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Abstract 

Flowing solid-liquid suspensions are abundant in natural and engineered systems. In general, solid-

liquid flows span a multi-dimensional parameter space, with coordinates such as the Stokes number, 

the solids volume fraction, the density ratio, and Reynolds numbers. We are interested in systems with 

appreciable inertia effects – i.e. non-zero Stokes and Reynolds numbers – having density ratios of the 

order of one (typical for solid-liquid systems) and solids volume fractions of at least 0.1. Additional 

effects not uncommon in oil & gas and mining applications are strongly inhomogeneous solids 

distributions, non-Newtonian liquids, sticky particles that tend to aggregate and particles that are non-

spherical so that shape effects come into play. This all leads to a rich spectrum of solid-liquid and 

solid-solid interactions at the scale of individual particles. To reveal these interactions we perform 

direct simulations of collections of a few thousand of particles carried by a liquid flow with resolution 

of the solid-liquid interfaces. For this we use the lattice-Boltzmann method supplemented with an 

immersed boundary approach. Applications such as turbulence-particle interaction, and aggregation of 

solid particles are discussed.   
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1. Introduction 

Solid-liquid suspensions are abundant in natural and engineered systems. Our interest in large-scale 

industrial multiphase flows implies that we have systems with appreciable inertia effects, having 

density ratios of the order of one (solid-liquid) and high disperse phase loading (solids volume 

fractions of order 0.1). In such suspensions many assumptions that ease the life of the computational 

researcher do not hold, and direct simulations  including full resolution of the solid-liquid interfaces  

are desired to reveal the relevant interactions at the scale of the particles. This necessarily limits the 

size of the systems that we are able to simulate; they typically contain up to a few thousand particles. 

In this paper, the scales related to particle size and multi-particle interaction will be termed particle-

scales or (better) meso-scales, and our direct simulations are meso-scale simulations. Next to the 

ambition to fully resolve meso-scale phenomena, we are faced with the issue as to how to incorporate 

insights gained at the meso-scale in macro-scale modelling approaches (meso-to-macro coupling). In 

the opposite direction (macro-to-meso), the meso-scale systems need to be agitated (energized) in a 

manner that realistically represents the energy input that in many practical processes comes from the 

macro-scale; think of agitation by impellers, jets, distributor plates, and pumps (generating overall 

pressure gradients). 

Given the variety of multiple-scale interactions in industrial multiphase flow systems there is 

not a general methodology or framework for establishing the macro-meso coupling. In this paper I will 

show examples of meso-scale simulations in the area of mostly turbulent liquid-solid suspensions, and 

show how their results could be incorporated in macroscopic flow and transport modeling.  

The paper is organized in the following manner: First, we give a short overview of our 

computational methodology which is largely based on the lattice-Boltzmann method for solving the 

flow of the interstitial liquid. We then briefly describe methods for generating homogeneous, isotropic 

turbulence as a basic way to excite meso-scale systems. Subsequently applications will be discussed. 
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They comprise turbulence-particle interaction and aggregation: flow-induced forces in agglomerates, 

and coagulation, breakage and structuring of aggregates in mostly turbulent flow fields. 

 

2. Computational Approach 

2.1 Lattice-Boltzmann method 

The continuous phase (liquid) flow we solve with the lattice-Boltzmann method (LBM). For flows in 

complexly shaped domains and/or with moving boundaries, this method has proven its usefulness (see 

e.g. the review article by Chen & Doolen 1998). In the LBM, the computational domain is discretized 

into a number of lattice nodes residing on a uniform, cubic grid. Fluid parcels move from each node to 

its neighbors according to prescribed rules. It can be proven by means of a Chapman-Enskog 

expansion that  with the proper grid topology and collision rules  this system obeys, in the low Mach 

number limit, the incompressible Navier-Stokes equations (Chen & Doolen 1998; Succi 2001). The 

specific implementation used in our simulations has been described by Somers (1993), which is a 

variant of the widely used Lattice-BGK scheme to handle the collision integral (e.g., see Qian et al. 

1992). We use the scheme due to Somers, as it manifests a more stable behaviour at low viscosities 

when compared to standard LBGK. 

