next up previous contents index
Next: Interaction with the Electromagnetic Up: Klein-Gordon Equation Previous: Charge of a Klein-Gordon

Orthogonality and Normalization

$\int d^3x\phi^*\stackrel{\leftrightarrow}{\partial}_0\phi$ is time independent. If $\phi$ is a Lorentz scalar than so is $\int
d^3x\phi^*\stackrel{\leftrightarrow}{\partial}_0\phi$ and it can be used for normalization. Since $\int d^3x\phi^*\stackrel{\leftrightarrow}{\partial}_0\phi$ is purely imaginary we can define the normalization as


\begin{displaymath}
\pm i\int d^3x \phi^*(x) \stackrel{\leftrightarrow}{\partial}_0
\phi(x) = 1 .
\end{displaymath} (4.55)

If we have a set of wave functions $\phi_a(x), a=1,2,3,...$, they may be orthonormalized via


$\displaystyle \int d^3x {\phi_a^{(\pm)}}^*(x) i\stackrel{\leftrightarrow}{\partial}_0
\phi_b^{(\pm)}(x)$ $\textstyle =$ $\displaystyle \pm\delta_{ab} ,$ (4.56)
$\displaystyle \int d^3x {\phi_a^{(\pm)}}^*(x) i\stackrel{\leftrightarrow}{\partial}_0
\phi_b^{(\mp)}(x)$ $\textstyle =$ $\displaystyle 0 .$ (4.57)

We can also require that the general solution (for wavepackets) satisfies


$\displaystyle \int d^3x{f{_{p^\prime}}^{(\pm)}}^*(x) i
\stackrel{\leftrightarrow}{\partial}_0 f_p^{(\pm)}(x)$ $\textstyle =$ $\displaystyle \pm\delta^3(\vec{p}-\vec{p}^{\:\prime}) ,$ (4.58)
$\displaystyle \int d^3x{f{_{p^\prime}}^{(\pm)}}^*(x) i
\stackrel{\leftrightarrow}{\partial}_0 f_p^{(\mp)}(x)$ $\textstyle =$ $\displaystyle 0.$ (4.59)


next up previous contents index
Next: Interaction with the Electromagnetic Up: Klein-Gordon Equation Previous: Charge of a Klein-Gordon
Douglas M. Gingrich (gingrich@ ualberta.ca)
2004-03-18