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1. INTRODUCTION

Suppose that an experimenter ¯ts, by least squares, a regression model

E(Y jx) = zT (x)µ (1)

to data f(Yi;xi)gni=1, with the xi being chosen from a q-dimensional design space S. The mean
response is linear in p regressors z1(x); :::; zp(x), each a function of independent variables

x1; : : : ; xq. She is concerned that the true model might be only approximated by (1), with

a more precise description being

E(Y jx) = zT (x)µ + f(x) (2)

for some unknown but \small" function f . In this situation she would like to choose design

points that yield estimates µ̂ of µ, and estimates Ŷ (x) = zT (x)µ̂ of E(Y jx), which remain
relatively e±cient while su®ering as little as possible from the bias engendered by the model

misspeci¯cation.

Under (2) the parameter µ is not well-de¯ned if f is unconstrained. This concern may be

obviated by transferring to zT (x)µ the projection of f on the regressors; we may then assume

that f and z(¢) are orthogonal in L2 = L2(S; dx). This still leaves open the possibility that
E(Y jx) = f(x) is completely unknown and orthogonal to the regressors; in order to rule out
this case we place a bound on the magnitude of f . Our model then becomes

Y (xi) = E(Y jxi) + "i; i = 1; :::; n

with the mean response given by (2) and with f an arbitrary, unknown member of

F = ff :
Z
S

z(x)f(x)dx = 0;

Z
S

f 2(x)dx · ´2g: (3)

We assume additive, uncorrelated random errors with common variance ¾2. The radius ´

of F is ¯xed. It will be seen that the designs exhibited in this article depend on ´2 and

¾2 only through º := ¾2=(n´2), which may be chosen by the experimenter according to her

judgement of the relative importance of variance versus bias. An alternate interpretation of

this parameter is that it is inversely related to the premium, in terms of lost e±ciency relative

to the variance-minimising design, that the experimenter is willing to pay for robustness

against model misspeci¯cation.
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Various authors - Box and Draper (1959), Stigler (1971), Andrews and Herzberg (1979),

Li and Notz (1982), Pesotchinsky (1982), Sacks and Ylvisaker (1984), Dette and Wong

(1996), Liu and Wiens (1997) to mention but a few - have studied such problems in this

framework and others. Our approach is to seek minimax designs, which minimise (over a

class of designs) the maximum (over F) value of a measure of the mean squared error of
Ŷ (¢). Such designs have been constructed only for particularly well-structured problems.

See Huber (1975, 1981) for the case of straight line regression (z(x) = (1; x)T ) over S =

[¡1=2; 1=2], with extensions by Wiens (1990, 1992) to the case of multiple linear regression:
z(x) = (1; x1; : : : ; xq)

T with S a sphere in Rq, as well as to the partial second order model
with interactions: z(x) = (1; x1; x2; x1x2)

T , S = [¡1=2; 1=2] £ [¡1=2; 1=2]. In Section

2 of this article we review a number of these results, and outline some of the di±culties

encountered in extending this approach to more involved problems. It will be seen there

that even the quadratic polynomial model resists a straightforward treatment.

Motivated by these considerations we propose, in Section 3, a certain parametric class of

designs from which we seek a minimax member. We argue that these restricted minimax

designs are mathematically and numerically simpler than the unrestricted designs, while

performing almost as well. This is illustrated by reconsidering the examples of Section 2,

with the new designs. As well, examples are given of the restricted approach in problems

not attempted with the unrestricted approach.

The family of model departures against which robustness is provided is su±ciently broad

that the minimax design measures are necessarily absolutely continuous. In the case studies

which are undertaken in Section 4 we illustrate two methods of approximating and imple-

menting such designs.

2. UNRESTRICTED MINIMAX DESIGNS

An exactly implementable design will correspond to a design measure » placing mass

n¡1 at each of x1; :::;xn. Below, we exhibit the moments of the least squares estimator

under such a design. As is common in design theory, we then broaden the class of allowable

measures to the class ¥ of all probability measures on S. We will ¯nd optimal designs in

this class and approximate them, as necessary, prior to implementation.