 

2.2 Liquid-solid & solid-solid coupling 

In the lattice-Boltzmann flow field, spherical (usually monosized), solid particles are suspended. The 

solid-liquid interfaces are fully resolved. The fluid flow and the motion of the spheres are coupled by 

demanding that at the surface of each sphere the fluid velocity matches the local velocity of its surface 

(that is the sum of the linear velocity pv  and   p pΩ r r with pΩ  the angular velocity of the sphere, 

pr  the center position of the sphere, and r a point on its surface). In the forcing (aka immersed 

boundary) scheme that is applied here this is accomplished by imposing additional forces on the fluid 

at the surface of the solid sphere (which are then distributed to the lattice nodes in the vicinity of the 
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particle surface). The details of the implementation can be found elsewhere (Goldstein et al. 1993; 

Derksen & Van den Akker 1999; Ten Cate et al. 2002). The collection of forces acting on the fluid at 

the sphere's surface and its interior is subsequently used to determine the hydrodynamic force and 

torque acting on the sphere (action=reaction) (Derksen & Sundaresan 2007). 

In our simulations, the radius of each spherical particle is specified and input radius refers to 

this radius scaled by the lattice spacing. In the LBM simulations, as the spherical particle is 

represented by forces that are confined to a cubic grid, the input radius does not reflect the actual 

radius of the particle. A calibration procedure to estimate the effective radius of this object (commonly 

referred to as the hydrodynamic radius) was introduced by Ladd (1994). We apply his scheme to 

estimate the hydrodynamic radius of the particles. The hydrodynamic radius is recognized as a and is 

given in lattice units. In our work radii in the range a=6 – 12 are used. Typically the input radius turns 

out to be some half a lattice spacing or less smaller than the hydrodynamic radius. 

In multiple-sphere systems when two spheres are in close proximity, with their separation 

being of the order of or less than the lattice spacing, the hydrodynamic interaction between them will 

not be accurately resolved by the lattice. Therefore, we explicitly impose lubrication forces on the 

spheres, in addition to the hydrodynamic forces stemming from the LBM. We use the procedure 

developed by Nguyen & Ladd (2002) to smoothly make the transition between resolved and 

unresolved hydrodynamic interactions. 

In addition to the interactions via the liquid, spherical particles have direct interactions. In the 

first place the spheres collide. By default we use hard-sphere collisions according to a two-parameter 

model (Yamamoto et al. 2001) with a restitution coefficient e and a friction coefficient . In some 

situations where particle motion is constrained (such as with fibers built of strings of spheres) we – 

largely for reasons of computational efficiency – use soft-sphere collisions.  

In order to study aggregation we can make the spheres sticky by giving them an attractive 

square-well potential interaction (Smith et al. 1997): If the centers of two approaching spheres come 
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within a distance  2 a   they trade potential energy for kinetic energy (by an amount swpE  per 

sphere). They then are within one another‟s square-well potential (SqWP) and are considered attached. 

Two attached spheres can only separate if they are able to overcome the energy barrier imposed by the 

SqWP with their kinetic energy The particle interaction potential is thus defined by two parameters: its 

depth ( swpE ) and its width ( ). Rather than working with swpE  we will be working with the parameter 

u  which is the escape velocity of the SqWP. These parameters relate according to  
21

2
swp pE m u   

with pm  the mass of the (monosized) primary spherical particles. 

 

2.3 Homogeneous isotropic turbulence 

A typical way to agitate our meso-scale systems is by generating turbulence in fully periodic, three-

dimensional domains. Adding particles to the domains allows us to study the (two-way) coupling of 

solid and liquid motion. So far mainly homogeneous, isotropic turbulence (HIT) has been considered 

in our work. HIT is e.g. characterized by its root-mean-square velocity rmsu  and a Kolmogorov length 

scale 

1/4
3

K






 
  
 

 with   the volume and time averaged dissipation rate (which in steady state equals 

energy input) and   the kinematic viscosity of the liquid. If solids are added, the relevant 

dimensionless numbers are then based on the radius of the spherical particles involved: Re rms
rms

u a


  

and 
K

a


. 

We have been using two different strategies to make HIT. One is based on random forcing and 

was introduced by Alvelius (1999) in the context of spectral methods, later adapted for the lattice-

Boltzmann method by Ten Cate et al (2006). This strategy has the advantages that the power input can 

be controlled accurately, and that it allows for more general forms of turbulence, including anisotropic 

turbulence with full control over the volume-averaged anisotropy tensor. The second strategy is linear 
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forcing, where turbulence is sustained by a force that is proportional to the local velocity (Rosales & 

Meneveau 2005). This method has the elegance of simplicity and (as a result) computational efficiency 

at the cost of being less general than random forcing. Linear forcing does provide good control over 

the power input and thus (once equilibrium between power input and dissipation has been reached) 

over the Kolmogorov scales. 

