such decomposition. That is, every vector w in the vector space has one
unique expression as a linear combination of the basis vectors. Because of this,
we can consider the coefficients that go into such an expression as a “signature”
or “code” that uniquely identifies w. For example, if V =SpanB for some basis
B= {v1,v2,v3}, and we have a vector w in V for which

w= 3v1 +5v2 + (−1)v3, (*)

then the numbers 3,5,−1 (in that order) uniquely identify the vector w relative to
the (ordered) basis, and no other triple of numbers identify w. These coefficients
are called the coordinates of w relative to the basis B. Now, we already have a
concept that collects together triples of numbers in particular orders — vectors
in R3. So, in this example, to every vector in the space V (which may be a space
of matrices or a space of functions or etc.) we can associate one unique vector
in R3 whose components are the coordinates of the vector relative to the basis
B. For our example vector w above, we can collect the three coefficients from
the linear combination in (*) either into a triple of coordinates (x, y, z) or into a
column vector:

(w)B = (3,5,−1), [w]B =

 3
5

−1

 .

The equivalent R3-vectors (w)B and [w]B are each called the coordinate vector
of w relative to B, the only difference between the two being the presentation.

To repeat, since B is a spanning set, every vector in the space can be expressed
as a linear combination of the vectors in B, and so every vector has an associated
coordinate vector. And since B is linearly independent, it contains no redundancy
as a spanning set, and so each vector can only have one unique coordinate vector
associated to it. Which also means that every vector in R3 can be interpreted as
a coordinate vector relative to B, and can be traced to one particular vector in V .

In general, the number of coordinates required is the same as the number
of vectors in the basis being used. So if V =SpanB for basis B= {v1,v2, . . . ,vn},
then the coordinate vector for each vector in V needs to be a vector in Rn. See Sub-
section 18.4.3 for examples of computing coordinate vectors and of interpreting
vectors in Rn as coordinate vectors.

Warning 18.3.1 Order matters in coordinate vectors. Because of Axiom A 2,
reordering a linear combination of vectors does not produce a different vector as
the end result. However, when extracting coefficients from a linear combination
to form a coordinate vector, order definitely does matter, since we have decided to
consider every basis as an ordered basis.

For example, if B = {u1,u2,u3} is a basis for a space V , then the vector
v=u1 +2u2 +3u3 has coordinate vector

(v)B = (1,2,3).
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If we rearrange the linear combination to v= 2u2+u1+3u3, we are obviously not
forming a different vector v, but we are changing our point of view to a different
ordered basis, B′ = {u2,u1,u3}, creating a different coordinate vector for v:

(v)B′ = (2,1,3).

18.3.5.2 Linearity of coordinates

In Discovery 18.6, we discovered that performing a computation 2v+w in a
vector space V and performing the corresponding calculation 2(v)B+ (w)B with
the corresponding coordinate vectors in Rn relative to some basis B of V would
essentially yield the same result. (That is, the result of combining coordinate
vectors ends up being the coordinate vector of the result of combining the original
vectors.)

To consider why this works out, let’s consider the operations involved in a
linear combination (vector addition and scalar multiplication) separately. For
the remainder of this discussion, suppose B = {u1,u2, . . . ,un} is a basis for a
particular vector space V .

Addition of coordinate vectors. If you have two vectors in V expressed
uniquely as linear combinations of the basis vectors,

v = a1u1 + a2u2 + . . . + anun,
w = b1u1 + b2u2 + . . . + bnun,

then adding the vectors can be accomplished by adding the linear combinations.
Algebraically, we can add linear combinations by collecting like terms, and when
we do so we will be adding the corresponding coefficients on each basis vector.
But coefficients on basis vectors are where components of coordinate vectors
come from, and so we can say that the coordinate vector of a sum is the sum
of the coordinate vectors.

Scalar multiplication of a coordinate vector. If you have a vectors in V
expressed uniquely as linear combinations of the basis vectors,

v= a1u1 +a2u2 + . . .+anun,

then multiplying this vector by a scalar can be accomplished by scalar multi-
plying the linear combination. Algebraically, we can scalar multiply a linear
combination by distributing the scalar through the vector sum, and when we do
so we will be multiplying the coefficient on each basis vector by the scalar. But
coefficients on basis vectors are where components of coordinate vectors come
from, and so we can say that the coordinate vector of a scalar multiple is
the scalar multiple of the coordinate vector.

18.4 Examples

In this section.

• Subsection 18.4.1 Checking a basis

• Subsection 18.4.2 Standard bases

• Subsection 18.4.3 Coordinate vectors
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18.4.1 Checking a basis

Let’s start by working through Discovery 18.1, where we were asked to determine
whether a collection of vectors forms a basis for a vector space. In each case we
are looking to check two properties: that the collection is linearly independent,
and that it forms a spanning set for the whole vector space.

Example 18.4.1 A collection of vectors too large to be a basis. In Discov-
ery 18.1.a, we considered a set S of four vectors in V =R3.

We already know that R3 can be spanned by the three standard basis vectors,
and so Lemma 17.5.7 tells that any set of more than three vectors in R3 must be
linearly dependent. Set S contains four vectors, so it can’t be a basis because it
is linearly dependent. However, S is a spanning set — can you see how? □

Example 18.4.2 A nonstandard basis for R3. In Discovery 18.1.b, we consid-
ered a set S of three vectors in V =R3.

This set S is linearly independent, which can be verified using the Test for
Linear Dependence/Independence. As we saw in many examples in Section 17.4,
the vector equation

k1(1,0,0)+k2(1,1,0)+k3(0,0,2)= (0,0,0)

that we use to begin the Test for Linear Dependence/Independence leads to a
homogeneous system. In this case, that system has coefficient matrix1 1 0

0 1 0
0 0 2

 ,

where the vectors in S appear as columns. This matrix can be reduced to I in
two operations, and so only the trivial solution is possible.

The set S is also a spanning set for V . To check this, we need to make sure
that every vector in R3 can be expressed as a linear combination of the vectors in
S. That is, we need to check that if (x, y, x) is an arbitrary vector in R3, then we
can always determine scalars a,b, c so that

a(1,0,0)+b(1,1,0)+ c(0,0,2)= (x, y, z).

Similar to the Test for Linear Dependence/Independence, the above vector equa-
tion leads to a system of equations with augmented matrix 1 1 0 x

0 1 0 y
0 0 2 z

 .

The same two operations as before will reduce the coefficient part of this matrix
to I, so that a solution always exists, regardless of the values of x, y, z. But it’s
also possible to determine a solution directly by inspection of the vector equation
above, as clearly

(x− y)(1,0,0)+ y(1,1,0)+ z
2

(0,0,2)= (x, y, z)

will be a solution.
Because this set is both linearly independent and a spanning set, it is a basis

for the space. □
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Example 18.4.3 An independent set that does not span. In Discovery 18.1.c,
we considered a set S of three vectors in V =M2(R).

This set S is linearly independent (check using the test!), but it is not a
spanning set. We can see a linear combination of these vectors will never have a
nonzero entry in the (1,2) entry. In particular, the vector[

0 1
0 0

]
is not in SpanS. Since S does not span the entire space, it is not a basis for V .

Note. We have determined that S is not a basis for the whole space V . However,
since S is linearly independent, it is a basis for the subspace of V that it spans
(i.e. the subspace SpanS).

□

Example 18.4.4 A set that neither spans nor is independent. In Discov-
ery 18.1.d, we considered a set S of four vectors in the space V of all 2×2 upper
triangular matrices.

This set of vectors is not a basis because it is neither a spanning set nor
linearly independent.

It can’t be a spanning set for the space V because a linear combination of
these vectors will always have the same number in both diagonal entries. In
particular, the vector [

1 0
0 −1

]
is upper triangular, so it is in V , but it is not in SpanS.

Also, we could use the test to determine that these vectors are linearly depen-
dent, but we can see directly that one of these vectors is a linear combination of
others: [

1 3
0 1

]
=

[
1 1
0 1

]
+

[
1 2
0 1

]
−

[
1 0
0 1

]
.

□

Example 18.4.5 The standard basis for the space of 3×3 lower triangular
matrices. In Discovery 18.1.e, we considered a set S of six vectors in the space
V of all 3×3 lower triangular matrices.

We might call these matrices the “standard basis vectors” for the space of
3×3 lower triangular matrices, since when we simplify a linear combination of
them, such as

k11

1 0 0
0 0 0
0 0 0

+k21

0 0 0
1 0 0
0 0 0

+k22

0 0 0
0 1 0
0 0 0


+k31

0 0 0
0 0 0
1 0 0

+k32

0 0 0
0 0 0
0 1 0

+k33

0 0 0
0 0 0
0 0 1

 (18.4.1)

=

k11 0 0
k21 k22 0
k31 k32 k33

 , (*)

we see that the coefficients in the linear combination on the left correspond
directly to the entries in the resulting sum matrix on the right, just as with other
“standard” bases that we’ve encountered.
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The set S is a spanning set for V , since we can clearly achieve every possible
vector in this space using linear combinations of vectors in S by varying the
coefficients in the general linear combination (*) above.

The left-hand side of (*) is also the left-hand side of the vector equation that
we use in the Test for Linear Dependence/Independence, and from the right-hand
side of (*) we can see that if we set this linear combination to equal the zero
vector (which is the 3×3 zero matrix here), the only solution is the trivial one.

Since S is both linearly independent and a spanning set, it is a basis for V .
□

Example 18.4.6 Another independent set that does not span. In Discov-
ery 18.1.f, we considered a set S of three vectors in the space V =P3(R).

We have already seen in Subsection 17.4.2 that powers of x are always linearly
independent in a space of polynomials. But this set of polynomials cannot be a
spanning set for P3(R) because no linear combination of 1, x, x2 will ever produce
a polynomial of degree 3. So S is not a basis. □

Example 18.4.7 The standard basis for P3(R). In Discovery 18.1.g, we
considered a set S of four vectors in the space V =P3(R).

Again, we know that powers of x are linearly independent in a space of
polynomials. However, this time S is also a spanning set, since we naturally
write polynomials of degree 3 as linear combinations of powers of x:

a0 ·1+a1x+a2x2 +a3x3.

Such linear combinations can also be used to produce polynomials of degree less
than 3, by setting the coefficients on the higher powers to 0. Since S is both
independent and a spanning set, it is a basis for P3(R). □

Remark 18.4.8 After we study the concept of dimension in the next chapter,
the process of determining whether a set of vectors is a basis will become simpler.
It is fairly straightforward to check the linear independence condition, since
this usually reduces to solving a homogeneous system of linear equations, but
checking the spanning condition directly is more tedious. In Chapter 19, we will
see that if we know the correct number of vectors required in a basis, we only need
to check one of the two conditions in the definition of basis (Corollary 19.5.6).
And, as mentioned, usually it is the linear independence condition that is easier
to verify.

18.4.2 Standard bases

In Subsection 17.4.2, we checked that certain “standard” spanning sets for our
main examples of vector spaces were also linearly independent. Since they both
span and are linearly independent, that makes each of them a basis for the space
that contains them. We’ll list them again here.

Terminology. In particular, verifying that these “standard” spanning sets are in
fact bases will justify our use of the phrase standard basis to describe some of
them in previous chapters.

Example 18.4.9 The standard basis of Rn. The standard basis vectors
e1,e2, . . . ,en form a basis for Rn, justifying the word “basis” in our description
“standard basis vectors” for these vectors. □

Example 18.4.10 The standard basis of Mm×n(R). The space Mm×n(R) of
m×n matrices also has a standard basis: the collection of matrices E i j that have
all entries equal to 0 except for a single 1 in the (i, j)th entry. □
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Example 18.4.11 The two standard bases of Pn(R). A space of polynomials
Pn(R) also has a standard basis: the collection 1, x, x2, x3, . . . , xn of powers of x.

As an ordered basis, we have two reasonable choices here: the order already
presented, and the reverse order xn, xn−1, . . . , x2, x,1. We will stick with the order
of increasing powers of x, so that when we index the coefficients in a linear
combination, as in

a0 ·1+a1x+a2x2 + . . .+anxn,

then their indices are increasing with the exponents on x. □

18.4.3 Coordinate vectors
Finally, we’ll do some computations with coordinate vectors, by working Discov-
ery 18.4 and Discovery 18.5.

First, from Discovery 18.4.

Example 18.4.12 Determining a coordinate vector.

1. In Discovery 18.4.a, we considered a vector w in M2(R) relative to the
standard basis.

First, decompose w as a linear composition of the vectors in S. Since S is
the standard basis for M2(R), this can be done by inspection:[ −1 5

3 −2

]
= (−1)

[
1 0
0 0

]
+5

[
0 1
0 0

]
+3

[
0 0
1 0

]
+ (−2)

[
0 0
0 1

]
.

To get the coordinate vector, we wrap the four coefficients up (in order) in
an R4 vector:

(w)S = (−1,5,3,−2).

2. In Discovery 18.4.b, we considered the same vector from M2(R) as in the
previous example, but relative to a nonstandard basis.

We could probably also decompose w by inspection here, but instead we’ll
demonstrate the general method. Write w as an unknown linear combina-
tion of the basis vectors, and then simplify the linear combination:[ −1 5

3 −2

]
= k1

[
1 0
0 0

]
+k2

[
1 1
0 0

]
+k3

[
0 0
1 0

]
+k4

[
0 0
1 1

]
=

[
k1 +k2 k2

k3 +k4 k4

]
.

Comparing entries on left- and right-hand sides, we obtain a system of
equations: 

k1 + k2 = −1,
k2 = 5,

k3 + k4 = 3,
k4 = −2.

If we had more complicated basis vectors, we would have a more compli-
cated system, which we could solve by forming an augmented matrix and
row reducing. As it is, we can solve by inspection:

k1 =−6, k2 = 5, k3 = 5, k4 =−2.

We collect these four coefficients (in order) in an R4 vector:

(w)S = (−6,5,5,−2).
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Even though we were working with the same vector as in the previous
example, we ended up with a different coordinate vector because it is relative
to a different basis.

3. In Discovery 18.4.c, we considered a vector w in P3(R) relative to the
standard basis.

The standard basis of P3(R) consists of powers of x (along with the constant
polynomial 1), and our polynomial w is naturally written as a linear combi-
nation of powers of x. However, there is no x2 term, so we need to insert
one:

w= 3 ·1+4x+0x2 −5x3.

Once again, we wrap up these four coefficients (in order) in an R4 vector:

(w)S = (1,4,0,−5).

4. In Discovery 18.4.d, we considered a vector w in R3 relative to a nonstan-
dard basis.

Rather than try to guess, we should set up equations and solve. Start by
writing w as an unknown combination of the basis vectors and combine
into a single vector expression:

(1,1,1)= k1(−1,0,1)+k2(0,2,0)+k3(1,1,0)

= (−k1 +k3,2k2 +k3,k1).

This leads to a system of equations:
−k1 + k3 = 1,

2k2 + k3 = 1,
k1 = 1.

We could probably solve by inspection again, but let’s form an augmented
matrix and reduce: −1 0 1 1

0 2 1 1
1 0 0 1

 row−−−−→
reduce

 1 0 0 1
0 1 0 −1/2
0 0 1 2


Notice again how the columns in the initial augmented matrix, including
the column of constants, are the vectors involved. The column of constants
in the final reduced matrix is our coordinate vector:

(w)S = (1,−1/2,2).

5. In Discovery 18.4.e, we considered a vector w in R3 relative to the standard
basis.

This is similar to the first example — we have the standard basis for R3, so
it is simple to decompose w as a linear combination of the vectors in the
basis:

w=−2e1 +3e2 + (−5)e3.

Collect these coefficients together into an R3 vector:

(w)S = (−2,3,−5).

□
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Remark 18.4.13 The last two parts of the example above might seem kind of
weird, but the point is all about point of view. Relative to the standard basis, a
vector in Rn is equal to its own coordinate vector. In other words, the standard
basis is standard because it corresponds to the natural way that we think of
vectors in R3 — in terms of its x-, y-, and z-coordinates. This is similar to how
the standard basis for a polynomial space leads to coordinate vectors that just
record the coefficients of polynomials, or how the standard basis for a matrix
space leads to coordinate vectors that just record the entries of the matrices.

But if we change our point of view and use a nonstandard basis for Rn, then
coordinate vectors allow us to use vectors in Rn to represent other vectors in Rn,
where everything is “tuned” to the perspective of the nonstandard basis. And
similarly if we use nonstandard bases in other spaces.

Now we’ll work through Discovery 18.5. This activity is the same as the
previous, but in reverse — we are given a coordinate vector from Rn, and we can
use its components as the coefficients in a linear combination of the basis vectors.
We’ll complete two of the examples from this discovery activity, and leave the
rest to you.

Example 18.4.14 Determining a vector from its coordinate vector.

1. This is Discovery 18.5.a.

Just compute the linear combination using the coordinate vector compo-
nents as coefficients, in the proper order:

w= 3
[
1 0
0 0

]
+ (−5)

[
0 1
0 0

]
+1

[
0 0
1 0

]
+1

[
0 0
0 1

]
=

[
3 −5
1 1

]
.

This result should not be surprising, as both a 2×2 matrix and a vector in
R4 are just a collection of four numbers.

2. This is Discovery 18.5.b.

Again, just compute the linear combination using the coordinate vector
components as coefficients, in the proper order:

w= 3
[
1 0
0 0

]
+ (−5)

[
1 1
0 0

]
+1

[
0 0
1 0

]
+1

[
0 0
1 1

]
=

[ −2 −5
2 1

]
.

Even though we were working with the same coordinate vector as in the
previous example, we ended up with a different matrix result because it is
relative to a different basis.

3. This is Discovery 18.5.c.

Use the same process here as in the previous two examples above:

w=−3 ·1+1x+0x2 +3x3 =−3+ x+3x3.

□
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18.5 Theory

In this section.

• Subsection 18.5.1 Reducing to a basis

• Subsection 18.5.2 Basis as optimal spanning set

18.5.1 Reducing to a basis
First we will restate Proposition 17.5.5 in the language of our new concept of
basis.

Proposition 18.5.1 Every finite spanning set can be reduced to a basis. That is,
if S is a spanning set for a vector space and contains a finite number of vectors,
then some subcollection of vectors in S will be a basis for the vector space.

Clarification. Again, we consider the hypothetical “can be reduced” to allow the
possibility of not reducing the spanning set at all, in case it is already a basis.

Proof. Proposition 17.5.5 states that every finite spanning set can be reduced
to a linearly independent spanning set. But that’s exactly what a basis is — a
linearly independent spanning set. ■

A look ahead. In the next chapter, we will also extend Proposition 17.5.6 to
obtain a counterpart to the above proposition, where we build up to a basis
instead of reducing to one: every linearly independent set can be extended to a
basis. (See Proposition 19.5.4 in Subsection 19.5.2.)

18.5.2 Basis as optimal spanning set
The remaining facts establish that a basis is the answer to our quest for an
optimal spanning set — no unnecessary spanning vectors, and no multiple ways
of expressing vectors in the space as linear combinations of the spanning vectors.

