next up previous contents index
Next: Nonrelativistic Limit of the Up: Dirac Equation Previous: Dirac Particle at Rest

Electromagnetic Interaction

We introduce the coupling to an electromagnetic field to obtain an interpretation of the internal structure of Dirac particles. Consider the interaction of a point charge $e$ with an external electromagnetic field. The 4-potential is $A^\mu = (A_0,\vec{A})$, where $A^\mu$ is a function of $\vec{x}$ only. We make the usual gauge invariant minimal substitution


\begin{displaymath}
\hat{p}^\mu \rightarrow \hat{p}^\mu -\frac{e}{c} A^\mu ,
\end{displaymath} (5.20)

where $e$ is the magnitude of the charge of an electron. The Dirac equation becomes


\begin{displaymath}
c\left[ i\hbar\frac{\partial}{\partial(ct)} - \frac{e}{c} A_...
...( \hat{p} -
\frac{e}{c}\vec{A}\right) + \beta mc^2\right] \psi
\end{displaymath} (5.21)

or


\begin{displaymath}
i\hbar\frac{\partial}{\partial t}\psi = \left[ c\vec{\alpha}...
...\frac{e}{c}\vec{A} \right) + eA_0 + \beta mc^2
\right] \psi .
\end{displaymath} (5.22)

This equation contains the interaction with the electromagnetic field:


\begin{displaymath}
i\hbar \frac{\partial}{\partial t} \psi = \left( \hat{H} +
\hat{H}^\prime \right) \psi ,
\end{displaymath} (5.23)

where


\begin{displaymath}
\hat{H}^\prime = -\frac{e}{c} c\vec{\alpha}\cdot\vec{A} + eA_0
= -\frac{e}{c}\hat{v}\cdot\vec{A} + eA_0 ,
\end{displaymath} (5.24)

and


\begin{displaymath}
\hat{v} = c\vec{\alpha}
\end{displaymath} (5.25)

is the classical correspondence of the relativistic velocity operator. We can see this by looking at the relativistic extension of the Ehrenfest relation:


\begin{displaymath}
\frac{d\hat{x}}{dt} = \frac{i}{\hbar} [\hat{H},\hat{x}] =
\f...
...ac{ci}{\hbar}\alpha_\mu[\hat{p}^\mu,\hat{x}] = c\vec{\alpha} .
\end{displaymath} (5.26)


next up previous contents index
Next: Nonrelativistic Limit of the Up: Dirac Equation Previous: Dirac Particle at Rest
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18