 

3. Case Studies 

3.1 DNS of turbulently agitated solid-liquid suspensions 

With a view to applications in industrial crystallization, Ten Cate et al (2004) studied the motion of 

solid, spherical particles released in HIT. The conditions were such that 
K

a


 was of the order of 10, 

and Rerms  roughly 50. Attrition, i.e. breakage of crystals due to collisions is an important issue in 

crystallization as it directly and indirectly influences the crystal size distribution. The direct influence 

is obvious; the indirect influence on the size distribution is a result of breakage fragments acting as a 

(secondary) source of nucleation.     

As is known from experimental (Elghobashi & Truesdell 1993) as well as numerical work 

(Boivin et al. 1998), the presence of the particles affects the turbulence spectrum. Figure 1 shows 

spectra at different solids loadings. As evident from the spectra, and also from a direct look into our 

simulations, the spheres generate turbulence at scales comparable to and smaller than the particle 

diameter. This effect is a pronounced function of the solids volume fraction: the more particles, the 

stronger the effect. 

Our main interest was to quantify particle collisions, in terms of frequencies and intensities. In 

this respect it was revealing to study the probability density function (PDF) of the time between two 

collisions of a particle (as given in Figure 2). For “long times” this PDF is exponential indicating 

Poisson statistics; collisions after “long” time intervals are uncorrelated events. The slopes in Figure 2 
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get steeper for denser systems, i.e. the average time between uncorrelated collisions gets shorter for 

denser systems. More interestingly, however, for “short times” the PDF shows a peak towards zero 

time, indicating many collisions taking place shortly after one another. Closer inspection teaches that 

these are correlated events: once turbulence has brought two (or more) particles in each other‟s vicinity 

they tend to cluster due to short range hydrodynamic interaction and undergo many (weak) collisions 

at short time intervals. Lubrication forces play a prominent role in the lifetime of the clusters. 

Eventually the particles in the cluster are separated when a strong enough (turbulent) eddy comes by. 

In terms of macro-scale modelling, results related to collision statistics as a function of 

turbulence quantities and solids loading could be incorporated in (macro-scale) population balance 

modelling for predicting breakage and crystal size distributions. 

 

3.2 Flow-induced forces in agglomerates 

In many processes involving solid particle formation or solids handling, particles have a tendency to 

stick together. Sometimes agglomeration is a wanted phenomenon to effectively grow particles making 

separation easier. It also is a mechanism that potentially destroys a narrow particle size distribution, 

and as a result could deteriorate product quality. Much effort goes into preventing or promoting 

agglomeration, and much effort goes into repairing the harm agglomeration has done. Regardless of 

whether agglomeration is wanted or unwanted, it is relevant to assess the stability and the integrity of 

the bond holding the primary particles together. Agglomerates can break as a result of a variety of 

mechanisms, one of them being the flow of fluid surrounding the agglomerate: velocity gradients 

induce forces on and in agglomerates that could break them. 

Understanding and modeling agglomerate breakage as a result of fluid flow is largely based on 

relatively simple concepts involving estimating shear rates and semi-empirical correlations for 

breakage statistics. As described in recent papers on the broader subject of population balance 

modeling of colloidal dispersions (Soos et al. 2006), the physical description of breakage due to flow 
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date back quite some time (Delichatsios & Probstein 1976; Kusters 1991), and is prone to refinement 

in terms of getting the (statistics of the) hydrodynamic environment of agglomerates right, and in terms 

of estimating the actual hydrodynamic forces in agglomerates immersed in complex flow. 

As a starting point we here assess the role of some of the non-ideal factors in the flow-induced 

forces in agglomerates. For this we first have chosen to consider the virtually simplest agglomerate 

possible: two equally sized spheres (radius a), rigidly constrained together at their (single) point of 

contact, i.e. a sphere doublet. The two spheres are touching, they have zero separation. We release a 

single doublet in homogeneous, isotropic turbulence (now generated through linear forcing) and 

monitor the forces and torques at the point of contact needed to keep the two spheres attached. The 

time series are highly erratic (see the example in Figure 3), with the fluctuation levels usually much 

higher than the averages. The positive average normal force in Figure 3 is the average (always tensile) 

centrifugal force. Running a number of simulations with 
K

a


 as the main variable shows an interesting 

scaling of the force fluctuation levels. As 
K

a


 increases, the flow around the agglomerate gets more 

inhomogeneous which adds to the fluctuations, see Figure 4. More details and results can be found in a 

recent paper (Derksen 2008). 