Theorem 18.5.2 Basis is optimal.

1. (a) A basis is a minimal spanning set, in the sense that no proper subcol-
lection of vectors from the basis could still be a spanning set for the
vector space.

(b) A finite collection of vectors in a vector space that forms a minimal
spanning set (in the same sense as in Statement 1.a) must be a basis
for that space.

2. (a) A finite basis is a maximal linearly independent set, in the sense that
it cannot be a proper subcollection of some linearly independent set of
vectors.

(b) A collection of vectors in a vector space that forms a maximal linearly
independent set (in the same sense as in Statement 2.b) must be a basis
for that space.

Proof of Statement 1.a. Suppose B is a basis for a vector space. That is, suppose
B is a linearly independent spanning set. If we remove even one vector v from B,
the remaining vectors cannot still form a spanning set for the space. Because
if they could, then v, being a vector in that vector space, could be expressed as
a linear combination of some number of the remaining vectors in B. In other
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words, some vector in B would be expressible as a linear combination of others,
which would violate the assumption that B is linearly independent. ■

Proof of Statement 1.b. Suppose S is a spanning set for a vector space, and that
S contains a finite number of vectors. Further suppose that S is minimal in the
sense that no proper subcollection of S also forms a spanning set for the space.
We would like to prove that this forces S to be a basis. We already assuming one-
half of the definition of basis, so we only need to consider the other half: must
S also be linearly independent? If it were linearly dependent instead, then it
could be reduced to subcollection that forms a linearly independent spanning set
(Proposition 17.5.5). But S doesn’t have any subcollections that form spanning
sets for the vector space, let alone any linearly independent ones. So S cannot be
linearly dependent, forcing it to be linearly independent, as required. ■

Proof of Statement 2.a. Suppose B is a basis for a vector space, and that B

contains a finite number of vectors. Then by definition of basis, B is a spanning
set for the vector space, and so any collection of vectors that contains more
vectors than B must be linearly dependent (Lemma 17.5.7). In particular, if
some collection of vectors contains B as a proper subcollection, then that larger
collection must be linearly dependent. ■

Proof of Statement 2.b. Suppose S is a linearly independent collection of vectors
in a vector space, and that S is maximal in the sense that no other linearly
independent collection of vectors can contain S as a proper subcollection. We
would like to prove that this forces S to be a basis for the space. We already
assuming one-half of the definition of basis, so we only need to consider the other
half: must S also be a spanning set for the space? If it were not a spanning set,
then SpanS would merely be a proper subspace, and there would be other vectors
in the full vector space that are not in that subspace. Let v be one such vector.
Then Proposition 17.5.6 tells us that the collection of vectors containing both v
and every vector in S must be linearly independent. But this is not possible, since
this new, “larger” linearly independent collection would contain S as a proper
subcollection, and we have assumed that S is a maximal linearly independent
set of vectors. So S must also be a spanning set for the vector space, as required.

■

Theorem 18.5.3 Uniqueness of coordinate vectors. Given a basis for a vector
space, every vector in the space has one unique expression as a linear combination
of the basis vectors.

Proof. We will prove that two different linear combination expressions involving
basis vectors must compute to two different vectors, which will imply that one
single vector in the vector space cannot have two different expressions as linear
combinations of basis vectors. So suppose we have two different linear combina-
tion expressions involving basis vectors. Let v1,v2, . . . ,vm be a complete list of
the basis vectors involved in both expressions. By attaching a zero coefficient
to missing vectors, we can assume that both linear combination expressions
involve all of these basis vectors. Let a1,a2, . . . ,am represent the corresponding
coefficients in one of these linear combination expressions, and let b1,b2, . . . ,bm
represent the corresponding coefficients in the other. Note that we must have at
least one instance of a j ̸= b j in these collections of coefficients, because we have
assumed that these linear combination expressions are different. Now, these two
linear combination expressions compute to two vectors in the vector space,

v= a1v1 +a2v2 + . . .+amvm, w= b1v1 +b2v2 + . . .+bmvm.

We would like to prove that v ̸= w. Equivalently, we would like to prove that
v−w ̸= 0. By collecting like terms, this difference vector can also be expressed as
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a linear combination as

v−w= (a1 −b1)v1 + (a2 −b2)v2 +·· ·+ (am −bm)vm.

Since we have at least one instance of a j ̸= b j, we have at least one nonzero
coefficient in the expression above, and so the linear combination above is non-
trivial. And our basis vectors are linearly independent, so a nontrivial linear
combination of basis vectors cannot equal the zero vector. Therefore, v−w ̸= 0 as
desired. ■

Remark 18.5.4 In the theorem above, for the purposes of the uniqueness of an
expression as a linear combination of basis vectors, we do not consider reordering
a linear combination, or including or removing a term with a 0 coefficient, as
producing different linear combinations. (However, recall that for the purposes of
forming coordinate vectors, order in a linear combination does definitely matter,
as described in Warning 18.3.1.)



CHAPTER 19

Dimension

19.1 Discovery guide

Recall.

A basis for a vector space is a linearly independent spanning set.

Discovery 19.1 Answer each of the following assuming nonzero vectors in R3.

(a) What geometric shape is the span of one nonzero vector?

(b) (i) What is the definition of linearly dependent for a set of two vectors?

(ii) What does this mean geometrically?

(iii) What is the shape of the span of two nonzero linearly dependent
vectors?

(c) (i) What does linearly independent mean geometrically for a set of
two vectors?

(ii) What is the shape of the span of two linearly independent vectors?

(d) Based on your answers so far, do you think a set of two vectors can be a
basis for R3?

(e) (i) What is the definition of linearly dependent for a set of three vec-
tors?

(ii) What does this mean geometrically?

(iii) What is the shape of the span of three nonzero linearly dependent
vectors? (There are actually two possibilities here.)

(f) (i) What does linearly independent mean geometrically for a set of
three vectors?

(ii) What is the “shape” of the span of three linearly independent vectors?

(g) Do you think a set of four vectors can be a basis for R3?

(h) Determine the “dimension” of each of the following subspaces of R3. In each
case, how does the number you come up with correspond with the answers
you’ve given throughout this activity?

(i) A line through the origin.

275
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(ii) A plane through the origin.

(iii) All of R3.

(iv) The trivial subspace (i.e. just the origin).
We’ve been using the word “dimension” informally throughout our developl-

ment of the concepts of vectors (e.g. calling vectors in R2 two-dimensional vectors),
but finally we can match our intuition about the “dimension” of the various types
of subspaces of R3 with the theoretical concepts of linear independence and
spanning to make the following definition.

dimension of a vector space
the number of vectors required in a basis for that space

One way to obtain a basis for a space (and hence to determine its dimension)
is to assign parameters — then each independent parameter corresponds to a
basis vector.

For example, in R2 we have natural parameters associated to the x- and
y-coordinates: x = (x, y). Expanding this into a linear combination, we get
x = x(1,0)+ y(0,1). Parameter x corresponds to vector (1,0) and parameter y
corresponds to vector (0,1), and together the two corresponding vectors form a
basis {(1,0), (0,1)} for R2. (In fact, the standard basis for R2!). Since there were
two independent parameters required to described an arbitrary vector in the
space, this led to two basis vectors, and so the dimension of R2 is (surprise!) 2.

Step-by-step procedure.

(a) Express arbitrary elements in the space in terms of parameters.

(b) Use any extra conditions to reduce to the minimum number of independent
parameters (if necessary).

(c) Split up your parametric vector description into a linear combination based
on the remaining parameters.

(d) Extract the basis vector attached to each parameter.

(e) Count the basis vectors to determine the dimension of the space (which
should also correspond to the number of independent parameters required).

Discovery 19.2 In each of the following, determine a basis for the given space
using the parameter method outlined above, similarly to the provided R2 example.
Then count the dimension of the space.

(a) R3.

(b) The subspace of R3 consisting of vectors whose second coordinate is zero.

(c) The subspace of R3 consisting of vectors whose first and third coordinates
are equal.

(d) M2(R), i.e. the space of 2×2 matrices.

(e) The subspace of M2(R) consisting of upper-triangular matrices.

(f) The subspace of M2(R) consisting of upper-triangular matrices whose diag-
onal entries add to zero.

(g) The subspace of M2(R) consisting of matrices whose entries sum to zero.

(h) P5(R), i.e. the space of polynomials of degree 5 or less.
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(i) The subspace of P5(R) consisting of polynomials with constant term equal
to zero.

(j) The subspace of P5(R) consisting of odd polynomials, i.e. those involving
only odd powers of x (and no constant term).

(k) The subspace of P5(R) consisting of even polynomials, i.e. those involving
only even powers of x (and a constant term).

A vector space is called finite-dimensional if it can be spanned by a finite
set; otherwise, it is called infinite-dimensional. For example, Rn is finite-
dimensional for each value of n, because it can be spanned by the finite set of
standard basis vectors {e1,e2, . . . ,en}.

Discovery 19.3 Is the vector space of all polynomials is finite- or infinite-
dimensional?

Hint. If S is a finite set of polynomials, what are the possible degrees of the
polynomials in SpanS?

We’ve already seen that a linearly dependent spanning set can be reduced
to a basis (Proposition 18.5.1). Working the other way, we will use Proposi-
tion 17.5.6 to argue in Subsection 19.5.2 that a linearly independent set that
is not a spanning set can be built up to a basis by including additional vectors
(Proposition 19.5.4). Proposition 17.5.6 tells us exactly how to do this: to ensure
linear independence at each step, the new vector to be included should not be in
the span of the old (i.e. the new should not be any linear combination of the old).

Discovery 19.4 In each of the following, enlarge the provided linearly indepen-
dent set into a basis for the space.

Hint. Since we now know the dimensions of these spaces, we know how many
linearly independent vectors are required to form a basis. Just guess simple new
vectors to include in the given set, one at a time, and for each make sure your
new vector is not a linear combination of the vectors you already have. (You can
check this by trying to solve an appropriate system of linear equations.)

(a) V =R3, S = {(1,1,0), (1,0,1)}.

(b) V =M2(R), S = { [1 1
1 1

]
,

[1 0
1 −1

] }
.

Discovery 19.5 Suppose V is a finite-dimensional vector space, and W is a
subspace of V .

(a) What is the relationship between dimW and dimV? Justify your answer
in terms of the definition of dimension.

Hint. The pattern of the previous exercise, where a linearly independent
set can be built up into a basis, might help in articulating your justification.

(b) Is it possible for dimW = dimV to be true?
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19.2 Terminology and notation

finite-dimensional vector space
a vector space for which there exists a finite spanning set

infinite-dimensional vector space
a vector space for which there does not exists a finite spanning set

dimension of a finite-dimensional vector space
the number of vectors required in a basis for the space

dimV notation for the dimension of a finite-dimensional vector space V

Remark 19.2.1 In the case of an infinite-dimensional space V , we might write
dimV = ∞ to indicate this property. Similarly, we might write dimV < ∞ to
mean that a space V is finite-dimensional.

19.3 Concepts

In this section.

• Subsection 19.3.1 The “just-right” number of vectors in a spanning
set

• Subsection 19.3.2 Dimension as geometric “degrees of freedom”

• Subsection 19.3.3 Dimension as algebraic “degrees of freedom”

• Subsection 19.3.4 The dimension of a subspace

• Subsection 19.3.5 The dimension of the trivial vector space

19.3.1 The “just-right” number of vectors in a spanning set

In Discovery 19.1, we reminded ourselves of the geometric interpretation of
linear dependence and independence in R3.

Also see. Subsection 17.3.4

That discovery activity ties these new, abstract concepts back to our previous
descriptions of lines and planes in Chapter 14. In that chapter, we described a
line via an “initial” vector and a parallel vector, and we described a plane via an
“initial” vector and two parallel vectors that are not parallel to each other. Recall
that for a line or plane in R3 to be a subspace, it must contain the zero vector (i.e.
it must pass through the origin). In this case, we can (and always will) take the
“initial” point to be the origin.

So a line through the origin can be described by the vector equation x= tp,
where p is a nonzero vector parallel to the line. With our new concept of span,
we can instead write L =Span{p} to represent the line L through the origin that
is parallel to the vector p. One vector is the “just-right” size for the spanning
set for a line. If we had a spanning set for L consisting of two vectors, then
because L goes through the origin, and because spanning vectors are always part
of the space they span, both vectors would have to be parallel to the line and so
would be parallel to each other. That is, the two spanning vectors would be scalar
multiples of each other, and the spanning set would be linearly dependent.
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Similarly, a plane P through the origin described by the vector equation
x = sp1 + tp2, where p1,p2 are nonzero vectors parallel to the plane but not
to each other, can also be represented as P = Span{p1,p2}. Two is the “just-
right” size for the spanning set for a plane — one vector would only span a line,
and three vectors that are all parallel to the plane would have to be linearly
dependent.

When we consider all of R3, the “just-right” size for a spanning set is three —
two vectors would only span a plane (or just a line if the two vectors are parallel
to each other), and four vectors would be linearly dependent.

So it seems that there is always a “just-right” size for a spanning set to be a
basis — if it’s too small it spans only a subspace and not the whole space, and
if it’s too large it will be linearly dependent. We call this “just-right” size the
dimension of the space.

Checking that a proposed spanning set actually does span the whole space
can be difficult, as we noted at the end of Subsection 16.4.4. In Subsection 19.5.2,
we will find that the concept of dimension gives us a powerful way to sidestep this
task if we already know the dimension of the space. If we have the “just-right”
number of vectors, and those vectors are linearly independent, then the subspace
they span will have the same “size” (i.e. dimension) as the whole space, which
will force that subspace to in fact be the whole space.

See. Proposition 19.5.5.

19.3.2 Dimension as geometric “degrees of freedom”
Again thinking of our tasks and results in Discovery 19.1, we can make the
geometric interpretation of dimension more explicit.

Lines have dimension 1. Imagine standing on a line; how many “degrees of
freedom” of movement do you have while staying on the line? You can only
move forwards or backwards, and backwards is just the opposite (i.e. negative) of
forwards. So you only have one “degree of freedom” on a line, and this is reflected
in the fact that a basis for a line requires only one vector — that vector will
represent the forward direction, and its negative will represent the backward
direction. One “degree of freedom” on a line, and the dimension of a line is 1.

Planes have dimension 2. On a plane, you have two “degrees of freedom” of
movement: you can move forwards/backwards (one direction and its opposite), or
you can move side-to-side (a second direction and its opposite). So a basis for a
plane requires exactly two vectors that do not represent the same direction, and
the dimension of a plane is 2.

Space has dimension 3. When we consider all of space, we add a third dimension
representing a third “degree of freedom,” since you can now move upwards
or downwards in addition to the previous forward/backward and side-to-side
directions.

19.3.3 Dimension as algebraic “degrees of freedom”
There is an algebraic interpretation of the “degrees of freedom” point of view
discussed above that we can transplant from Rn to other vector spaces. Consider
again a plane in R3 described via a vector equation x = sp1 + tp2. Each of
the vectors p1,p2 represents an independent direction of movement along the
plane, providing us with our two geometric degrees of freedom on this plane of
dimension 2. Algebraically, these two degrees of freedom are provided by the
parameters s and t. To convert the general formula x= sp1+ tp2 representing all
vectors in the plane to a specific formula representing one vector on the plane, we
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need to choose a specific value for s (related to how far to move in the direction p1)
and a specific value for t (related to how far to move in the direction p2). These
two values can be chosen independently — that is, choosing a value for t does
not depend on what value is chosen for s, and vice versa. So two independent
parameters in a general description of every vector, representing two “degrees of
freedom,” corresponds to the dimension value of 2 for the plane.

In Discovery 19.2, we practised using this point of view to not only determine
the dimension of a space, but to extract a basis for the space from a general
parametric description of the vectors in the space. Below is a general procedure
for the process. See Subsection 19.4.1 for examples of using this procedure.

Procedure 19.3.1 Obtaining a basis from paramaters. To determine a basis
for a subspace U of a vector space V , when subspace U is not already described in
terms of a spanning set:

1. Determine a general, parametric expression capable of expressing all vectors
in V .

2. Use the defining conditions of the subspace U to reduce your general ex-
pression from the previous step to the minimum number of independent
parameters possible.

3. Expand the reduced parametric expression from the previous step to a linear
combination of the form

x= (parameter) · (vector)+ (parameter) · (vector)+·· ·+ (parameter) · (vector),

where there is one term in the linear combination for each independent
parameter, and the vectors involved are specific vectors in the space, not
involving parameters.

4. The collection of specific vectors in the general linear combination expression
from the previous step, without parameters, should now form a basis for U .

Remark 19.3.2

• This procedure can still be used in the case U is equal to the whole space
V , but likely Step 2 will not be needed. In this case, the procedure is likely
to produce a standard basis for V .

• In Remark 16.4.9, we claimed that that every subspace is somehow de-
fined by one or more homogeneous conditions. Typically, in Step 2 of the
procedure, you will be using such homogeneous conditions to express rela-
tionships between the parameters, in which some parameters can be solved
for and then eliminated by substituting for them in the general parametric
vector expression from Step 1.

• This procedure was actually one of the first things we learned, back in
Chapter 2! Except back then we called the procedure row reduction.
When we solve a homogeneous system of equations with m×n coefficient
matrix A, we are attempting to determine all vectors x that satisfy the
homogeneous condition Ax = 0. We could have started this process by
assigning parameters x1 = t1, x2 = t2, and so on, at the beginning of the
process, but this was not necessary because the matrix-reduction process
doesn’t involve any variable/parameter letters. By row reducing, we sim-
plify the original homogeneous conditions (i.e. the original equations in
the system) so that it becomes obvious how we can isolate certain of the
variables and express them in terms of the others (or determine that they
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are always zero and so can be eliminated completely). We then assign the
minimum number of parameters necessary, leading to a general, paramet-
ric expression for all vectors in the solution space. See Subsection 19.4.1
for an example of using this procedure to determine a basis for the solution
space of a homogeneous system.

19.3.4 The dimension of a subspace

In Discovery 19.5, we considered how the dimension of a subspace compares to
the dimension of the whole space. The dimension of a space is defined to be the
number of vectors required in a basis (i.e. a linearly independent spanning set)
for the space. We know what spanning set means for a subspace — a set of
vectors is a spanning set when the collection of all possible linear combinations
of the spanning set vectors is the same as the collection of all vectors in the
subspace. But the definition of linearly independent does not seem to be
relative to the space that the vectors are in, except for the use of the vector
operations for that space, which are always the same in a subspace as they are
in the whole space.

In more detail, the definitions of linear dependence and independence involve
only the zero vector and the concept of linear combination, and every subspace
contains the zero vector and is closed under taking linear combinations (Propo-
sition 16.5.2). So if we have a set of vectors in a subspace of a larger vector
space, and we would like to determine whether that set is linearly dependent or
independent, it is irrelevant whether we consider those vectors as being a part of
the subspace or as being a part of the large space — the answer will be the same
regardless of our point of view on where these vectors “live.”