When the model (1) is ¯tted although the true model is (2), the least squares estimator

µ̂ is biased. With b(f; ») :=
R
S
z(x)f(x) »(dx) and A» :=

R
S
z(x)zT (x) »(dx) assumed
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non-singular, the bias is E[µ̂]¡ µ = A¡1
» b(f; ») and the mean squared error matrix is

MSE(f; ») = E[(µ̂ ¡ µ)(µ̂ ¡ µ)T ]
= (¾2=n)A¡1

» +A¡1
» b(f; »)b

T (f; »)A¡1
» :

We consider the loss functions LQ = integrated MSE of the ¯tted responses Ŷ (x), LD =
determinant of the MSE matrix and LA = trace of the MSE matrix. These correspond to
the classical notions of Q-, D- and A-optimality, and so we adopt the same nomenclature.

(The term Q-optimality seems to be due to Fedorov (1972); Studden (1977) and others have

used instead the term I-optimality.) Explicit descriptions of these loss functions are, with

A0 :=
R
S
z(x)zT (x)dx, given by

LQ(f; ») =

Z
S

E

·n
Ŷ (x)¡ E(Y jx)

o2¸
dx

=
¡
¾2=n

¢
tr
¡
A¡1
» A0

¢
+ bT (f; »)A¡1

» A0A
¡1
» b(f; ») +

Z
S

f2(x)dx; (4)

LD(f; ») = det (MSE(f; »)) =
¡
¾2=n

¢p 1

jA»j(1 +
n

¾2
bT (f; »)A¡1

» b(f; »)); (5)

LA(f; ») = tr (MSE(f; »)) =
¡
¾2=n

¢
trA¡1

» + bT (f; »)A¡2
» b(f; »): (6)

We aim to construct designs to minimise the maximum (over F) value of the loss. The
following results are proven in the Appendix.

Lemma 2.1. Suppose that jjz(x)jj is bounded in x on S, and that for each a 6= 0 the set©
x : aTz(x) = 0

ª
has Lebesgue measure zero. If supF L(f; ») is ¯nite then » is absolutely con-

tinuous with respect to Lebesgue measure, with a densitym(¢) satisfying R
S
kz(x)k2m2(x)dx <1.

Theorem 2.2. Let S and » be as in Lemma 2.1. De¯ne matricesK» =
R
S
z(x)zT (x)m2(x)dx,

H» = A»A
¡1
0 A» andG» = K»¡H» and denote by ¸max(A) the largest eigenvalue of a matrix

A. Then

max
F
LQ(f; ») = ´2

£
º tr(A¡1

» A0) + ¸max(K»H
¡1
» )
¤
; (7)

max
F
LD(f; ») = ´2

¡
¾2=n

¢p¡1 £
º + ¸max(G»A

¡1
» )
¤
=jA»j; (8)

max
F
LA(f; ») = ´2

£
º tr(A¡1

» ) + ¸max(G»A
¡2
» )
¤
; (9)

and so the density m¤(x) of a Q-, D- or A-optimal (minimax) design »¤ must minimise the

right hand side of (7), (8) or (9) respectively.
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Example 2.1. Wiens (1992) considered the approximate multiple linear regression model,

with x = (x1; :::; xq)
T varying over a q-dimensional sphere S centred at the origin, and

z(x) = (1;xT )T . The search for minimax designs was restricted to those with symmetric,

exchangeable densities m(x). The Q- and D-optimal densities were found to be of the form

m¤(x) = (a+ bkxk2)+ for appropriate constants a and b.
For su±ciently large values of º theA-optimal density was found to be of the form

(a¡ b=kxk2)+. See Table 1 for some numerical values when q = 1. For smaller values of º,
di±culties such as detailed in Example 2.2 below were encountered. The A-optimality case

is reconsidered in Example 3.1.