Small-scale (micro) devices have also been used to perform experiments on aggregate breakage 

(Zaccone et al, 2009). In such devices the deformations in now laminar flow induce forces in the 

agglomerates. Here we investigate these forces computationally. The basic flow geometry for this is a 

square channel with width H. The flow in the channel is driven by a body force f0 acting in the x 

(=streamwise) direction mimicking a pressure gradient. At the four side walls a no-slip boundary 

condition applies; the flow system is periodic in streamwise direction. A Reynolds number 

characterizing the flow in the channel can be based on the wall shear velocity. Since the average wall 

shear stress relates to f0 via an overall force balance we can write 

3/ 2 1/ 2

0

1/ 2

1
Re

2
w

H f

 
 . Inspired by the 
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work due to Zaccone et al (2009), in some of the simulations the channel has a contraction. The 

contraction is two-dimensional, i.e. the channel is only contracted locally in the z-direction; the width 

in the y-direction remains H. The Reynolds number definition for the contracted channel cases we take 

the same as for the uniform channel. 

In the liquid that fills the channel, agglomerates are released. They consist of equally sized 

spheres with radius a. Three types of agglomerates have been considered: (1) two touching spheres 

forming a doublet; (2) three touching spheres (triplet) forming a triangle (two contact points per 

primary sphere); (3) four touching spheres (quadruplet) forming a tetrahedron (three contact points per 

primary sphere).  The introduction of the agglomerates in the channel gives rise to three additional 

dimensionless numbers: an aspect ratio 
a

H
, a density ratio s


, and a solids volume fraction  . 

Figure 5 shows typical flow situations with (in this case) quadruplets in a square channel with 

and without contraction. The channel width H is 10 times the primary sphere diameter. In the triplets 

and quadruplets considered, primary spheres have more than one point of contact with the other 

spheres in the agglomerate. For these special cases the simulation procedure allows us to determine the 

forces and torques per contact point. As examples, time series of radial contact forces in quadruplets 

are shown in Figure 6. The smooth parts of the fluctuations shown are due to motion of the rotating 

agglomerate through the channel thereby sampling variations in the local liquid deformation rate. The 

spikes and discontinuities are due to encounters with other agglomerates; the denser the suspension, 

the more encounters. One way of summarizing the detailed information provided by the simulations is 

in the form of probability density functions (PDF‟s) of contact forces and torques. In Figure 7 we show 

that the radial force PDF gets wider for denser agglomerate slurries. 

 

3.3 Aggregation of spherical particles in turbulence 

In the recent literature, modeling of aggregates in homogeneous deformation fields has received 

considerable attention (Bäbler et al. 2008; Zaccone et al. 2009; Soos et al. 2010; Higashitani et al. 
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2001; Becker et al. 2009; Harshe et al. 2011). The  in such cases  small size of the aggregates 

compared to the fluid dynamic micro-scales allows for a Stokes flow approximation at the particle 

level and thus for the use of e.g. Stokesian dynamics (Brady & Bossis 1988) to describe the 

interactions between the primary particles (spheres in case of Stokesian dynamics) forming aggregates, 

and the surrounding fluid. In such simulations, the overall deformation field that agitates the Stokesian 

dynamics is an input condition.     

Here we remove the assumption of aggregates being small compared to the Kolmogorov scale. 

This has a few consequences. In the first place it implies that Reynolds numbers based on aggregate 

size and even on primary particle size (the latter defined as 
2

Re
a 


  with   the magnitude of the 

deformation rate tensor, a the primary particle radius, and   the kinematic viscosity of the liquid) are 

not necessarily (much) smaller than unity and that inertial effects (of fluid as well as of the particles) 

need to be resolved (and Stokesian dynamics can not be applied). It also implies that there is no clear 

length-scale distinction between Kolmogorov-scale flow and aggregate-scale flow anymore. Both 

scales overlap in an order-of-magnitude sense and directly interact. Therefore, a direct, two-way 

coupling between the turbulent micro-scales and the inhomogeneous fluid deformation experienced by, 

and generated by the moving, rotating, and continuously restructuring aggregates needs to be 

established. 