It seems like a spanning set for a subspace should require fewer vectors than
a spanning set for the larger space. This was our experience in Discovery 19.2,
where eliminating dependent parameters using the subspace conditions led to
a smaller basis. And the concepts of linear dependence/independence are
independent of the concept of subspace. So our intuition is that the dimension
of a subspace should be less than the dimension of the whole space, and that is
exactly what we will see in Subsection 19.5.3.

19.3.5 The dimension of the trivial vector space

What should the dimension of the trivial vector space {0} be? If this were the
subspace of Rn consisting of just the origin, we would have zero “degrees of
freedom” of movement, as we couldn’t move at all without leaving the subspace.
And if we want a general algebraic expression describing all vectors in this
space, zero parameters are needed since we can simply write x = 0. So both
our geometric and our algebraic conceptions of dimension suggest that dim{0}
should be 0.

Furthermore, in the previous subsection we decided that the dimension of a
subspace should be smaller than the dimension of the whole space. The trivial
vector space is always a subspace of every vector space, even 1-dimensional
spaces. But clearly the trivial space is not the same “size” as a 1-dimensional
space, so its dimension should be strictly smaller than 1, which only leaves
dimension-0 as a possibility.

But what about the technical definition of dimension? How many vectors are
required in a basis for the trivial space? A basis for {0} cannot contain a nonzero
vector, because a span always contains its spanning vectors and this space does
not contain anything nonzero. But while the collection of vectors consisting of
just the zero vector is a spanning set for the space of vectors consisting of just
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a zero vector, we decided in Chapter 17 that the zero vector all by itself should
be considered a linearly dependent set. However, the collection of vectors that
contains no vectors at all (i.e. the empty set) is linearly independent, because
it does not contain an example of a vector that can be expressed as a linear
combination of other vectors in the set (since it contains nothing at all). So if
we just decide that Span{} should result in the trivial vector space, then we can
consider the empty set of vectors {} as a basis for the trivial space {0}, and this
basis contains 0 vectors.

For all of these reasons, it seems correct to consider dim{0} to be 0.

19.4 Examples

In this section.

• Subsection 19.4.1 Determining a basis from a parametric expres-
sion

• Subsection 19.4.2 An infinite-dimensional example

• Subsection 19.4.3 Enlarging a linearly independent set to a basis

19.4.1 Determining a basis from a parametric expression
Example 19.4.1 From the discovery guide. First, let’s carry out some of the
examples from Discovery 19.2.

1. In Discovery 19.2.c, we considered a certain subspace of R3.

An arbitrary vector in R3 requires three parameters to describe its three
components: x= (a,b, c). If we restrict to just those vectors whose first and
third components are equal, we can replace c by a, to get

x= (a,b,a)= (a,0,a)+ (0,b,0)= a(1,0,1)+b(0,1,0).

So a basis for this subspace of R3 is B= {(1,0,1), (0,1,0)}, and the dimension
is 2.

2. In Discovery 19.2.g, we considered a certain subspace of M2(R).

An arbitrary matrix in M2(R) requires four parameters to describe its four
entries:

A =
[
a b
c d

]
.

If we restrict to those matrices whose entries sum to zero, so that a+b+
c+d = 0, then we can isolate d = −a− b− c and substitute that into the
matrix:

A =
[
a b
c −a−b− c

]
=

[
a 0
0 −a

]
+

[
0 b
0 −b

]
+

[
0 0
c −c

]
= a

[
1 0
0 −1

]
+b

[
0 1
0 −1

]
+ c

[
0 0
1 −1

]
.

So this subspace of M2(R) has dimension 3, with basis

B=
{[

1 0
0 −1

]
,
[

0 1
0 −1

]
,
[

0 0
1 −1

]}
.



19.4. EXAMPLES 283

3. In Discovery 19.2.j, we considered a certain subspace of P5(R).

An arbitrary polynomial in P5(R) requires six parameters, one for each
power of x, along with a parameter for the constant term:

p(x)= a0 +a1x+a2x2 +a3x3 +a4x4 +a5x5.

If we restrict to only odd polynomials, we need to eliminate the constant
term and the even powers of x:

p(x)= a1x+a3x3 +a5x5.

(Equivalently, we have applied the homogeneous conditions a0 = 0, a2 = 0,
and a4 = 0.) So this subspace of P5(R) has dimension 3, with basis B =
{x, x3, x5}.

□

Example 19.4.2 Dimensions of familiar spaces via parameters. Now
let’s examine how the dimensions of our favourite example spaces relate to our
parametric point of view. We considered specific examples of these in parts of
Discovery 19.2, but here we’ll work more generally.

1. An arbitrary vector in Rn requires n parameters, one for each component:

x= (x1, x2, . . . , xn).

If we expanded this into a linear combination, each parameter would be
attached to a standard basis vector e j. Since we’ve got n parameters and a
corresponding n standard basis vectors, we have

dimRn = n.

2. An arbitrary m×n matrix in Mm×n(R) requires mn parameters, one for
each entry:

A = [ai j], 1≤ i ≤ m, 1≤ j ≤ n.

If we expanded this into a linear combination, each parameter would be
attached to a standard basis matrix E i j, with zeros in all entries except
for a single 1 in the (i, j)th entry. Since we’ve got mn parameters and a
corresponding mn standard basis matrices, we have

dimMm×n(R)= mn.

3. An arbitrary polynomial in Pn(R), the space of polynomials of degree n or
less, requires n+1 parameters, one for each power of x plus an extra one
for the constant term:

p(x)= a0 +a1x+a2x2 +·· ·+anxn.

This is already naturally expressed as a linear combination, and each
parameter is attached to a polynomial from the standard basis

B= {1, x, x2, . . . , xn}.

Since we’ve got n+1 parameters and a corresponding n+1 standard basis
polynomials, we have

dimPn(R)= n+1.

□
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Example 19.4.3 The solution space of a homogeneous system. In Re-
mark 19.3.2, we noted how assigning parameters after row reducing a homoge-
neous system corresponded directly to a parameter-based procedure for determine
the basis for a space. Let’s illustrate this correspondence with an example.

Consider the homogeneous system in Discovery 2.4, which we solved in
Example 2.4.4. In Example 16.4.8, we used the Subspace Test to verify that
the solution set of a homogeneous system with an m×n coefficient matrix is a
subspace of Rn. The system from Discovery 2.4 has a 4×4 coefficient matrix that
we reduced:  3 6 −8 13

1 2 −2 3
2 4 −5 8

 row−−−−→
reduce

 1 2 0 −1
0 0 1 −2
0 0 0 0

 .

Assigning parameters to free variables x2, x4, we obtained the general solution
in parametric form:

x1 =−2s+ t, x2 = s, x3 = 2t, x4 = t.

We can use these expressions as components in a general solution vector, and
expand it out to a linear combination, just as in the previous examples in this
subsection:

x=


−2s+ t

s
2t
t

=


−2s

s
0
0

+


t
0
2t
t

= s


−2

1
0
0

+ t


1
0
2
1


Since two parameters are needed to describe the solution vectors for this system,
the solution space has dimension 2, and a basis for this subspace is

B=




−2
1
0
0

 ,


1
0
2
1


 .

A look ahead. We will study solution spaces of homogeneous systems further in
Chapter 20.

□

19.4.2 An infinite-dimensional example
All of the examples in the previous subsection involved finite-dimensional
spaces. Here’s an example of an infinite-dimensional space.

In Discovery 19.3, we considered the space of all polynomials. This space can-
not be spanned by any finite collection of polynomials, because such a collection
would have a polynomial of largest degree, and then every linear combination
of those polynomials would have that degree or smaller. So the span of those
polynomials could never include polynomials of larger degree. Thus,

dimP(R)=∞.

We can still come up with a basis for this space, but it will contain an infinite
number of vectors:

P(R)=Span{1, x, x2, x3, . . . }.

This equality says that every polynomial is a linear combination of a finite
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number of powers of x. This spanning set is also linearly independent because
no power of x can be expressed as a linear combination of other powers of x.

19.4.3 Enlarging a linearly independent set to a basis
In Discovery 19.4.b, we are given a linearly independent set S of vectors in
V =M2(R), and we would like to enlarge it to a basis for the whole space. Since
S is linearly independent, it is a basis for the subspace SpanS. Since we know
that dimM2(R)= 4, we need to add two more linearly independent vectors to get
up to a basis for V . To do this, we can use Proposition 17.5.6, which says that
to enlarge a linearly independent set, we need to add a vector from outside the
span of the vectors we already have.

An obvious source for candidate vectors to use to enlarge S is the standard
basis B = {E11,E12,E21,E22}. We know that SpanS can’t contain all four of
these vectors, because then Statement 1 of Proposition 16.5.6 would imply that
all of V = SpanB would be contained in SpanS, which is not possible because
dim(SpanS) is just 2. So let’s start by checking whether E11 is in SpanS. The
vector equation

k1

[
1 1
1 1

]
+k2

[
1 0
1 −1

]
=

[
1 0
0 0

]
leads to a system of equations with augmented matrix as on the left below, which
we can reduce: 

1 1 1
1 0 0
1 1 0
1 −1 0

 row−−−−→
reduce


1 0 0
0 1 0
0 0 1
0 0 0

 .

The one in the last column indicates that the system is inconsistent, which is
what we want — there is no solution, so E11 is not in SpanS, and so we can
enlarge S by including E11 and it will remain linearly independent. Call the
enlarged set S′.

Now let’s check if E12 is in the span of these three linearly independent
vectors that we have already. Our vector equation is now,

k1

[
1 1
1 1

]
+k2

[
1 0
1 −1

]
+k3

[
1 0
0 0

]
=

[
0 1
0 0

]
which leads to a system with augmented and reduced augmented matrices

1 1 1 0
1 0 0 1
1 1 0 0
1 −1 0 0

 row−−−−→
reduce


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Again, there is no solution, so E12 is not in SpanS′. We are now up to four
linearly independent vectors, which must form a basis for the 4-dimensional
space M2(R).

See. Corollary 19.5.6 in Subsection 19.5.2.

Our final basis is{[
1 1
1 1

]
,
[

1 0
1 −1

]
,
[
1 0
0 0

]
,
[
0 1
0 0

]}
.
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A look ahead. In the example above, we could have augmented our initial
spanning set vectors with all standard basis vectors, and checked all of them all
at once:

1 1 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 −1 0 0 0 1

 row−−−−→
reduce


1 0 0 0 1/2 1/2
0 1 0 0 1/2 −1/2
0 0 1 0 −1 0
0 0 0 1 −1/2 −1/2

 .

By changing the position of the vertical line that indicates the separation of the
coefficients from the column of constants one column at a time, we can change
our point of view on each augmented column from representing a vector to be
achieved as a linear combination of the spanning vectors to a vector included as
a spanning vector.

A look ahead. We will see in Chapter 20 how the leading ones in the reduced
matrix tell us exactly which of the original six vectors are linearly independent.

19.5 Theory

In this section.

• Subsection 19.5.1 Dimension as size of a basis

• Subsection 19.5.2 Consequences for the theory of linear dependence/
independence and spanning

• Subsection 19.5.3 Dimension of subspaces

19.5.1 Dimension as size of a basis
Since dimension is defined in terms of basis, it is important to know that
we can always form a basis. The following fact is true for all vector spaces,
but we will state and prove it only for finite-dimensional spaces. It is essen-
tially just a restatement of Proposition 18.5.1 (which itself is a restatement of
Proposition 17.5.5).

Theorem 19.5.1 Every finite-dimensional vector space has a basis.

Proof. By definition, a vector space is finite-dimensional when it has a finite
spanning set. Proposition 18.5.1 states that every finite spanning set can be
reduced to a basis. So if a finite spanning set exists for a space, so does a basis.

■
The next two facts allow us to attach a single number to a vector space as the

dimension of the space.

Lemma 19.5.2 A basis for a finite-dimensional vector space must contain a finite
number of vectors.

Proof. By definition, a finite-dimensional vector space has at least one example
of a spanning set that contains a finite number of vectors. By Lemma 17.5.7,
any other set of vectors from this space that contains more vectors than this
example spanning set must be linearly dependent. But a basis is always linearly
independent, and so cannot have more vectors than the finite number in this
example spanning set. ■

Theorem 19.5.3 Uniformity of dimension. Every basis for a finite-dimensional
vector space has the same number of vectors.
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Proof. Suppose B1 and B2 are two different bases for a finite-dimensional vector
space V . First, both B1 and B2 must contain a finite number of vectors, by
Lemma 19.5.2. Now, B1 is a basis, so it is a spanning set, and so by Lemma 17.5.7
any set that contains more vectors than B1 must be linearly dependent. But B2
is also a basis, so it is linearly independent. Therefore, B2 cannot contain more
vectors than there are in B1.

The same reasoning works the other way: B1 cannot contain more vectors
than there are in the spanning set B2, otherwise it would be linearly dependent.
Since neither set of vectors can contain more vectors than the other, the two sets
must contain exactly the same number of vectors. ■

19.5.2 Consequences for the theory of linear dependence/
independence and spanning

Now we extend Proposition 17.5.6 to establish a “building-up” counterpart to
Proposition 18.5.1.

Proposition 19.5.4 Enlarging an independent set to a basis. In a finite-
dimensional vector space, every linearly independent set of vectors can be en-
larged to a basis. That is, if S is a linearly independent set of vectors in a finite-
dimensional vector space, then there exists a basis for the space that contains S as
a subcollection.

Clarification. In this proposition, we consider the hypothetical “can be enlarged”
to allow the possibility of not enlarging the set at all, in case the linearly indepen-
dent set is already a basis.

Proof. Suppose S is a linearly independent set of vectors in a finite-dimensional
vector space. If it is also a spanning set, then it is already a basis and does not
need to be enlarged. If it is not a spanning set, then there are vectors in the
space that are not in SpanS. Choose a vector v not in SpanS, and let S′ be the
set that contains all the vectors of S as well as v. By Proposition 17.5.6, the set
S′ is still linearly independent. If S′ is also a spanning set, then it is a basis and
we have the desired enlargement from S. Otherwise, we could again enlarge S′
by some vector that is not in SpanS′ and still have a linearly independent set.
We can continue in this fashion, but we will have to reach a point where we will
not be able to enlarge our set any further without it becoming linearly dependent,
since we know that in a finite-dimensional space, once a set of vectors gets too
large it can no longer be linearly independent (Lemma 17.5.7). At this point,
our enlarged linearly independent set must also be a spanning set (and hence a
basis), since if it weren’t we would be able to enlarge it again as before, with the
enlarged set remaining independent. ■

The concept of dimension gives us another way to know whether a set of
vectors is a basis, since it is the “just-right” size for a set of vectors to be a basis.

Proposition 19.5.5 Using dimension to help test basis. Suppose S is a set
of vectors in a finite-dimensional vector space, and the number of vectors in S is
exactly equal to the dimension of the vector space.

1. If S is linearly independent, then we can conclude that S is also a spanning
set without checking.

2. If S is a spanning set, then we can conclude that S is also linearly indepen-
dent without checking.

Proof of Statement 1. Assume that S is linearly independent. By Proposi-
tion 19.5.4, S can be enlarged to a basis for the vector space. But every basis for
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that space contains the same number of vectors (Theorem 19.5.3), and we have
assumed that S already contains that number of vectors. So S must not need to
be enlarged to become a basis — it must already be a basis itself, and so must be
a spanning set. ■

Proof of Statement 2. Assume that S is a spanning set. By Proposition 18.5.1,
S can be reduced to a basis for the vector space. But every basis for that space
contains the same number of vectors (Theorem 19.5.3), and we have assumed
that S already contains that number of vectors. So S must not need to be reduced
to become a basis — it must already be a basis itself, and so must be linearly
independent. ■

Corollary 19.5.6 Suppose S is a set of vectors in a finite-dimensional vector space,
and the number of vectors in S is exactly equal to the dimension of the vector
space. If S is either known to be linearly independent or known to be a spanning
set, then S must also have the other property, and hence must be a basis for the
vector space.

Remark 19.5.7 In a space whose dimension is known, the above corollary ef-
fectively reduces the amount of work required to check whether a set of vectors
is a basis in half, since if we start with the right number of vectors in a basis-
candidate set then we only need to check one of the requirements in the definition
of basis. In practice, it is usually easier to carry out the Test for Linear Depen-
dence/Independence than it is to check for spanning.

19.5.3 Dimension of subspaces
As discussed in Subsection 19.3.4, a set of linearly independent vectors in a
subspace is still linearly independent when considered as a set of vectors in the
larger space. So we can use Proposition 19.5.4 to relate a basis for a subspace to
a basis for the whole space, and then also the dimension of the subspace to the
dimension of the whole space.

Proposition 19.5.8 Suppose U is a subspace of a finite-dimensional vector space
V . Then the following all hold true.

1. Every basis for U can be enlarged to a basis for V .

2. We have dimU ≤ dimV .

3. It is the case that dimU = dimV only if U is actually the whole space V .

Proof of Statement 1. Since U is a subspace of V , each vector of U is also a vector
of V . So a basis for U will be a linearly independent set of vectors in V , which
Proposition 19.5.4 tells us can be enlarged to a basis for V . ■

Proof of Statement 2. Recall that the dimenion of a vector space (whether a
subspace of another space or not) is defined to be the number of vectors in a
basis for the space. Since every basis for U can be enlarged to a basis for V , the
number of vectors in a basis for U cannot be larger than the number of vectors in
a basis for V . ■

Proof of Statement 3. Let B be a basis for U, so that U = SpanB. If we have
dimU = dimV , then the number of vectors in B is exactly equal to the dimension
of V . But B is also linearly independent in V , so by Statement 1 of Proposi-
tion 19.5.5, it must also be a spanning set for V . Thus, U =SpanB=V . ■
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Column, row, and null spaces

20.1 Discovery guide

In this discovery guide.

• Subsection 20.1.1 Column space

• Subsection 20.1.2 Row space

• Subsection 20.1.3 Null space

• Subsection 20.1.4 Relationship between the three spaces

20.1.1 Column space

Take a minute to remind yourself of the column-wise view of matrix multiplica-
tion from (***) in Subsection 4.3.7. In words, this matrix multiplication pattern
says that in a matrix product AB,

• the first column of AB is the result of multiplying matrix A against the
first column of B,

• the second column of AB is the result of multiplying matrix A against the
second column of B,

• and so on.

In the first discovery activity, we’ll use this pattern to obtain another impor-
tant pattern involving the standard basis vectors.

Discovery 20.1 Notice that the columns of the identity matrix are precisely the
standard basis vectors e1,e2, . . . ,en of Rn. Use this observation, the matrix multi-
plication pattern described above, and the matrix identity AI = A to complete
the following.

• Product Ae1 is equal to .

• Product Ae2 is equal to .

• Product Ae j is equal to .

Discovery 20.2 Think of an m×3 matrix A as being made out of three column

289
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vectors from Rm:

A =

 | | |
a1 a2 a3

| | |

 .