In our simulations, homogeneous, isotropic turbulence (HIT) is generated in a cubic, fully 

periodic, three-dimensional domain through linear forcing (Rosales & Meneveau 2005). In the 

turbulent field, uniformly sized, spherical primary solid particles are released. The solids typically 

occupy 10% of the total volume. The particles are made sticky (i.e. they have a tendency to aggregate) 

by means of a square-well potential (SqWP) (see Smith et al (1997) and the section on solid-liquid & 

solid-solid-coupling earlier in this paper). Next to interacting through the SqWP, the particles interact 

via the interstitial fluid and through hard-sphere collisions. The combination of turbulence and the 

SqWP produces a solid-liquid system in which bonds between primary spheres are continuously 
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formed and broken, and an aggregate size distribution (ASD) evolves naturally to a dynamically 

stationary state. Our main interest is how the ASD depends on turbulence properties on one side, and 

the interaction potential on the other. 

An important question is how large the (cubic) domain needs to be to get representative results 

that are independent of the domain size. This is particularly relevant since our solid-liquid systems 

aggregate and not only the primary sphere size should be much smaller than the domain size, also the 

aggregate size should be (much) smaller than the size of the domain to avoid the unphysical situation 

that an aggregate strongly interacts with itself through the periodic boundaries. Apart from aggregation 

and self-interaction between aggregates, the turbulence imposes demands on the domain size: it should 

have sufficient room to develop its wide spectrum of length scales to be representative for the strong 

turbulence in large scale process equipment. Obviously, the domain size is limited by the finite 

computational resources (time and memory) available. To investigate domain size effects, cubic 

domains with four different vertex lengths  L=128=21.3a, L=192=32a, L=256=42.7a, L=384=64a (the 

sphere radius a has not been varied and corresponds to 6 lattice spacings) have been considered.   

Since in the larger flow domains the turbulence is allowed to generate larger structures, the 

time to steady state (as measured in viscous time units 
2a


) gets longer for larger L (see Figure 8). 

Three variables have been tracked in Figure 8: the ratio K

a


;  a turbulence Reynolds number based on 

the volume-average root-mean-square velocity in the liquid Re rms
a

au


 , and the number of 

attachment points per sphere ( cn ) as a metric for the level of aggregation. The stable time series (after 

reaching steady state) of the ratio K

a


, and the good agreement between its pre-set and actual values 

shows that the linear forcing procedure is able to maintain a constant, desired dissipation rate; also in 

the presence of solids. The dissipation rate is independent of the size of the computational domain, 

which it should be.  
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The steady state level of Rea
 does depend on domain size L; if the domain gets larger Rea

 gets 

larger which means that the turbulent kinetic energy (TKE) per unit fluid mass increases. This is due to 

the larger, energy containing structures that fit in the larger domains. To quantify this, turbulent kinetic 

energy spectra are shown in Figure 9. The spectra for different domain sizes more or less overlap for 

the higher wavenumbers 
2




 . This is because the simulations with different domain sizes have the 

same dissipation rate and therefore develop the same small-scale turbulence. If we discard the 

simulations in the smallest domain (L=128) the spectra only deviate significantly for the smaller 

wavenumbers with  10 log 0.5a   , i.e. for flow structures with sizes larger than 
0.5

2
20

10

a
a




 . As a 

result of this, the turbulent environment of the primary particles and also of small aggregates can be 

considered (statistically) similar for the simulations at different domain size, as long as 192L  . This 

is likely the reason why the average number of contacts per sphere cn  (bottom panels of Figure 8) is 

approximately independent of the domain size, again as long as 192L  . 

For the smallest simulations (L=128), the number of contacts per sphere is clearly different, and 

also the spectra deviate over larger portions of the wavenumber space (Figure 9) and we conclude that 

such a domain is too small. In the case with    a stationary state is actually not reached if L=128; 

the number of contacts per sphere keeps increasing. Closer inspection teaches that the spheres keep on 

aggregating and tend to form a single, big aggregate. If (for 192L  ) steady state cn values are 

compared between 0   and   , friction induces higher levels of attachment of spheres and thus 

probably larger aggregates. 

We now turn to the structure and size of the aggregates that are continuously formed and 

broken as a result of the turbulent flow. In Figure 10 instantaneous realizations of particle 

configurations are given. From the panel related to L=128 it may be more clear that – as argued above 

– this domain is too small for a domain-size-independent representation of the turbulence-aggregation 
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interaction; larger domains are clearly needed. The bottom panels of Figure 10 show the largest 

aggregates at a certain (arbitrary) moment in time, suggesting larger aggregates when collisions 

between primary spheres are frictional. They also suggest a fairly open aggregate structure, i.e. 

relatively low fractal dimensions.  

To make the observations in Figure 10 regarding the aggregates more quantitative and also to 

further investigate domain-size effects, time-averaged ASD‟s were determined. The ASD‟s presented 

in this paper are by aggregate mass (which is the same as by aggregate volume or by aggregate size in 

terms of the number of primary spheres aggn  given the monodisperse primary spheres). To determine 

ASD‟s we took a large number of instantaneous realizations during the stationary portion (
2

5
a

t


 ) of 

the time series shown in Figure 8 (except for the case with L=128 and    that did not become 

steady; for this case we also started building an ASD from 
2

5
a

t


  on). The size distributions for the 

same cases for which we showed the time series in Figure 8 are given in Figure 11. Note that these are 

normalized size distributions; i.e. the area under each curve is the same. Also note the logarithmic 

ordinate. For 0   the ASD is fairly independent of L as long as 192L  ; the case with L=128 

deviates strongly. The mass-averaged aggregate sizes are aggn 2.60, 2.07, 1.97, 1.88 for L=128, 

192, 256, 384 respectively which (beyond L=128) shows a weak trend towards smaller aggn  for 

larger domains. This may be due to the stronger turbulence (albeit at the larger scales only) for the 

larger domains. Also for    ASD‟s are similar if  192L  . The average aggregate sizes are (in the 

order small to large domain) 4.63, 2.42, 2.27, and 2.22, i.e. slightly but significantly larger than for 

0  . 

Based on what was learned so far, a number of simulations were performed all having L=256 

and   . The settings for K

a


,   (solids volume fraction), and 

u




 (strength of the SqWP u  
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non-dimensionalized with the Kolmogorov velocity scale  ) were varied. Note that changing one 

dimensionless number and keeping the rest the same sometimes implies changing more than one 

physical parameter. For instance, a decrease in the ratio K

a


 was achieved by increasing the energy 

dissipation rate, thus reducing the Kolmogorov length scale. At the same time the Kolmogorov 

velocity scale   increases. In order to keep 
u




 constant, we increase u  (and thus the binding 

energy) by the same factor as   increases.  

The resulting ASD‟s are presented in Figure 12. A striking observation is that the turbulent and 

aggregating solid-liquid systems can quickly get unstable. If the depth of the square well 
u




 is 

increased from 0.30 to 0.35 (an increase by a factor of 1.36 in the binding energy which is proportional 

to  
2

u ) the system slowly but consistently keeps on aggregating without reaching a steady ASD; see 

the lower panel of Figure 12 and its inset. If the solids volume fraction is increased from  =0.08 

(base-case) to 0.16 a large aggregate consisting of the order of two thousand primary spheres is formed 

(the total number of primary spheres in this simulation is 2960), surrounded by a number of smaller 

aggregates and primary spheres; see the middle panel of Figure 12 plus inset. 

Apart from the unstable nature of some of the aggregating solid-liquid systems, the results in 

terms of ASD‟s follow expected trends: For a given primary particle size, a decrease in K

a


 means a 

decrease in the Kolmogorov length scale as a results of an increasing energy dissipation rate. Since 

(unless stated otherwise) the ASD‟s were obtained during a stationary time window, dissipation is in 

equilibrium with power input, and higher dissipation implies higher power input and thus stronger 

turbulence. The results in the top panel of Figure 12 therefore show a shift towards smaller aggregate 

sizes if the power input is increased. Starting at the highest value of K

a


, from one case to the next the 
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power input increases by a factor of 4. For K

a


=0.181, 0.129, 0.091 the respective mass-average 

aggregate sizes 
aggn  are 3.99, 2.27, and 1.71. The average aggregate size is approximately linear in 

K

a


 in the (fairly narrow) range considered here.  