(a) Suppose we want to compute Ax, where x = (5,3,−1) (but as a column
vector). Use the pattern you discovered in Discovery 20.1 to fill in the
following.

Since  5
3

−1

= 5e1 +3e2 + (−1)e3,

then

A

 5
3

−1

= A(5e1 +3e2 + (−1)e3)= 5 +3 + (−1) .

From this, we see that the column vector Ax is in the span of

.

(b) Convince yourself that the details/conclusion of Task a would be the same
for every x, not just the example x we used.

(c) Now consider system Ax=b. If this system is consistent (i.e. has at least
one solution), then our final conclusion from Task a would also be true
about the column vector b, since b= Ax for at least one x.

So system Ax=b can only be consistent if b is in the span of

.

For m×n matrix A, from Discovery 20.2 it appears that the subspace of Rm

obtained by taking the span of the columns of A is important when considering
consistency of the system Ax = b. Call this subspace the column space of
A. Let’s explore how to reduce our spanning set (the columns of A) down to a
basis. For this task we’ll need a fact about how multiplication by a matrix affects
the linear independence of column vectors that we will state as Statement 1 of
Proposition 20.5.1 in Subsection 20.5.1. You should read this statement before
proceeding.

Discovery 20.3 The following matrix is in RREF:

B =


1 2 0 3 0 5
0 0 1 4 0 6
0 0 0 0 1 7
0 0 0 0 0 0

 .

(a) Build a linearly independent set of column vectors from B by working
from left to right, and either including or discarding each column based
on whether it is linearly independent from the vectors you have already
accumulated. (You should, of course, begin by “including” the first column.)
What do you notice about your final set of linearly independent columns,
relative to the reduced form of B?

(b) Suppose A is a matrix that can be reduced to B by a single elementary



20.1. DISCOVERY GUIDE 291

operation. Then there is an elementary matrix E so that

B = EA =

 | | | | | |
Ea1 Ea2 Ea3 Ea4 Ea5 Ea6

| | | | | |

 ,

where the a j are the columns of A. Use your answer to Task a along with
the above-referenced Statement 1 to determine which columns of A form a
linearly independent set.

(c) Now suppose A is a matrix that can be reduced to B by two elementary
operations. Then there are elementary matrices E1,E2 so that B = E2E1 A.
Similarly to Task b, from B = E2(E1 A), decide which columns of E1 A are
linearly independent. Then from the above-referenced Statement 1 and

E1 A =

 | | | | | |
E1a1 E1a2 E1a3 E1a4 E1a5 E1a6

| | | | | |


(where the a j are the columns of A), decide which columns of A are linearly
independent.

(d) Now extrapolate to any number of row operations to complete the following
statement: to create a linearly independent set of column vectors from a
matrix A, row reduce A to RREF, and then take those columns of A that
correspond to in RREF(A).

Discovery 20.4

(a) Use the procedure you’ve developed in Discovery 20.3.d to develop a rein-
terpretation of the Test for Linear Dependence/Independence for vectors
in Rm: if v1,v2, . . . ,vn are vectors in Rm, write these vectors as columns
in a matrix, row reduce, and then you will know the original vectors are
linearly independent if .

(b) Recall that a square matrix is invertible if and only if it can be row
reduced to I. Use the procedure for testing linear independence that
you’ve developed in Task a to create another condition that is equivalent
to invertibility: a square matrix is invertible if and only if its columns

.

(c) Let’s go full circle. Combine Task a and Task b to complete the following
condition: a collection of n vectors in Rn is a basis if and only if the square
matrix formed by using the vectors as columns has determinant .

20.1.2 Row space
Why let the columns of a matrix have all the fun? Let’s now explore the subspace
of Rn formed by the span of the rows in an m×n matrix, called the row space
of the matrix.

In the next discovery activity, we’ll need to recall Statement 2 of Proposi-
tion 16.5.6 that gives us a way to determine when two spans are the same. You
should re-read that statement before proceeding.

Discovery 20.5 Assume v1,v2,v3,v4 to be vectors in some vector space V .

(a) What does the above-referenced Statement 2 say about Span{v1,v2,v3,v4}
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and Span{v1,v4,v3,v2}?

(b) Complete the statement: if matrix A′ is obtained from A by swapping two
rows, then the row spaces of A′ and of A are .

(c) What does the above-referenced Statement 2 say about Span{v1,v2,v3,v4}
and Span{v1,v2,−7v3,v4}?

(d) Complete the statement: if matrix A′ is obtained from A by multiplying
some row by a nonzero constant, then the row spaces of A′ and of A are

.

(e) What does the above-referenced Statement 2 say about Span{v1,v2,v3,v4}
and Span{v1,v2 +3v1,v3,v4}?

(f) Complete the statement: if matrix A′ is obtained from A by adding a
multiple of one row to another, then the row spaces of A′ and of A are

.

Discovery 20.6

(a) Based on Discovery 20.5, the row spaces of a matrix and of its RREF are
.

(b) Determine a basis for the row space of a matrix A for which

RREF(A)=


1 0 2 0 3
0 1 4 0 5
0 0 0 1 6
0 0 0 0 0

 .

Discovery 20.7 If you have a collection of vectors in Rn and you want to obtain
a basis for the subspace that the collection spans, you now have two options:
either use those vectors as the columns in a matrix and row reduce to determine
a basis for its column space, or use those vectors as the rows in a matrix and
row reduce to determine a basis for its row space. Can you think of a reason you
might choose to use column space instead of row space? And a reason you might
choose to use row space instead of column space?

20.1.3 Null space

There is one more subspace of Rn associated to a matrix A — the solution space
of the homogeneous system Ax= 0. Instead of solution space, from this point
forward we will refer to it as the null space of A.

Recall. We have previously used the Subspace Test to show that the solution set
of a homogeneous system with a m×n coefficient matrix is a subspace of Rn —
see Example 16.4.8.

Discovery 20.8 Suppose A is a matrix whose RREF is as given below. Use the
“independent parameter” method to determine a basis for the null space of A.

RREF(A)=

 1 −1 0 2 3
0 0 1 2 −2
0 0 0 0 0


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20.1.4 Relationship between the three spaces
Discovery 20.9

(a) How can you determine the dimensions of the column/row/null spaces of a
matrix from its RREF?

(b) For an m×n matrix A, what is the relationship between the dimension of
its column space, the dimension of its null space, and its size?
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20.2 Terminology and notation

The following definitions all apply to an m×n matrix.

column space
the subspace of Rm formed by the span of the columns of the matrix

row space
the subspace of Rn formed by the span of the rows of the matrix

null space
the subspace of Rn formed by the solution set of the homogeneous
system with that matrix as the coefficient matrix

nullity the dimension of the null space of the matrix

20.3 Concepts

In this section.

• Subsection 20.3.1 Column space

• Subsection 20.3.2 Row space

• Subsection 20.3.3 Column space versus row space

• Subsection 20.3.4 Null space and the dimensions of the three spaces

We have already seen in Example 16.4.8 that the solution set of a homoge-
neous system Ax= 0 with m×n coefficient matrix A is a subspace of Rn. We will
return to this special subspace at the end of this section, but first we will discuss
a special subspace of Rm related to nonhomogeneous systems with coefficient
matrix A.

20.3.1 Column space

The “consistent space” of a coefficient matrix. The solution set of a nonho-
mogeneous system Ax=b with m×n coefficient matrix A cannot be a subspace
of Rn because it can never contain the zero vector. Even worse, if the system is
inconsistent, then the solution set does not contain any vectors at all.

Question 20.3.1 Amongst all systems with coefficient matrix A, which are
consistent? □

We know that the homogeneous system Ax= 0 is consistent because it has
at least the trivial solution. But for what other vectors of b besides b= 0 is the
system Ax=b consistent? It is possible to verify directly that the collection of
all such b vectors is a subspace of Rm.

Check your understanding. Apply the Subspace Test to verify that for a given
m×n matrix A, the collection of all vectors b in Rm for which the system Ax=b
is consistent forms a subspace of Rm.

Until we know more about it, for now let’s refer to this subspace of Rm as the
consistent space of A.
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Consistent space versus column space. To better understand this so-called
consistent space, we should relate it back to the matrix A as we did in Discov-
ery 20.2, because A is the only thing common to all the b vectors in this space.
Let’s again think of A as being made up of column vectors in Rm:

A =

 | | |
c1 c2 · · · cn
| | |

 .

In Discovery 20.1, we found that the result of computing Ae j is c j, the jth column
of A (where e j is the jth standard basis vector in Rn, as usual). But this says
that each system Ax= c j is consistent, since there is at least one solution x= e j.
Therefore, each of the columns of A is in the consistent space of A. And because
the span of these columns is the smallest subspace that contains each of them,
we can conclude that every vector in the column space Span{c1,c2, . . . ,cn} of A is
also in the consistent space of A.

What other vectors could be in this space? If Ax=b is consistent, then it has
at least one solution

x= x0 =
 x1

x2
...

xn

= x1e1 + x2e2 +·· ·+ xnen.

But then

b= Ax0

= A(x1e1 + x2e2 +·· ·+ xnen)

= x1 Ae1 + x2 Ae2 +·· ·+ xn Aen

= x1c1 + x2c2 +·· ·+ xncn. (*)

So whenever Ax = b is consistent, we find that b is equal to some linear com-
bination of the columns of A (with coefficients taken from the components of
a solution vector). In other words, every vector in the consistent space of A is
also in the column space of A. So the two spaces are equal: the system Ax=b
is consistent when, and only when, the vector of constants b is in the
column space of A.

Determining a basis for a column space. Since the columns of A are, by
definition, a spanning set for the column space of A, we can reduce it to a basis.
Once again, we can apply row reduction to this task. Row reducing is equivalent
to multiplying on the left by elementary matrices, and when we defined matrix
multiplication in Subsection 4.3.7 we did so column-by-column:

EA =

 | | |
Ec1 Ec2 · · · Ecn
| | |

 .

Because matrix multiplication distributes over linear combinations, multiply-
ing a collection of column vectors by a common matrix cannot create
independence out of dependence. Even better, the process of row reducing
can be reversed (i.e. we are multiplying by invertible matrices), so it follows
that multiplying a collection of column vectors by an invertible common
matrix cannot create dependence out of independence.

See. Proposition 20.5.1 in Subsection 20.5.1.
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As we partially reasoned in Discovery 20.3, this means that we can recognize
independence/dependence relationships amongst the columns of A from the
independence/dependence relationships amongst the columns of reduced forms
of A, leading to the following procedure.

Procedure 20.3.2 To determine a basis for the column space of matrix A.

1. Reduce to at least REF.

2. Extract from A all those columns in positions corresponding to the positions
of the leading ones in the reduced matrix.

These extracted columns will form a basis for the column space of A.

Remark 20.3.3 It is important that you take the basis vectors from the
columns of A, not from the columns of the reduced matrix — row operations do
not change independence/dependence relationships amongst the columns, but
they do change the column space.

Using column space to determine linear dependence/independence. In
Discovery 20.4.a, we used this new procedure to create a reinterpretation of the
Test for Linear Dependence/Independence for vectors in Rm.

Procedure 20.3.4 To use row reduction to test linear dependence/
independence in Rm. To determine whether a collection of n vectors in Rm

is linearly dependent or independent, form an m×n matrix by using the vectors
as columns, and then row reduce to determine the rank of the matrix. If the rank
is equal to n (i.e. there is a leading one in every column of the reduced matrix),
then the vectors are linearly independent. If the rank is less that n (i.e. at least
one column of the reduced matrix does not contain a leading one), then the vectors
are linearly dependent.

Note that this isn’t really a new version of the Test for Linear Dependence/
Independence, it’s just a shortcut — if we were to use the full test, the column
vectors we are testing would appear as the columns of the coefficient matrix for
the homogeneous system created by the test. (See Example 17.4.1, and the other
examples in Subsection 17.4.1.)

In Discovery 20.4.b and Discovery 20.4.c, we also used this new procedure to
connect column space to invertibility for a square matrix. We will summarize
these new facts in Subsection 20.5.3.

20.3.2 Row space
Analyzing the row space of a matrix is considerably easier. As we discovered in
Discovery 20.5 and Discovery 20.6, elementary row operations do not change the
row space of a matrix, so the row spaces of a matrix and each of its REFs are
the same space. Clearly we do not need the zero rows from an REF to span this
space. But the pattern of leading ones guarantees that the nonzero rows in an
REF are linearly independent.

See. Corollary 20.5.4 in Subsection 20.5.2.

Procedure 20.3.5 To determine a basis for the row space of matrix A.

1. Reduce to at least REF.

2. Extract the nonzero rows from the REF you have computed.

These extracted rows will form a basis for the row space of A.
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Remark 20.3.6 Note the difference from the column space procedure — in this
procedure we get the basis vectors from the reduced matrix, not from the original
matrix.

We can also use the row space procedure to test vectors for linear indepen-
dence.

Procedure 20.3.7 A second way to use row reduction to test linear
dependence/independence in Rm. To determine whether a collection of m
vectors in Rn is linearly dependent or independent, form an m×n matrix by using
the vectors as rows, and then row reduce to determine the rank of the matrix. If
the rank is equal to m (i.e. no zero rows can be produced by reducing), then the
vectors are linearly independent. If the rank is less that n (i.e. reducing produces
at least one zero row), then the vectors are linearly dependent.

20.3.3 Column space versus row space

Question 20.3.8 Which procedure — column space or row space — should we
use? □

When testing vectors from Rn for linear independence, we clearly have a
choice of whether to form a matrix using those vectors as columns or as rows. But
we also have a choice when computing a basis for either type of space, because
the column space of a matrix is the same as the row space of the transpose, and
the row space of a matrix is the same as the column space of the transpose.

In Discovery 20.7, you were asked to think about this question. You might
have considered the end results of the two procedures to determine the pros and
cons of one procedure over the other.

Column space
Produces a basis involving vectors from the original collection.

Row space
Produces a “simplified” basis.

In the column space procedure, we always go back to the original matrix to
pick out certain columns. So, this procedure effectively performs the task of
reducing a spanning set down to a basis, a task that we knew could be done
(Proposition 18.5.1) but didn’t have a systematic means of carrying out. In the
row space procedure, we take our basis vectors from the simplified nonzero
rows of an REF for the matrix. Because the leading one in each row is in a
different position, expressing other vectors in the space as linear combinations
of these basis vectors is much more straightforward than it is in general. In fact,
if you have taken a basis for the row space from the RREF, expressing other
vectors in the space as linear combinations of these basis vectors can be done by
inspection.

20.3.4 Null space and the dimensions of the three spaces
We have already seen through examples in Subsection 19.4.1 how to extract a
basis for the solution space for a homogeneous system Ax = 0 (now called the
null space of A) from the parameters assigned after row reducing.

The null space of A doesn’t just represent the set of solutions to the homoge-
neous system — Lemma 4.5.4 tells us that it represents most of the data we need
in order to know the solution set of every system that has A as a coefficient ma-
trix. If we know one specific solution x=x1 to nonhomogeneous system Ax=b,
then every other solution can be obtained by adding to x1 a vector from the null
space. Geometrically, this represents a translation of the null space away from



298 CHAPTER 20. COLUMN, ROW, AND NULL SPACES

the origin, like a plane that is translated away from the origin by an “initial”
point x1.

All three spaces — column, row, and null — are connected through the RREF
of the matrix. For column space, we get a basis vector for each leading one in the
RREF. For row space, we get a basis vector for each nonzero row in the RREF,
and a row in the RREF is nonzero precisely when it contains a leading one. So
even though column space is a subspace of Rm and row space is a subspace of Rn

(where A is an m×n matrix), the column space and the row space of A have
the same dimension, and this dimension is equal to the rank of A. On the other
hand, for the null space we get one basis vector for each parameter required
to solve the homogeneous system. Parameters are assigned to free variables,
and free variables are those whose columns do not contain a leading one. So
the dimension of the null space is equal to the difference between the number of
columns of A and the rank of A, which is just a more sophisticated way to state
Proposition 2.5.8.

20.4 Examples

In this section.

• Subsection 20.4.1 The three spaces

• Subsection 20.4.2 Enlarging a linearly independent set

20.4.1 The three spaces
We will do an example column space, row space, and null space, all in one
example.

Consider the 4×5 matrix

A =


−8 9 11 7 5

1 −1 −1 −3 6
−2 2 2 5 −9

1 −1 −1 1 −6

 .

Row reduce, as usual:
−8 9 11 7 5

1 −1 −1 −3 6
−2 2 2 5 −9

1 −1 −1 1 −6

 row−−−−→
reduce


1 0 2 0 −1
0 1 3 0 2
0 0 0 1 −3
0 0 0 0 0

 .

Column space of A. From the positions of the leading ones in the reduced
matrix, we see that the first, second, and fourth columns of A are linearly
independent, so a basis for the column space of A is

Bcol =




−8
1

−2
1

 ,


9

−1
2

−1

 ,


7

−3
5
1


 ,

and the dimension of the column space of A is 3.
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We can also see from the reduced matrix the exact dependence relationships
between the columns of A. In the reduced matrix, the leading-one columns are
the first three standard basis vectors, and we can easily see how the third and
fifth columns can be decomposed as linear combinations of these standard basis
vectors. In A, the third and fifth columns can be decomposed in the exact same
way as linear combinations of the vectors in Bcol. If we label the columns of A as
c1,c2,c3,c4,c5, then we have

c3 = 2c1 +3c2, c5 = (−1)c1 +2c2 + (−3)c4.

Row space of A. The leading ones guarantee that the nonzero rows in the
reduced matrix are linearly independent. Since row reducing does not change
the row space, we get our basis for the row space of A from the reduced matrix:

Brow = {
[

1 0 2 0 −1
]
,
[

0 1 3 0 2
]
,
[

0 0 0 1 −3
]
}.

The dimension of the row space of A is again 3.

Null space of A. Finally, for the null space of A we solve the homogeneous
system as usual. The third and fifth columns represent free variables, so we
set parameters x3 = s and x5 = t. Solving for the remaining variables leads to a
general solution in parametric form

x1 =−2s+ t, x2 =−3s−2t, x3 = s, x4 = 3t, x5 = t.

In vector form, we have

x=


x1

x2

x3

x4

x5

=


−2s+ t
−3s−2t

s
3t
t

=


−2s
−3s

s
0
0

+


t

2t
0
3t
t

= s


−2
−3

1
0
0

+ t


1
2
0
3
1

 .

So a basis for the null space of A is

Bnull =




−2
−3

1
0
0

 ,


1
2
0
3
1




,

and the dimension of the null space is 2.

20.4.2 Enlarging a linearly independent set
Row space is also a convenient tool for enlarging a linearly independent set into
a basis. Here are two examples of carrying out this task, one using vectors in Rn,
and one using vectors in another space, where we use the associated coordinate
vectors in Rn to assist us.