It was discussed above that the denser suspensions ( 0.16  ) we investigated got unstable. 

The more dilute suspension with 0.04   develops much smaller aggregates compared to the 

0.08   base-case, largely because collisions are much less frequent in the dilute suspension (middle 

panel of Figure 12). Also the influence of the depth of the square-well follows our intuition: the 

shallower interaction potential leads to smaller aggregates; the deeper well to larger aggregates 

(bottom panel of Figure 12). 

 

4. Summary & Perspective 

This paper presents a few case studies of mesoscopic modelling of solid-liquid flows, with underlying 

topics such as momentum transfer, turbulence modulation, aggregation, and flow-induced forces in 

and on agglomerates. Except for lubrication modelling, the simulations are direct, meaning that no 

(empirical) closures or empirical correlations for e.g. forces on particles enter the simulations.  

From an industrial standpoint the flow systems studied are (still) very simple: monosized 

spherical, solid particles in Newtonian carrier fluids. The choice for monodispersed systems is not 

fundamental; the simulation strategy easily allows for size distributions. The extension towards non-

spherical particles would be much less straightforward. Specifically in dense systems, handling 

collisions of non-spherical particles would get (computationally) more complicated. 

The reason for the relative simplicity at the mesoscale was to keep the parameter space limited. 

Adding complications (at the mesoscale) strongly adds to the dimensionality of the parameter space 

(then size distributions, particle shape characterization, and rheological parameters would enter). It 

would be useful though to add complexity to the mesoscale, the challenge being to directly mimic the 
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interactions there and for instance see how particle shape impacts momentum transfer in dense 

suspensions.  The price to pay for this is getting less general (i.e. work towards more and more specific 

applications); results only apply to the specific systems of choice; the (general) link to the macro-scale 

would be harder to establish. 

Relating with real processes and industry in this respect is essential. Zooming in on practical 

systems and making choices regarding the physics to be incorporated there only pays off if it helps in 

solving practical problems with economical and environmental impact. 

 

This paper is a revised and expanded version of a paper entitled „Dense suspensions – the richness of 

solid-liquid interactions at the particle scale‟ that was presented at the CFD2011 Conference 

(Trondheim, Norway, June 2011). 
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Figure captions 

Figure 1. Energy spectra of two-phase simulations compared to the fluid-only spectrum. The 

wavenumber  is normalized with the particle size wavenumber d=/a.  

 

Figure 2. PDF of the time between two collisions for three solids volume fractions. The lines are 

linear fits of the tails of the distribution. The collision time has been made dimensionless with the 

Kolmogorov time scale . 
 

Figure 3. Time series of the flow-induced normal force at the point of contact of a sphere doublet. 

Time has been normalized with the Kolmogorov time scale .  
 

Figure 4: Root-mean-square nF   normal force in the sphere doublet at various turbulence conditions, 

characterized by the ratio 
K

a
 along with a trend line. 

 

Figure 5: Cross sections through channels with quadruplets in terms of absolute liquid velocity 

contours. The top two channels have a contraction. In all cases Rew  2.6, s


=2.5,  =0.062, 

a

H
=0.05. 

 

Figure 6: Time series of the dimensionless normal force (
2

n
n

w

F
F

a

   with w
w





  the wall shear 

rate) in one sphere-sphere contact point in a quadruplet. Comparison for different slurry densities. 

Blue: solids volume fraction 9.3%; red: 6.2%; green: 3.1%. The channel has no contraction. 

Dimensionless time is wt t  . 

 

Figure 7: PDF of the normal force in sphere-sphere contact points in quadruplets. Same color coding 

as Figure 6. 

 

Figure 8. Time series of key variables of aggregating spheres in homogeneous isotropic turbulence. 

From top to bottom: Kolmogorov length-scale over particle radius, particle-size-based Reynolds 

number Re rms
a

u a


 , number of sphere-sphere contacts per sphere. Left: frictionless collisions 

( 0  ), right: frictional collisions (  ). The colors indicate domain size.   

 

Figure 9: Power spectral density of turbulent kinetic energy as a function of dimensionless 

wavenumber a  after steady state has been reached. The same solid-liquid systems as in Figure 12. 

 

Figure 10: Single realizations of aggregates in cubic domains. Top: primary spheres colored by the 

size of the aggregate they are part of (red: 4aggn  ; yellow: 4 7aggn  ; green: 7 10aggn  ; blue: 

10aggn  ). Top-left: L=128; top-right L=384. Cases with   . Bottom: the four biggest aggregates 

with L=384; left    (red: 60aggn  , yellow: 150aggn  , green 65aggn  , blue: 105aggn  ; the red 
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aggregate connects through the periodic boundaries); right 0  (red: 32aggn  , yellow: 46aggn  , 

green 31aggn  , blue: 41aggn  ; the yellow aggregate connects through the periodic boundaries). 

 

Figure 11: Aggregate size distributions by mass for the cases defined in Figure 12. Comparison 

between frictionless (left) and frictional (right) collisions, and effects of system size. 

 

Figure 12: ASD‟s by mass for L=256 domains, averaged over the time-interval 
2

5 20
t

a


  ; effects of 

physical settings. From top to bottom: effect of K

a


; solids volume fraction   (the inset has an 

extended abscissa to show the large aggregates for  =0.16); 
u




 (the inset shows the number of 

contacts per sphere as a function of time for 
u




=0.35 to indicate its non-stationary behaviour in the 

averaging time-window). 
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Figures 
 

Figure 1. Energy spectra of two-phase simulations compared to the fluid-only spectrum. The 

wavenumber  is normalized with the particle size wavenumber d=/a.  
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Figure 2. PDF of the time between two collisions for three solids volume fractions. The lines are 

linear fits of the tails of the distribution. The collision time has been made dimensionless with the 

Kolmogorov time scale . 
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Figure 3. Time series of the flow-induced normal force at the point of contact of a sphere doublet. 

Time has been normalized with the Kolmogorov time scale .  
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Figure 4: Root-mean-square nF   normal force in the sphere doublet at various turbulence conditions, 

characterized by the ratio 
K

a
 along with a trend line. 
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Figure 5: Cross sections through channels with quadruplets in terms of absolute liquid velocity 

contours. The top two channels have a contraction. In all cases Rew  2.6, s


=2.5,  =0.062, 

a

H
=0.05. 
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Figure 6: Time series of the dimensionless normal force (
2

n
n

w

F
F

a

   with w
w





  the wall shear 

rate) in one sphere-sphere contact point in a quadruplet. Comparison for different slurry densities. 

Blue: solids volume fraction 9.3%; red: 6.2%; green: 3.1%. The channel has no contraction. 

Dimensionless time is wt t  . 
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Figure 7: PDF of the normal force in sphere-sphere contact points in quadruplets. Same color coding 

as Figure 6. 
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Figure 8. Time series of key variables of aggregating spheres in homogeneous isotropic turbulence. 

From top to bottom: Kolmogorov length-scale over particle radius, particle-size-based Reynolds 

number Re rms
a

u a


 , number of sphere-sphere contacts per sphere. Left: frictionless collisions 

( 0  ), right: frictional collisions (  ). The colors indicate domain size.   
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Figure 9: Power spectral density of turbulent kinetic energy as a function of dimensionless 

wavenumber a  after steady state has been reached. The same solid-liquid systems as in Figure 8. 
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Figure 10: Single realizations of aggregates in cubic domains. Top: primary spheres colored by the 

size of the aggregate they are part of (red: 4aggn  ; yellow: 4 7aggn  ; green: 7 10aggn  ; blue: 

10aggn  ). Top-left: L=128; top-right L=384. Cases with   . Bottom: the four biggest aggregates 

with L=384; left    (red: 60aggn  , yellow: 150aggn  , green 65aggn  , blue: 105aggn  ; the red 

aggregate connects through the periodic boundaries); right 0  (red: 32aggn  , yellow: 46aggn  , 

green 31aggn  , blue: 41aggn  ; the yellow aggregate connects through the periodic boundaries). 
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Figure 11: Aggregate size distributions by mass for the cases defined in Figure 8. Comparison 

between frictionless (left) and frictional (right) collisions, and effects of system size. 
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Figure 12: ASD‟s by mass for L=256 domains, averaged over the time-interval 
2

5 20
t

a


  ; effects of 

physical settings. From top to bottom: effect of K

a


; solids volume fraction   (the inset has an 

extended abscissa to show the large aggregates for  =0.16); 
u




 (the inset shows the number of 

contacts per sphere as a function of time for 
u




=0.35 to indicate its non-stationary behaviour in the 

averaging time-window). 

 