Example 20.4.1 Using row space to enlarge a linearly independent set
in R4. Suppose we would like to take the linearly independent set

{(1,3,2,0), (2,6,1,1)}

of vectors in R4 and enlarge it into a basis for all of R4. Since dimR4 = 4, we need
two more vectors.
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Using Proposition 17.5.6, we can start by determining a vector that is not in
the subspace U =Span{v1,v2}, where v1,v2 are the two given vectors. However,
guess-and-check is not a very efficient method for doing this. Instead, let’s set
up a matrix with v1 and v2 as rows, so that U is precisely the row space of that
matrix. We can then use row reduction to determine a simpler basis for U :[

1 3 2 0
2 6 1 1

]
row−−−−→

reduce

[
1 3 0 2

3
0 0 1 − 1

3

]
.

We can see from the pattern of leading ones in the reduced matrix that to span
all of R4, we need to introduce some “independence” in the second and fourth
coordinates. So let’s try enlarging our initial set of vectors by the second and
fourth standard basis vectors:

1 3 2 0
2 6 1 1
0 1 0 0
0 0 0 1

 row−−−−→
reduce


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The rows of the reduced matrix are the four standard basis vectors for R4, hence
the row space of the reduced matrix is all of R4. We know that row operations do
not change row space, so the rows of the initial matrix must also span all of R4.
Since we have a spanning set for a dimension-4 space consisting of four vectors,
those four vectors must for a basis for the space. □

Example 20.4.2 Using row space to enlarge a linearly independent set
in M2(R). Suppose we would like to take the linearly independent set{[

1 3
2 0

]
,
[
2 6
1 1

]}
of vectors in M2(R) and enlarge it into a basis for all of M2(R). Since dimM2(R)= 4,
we need two more vectors. Now, we cannot row reduce the given matrices — that
would be meaningless, as these matrices are not made of row vectors or column
vectors, they are themselves vectors. However, we can get back to the land of row
vectors by using coordinate vectors relative to the standard basis S for M2(R):

(v1)S = (1,3,2,0), (v2)S = (2,6,1,1),

where v1,v2 are the two given vectors. These coordinate vectors are precisely
the vectors from Example 20.4.1 above, so using those results we expect that we
should be able to enlarge our basis using vectors v3 and v4 that have coordinate
vectors

(v3)S = (0,1,0,0), (v4)S = (0,0,0,1).

Thus, we can enlarge the initial set of vectors to the basis{[
1 3
2 0

]
,
[
2 6
1 1

]
,
[
0 1
0 0

]
,
[
0 0
0 1

]}
for M2(R). □
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20.5 Theory

In this section.

• Subsection 20.5.1 Column space

• Subsection 20.5.2 Row space

• Subsection 20.5.3 Column and row spaces versus rank and invert-
ibility

20.5.1 Column space
First we’ll record two facts concerning how multiplying each in a set of column
vectors in Rn by a common matrix affects linear dependence and independence,
leading to our conclusion about how to determine a basis for the column space of
a matrix from examining its RREF.

Proposition 20.5.1 Dependence/independence versus matrix transfor-
mation. Suppose v1,v2, . . . ,vℓ are column vectors in Rn and E is an m×n matrix.

1. If {Ev1,Ev2, . . . ,Evℓ} is a linearly independent set of vectors then so too is
{v1,v2, . . . ,vℓ}.

2. If E is square and invertible and {v1,v2, . . . ,vℓ} is a linearly independent
set, then so too is {Ev1,Ev2, . . . ,Evℓ}.

3. If E is square and invertible and w is another column vector in Rn so that
vector Ew is linearly dependent with the vectors Ev1,Ev2, . . . ,Evℓ by the
dependence relation

Ew= k1Ev1 +k2Ev2 +·· ·+kℓEvℓ,

then w is linearly dependent with v1,v2, . . . ,vℓ by a dependence relation
involving the same scalars,

w= k1v1 +k2v2 +·· ·+kℓvℓ.

Proof of Statement 1. Let’s apply the Test for Linear Dependence/Independence
to the vectors v1,v2, . . . ,vℓ: suppose that k1,k2, . . . ,kℓ are scalars so that

k1v1 +k2v2 + . . .+kℓvℓ = 0. (*)

Multiplying both sides of this equation by the matrix E, and using some matrix
algebra, we get

k1Ev1 +k2Ev2 + . . .+kℓEvℓ = E0= 0.

But we have assumed that the vectors Ev1,Ev2, . . . ,Evℓ are linearly independent,
so the only way this linear combination could equal the zero vector is if all the
scalars k1,k2, . . . ,kℓ are zero. Thus, the linear combination in (*) must be the
trivial one, and so the vectors v1,v2, . . . ,vℓ are linearly independent. ■

Proof of Statement 2. We assume v1,v2, . . . ,vℓ are linearly independent. Since
we also assume E to be invertible, we can restate this as saying that vectors

E−1(Ev1),E−1(Ev2), . . . ,E−1(Evℓ)

are linearly independent. Now we can apply Statement 1 with E replaced by E−1

and v1,v2, . . . ,vℓ replaced by Ev1,Ev2, . . . ,Evℓ. ■
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Proof of Statement 3. Simply apply the inverse E−1 to both sides of

Ew= k1Ev1 +k2Ev2 +·· ·+kℓEvℓ

to obtain
w= k1v1 +k2v2 +·· ·+kℓvℓ.

■

Corollary 20.5.2 Column space basis and dimension.

1. A basis for the column space of an m×n matrix A can be formed from those
columns of A (as column vectors in Rm) in positions corresponding to the
locations of the leading ones in the RREF of A.

2. The dimension of the column space of a matrix is equal to the rank of the
matrix.

Proof of Statement 1. By definition, the columns of A are a spanning set for the
column space of A. By Proposition 18.5.1, this spanning set can be reduced to a
basis; it’s a matter of determining the largest possible linearly independent set
of these spanning column vectors.

Let E = E tE t−1 · · ·E1 be the product of elementary matrices corresponding
to some sequence of row operations that reduces A to its RREF. Because of the
nature of RREF, each column of RREF(A) that contains a leading one will be
a standard basis vector in Rm, no two such leading-one columns will be the
same standard basis vector, and each column that does not contain a leading
one will be a linear combination of those leading-one columns that appear to
its left. Therefore, the leading-one columns represent the largest set of linearly
independent vectors that can be formed from the columns of RREF(A). Since E is
invertible, the two statements of Proposition 20.5.1 tell us that the columns of A
will have the same relationships: those columns in A that are in positions where
the leading ones occur in RREF(A) will be linearly independent, and that will be
the largest possible collection of linearly independent columns of A, because each
of the other columns will be linearly dependent with the leading-one-position
columns of A to its left.

Thus, we can reduce the spanning set made up of all columns of A to a basis
for its column space by discarding the linearly dependent columns and keeping
only those columns in positions corresponding to the locations of the leading ones
occur in RREF(A). ■

Proof of Statement 2. Since we obtain a basis for column space by taking those
columns in the matrix in positions corresponding to the leading ones in a reduced
form for the matrix, the number of basis vectors is equal to the number of leading
ones. ■
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20.5.2 Row space
Next we’ll record our observations concerning how the row operations affect the
row space of a matrix, leading to our conclusion about how to obtain a basis for
the row space of a matrix from its RREF.

Proposition 20.5.3 Row space versus row operations. If an elementary row
operation is applied to a matrix, then the row space of the new matrix is the same
as the row space of the old matrix.

Proof. Consider an m×n matrix A as a collection of row vectors in Rn:

A =


a1

a2
...

am

 .

Then the row space of A is, by definition, the subspace Span{a1,a2, . . . ,am} of Rm.
As we did in Discovery 20.5, we will make repeated use of Statement 2 of

Proposition 16.5.6, which tells us how to determine when two spanning sets
generate the same subspace.

Let’s consider each type of elementary row operation in turn.

(i) Suppose we swap two rows in A:

A =



a1
...

ai
...

a j
...

am


→ A′ =



a1
...

a j
...

ai
...

am


.

The row space of the new matrix, A′, is the span of its row vectors. But
every row vector in A′ is equal to one of the row vectors in A, and vice
versa. So clearly the conditions of the above-referenced Statement 2 are
satisfied, and the rowspaces of the two matrices are the same space.

(ii) Suppose we multiply one of the rows in A by a nonzero constant k:

A =



a1
...

ai
...

am

→ A′′ =



a1
...

kai
...

am

 .

Again, most of the row vectors in the new matrix A′′ are equal to one of
the row vectors in A, and vice versa. So to fully satisfy the conditions of
the above-referenced Statement 2, we need to verify that kai is somehow a
linear combination of row vectors from A and that ai is somehow a linear
combination of row vectors from A′′. But kai is already expressed as a
scalar multiple of a row vector from A, and since k is nonzero we can also
write

ai = 1
k
· (kai),
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so that ai is also a scalar multiple of a row vector from A′′.

With the conditions of the above-referenced Statement 2 now fully satisfied,
we can conclude that the rowspaces of the two matrices are the same space.

(iii) Suppose we replace one row vector in A by the sum of that row and a scalar
multiple of another:

A =



a1
...

ai
...

am

→ A′′′ =



a1
...

ai +ka j
...

am

 .

Once again, most of the row vectors in the new matrix A′′′ are equal to one of
the row vectors in A, and vice versa. So to fully satisfy the conditions of the
above-referenced Statement 2, we need to verify that ai +ka j is somehow
a linear combination of row vectors from A and that ai is somehow a linear
combination of row vectors from A′′′. But ai +ka j is already expressed as a
linear combination of row vectors from A′′′, and for ai we can write

ai = 1(ai +ka j)+ (−k)a j,

a linear combination of row vectors from A′′′.
Note. Row vector a j has not been modified in the row operation, and so is
a row vector for both A and A′′′.

With the conditions of the above-referenced Statement 2 now fully satisfied,
we can conclude that the rowspaces of the two matrices are the same space.

■

Corollary 20.5.4 Row space basis and dimension. Let A represent a matrix.

1. If E is an invertible square matrix of compatible size, then A and EA have
the same row space.

2. The row space of each REF for A (including the RREF of A) is always the
same as that of A.

3. The nonzero rows of each REF for A form a basis for the row space of A.

4. The dimension of the row space of A is equal to the rank of A.

Proof of Statement 1. Since E is invertible, it can be expressed as a product of
elementary matrices (Theorem 6.5.2), and the product EA has the same result
as applying to A the sequence of row operations represented by those elementary
matrices. But Proposition 20.5.3 tells us that applying those operations does not
change the row space. ■

Proof of Statement 2. Let F be an REF for A, and let E1,E2, . . . ,Eℓ be elementary
matrices corresponding to some sequence of row operations that reduces A to F.
Set E = Eℓ · · ·E2E1. Then E is an invertible matrix and F = EA. Therefore, F
has the same row space as A by Statement 1 of this corollary. ■

Proof of Statement 3. Let F be an REF for A. By Statement 2 of this corollary, the
rows of F are a spanning set for the row space of A. Clearly we can discard any
zero rows from this spanning set, so it just remains to verify that the nonzero rows
of F are linearly independent. For this, we will use Proposition 17.5.6, building
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up our linearly independent spanning set one vector at a time. Let v1,v2, . . . ,vℓ
represent the nonzero rows of F, from top to bottom. Start with vℓ; all by itself,
this one nonzero vector is linearly independent. Now, vℓ−1 cannot be in Span{vℓ},
because the leading one in vℓ−1 appears to the left of the leading one in vℓ, and
so no scalar multiple of vℓ will have a nonzero entry in the component where
vℓ−1 has its leading one. From this, Proposition 17.5.6 tells us that {vℓ−1,vℓ}
is linearly independent. Moving on, vℓ−2 cannot be in Span{vℓ−1,vℓ}, because
the leading one in vℓ−2 appears to the left of both the leading one in vℓ−1 and in
vℓ, and so no linear combination of those two vectors will have a nonzero entry
in the component where vℓ−2 has its leading one. From this, Proposition 17.5.6
tells us that {vℓ−2,vℓ−1,vℓ} is linearly independent. Repeating this argument
as we move up the rows of F, we see that the nonzero rows of F are linearly
independent when taken altogether. ■

Proof of Statement 4. Applying Statement 3 of this corollary to the RREF for A,
the nonzero rows of RREF(A) form a basis for the row space of A. But the nonzero
rows of RREF(A) must all contain leading ones, so the number of vectors in a
basis for the row space of A is equal to the number of leading ones in RREF(A),
as desired. ■

20.5.3 Column and row spaces versus rank and invertibility
As discovered in Discovery 20.4, we can use our observations recorded in Propo-
sition 20.5.1 to connect column space to invertibility. We can similarly use
Corollary 20.5.4 to also connect row space to invertibility.

First, we will extend the list of properties that are equivalent to invertibil-
ity of a square matrix, first started in Theorem 6.5.2, and then continued in
Theorem 10.5.3.

Theorem 20.5.5 Characterizations of invertibility. For a square matrix A,
the following are equivalent.

1. Matrix A is invertible.

2. Every linear system that has A as a coefficient matrix has one unique
solution.

3. The homogeneous system Ax= 0 has only the trivial solution.

4. There is some linear system that has A as a coefficient matrix and has one
unique solution.

5. The rank of A is equal to the size of A.

6. The RREF of A is the identity.

7. Matrix A can be expressed as a product of some number of elementary
matrices.

8. The determinant of A is nonzero.

9. The null space of A consists of only the zero vector.

10. The columns of A are linearly independent.

11. The columns of A form a basis for Rn, where n is the size of A.

12. The rows of A are linearly independent.

13. The rows of A form a basis for Rn, where n is the size of A.

In particular, an n×n matrix is invertible if and only if its columns form a basis
for Rn.



306 COLUMN, ROW, AND NULL SPACES

Proof. We have previously encountered the equivalence of many of these state-
ments, most recently in Theorem 10.5.3. So currently we only need to concern
ourselves with the new statements. For each of these, if we can establish equiv-
alence of the new statement to one of the old, then the new statement must be
equivalent to all of the old, by the transitivity of logical equivalence.

Statement 9. This is just restatement of Statement 3 using the concept of null
space.

Statement 10. From our reinterpretation of Proposition 17.5.1, stated in Proce-
dure 20.3.4, we know that all of the columns of A will be linearly independent if
and only if every column of RREF(A) has a leading one. Therefore, this statement
is equivalent to Statement 5.

Statement 11. This statement is equivalent to Statement 10, since Proposi-
tion 19.5.5 tells us that we need exactly n linearly independent vectors to form a
basis for Rn.

Statement 12. From the row space version of the Test for Linear Dependence/
Independence stated in Procedure 20.3.7, we know that all of the rows of A will
be linearly independent if and only if every row of RREF(A) is nonzero. Therefore,
this statement is also equivalent to Statement 5.

Statement 13. This statement is equivalent to Statement 12, again since
Proposition 19.5.5 tells us that we need exactly n linearly independent vectors to
form a basis for Rn. ■

Finally, we’ll record an observation from Discovery 20.9, which is just a
reframing of Proposition 2.5.8.

Theorem 20.5.6 Rank-Nullity Theorem. If A is an m×n matrix, then

n = rank(A)+nullity(A).

That is,
dimRn = dim(column space of A)+dim(null space of A).

Note. The two spaces referenced in this theorem are connected through the matrix
A, but may be subspaces of different vector spaces — the column space of A is a
subspace of Rm, while the null space is a subspace of Rn.

Proof. The dimension of the column space of A is equal to the number of leading
ones in its RREF, while the dimension of the null space of A is equal to the
number of free variables, which is equal to the number of columns in the RREF
that do not have a leading one. These two numbers must add up to the total
number of columns in A. ■
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CHAPTER 21

Eigenvalues and eigenvectors

21.1 Discovery guide

In Chapter 20, we began to see how the interaction between a matrix and column
vectors can be used to understand the matrix. Here we will find that for each
square matrix there are certain column vectors that are particularly well-suited
to the task.

Discovery 21.1 Consider the matrix and column vectors

A =
[

7 8
−4 −5

]
, u=

[ −1
1

]
, v=

[ −2
1

]
.

(a) Compute Au. Carefully compare vectors u and Au — what do you notice?
Now repeat for v and Av.

(b) Verify that {u,v} is a basis for R2.

Hint. Corollary 19.5.6.

(c) Because these vectors form a basis for R2, every vector in R2 can be ex-
pressed in one unique way as a linear combination of these basis vectors.
We can use this fact, along with some matrix algebra and the patterns you
noticed in Task a, to develop a simple way to compute products Ax without
actually performing matrix multiplication:

x= au+bv =⇒ Ax= .

From Discovery 21.1, it seems that pairs consisting of a scalar λ and (nonzero)
vector x such that Ax = λx are important to understanding how matrix A
“operates” on all vectors by multiplication. For such a pair, the scalar λ is called
an eigenvalue of A, and the corresponding vector x is called an eigenvector
for A.

Notation and terminology. The symbol λ is the Greek letter lambda. The
prefix eigen is German for specific/particular/“one’s own.”

It turns out that it is easier to determine potential eigenvalues for a matrix
first, and to look for corresponding eigenvectors afterwards. In the next discovery
activity we will develop a method to determine all eigenvalues of a matrix,
independently of determining eigenvectors.

Discovery 21.2 For λ to be an eigenvalue for A, there must be at least one
nontrivial solution x to the matrix equation Ax=λx.

309
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(a) Use matrix algebra to turn the equation Ax = λx into a homogeneous
condition:

( )
x= 0.

Careful. Make sure what you have in the brackets represents a matrix!

(b) We want nontrivial solutions to exist. Combine some knowledge from
Chapter 6 and Chapter 10 to complete the statement below.

The homogeneous system from Task a has nontrivial solutions if and only
if det

( )
is .

Hint. Theorem 10.5.3.
We will see that the computation of the determinant you identified in Discov-

ery 21.2.b always results in a degree n polynomial in the variable λ, where n is
the size of the matrix. We will call this polynomial the characteristic polyno-
mial of A. The eigenvalues of A are then precisely the roots of its characteristic
polynomial.

Discovery 21.3 For each of the following matrices, compute its characteristic
polynomial, and then use it to determine the eigenvalues of each matrix. Make
sure to write your eigenvalue answers down, you will need them in Discov-
ery 21.6.

Algebra help. When we solve for the roots of a polynomial by hand, our main
method is factoring. So when computing a characteristic polynomial, keep it in
factored form as much as possible — do not expand brackets unless you need to
in order to be able to collect like terms and then factor further.

(a)
[

7 8
−4 −5

]

(b)

 2 −4 4
0 −6 8
0 −6 8



(c)

1 0 0
0 2 0
0 0 3



(d)

 2 1 0
0 2 0
0 0 −1


Compare. Check your answer for the eigenvalues of the first matrix in Discov-
ery 21.3 with your observations in Discovery 21.1.

Discovery 21.4 Complete each statement for the special type of matrix involved.

• The eigenvalues of a diagonal matrix are .

• The eigenvalues of an upper triangular matrix are .

• The eigenvalues of a lower triangular matrix are .

Hint. Proposition 7.5.1, and Statement 1 of Proposition 8.5.2.
Once we have determined the eigenvalues of a matrix, the next step is to

determine corresponding eigenvectors. We do this for one eigenvalue at a time.
Fortunately, we will ultimately find ourselves in familiar territory when we go
looking for eigenvectors.

Discovery 21.5 For an eigenvalue λ of a matrix A, the corresponding eigenvec-
tors are the nonzero solutions to the homogeneous system . Therefore, if
we include the zero vector in with the collection of all eigenvectors for A that cor-
respond to a particular eigenvalue λ, this collection is a subspace of Rn because
it is equal to the space of matrix .

Hint. Task 21.2.a.
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For an eigenvalue λ of a matrix A, the subspace of Rn consisting of all
eigenvectors of A that correspond to λ (along with the zero vector) is called the
eigenspace of A corresponding to λ.

Discovery 21.6 For each of the matrices in Discovery 21.3, determine a basis
for each eigenspace by row reducing the matrix λI − A, assigning parameters,
and extracting null space basis vectors from the general parametric solution as
usual.

Note. Substitute the actual eigenvalue in for variable λ before row reducing
— do not row reduce with the variable λ still in there.

Discovery 21.7 From the initial definition of eigenvalue/eigenvector in the
paragraph following Discovery 21.1, a matrix A has λ= 0 as an eigenvalue if and
only if there are nonzero solutions to Ax= .

So from our previous study of matrices, we can conclude that A has λ= 0 as
an eigenvalue precisely when A is .

Hint. Theorem 6.5.2.
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21.2 Terminology and notation

The following definitions are relative to a given n×n matrix A.

eigenvector
a nonzero vector x in Rn such that Ax is a scalar multiple of x

eigenvalue
a scalar for which there exists an eigenvector x of A with Ax=λx

Note 21.2.1 Eigenvectors and eigenvalues go together in pairs, with the connec-
tion between the two provided by the equality Ax=λx. In this situation, we say
that the two objects correspond to each other. So we might say that x is an
eigenvector of A that corresponds to the eigenvalue λ. Equivalently, we might
say that λ is an eigenvalue of A that corresponds to the eigenvector x. However,
note that an eigenvalue can correspond to many eigenvectors (in fact, an infinite
number of them), an eigenvector must correspond to exactly one eigenvalue.

eigenspace
the subspace of Rn consisting of all eigenvectors of A that correspond
to a specific eigenvalue λ, along with the zero vector

Eλ(A) notation for the eigenspace of matrix A corresponding to the eigen-
value λ

Note 21.2.2 In other resources you may seem the terms characteristic vec-
tor, characteristic value, and characteristic space used in place of the
terminology introduced above.

characteristic polynomial
the degree-n polynomial in the variable λ obtained by computing
det(λI − A)

cA(λ) notation for the characteristic polynomial of matrix A
characteristic equation

the polynomial equation det(λI − A)= 0

21.3 Motivation

We have seen that when considering a specific matrix A, looking for patterns in
the process of computing matrix-times-column-vector helps us to understand the
matrix. In turn, this helps us understand all of the various systems Ax=b with
common coefficient matrix A, since obviously the left-hand side of the matrix
version of the system has matrix-times-column-vector form.

When we compute Ae j for a standard basis vector e j, the result is the jth

column of A. So if we computed each of Ae1, Ae2, . . . , Aen, we would have all of
the columns of A as the results, which contain all of the data contained in A.
These computations certainly let us know the matrix A, but they don’t necessarily
help us understand what A is really like as a matrix. In short, the standard
basis for Rn is a great basis for understanding the vector space Rn, but it is not
so great for helping understand matrix products Ax for a particular matrix A.

In Discovery 21.1, we discovered that for an n×n matrix A, if we can build
a basis for Rn consisting of eigenvectors of A, then every matrix product Ax
becomes simple to compute once x is decomposed as a linear combination of these
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basis vectors. Indeed, if {u1,u2, . . . ,un} is a basis for Rn, and we have

Au1 =λ1u1, Au2 =λ2u2, . . . , Aun =λnun,

then multiplication by A can be achieved by scalar multiplication:

x= k1u1 +k2u2 +·· ·+knun

=⇒ Ax= k1 Au1 +k2 Au2 +·· ·+kn Aun

= k1λ1u1 +k2λ2u2 +·· ·+knλnun.

A complete study of how the concepts of eigenvalues and eigenvectors unlock
all the mysteries of a matrix is too involved to carry out in full at this point, but
we will get a glimpse of how it all works for a certain kind of square matrix in
the next chapter. For the remainder of this chapter, we will be more concerned
with how to calculate eigenvalues and eigenvectors.

21.4 Concepts

In this section.

• Subsection 21.4.1 Determining eigenvalues

• Subsection 21.4.2 Eigenvalues for special forms of matrices

• Subsection 21.4.3 Determining eigenvectors

• Subsection 21.4.4 Eigenspaces

• Subsection 21.4.5 Connection to invertibility

• Subsection 21.4.6 The geometry of eigenvectors

21.4.1 Determining eigenvalues
To determine eigenvectors and their corresponding eigenvalues for a specific
matrix A, we need to solve the matrix equation Ax=λx for both the unknown
eigenvector x and the unknown eigenvalue λ. This is not like any matrix equa-
tion we’ve tried to solve before — the right-hand side involves unknown times
unknown, making the equation nonlinear. However, as in Discovery 21.2, we can
use some matrix algebra to turn this equation into something more familiar:

Ax=λx
0=λIx− Ax
0= (λI − A)x.

A particular scalar λ will be an eigenvalue of A if and only if the above homoge-
neous system has nontrivial solutions.

Note. The “solution” A0=λ0 to the original equation Ax=λx is not interesting
because it works for all values of λ.

A homogeneous system with square coefficient matrix has nontrivial solutions
precisely when that coefficient matrix is not invertible, which is the case precisely
when the determinant of that coefficient matrix is equal to zero (Theorem 10.5.3).
So there will exist eigenvectors of A corresponding to a particular scalar
λ precisely when λ is a root of the characteristic equation det(λI − A)= 0.
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Procedure 21.4.1 To determine all eigenvalues of a square matrix A.
Determine the roots of the characteristic equation det(λI − A)= 0.

Remark 21.4.2 Because calculating det(λI − A) only involves multiplication,
addition, and subtraction, its result is always a polynomial in the variable λ. In
fact, this polynomial will always be a monic polynomial of degree n (where A is
n×n).

Terminology. A polynomial is monic when the coefficient on the highest power
of the variable is 1.

This is the reason we moved Ax to the right-hand side to obtain (λI− A)x= 0
in our algebraic manipulations above, instead of moving λx to the left-hand side
to obtain (A−λI)x= 0 — if we had chosen this second option, the characteristic
polynomial would have a leading coefficient of ±1 depending on whether n was
even or odd.

21.4.2 Eigenvalues for special forms of matrices
In Discovery 21.4, we considered the eigenvalue procedure for diagonal and
triangular matrices. Suppose A is such a matrix, with values d1,d2, . . . ,dn
down its main diagonal. Then λI − A is of the same special form as A (diagonal
or triangular), with entries λ− d1,λ− d2, . . . ,λ− dn down its main diagonal.
Since we know that the determinant of a diagonal or triangular matrix is equal
to the product of its diagonal entries (Statement 1 of Proposition 8.5.2), the
characteristic polynomial for A will be

det(λI − A)= (λ−d1)(λ−d2) · · · (λ−dn),

and so the eigenvalues of A will be precisely its diagonal entries.

21.4.3 Determining eigenvectors
Once we know all possible eigenvalues of a square matrix A, we can substitute
those values into the matrix equation Ax= λx one at a time. With a value for
λ substituted in, this matrix equation is no longer nonlinear and can be solved
for all corresponding eigenvectors x. But the homogeneous version (λI − A)x= 0
is more convenient to work with, since to solve this system we just need to row
reduce the coefficient matrix λI − A.

Procedure 21.4.3 To determine all eigenvectors of a square matrix A
that correspond to a specific eigenvalue λ. Compute the matrix C =λI − A.
Then the eigenvectors corresponding to λ are precisely the nontrivial solutions of
the homogeneous system Cx= 0, which can be solved by row reducing as usual.

21.4.4 Eigenspaces
Determining eigenvectors is the same as solving the homogeneous system (λI −
A)x = 0, so the eigenvectors of A corresponding to a specific eigenvalue λ are
precisely the nonzero vectors in the null space of λI − A. In particular, since a
null space is a subspace of Rn, we see that the collection of all eigenvectors of A
that correspond to a specific eigenvalue λ creates a subspace of Rn, once we also
include the zero vector in the collection. This subspace is called the eigenspace
of A for eigenvalue λ, and we write Eλ(A) for it.

Remark 21.4.4 Since determining eigenvectors is the same as determining a
null space, the typical result of carrying out Procedure 21.4.3 for a particular
eigenvalue of a matrix will be to obtain a basis for the corresponding eigenspace,
by row reducing, assigning parameters, and then extracting basis vectors from
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the general parametric solution as usual.

21.4.5 Connection to invertibility

Recall that we do not call the zero vector an eigenvector of a square matrix
A, because it would not correspond to one specific eigenvalue — the equality
A0=λ0 is true for all scalars λ. However, the scalar λ= 0 can (possibly) be an
eigenvalue for a matrix A, and we explored this possibility in Discovery 21.7.

In the case of λ= 0, the matrix equation Ax=λx turns into the homogeneous
system Ax= 0. And for λ= 0 to actually be an eigenvalue of A, there needs to be
nontrivial solutions to this equation — which we know will occur precisely when
A is not invertible (Theorem 6.5.2).

21.4.6 The geometry of eigenvectors

Multiplication of column vectors by a particular matrix can be thought of as a
sort of function, i.e. an input-output process. But unlike the types of functions
you are probably used to encountering, where the input is a number x and the
output is a number y, this matrix-multiplication sort of function has a column
vector x as input and a column vector y as output.

When the particular matrix used to form such a function is square, then the
input and output vectors live in the same space (i.e. Rn, where n is the size of
the matrix), so we can think of the matrix transforming an input vector into its
corresponding output vector geometrically. See Figure 21.4.5 for an example of
this geometric transformation point of view.

x

y

xy= Ax

Figure 21.4.5 Example matrix function with A = [0 −1
1 0

]
applied to input vector

x= [1
1
]

to produce output vector y= Ax.

When the input vector x is an eigenvector of the transformation matrix A,
then the output vector Ax is a scalar multiple of x (where the scale factor is the
corresponding eigenvalue). See Figure 21.4.6 for a geometric example of this
view of eigenvectors.

x

y

u

y1 = Au

(a) With eigenvector u
(again from Discovery 21.1)
as input vector.

x

yx

y2 = Ax

(b) With a non-eigenvector x
as input vector.

Figure 21.4.6 Two input-output examples using the same transformation matrix
A = [ 7 8

−4 −5
]

(from Discovery 21.1).



316 CHAPTER 21. EIGENVALUES AND EIGENVECTORS

Geometrically, one vector is a scalar multiple of another if and only if the two
vectors are parallel. So we can say that a vector is an eigenvector of a matrix
precisely when it is transformed to a parallel vector when multiplied by
the matrix.

21.5 Examples

Here we will compute eigenvalues and a basis for each corresponding eigenspace
for the matrices in Discovery 21.3.

Example 21.5.1 A 2×2 example. From Discovery a.
First, we form the matrix

λI − A =
[
λ−7 −8

4 λ+5

]
.

Then we compute its determinant, to obtain the characteristic polynomial of A:

cA(λ)= det(λI − A)

= (λ−7)(λ+5)+32

=λ2 −2λ−3

= (λ+1)(λ−3).

The eigenvalues are the roots of the characteristic polynomial, so we have two
eigenvalues λ1 =−1 and λ2 = 3.

The eigenspace Eλ1 (A) is the same as the null space of the matrix λ1I − A, so
we determine a basis for the eigenspace by row reducing:

(−1)I − A =
[ −8 −8

4 4

]
row−−−−→

reduce

[
1 1
0 0

]
.

This system requires one parameter to solve, as x2 is free. Setting x2 = t, the
general solution in parametric form is

x=
[

x1

x2

]
=

[−t
t

]
= t

[ −1
1

]
.

Associated to the single parameter we get a single basis vector, so that

dim
(
Eλ1 (A)

)= 1.

In particular, we have

Eλ1 (A)=Span
{[ −1

1

]}
.

Now move on to the next eigenvalue. Again, we determine a basis for Eλ2 (A)
by row reducing λ2I − A:

3I − A =
[ −4 −8

4 8

]
row−−−−→

reduce

[
1 2
0 0

]
.

Again, x2 is free. One parameter means one basis vector, so again

dim
(
Eλ2 (A)

)= 1.

The first row of the reduced matrix says x1 =−2x2, so we have

Eλ2 (A)=Span
{[ −2

1

]}
.

□
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Example 21.5.2 A 3×3 example. From Discovery b.
Start with

λI − A =

 λ−2 4 −4
0 λ+6 −8
0 6 λ−8

 ,

and compute the characteristic polynomial,

cA(λ)= det(λI − A)

= (λ−2)
[
(λ+6)(λ−8)+48

]
= (λ−2)(λ2 −2λ)

=λ(λ−2)2.

The eigenvalues are λ1 = 0 and λ2 = 2.
The eigenspace Eλ1 (A) is the null space of 0I − A =−A, so row reduce:

0I − A =

 −2 4 −4
0 6 −8
0 6 −8

 row−−−−→
reduce

 1 0 −2/3
0 1 −4/3
0 0 0

 .

Notice that the null space of 0I−A =−A is the same as the null space of A, since
our first step in row reducing −A could be to multiply each row by −1. Since this
homogeneous system has nontrivial solutions, A must be singular.

The homogeneous system (λ1I − A)x= 0 requires one parameter, so

dim
(
Eλ1 (A)

)= 1.

The variable x3 is free, and the nonzero rows of the reduced matrix tell us
x1 = (2/3)x3 and x2 = (4/3)x3. Setting x3 = t, our general solution in parametric
form is

x=

x1

x2

x3

=

(2/3)t
(4/3)t

t

= t

2/3
4/3
1

 .

However, to avoid fractions in our basis vector, we may wish to pull out an
additional scalar:

x= t
3

2
4
3

 ,

giving us

Eλ1 (A)=Span


2

4
3


 .

Now row reduce λ2I − A:

2I − A =

 0 4 −4
0 8 −8
0 6 −6

 row−−−−→
reduce

 0 1 −1
0 0 0
0 0 0

 .

This time we have two free variables, so dim
(
Eλ2 (A)

) = 2. Setting x1 = s and
x3 = t, the general solution in parametric form is

x=

x1

x2

x3

=

s
t
t

= s

1
0
0

+ t

0
1
1

 ,



318 CHAPTER 21. EIGENVALUES AND EIGENVECTORS

giving us

Eλ2 (A)=Span


1

0
0

 ,

0
1
1


 .

□

Example 21.5.3 A diagonal example. From Discovery c.
This time our matrix is diagonal, so its eigenvalues are precisely the diagonal

entries, λ1 = 1, λ2 = 2, λ3 = 3.

See. Subsection 21.4.2.

As usual, analyze each eigenvalue in turn.
For λ= 1:

1I − A =

 0 0 0
0 −1 0
0 0 −2

 row−−−−→
reduce

0 1 0
0 0 1
0 0 0



=⇒ Eλ1 (A)=Span


1

0
0


 .

For λ= 2:

2I − A =

 1 0 0
0 0 0
0 0 −1

 row−−−−→
reduce

1 0 0
0 0 1
0 0 0



=⇒ Eλ2 (A)=Span


0

1
0


 .

For λ= 3:

3I − A =

 2 0 0
0 1 0
0 0 0

 row−−−−→
reduce

1 0 0
0 1 0
0 0 0



=⇒ Eλ3 (A)=Span


0

0
1


 .

The fact that the eigenvectors of our diagonal matrix are standard basis
vectors shouldn’t be too surprising, since a matrix times a standard basis vector
is equal to the corresponding column of the matrix, and the columns of a diagonal
matrix are scalar multiples of the standard basis vectors. □

Example 21.5.4 An upper triangular example. From Discovery d.
Our final example matrix is upper triangular, so again its eigenvalues are

precisely the diagonal entries, λ1 = 2 and λ2 =−1.

See. Subsection 21.4.2.

Note that we don’t count the repeated diagonal entry 2 as two separate
eigenvalues — that eigenvalue is just repeated as a root of the characteristic
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polynomial. (But this repetition will become important in the next chapter.)
Once again we determine eigenspaces by row reducing, one at a time.
For λ1 = 2:

2I − A =

 0 −1 0
0 0 0
0 0 3

 row−−−−→
reduce

0 1 0
0 0 1
0 0 0



=⇒ Eλ1 (A)=Span


1

0
0


 .

For λ2 =−1:

(−1)I − A =

 −3 −1 0
0 −3 0
0 0 0

 row−−−−→
reduce

1 0 0
0 1 0
0 0 0



=⇒ Eλ2 (A)=Span


0

0
1


 .

□

Example 21.5.5 Using row operations to help. Don’t forget that we can use
row operations to help compute determinants!

See. Subsection 9.3.1 for an example of using row operations to compute a
determinant.

Let’s do a 4×4 example to demonstrate. Consider

A =


5 −4 −27 46
2 −1 −12 20
2 −2 −8 14
1 −1 −3 5

 .

To obtain the characteristic polynomial, we want to compute the determinant of

λI − A =


λ−5 4 27 −46
−2 λ+1 12 −20
−2 2 λ+8 −14
−1 1 3 λ−5

 .

Let’s row reduce a bit first:
λ−5 4 27 −46
−2 λ+1 12 −20
−2 2 λ+8 −14
−1 1 3 λ−5

 R1 ↔−R4

−→


1 −1 −3 5−λ
−2 λ+1 12 −20
−2 2 λ+8 −14
λ−5 4 27 −46

 R2 +2R1

R3 +2R1

R4 − (λ−5)R1
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−→


1 −1 −3 5−λ
0 λ−1 6 −2(λ+5)
0 0 λ+2 −2(λ+2)
0 λ−1 3(λ+4) λ2 −10λ−21

 .

In our first step above, we performed two operations: swapping rows and multi-
plying a row by −1. Both of these operations change the determinant by a factor
of −1, so the two effects cancel out. Our other operations in the second step above
do not affect the determinant, so the determinant of this third matrix above will
be equal to the characteristic polynomial of A.

Now, we cannot divide a row by zero. So we should not divide either the
second or fourth rows by λ−1 in an attempt to obtain the next leading one,
because we would inadvertently be dividing by zero in the case λ= 1. However,
we can still simplify one step further, even without a leading one:

1 −1 −3 5−λ
0 λ−1 6 −2(λ+5)
0 0 λ+2 −2(λ+2)
0 λ−1 3(λ+4) λ2 −10λ−21


R4 −R2

−→


1 −1 −3 5−λ
0 λ−1 6 −2(λ+5)
0 0 λ+2 −2(λ+2)
0 0 3(λ+2) λ2 −8λ−11

 . (*)

This last matrix is not quite upper triangular, but it’s close enough that we can
proceed by cofactors from here.

cA(λ)=

∣∣∣∣∣∣∣∣∣
1 −1 −3 5−λ
0 λ−1 6 −2(λ+5)
0 0 λ+2 −2(λ+2)
0 0 3(λ+2) λ2 −8λ−11

∣∣∣∣∣∣∣∣∣

= 1 ·

∣∣∣∣∣∣∣
λ−1 6 −2(λ+5)

0 λ+2 −2(λ+2)
0 3(λ+2) λ2 −8λ−11

∣∣∣∣∣∣∣
= (λ−1) ·

∣∣∣∣ λ+2 −2(λ+2)
3(λ+2) λ2 −8λ−11

∣∣∣∣
= (λ−1)

(
(λ+2)(λ2 −8λ−11)+6(λ+2)2

)
= (λ−1)(λ+2)

(
(λ2 −8λ−11)+6(λ+2)

)
= (λ−1)(λ+2)(λ2 −2λ+1)

= (λ−1)(λ+2)(λ−1)2

= (λ−1)3(λ+2).

We now see that the eigenvalues are λ1 = 1 and λ2 =−2.
To determine bases for eigenspaces, we usually reduce the matrix λI − A

with the various eigenvalues substituted in for λ. But we have already partially
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reduced λI − A with λ left variable to help us determine the eigenvalues. So we
can begin from (*) for both eigenvalues.

For λ1 = 1:
1 −1 −3 4
0 0 6 −12
0 0 3 −6
0 0 9 −18

 row−−−−→
reduce


1 −1 0 −2
0 0 1 −2
0 0 0 0
0 0 0 0



=⇒ Eλ1 (A)=Span




2
0
2
1

 ,


1
1
0
0


 .

For λ2 =−2, again starting from (*):
1 −1 −3 7
0 −3 6 −6
0 0 0 0
0 0 0 9

 row−−−−→
reduce


1 0 −5 0
0 1 −2 0
0 0 0 1
0 0 0 0



=⇒ Eλ2 (A)=Span




5
2
1
0


 .

□

21.6 Theory

In this section.

• Subsection 21.6.1 Basic facts

• Subsection 21.6.2 Eigenvalues and invertibility

21.6.1 Basic facts
First we collect some of our observations about eigenvalues and eigenvectors
from Section 21.4. We omit their proofs, as we have already discussed the ideas
behind them in that section.

Proposition 21.6.1 Eigenvalues of special forms. If square matrix A is
diagonal or triangular, then the eigenvalues of A are precisely its diagonal entries.

Proposition 21.6.2 Eigenspaces. For an n×n matrix A, the collection of all
eigenvectors that correspond to a specific eigenvalue λ, along with the zero vector,
forms a subspace of Rn.

21.6.2 Eigenvalues and invertibility
Our observation in Subsection 21.4.5 about the possibility of eigenvalue λ= 0
allows us to add another to our list of properties that are equivalent to invertibil-
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ity that we began in Theorem 6.5.2, and then continued in Theorem 10.5.3 and
Theorem 20.5.5.

Theorem 21.6.3 Characterizations of invertibility. For a square matrix A,
the following are equivalent.

1. Matrix A is invertible.

2. Every linear system that has A as a coefficient matrix has one unique
solution.

3. The homogeneous system Ax= 0 has only the trivial solution.

4. There is some linear system that has A as a coefficient matrix and has one
unique solution.

5. The rank of A is equal to the size of A.

6. The RREF of A is the identity.

7. Matrix A can be expressed as a product of some number of elementary
matrices.

8. The determinant of A is nonzero.

9. The columns of A are linearly independent.

10. The columns of A form a basis for Rn, where n is the size of A.

11. The rows of A are linearly independent.

12. The rows of A form a basis for Rn, where n is the size of A.

13. The scalar λ= 0 is not an eigenvalue for A.

In particular, a square matrix is invertible if and only if λ= 0 is not an eigenvalue
for A.



CHAPTER 22

Diagonalization

22.1 Discovery guide

A diagonal matrix is one of the simplest kinds of matrix. In this discovery guide,
we will attempt to make any matrix similar to a diagonal one.

Recall. When Ax = λx, column vector x is called an eigenvector of A and
scalar λ is called the corresponding eigenvalue of A.

Discovery 22.1 Suppose 3×3 matrices A,P,D are related by P−1 AP = D. (Re-
member, order matters in matrix multiplication, so in general P−1 AP ̸= A.)

As an example, consider

D =

 3 0 0
0 3 0
0 0 −1

 .

We will leave A and P unspecified for now, but think of P as a collection of column
vectors:

P =

 | | |
p1 p2 p3

| | |

 .

Multiplying both sides of P−1 AP = D on the left by P, we could instead write
AP = PD.

(a) Do you remember how we defined matrix multiplication, one column at a
time?

AP =

 | | |

| | |


Hint. See (***) in Subsection 4.3.7.

(b) Do you remember how multiplication on the right by a diagonal matrix
affects a matrix of columns?

PD =

 | | |

| | |


Hint. See Remark 7.4.4.

323
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(c) Compare your patterns for products AP and PD from Task a and Task b.
For AP = PD to true, each column of P must be an .

Hint. Reread the introduction to this discovery guide above.

(d) In Task c, we have identified a condition for AP = PD to be true. But to get
from AP = PD back to the original equation P−1 AP = D, we also need P to
be invertible, so we need the columns of P to be .

Hint. Theorem 20.5.5.

Discovery 22.2 Let’s try out what we learned in Discovery 22.1 for matrix

A =

 −1 9 0
0 2 0
0 −3 −1

 .

(a) Compute the eigenvalues of A by solving the characteristic equation
det(λI − A)= 0.

(b) For each eigenvalue of A, determine a basis for the corresponding eigen-
space. That is, determine a basis for the null space of λI − A by row
reducing.

Remember. Don’t row reduce with variable λ in there, substitute an actual
eigenvalue for λ before row reducing. Repeat for each eigenvalue, starting
back at λI − A and row reducing anew.

(c) Try to create a matrix P that satisfies both of the conditions from Task c
and Task d of Discovery 22.1.

(d) If you succeeded in meeting both conditions in the previous step, then
P−1 AP will be a diagonal matrix. Is it possible to know what diagonal
matrix P−1 AP will be without actually computing P−1 and multiplying out
P−1 AP?

Hint. Look back at how the diagonal entries of matrix D fit in the pattern
between AP and PD that you identified in Discovery 22.1.c.

Discovery 22.3 Summarize the patterns you’ve determined in the first two
activities of this discovery guide by completing the following statements in the
case that D = P−1 AP is diagonal.

(a) The diagonal entries of D are precisely the of A.

(b) The number of times a value is repeated down the diagonal of D corresponds
to .

(c) The order of the entries down the diagonal of D corresponds to the

in P.

Discovery 22.4 Repeat the procedure of Discovery 22.2 for

A =

 −1 1 0
0 −1 0
0 0 2

 .

Careful. Make sure the columns of P satisfy both necessary conditions from
Task c and Task d of Discovery 22.1.
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Discovery 22.5 Compare the results of Discovery 22.2 and Discovery 22.4 by
filling in the chart in Figure 22.1.1 below. We will call the number of times an
eigenvalue is “repeated” as a root of the characteristic polynomial its algebraic
multiplicity , and we will call the dimension of the eigenspace corresponding to
an eigenvalue its geometric multiplicity .

After completing the chart, discuss: What can you conclude about algebraic
and geometric multiplicities of eigenvalues with respect to attempting to find a
suitable P to make P−1 AP diagonal?

Discovery 22.2 Discovery 22.4
eigenvalues
algebraic multiplicities
geometric multiplicities
suitable P exists?

Figure 22.1.1 Comparison of examples in this discovery guide.
When we attempt to form a transition matrix P to make P−1 AP diagonal,

we need its columns to satisfy both conditions identified in Task c and Task d of
Discovery 22.1.

In particular, consider the second of these two conditions. When you deter-
mine a basis for a particular eigenspace, these vectors are automatically linearly
independent from each other (since they form a basis for a subspace of Rn). How-
ever, unless A has only a single eigenvalue, you will need to include eigenvectors
from different eigenvalues together in filling out the columns of P. How can we
be sure that the collection of all columns of P will satisfy the condition identified
in Discovery 22.1.d?

The next discovery activity will help you with this potential problem.

Discovery 22.6 Suppose {v1,v2,v3} is a linearly independent set of eigenvectors
of A, corresponding to eigenvalue λ1, and suppose w is an eigenvector of A
corresponding to a different eigenvalue λ2. (So λ2 ̸=λ1.)

(a) Set up the vector equation to begin the test for independence for the set
{v1,v2,v3,w}. Call this equation (1).

(b) Multiply both sides of equation (1) by A, then use the definition of eigen-
value/eigenvector to “simplify.” Call the result equation (2).

(c) Multiply equation (1) by λ1 — call this equation (3).

(d) Subtract equation (3) from equation (2). What can you conclude?

(e) Use your conclusion from Task d to simplify equation (1). Then finish the
test for independence.
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22.2 Terminology and notation

similar matrices
a pair of square matrices A and B for which there exists an invertible
matrix P satisfying B = P−1 AP

transition matrix
an invertible matrix P that realizes a similarity relationship B =
P−1 AP for similar matrices A and B

diagonalizable
a square matrix that is similar to a diagonal matrix

The next two definitions apply to an eigenvalue of a square matrix.

algebraic multiplicity
the number of times the eigenvalue is repeated as a root of the
characteristic polynomial of the matrix

geometric multiplicity
the dimension of the corresponding eigenspace

22.3 Motivation

Similar matrices are truly that — similar. While their entries contain different
data, everything else about them is essentially the same. Similar matrices have
the same rank, nullity, determinant, characteristic polynomial, and eigenvalues.
For each shared eigenvalue, similar matrices have the same algebraic and ge-
ometric multiplicities. And via a known transition matrix to transition spaces
from one to the other, similar matrices have “similar” column spaces, null spaces,
and eigenspaces. When matrices are similar, one can essentially be replaced by
the other in computations, and the transition matrix can be used to transition
important vectors in those computations between the two matrices.

The simplest matrices with which to do computations are scalar matrices
— matrices that are equal to kI for some scalar k. But no matrix is similar to
a scalar matrix, other than the scalar matrix itself, because for A = kI every
possible transition matrix P would yield

B = P−1 AP = P−1(kI)P = kP−1P = kI = A.

See. Chapter 7 for a refresher on scalar matrices and their properties.

So in this chapter we consider the next simplest type of matrix with which to
do computations — diagonal matrices.

Question 22.3.1 When is a matrix similar to a diagonal matrix, and how do we
determine a suitable transition matrix? □

We tackle this question by concentrating on the transition matrix P. If
P−1 AP is diagonal, what relationships between P, A, and the diagonal matrix
D = P−1 AP can we discover to help us understand this situation? We have
already answered these questions in Discovery guide 22.1. In the next section
we summarize our findings.
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22.4 Concepts

In this section.

• Subsection 22.4.1 The transition matrix and the diagonal form

• Subsection 22.4.2 Diagonalizable matrices

• Subsection 22.4.3 Diagonalization procedure

22.4.1 The transition matrix and the diagonal form
The columns of the transition matrix. In Discovery 22.1, we transformed
the equation P−1 AP = D into the equivalent equation AP = PD. Thinking of P
as being made up of column vectors, multiplying P on the left by A multiplies
each column of P by A, and multiplying P on the right by D multiplies each
column of P by the corresponding diagonal entry. So if we view P and D as
having forms

P =

 | | |
p1 p2 · · · pn
| | |

 , D =


λ1

λ2
. . .

λn

 ,

then we can view AP and PD as having forms

AP =

 | | |
Ap1 Ap2 · · · Apn
| | |

 , PD =

 | | |
λ1p1 λ2p2 · · · λnpn
| | |

 .

See. multiplication pattern (***) in Subsection 4.3.7 to remind yourself of the
columnwise definition of matrix multiplication, and Remark 7.4.4 for the pattern
of multiplying by a diagonal matrix on the right.

The only way these two matrices can be equal is if they have equal columns,
so that

Ap1 =λp1, Ap2 =λp2, . . . , Apn =λpn.

These column vector equalities exhibit the eigenvector-eigenvalue pattern. That
is, the only way to make P−1 AP diagonal is to use eigenvectors of A as the
columns of the transition matrix P.

Moreover, P needs to be invertible, so the columns of P need to be linearly
independent (Theorem 20.5.5).

The diagonal form matrix P−1 AP. In Discovery 22.3, we analyzed the pat-
tern of the diagonal matrix D = P−1 AP. If λ j is its jth diagonal entry, the
condition Ap j =λ jp j from our analysis above says that λ j is an eigenvalue for
A, and the jth column of P is a corresponding eigenvector. So

• D will have the eigenvalues of A for its diagonal entries,

• the number of times an eigenvalue of A is repeated as a diagonal entry in
D will correspond to the number of linearly independent eigenvectors for
that eigenvalue that were used in the columns of P, and

• the order of the entries down the diagonal of D corresponds to the order of
eigenvectors in the columns of P.
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22.4.2 Diagonalizable matrices
Is every n×n matrix similar to a diagonal one? In Discovery 22.4, we discovered
that the answer is no. For some matrices, it will not be possible to collect together
enough linearly independent eigenvectors to fill all n columns of the transition
matrix P. The largest number of linearly independent eigenvectors we can obtain
for a particular eigenvalue is the dimension of the corresponding eigenspace. In
Discovery 22.6, we discovered that eigenvectors from different eigenspaces of the
same matrix are automatically linearly independent. So the limiting factor is
the dimension of each eigenspace, and whether these dimensions add up to n,
the required number of linearly independent columns in P.

Also see. Proposition 22.6.6 in Subsection 22.6.3.

An eigenvalue of an n×n matrix A has two important numbers attached to
it — its algebraic multiplicity and its geometric multiplicity.

See. Section 22.2 to remind yourself of the definitions of these terms.

If the roots of the characteristic polynomial are all real numbers, then the
characteristic polynomial will factor completely as

cA(λ)= (λ−λ1)m1 (λ−λ2)m2 · · · (λ−λℓ)mℓ ,

where the λ j are the distinct eigenvalues of A and the m j are the correspond-
ing algebraic multiplicities. Since cA(λ) is always a degree n polynomial, the
algebraic multiplicities will add up to n. To obtain enough linearly indepen-
dent eigenvectors for A to fill the columns of P, we also need the geometric
multiplicities to add up to n. We will learn in Subsection 22.6.3 that somehow,
the algebraic multiplicity of each eigenvalue is the “best-case scenario” —
the geometric multiplicity for an eigenvalue can be no greater than its
algebraic multiplicity. Thus, if any eigenvalue for A is “defective” in the sense
that its geometric multiplicity is strictly less than its algebraic multiplicity, we
will not obtain enough linearly independent eigenvectors for that eigenvalue to
fill up its “portion” of the required eigenvectors. To summarize, a square matrix
is diagonalizable precisely when each of its eigenvalues has geometric
multiplicity equal to its algebraic multiplicity.

See. Corollary 22.6.10 in Subsection 22.6.4.

22.4.3 Diagonalization procedure
Procedure 22.4.1 To diagonalize an n×n matrix A, if possible.

1. Compute the characteristic polynomial cA(λ) of A by computing det(λI−A),
then determine the eigenvalues of A by solving the characteristic equation
cA(λ)= 0. Make note of the algebraic multiplicity of each eigenvalue.

2. For each eigenvalue λ j of A, determine a basis for the correponding eigen-
space Eλ j (A) by solving the homogeneous linear system (λ j I−A)x= 0. Make
note of the geometric multiplicity of each eigenvalue.

3. If any eigenvalue has geometric multiplicity strictly less than its algebraic
multiplicity, then A is not diagonalizable. On the other hand, if each
eigenvalue has equal geometric and algebraic multiplicities, then you can
obtain n linearly independent eigenvectors to make up the columns of P by
taking together all the eigenspace basis vectors you found in the previous
step.

If the matrix P has successfully been constructed, then D = P−1 AP will be in
diagonal form, with eigenvalues of A in the diagonal entries of D, in order
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corresponding to the order of placement of eigenvectors in the columns of P.

22.5 Examples

In this section.

• Subsection 22.5.1 Carrying out the diagonalization procedure

• Subsection 22.5.2 Determining diagonalizability from multiplici-
ties

• Subsection 22.5.3 A different kind of example

22.5.1 Carrying out the diagonalization procedure
Let’s start with some examples from Discovery guide 22.1.

Example 22.5.1 A diagonalizable matrix. From Discovery 22.2. We want to
compute a basis for each eigenspace, using the same method as in the examples
of Section 21.5. First, we form the matrix

λI − A =

λ+1 −9 0
0 λ−2 0
0 3 λ+1

 ,

and compute its determinant,

cA(λ)= det(λI − A)= (λ+1)
[
(λ−2)(λ+1)−0 ·3]= (λ+1)2(λ−2),

to obtain the characteristic polynomial of A. The eigenvalues are λ1 =−1 and
λ2 = 2. The first eigenvalue is repeated as a root of the characteristic polynomial,
while the second eigenvalue is not, so we have algebraic multiplicities m1 = 2
for λ1 and m2 = 1 for λ2. Therefore, we will need two linearly independent
eigenvectors from Eλ1 (A) and one more from Eλ2 (A).

We determine eigenspace bases by row reducing, assigning parameters, and
extracting basis vectors. Here are the results for this matrix:

(−1)I − A =

 0 −9 0
0 −3 0
0 3 0

 row−−−−→
reduce

0 1 0
0 0 0
0 0 0



=⇒ Eλ1 (A)=Span


1

0
0

 ,

0
0
1


 ,

2I − A =

 3 −9 0
0 0 0
0 3 3

 row−−−−→
reduce

1 0 3
0 1 1
0 0 0



=⇒ Eλ2 (A)=Span


 −3

−1
1


 .

Notice that dim
(
Eλ1 (A)

)= 2, so geometric multiplicity equals algebraic multiplic-
ity for λ1. Also, dim

(
Eλ2 (A)

)= 1, so again geometric multiplicity equals algebraic
multiplicity for λ2.
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Let’s pause to consider the result for eigenvalue λ2. We should have expected
the result for the geometric multiplicity of eigenvalue λ2 from the relationship
between algebraic and geometric multiplicites stated in Subsection 22.4.2. If we
believe that a geometric multiplicity can never be greater than the corresponding
algebraic multiplicity, then eigenspace Eλ2 (A) in this example could never have
dimension greater than 1. On the other hand, an eigenspace should never have
dimension 0 because the definition of eigenvalue requires the existence of nonzero
eigenvectors. So this forces the dimension of Eλ2 (A) to be 1, without actually
checking.

Returning to our procedure, we can see by inspection that the eigenspace
basis vector for λ2 is linearly independent from the ones for λ1, so when we form
the transition matrix

P =

 1 0 −3
0 0 −1
0 1 1

 ,

it will be invertible because its columns are linearly independent. And we can
determine the diagonal form matrix P−1 AP without calculating P−1, because
its diagonal entries should be precisely the eigenvalues of A, with the same
multiplicities and order as the corresponding columns of P. In this case,

P−1 AP =

 −1 0 0
0 −1 0
0 0 2

 .

Finally, note that we could have analyzed the eigenvalues in the opposite order,
in which case we would have formed transition matrix

Q =

 −3 1 0
−1 0 0

1 0 1

 ,

obtaining diagonal form matrix

Q−1 AQ =

 2 0 0
0 −1 0
0 0 −1

 .

□

Example 22.5.2 A non-diagonalizable matrix. From Discovery 22.4. This
matrix is upper triangular, so we can see directly that the eigenvalues are λ1 =−1
with algebraic multiplicity 2, and λ2 = 2 with algebraic multiplicity 1. Analyze
the eigenspaces:

(−1)I − A =

 0 −1 0
0 0 0
0 0 −3

 row−−−−→
reduce

0 1 0
0 0 1
0 0 0



=⇒ Eλ1 (A)=Span


1

0
0


 ,

2I − A =

 3 −1 0
0 3 0
0 0 0

 row−−−−→
reduce

1 0 0
0 1 0
0 0 0


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=⇒ Eλ2 (A)=Span


0

0
1


 .

We could have stopped after our analysis of λ1, since its geometric multiplicity is
only 1, whereas we needed it to be equal to the algebraic multiplicity 2. Since
we cannot obtain enough linearly independent eigenvectors from these two
eigenspaces to fill out a 3×3 transition matrix P, matrix A is not diagonalizable.

□

Remark 22.5.3 The matrices in the two examples above had the same eigenval-
ues with the same algebraic multiplicities, but one matrix was diagonalizable
and the other was not. The difference was in the geometric multiplicities of
the eigenvalues, which plays a crucial role in determining whether a matrix is
diagonalizable.

22.5.2 Determining diagonalizability from multiplicities
Here is an example where we only concern ourselves with the question of whether
a matrix is diagonalizable, without attempting to build a transition matrix P.

Is

A =


−1 0 −12 0

0 1 −8 0
0 0 5 0
4 0 4 3


diagonalizable? Compute the characteristic polynomial:

det(λI − A)=

∣∣∣∣∣∣∣∣∣
λ+1 0 12 0

0 λ−1 8 0
0 0 λ−5 0
−4 0 −4 λ−3

∣∣∣∣∣∣∣∣∣
= (λ−5)(λ+1)(λ−1)(λ−3).

So the eigenvalues are λ = −1,1,3,5, each with algebraic multiplicity 1. But
an eigenspace must contain nonzero eigenvectors, so eigenvalues always have
geometric multiplicity at least 1. Since we will be able to obtain an eigenvector
from each of the four eigenvalues, we’ll be able to fill the four columns of the
transition matrix P with linearly independent eigenvectors. Therefore, A is
diagonalizable.

Remark 22.5.4 The analysis used in the above example only works for eigenval-
ues of algebraic multiplicity 1. If an eigenvalue has algebraic multiplicity greater
than 1, then we still must row reduce λI − A to determine the geometric multi-
plicity of the eigenvalue. However, if all we are concerned with is the question of
diagonalizability, then we don’t need to carry out the full procedure — we can
stop row reducing as soon as we can see how many parameters will be required,
since this tells us the dimension of the eigenspace.

22.5.3 A different kind of example
Is

A =
[

0 −1
1 0

]
diagonalizable? Compute the characteristic polynomial:

det(λI − A)=
∣∣∣∣ λ 1
−1 λ

∣∣∣∣=λ2 +1.
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But λ2 +1= 0 does not have real solutions, so A does not have eigenvalues, and
cannot be diagonalizable.

A look ahead. In future studies in linear algebra you may study matrix forms
in more detail, in which case you will likely work with complex vector spaces,
where scalars are allowed to be both real and imaginary numbers. In that context,
the matrix in the last example above does have eigenvalues, and in fact can be
diagonalized.

22.6 Theory

In this section.

• Subsection 22.6.1 Similar matrices

• Subsection 22.6.2 Diagonalizable matrices

• Subsection 22.6.3 The geometry of eigenvectors

• Subsection 22.6.4 More about diagonalizable matrices

22.6.1 Similar matrices
First, we’ll record just a few of the facts about general similar matrices from
Section 22.3.

Proposition 22.6.1 Properties of similar matrices.

1. Similar matrices have the same determinant.

2. Similar matrices have the same characteristic polynomial.

3. Similar matrices have the same eigenvalues, with the same algebraic multi-
plicities.

Proof of Statement 1. Suppose square matrices A and B are similar, and P is a
transition matrix that realizes the similarity, so that B = P−1 AP.

We know from Proposition 10.5.6 that the determinant of a product is the
product of the determinants. And we also know from Proposition 10.5.8 that the
determinant of an inverse is the inverse of the determinant. So we can compute
detB as

detB = det(P−1 AP)

= (
detP−1)

(det A)(detP)

= (detP)−1(det A)(detP)

= (det A)XXX(detP)
XXXdetP

= det A.

Thus, the similar matrices A and B have the same determinant.

Warning 22.6.2 Careful. In this proof, it would have been incorrect to cancel
the P−1 with the P immediately, because order of matrix multiplication matters!
It was only after we split the determinant into a product of determinants that
we could cancel det

(
P−1)

with detP because all three of the determinants are
numbers, and order of number multiplication does not matter.



22.6. THEORY 333

■

Proof of Statement 2. Suppose square matrices A and B are similar, and P is a
transition matrix that realizes the similarity, so that B = P−1 AP.

The characteristic polynomials of these two matrices are computed as

cA(λ)= det(λI − A), cB(λ)= det(λI −B).

Using our assumption B = P−1 AP, along with I = P−1IP, we can express the
matrix involved in the characteristic polynomial for B as

λI −B =λP−1IP −P−1 AP = P−1(λI − A)P,

where in the last step we have factored the common P−1 and P factors out of the
difference (making sure to factor each to the correct side, because order of matrix
multiplication matters). We have now shown that matrices λI− A and λI−B are
also similar, via the same transition matrix P, and so by Statement 1 they have
the same determinant. That is,

cB(λ)= det(λI −B)= det(λI − A)= cA(λ),

and thus the similar matrices A and B have the same characteristic polynomial.
■

Proof of Statement 3. Statement 3 follows immediately from Statement 2, as the
eigenvalues of a matrix are precisely the roots of the characteristic polynomial
of the matrix, and the algebraic multiplicity of an eigenvalue is the number of
times that value is repeated as a root of the characteristic polynomial. ■

22.6.2 Diagonalizable matrices

We start with the justification that a transition matrix made up of linearly
independent eigenvectors will diagonalize a matrix.

Theorem 22.6.3 Characterization of diagonalizability. An n×n matrix A
is diagonalizable if and only if there exists a set of n linearly independent vectors
in Rn, each of which is an eigenvector of A. If P is an n×n matrix whose columns
are linearly independent eigenvectors of A, then P diagonalizes A.

Proof. This fact follows from our analysis of the transition matrix P and the
diagonal form matrix P−1 AP in Subsection 22.4.1. ■

We will refine this theorem using our more sophisticated notions of alge-
braic and geometric multiplicity in the next subsection. But first, here is
a surprising result that demonstrates how central eigenvalues are in matrix
theory.

Proposition 22.6.4 Determinant versus eigenvalues. If a square matrix
is diagonlizable, then its determinant is equal to the product of its eigenvalues
(including multiplicities).

Proof. Suppose A is a diagonalizable matrix. Then it is similar to some diagonal
matrix D. The eigenvalues of a diagonal matrix are precisely the diagonal entries,
and the algebraic multiplicity of each of these eigenvalues is the number of times
that eigenvalue is repeated down the diagonal. So if λ1,λ2, . . . ,λℓ are all of the
distinct eigenvalues of D (i.e. there are no repeats in this list of eigenvalues), and
m1,m2, . . . ,mℓ are the corresponding algebraic multiplicities of these eigenvalues
(i.e. each m j is equal to the number of times λ j appears on the main diagonal of
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D), then
detD =λm1

1 λ
m2
2 · · ·λmℓ

ℓ
,

because the determinant of a diagonal matrix is just the product of its diagonal
entries (Statement 1 of Proposition 8.5.2). But from Statement 1 of Proposi-
tion 22.6.1 we know that the similar matrices A and D have the same determi-
nant, and have all the same eigenvalues with the same corresponding algebraic
multiplicities. Thus, the expression

det A = detD =λm1
1 λ

m2
2 · · ·λmℓ

ℓ

can be viewed as an expression for det A as a product of the eigenvalues of A,
including multiplicities. ■

Remark 22.6.5 The above fact is actually true about all square matrices, if you
allow complex eigenvalues. In a second linear algebra course, you may learn
that diagonalizable matrices are a special case of a more general theory, in which
every matrix can be triangularized. That is, every square matrix is similar
to a special form of triangular matrix (either upper or lower), though for many
matrices both the transition matrix and the triangular form matrix might need
to contain complex numbers in its entries. In this more general theory, it is again
the case that the diagonal entries of the triangular form matrix will be precisely
the eigenvalues of the original matrix, with each eigenvalue repeated down the
diagonal according to its algebraic multiplicity, so the proof provided for the fact
above can be adapted to work in this slightly more general setting.

22.6.3 The geometry of eigenvectors
We require that the columns of a transition matrix P be linearly independent,
so that P is invertible. Basis vectors for a particular eigenspace are linearly
independent by definition of basis. But when we lump basis vectors from
different eigenspaces together, will they all remain linearly independent together?
The next fact answers this question with a more general version of what we
explored in Discovery 22.6.

Proposition 22.6.6 Eigenvectors from different eigenvalues are indepen-
dent. Suppose A is an n×n matrix, and S is a linearly independent set of vectors
in Rn, each of which is an eigenvector for A. Further suppose that v is another
eigenvector for A that is linearly independent from those vectors in S that are
from the same eigenspace as v. Then the enlarged collection S′ of eigenvectors
consisting of all vectors in S along with v is also linearly independent.

Proof. Let’s write S = {v1,v2, . . . ,vℓ,w1,w2, . . . ,wm}, where the v j are those
eigenvectors in S that are in the same eigenspace as v, and the w j are those that
are not. Write λ for the eigenvalue of A corresponding to v (hence also to each v j),
and write λ j for the eigenvalue corresponding to w j. We have assumed that the
full set S is linearly independent, and therefore so are the subsets {v1,v2, . . . ,vℓ}
and {w1,w2, . . . ,wm} (Statement 2 of Statement 17.5.3). In addition, we have
assumed that the set {v,v1,v2, . . . ,vℓ} remains linearly independent.

The strategy in this proof is essentially the same as explored in Discovery 22.6.
To prove independence, we must prove that the assumption

kv+a1v1 +a2v2 +·· ·+aℓvℓ
+b1w1 +b2w2 +·· ·+bmwm = 0

(*)

leads to the conclusion that each of the scalars k,a1,a2, . . . ,aℓ,b1,b2, . . . ,bm is 0.
Since each of the vectors in the combination above is an eigenvector for A,

if we multiply both sides of equation (*) by the matrix A, we may substitute
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Av=λv, Av j =λv j, and Aw j =λ jw j. Making these substitutions, we obtain

kλv+a1λv1 +a2λv2 +·· ·+aℓλvℓ
+b1λ1w1 +b2λ2w2 +·· ·+bmλmwm = 0.

Compare this “A times (*)” equation with the result of multiplying (*) through by
the scalar λ:

kλv+a1λv1 +a2λv2 +·· ·+aℓλvℓ
+b1λw1 +b2λw2 +·· ·+bmλwm = 0.

Notice that the v and v j terms of both the “A times (*)” equation and the “λ
times (*)” equation are identical, so if we subtract these equations and collect
like w j-terms, we obtain

b1(λ1 −λ)w1 +b2(λ2 −λ)w2 +·· ·+bm(λm −λ)wm = 0.

Since the collection of w j vectors are linearly independent, the scalar coefficient
expressions in this new linear combination must all be zero. That is, each scalar
expression

b j(λ j −λ)

must be zero. However, none of the w j is from the same eigenspace as v, so each
λ j −λ is nonzero, which forces each of the b j to be zero.

Substituting this new information into equation (*), we have

kv+a1v1 +a2v2 +·· ·+aℓvℓ = 0.

But the collection {v,v1,v2, . . . ,vℓ} is assumed independent, so each of the scalars
in the remaining combination on the left above is also zero.

We have now successfully shown that the only way equation (*) can be true is
if each of the scalars involved is 0, as required. ■

The proposition above is somewhat similar in effect to Proposition 17.5.6, in
that it lets us build up a linearly independent set of eigenvectors one-by-one. But
the above fact is a little stronger, in that when we look to add a new eigenvector
to our collection, we only need to worry about it being linearly independent
from the eigenvectors we already have from that eigenspace. This leads to the
following corollary.

Corollary 22.6.7 Eigenspaces are independent. Given a collection of bases
for the different eigenspaces of a matrix, the collection of all these eigenspace basis
vectors together will still be linearly independent.

Proof. Let A be a square matrix, and write λ1,λ2, . . . ,λℓ for its eigenvalues.
Suppose we have a basis B1 for eigenspace Eλ1 (A), and a basis B2 for eigenspace
Eλ2 (A), and so on. Begin with B1, which is linearly independent because it is a
basis for a subspace. Enlarge B1 with vectors from B2, one at a time. At each
step we may apply Proposition 22.6.6, because each new vector from B2 is both

• from a different eigenspace than the vectors in B1, and

• linearly independent from the previous vectors from B2 already included
in the new enlarged collection.

Proposition 22.6.6 tells us that at each step of enlarging our collection by one,
the new, larger collection will remain linearly independent. Once we run out of
vectors in B2, we begin enlarging our collection with vectors from B3, one at a
time. Again, Proposition 22.6.6 applies at each enlargement step, so that each
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collection of eigenvectors along the way remains linearly independent. Carry this
process through to the end, until finally all vectors from Bℓ are also included,
and Proposition 22.6.6 will still apply at the last step to tell us that the complete
set of basis eigenvectors is linearly independent. ■

In the next subsection, we will use this corollary to refine our initial charac-
terization of diagonalizability stated in Theorem 22.6.3. In the meantime, we will
formally state the relationship between geometric and algebraic multiplicities
that we discussed in Subsection 22.4.2.

Theorem 22.6.8 Geometric versus algebraic multiplicity. The geomet-
ric multiplicity of an eigenvalue is always less than or equal to its algebraic
multiplicity.

Proof. We will not include the proof of this statement here — you may encounter
it in further study of matrix forms, perhaps in a second course in linear algebra.

■

Remark 22.6.9 As we’ve noted already, the geometric multiplicity of an eigen-
value is always at least one, since otherwise it wouldn’t have any corresponding
nonzero eigenvectors!

22.6.4 More about diagonalizable matrices
Corollary 22.6.7 tells us that when collecting eigenvectors to make up the
transition matrix P, we only have to worry about linear independence inside
eigenspaces; linear independence between eigenspaces is automatic. But linear
independence inside an eigenspace Eλ j (A) is taken care of for us when we row re-
duce λ j I−A. So our initial characterization of diagonalization in Theorem 22.6.3
can be refined so that we don’t actually have to worry about linear independence
of eigenvectors at all — we just have to worry about having enough eigenspace
basis vectors. It turns out that the algebraic multiplicity of each eigenvector is
exactly the necessary number of basis vectors for the corresponding eigenspace,
and the next statements record this thinking.

Corollary 22.6.10 More characterizations of diagonalizability.

1. A matrix with real eigenvalues is diagonalizable if and only if each eigen-
value has geometric multiplicity equal to its algebraic multiplicity.

2. An n×n matrix that has n different real eigenvalues must be diagonalizable.

Note. We present these statements as a corollary, as they follow from Theo-
rem 22.6.8.

Proof of Statement 1. We need n linearly independent eigenvectors to make up
the columns of the n×n transition matrix P. The maximum number of linearly
independent eigenvectors we can get from a single eigenspace is dim(Eλ(A)),
the geometric multiplicity of the eigenvalue λ. So the maximum number of
linearly independent eigenvectors we can get in total is the sum of the geometric
multiplicities of the eigenvalues. But the characteristic polynomial cA(λ) has
degree n, and n is the sum of the algebraic multiplicities of the eigenvalues,
because if A has all real eigenvalues, then cA(λ) factors as

cA(λ)= (λ−λ1)m1 (λ−λ2)m2 · · · (λ−λℓ)mℓ .

So if even one eigenvalue is deficient in the sense that its geometric multiplicity
is strictly less than its algebraic multiplicity, we won’t obtain enough linearly
independent eigenvectors from that eigenspace to contribute to the n linearly
eigenvectors we need in total.
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On the other hand, if each eigenvalue has geometric multiplicity equal to
its algebraic multiplicity, then forming eigenspace bases and collecting them all
together will provide us with exactly n eigenvectors, and Proposition 22.6.6 tells
us that these n eigenvectors will be linearly independent. ■

Proof of Statement 2. In the case that a square matrix has n different real
eigenvalues, then each of these eigenvalues must have algebraic multiplicity
1, since otherwise these n algebraic multiplicities would add up to more than
n, the degree of the characteristic polynomial. So each geometric multiplicity
is no greater than 1. But also, as in noted in Remark 22.6.9, each geometric
multiplicity must be at least 1. Thus, each geometric multiplicity for this matrix
is exactly 1, and so is equal to the corresponding algebraic multiplicity.

The result now follows from the first statement of this corollary. ■
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APPENDIX A

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, textbook,
or other functional and useful document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to any man-
ual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as
“you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
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not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or
PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title page
as such, “Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”,
or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.
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2. VERBATIM COPYING. You may copy and distribute the Document in any
medium, either commercially or noncommercially, provided that this License,
the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies in media
that commonly have printed covers) of the Document, numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network
location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version of the
Document under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsi-
ble for authorship of the modifications in the Modified Version, together
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with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network lo-
cations given in the Document for previous versions it was based on. These
may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties — for example,
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statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with other
documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that
you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection consisting
of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compilation of the
Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
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within the aggregate, or the electronic equivalent of covers if the Document is in
electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so you
may distribute translations of the Document under the terms of section 4. Re-
placing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Docu-
ment, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”,
or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute the
Document except as expressly provided under this License. Any attempt other-
wise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b) per-
manently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, receipt of a copy of
some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software Founda-
tion may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Document.

http://www.gnu.org/copyleft/
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11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works and
also provides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multiauthor
Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license
published by Creative Commons Corporation, a not-for-profit corporation with a
principal place of business in San Francisco, California, as well as future copyleft
versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part,
as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use this
License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title
page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace
the “with. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.
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