Example 2.2. We illustrate some of the di±culties which can be encountered in the mini-

max approach without further restrictions on the design density, by considering approximate

quadratic regression: z(x) = (1; x; x2)T , over S = [¡1=2; 1=2]. We treat Q-optimality only,
the other cases being very similar. We de¯ne

®j =

Z
S

xjm(x)dx; kj =

Z
S

xjm2(x)dx:

For a symmetric design » the non-zero elements of H» are

H11 = h0 := 9=4¡ 30®2 + 180®22; H13 = H31 = h1 := 9®2=4¡ 15®4 ¡ 15®22 + 180®2®4;

H22 = h2 := 12®
2
2; H33 = h3 := 9®

2
2=4¡ 30®2®4 + 180®24;

and the characteristic polynomial of K»H
¡1
» is jH¡1

» j times

jK» ¡ ¸H»j =: p(¸) = (k2 ¡ ¸h2)
¡
(k0 ¡ ¸h0) (k4 ¡ ¸h3)¡ (k2 ¡ ¸h1)2

¢
:

There are then two candidates for the maximum eigenvalue: ¸0(») = k2=h2, and the larger

zero ¸1(») of the quadratic factor of p(¸). De¯ne

li(») = º tr(A
¡1
» A0) + ¸i(»); i = 0; 1; l(») = max(l0(»); l1(»)):

There is a general prescription by which the minimax design »¤ = argmin l(») may now

be obtained:

Step 1: Find designs »i minimising li(») subject to the constraint ¸i(») ¸ ¸1¡i(»), i = 0; 1.

Step 2: Put »¤ =
½
»0; if l0(»0) · l1(»1);
»1; otherwise.
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It follows that l(»¤) · min(l0(»0); l1(»1)) and that »¤ is minimax.
The inequality constraints in Step 1 can lead to solutions so cumbersome as to be unin-

teresting from a practical point of view. The omitted case of Example 2.1 is a case in point

- see Section 3.6 of Wiens (1992). Thus a more usual approach, but one not guaranteed to

succeed, is:

Step 10: Find designs »i minimising li(») among all designs », i = 0; 1.

Step 20: Put »¤ =
½
»0; if ¸0(»0) ¸ ¸1(»0);
»1; if ¸1(»1) ¸ ¸0(»1):

In this example Step 10 may be carried out in stages, by ¯rst ¯xing ®0 (= 1); ®2 and ®4:

This ¯xes A» as well, so that only ¸i(») need be minimised, subject to the three side con-

ditions. These are standard variational problems. For i = 0 the solution is m0(x) =

(a¡ b=x2 + cx2)+. The Lagrange multipliers a; b; c are functions of ®2 and ®4 de¯ned

through the side conditions, and ®2, ®4 are then varied to minimise the loss for a given value of

º. Similarly, for i = 1 the solution is of the formm1(x) = ((a+ bx
2 + cx4) = (d+ ex2 + fx4))

+
.

See Heo (1998) for details.

We ¯nd, unfortunately, that both inequalities in Step 20 fail. One can then either carry

out Steps 1 and 2 above - a quite unappealing proposition - or seek more tractable solutions

within a restricted class of designs. The latter tack in taken in the next section.

Example 2.3. The situation for approximate quadratic regression is somewhat simpler

if there is no intercept: z(x) = (x; x2)T . In this case

¸0(») =
k2
12®22

; ¸1(») =
k4
80®24

;

li(») = º

µ
1

12®2
+

1

80®4

¶
+ ¸i(»):

To carry out Step 10 above, we ¯rst minimise k2i+2 for ¯xed ®0; ®2 and ®4 by minimisingZ
S

x2i+2m2(x) + 2
¡
a¡ bx2 ¡ cx4¢m(x)dx

for Lagrange multipliers a; b; c. The integrand is minimised pointwise by

mi(x) =
1

x2i

³
cx2 + b¡ a

x2

´+
; i = 0; 1;
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with a; b; c determined by the side conditions and ®2, ®4 then determined as in Example 2.3.

An equivalent and numerically simpler procedure is to setmi(x) = x
¡2i (c0x2 + b0 ¡ a0=x2)+ =Ji,

where Ji :=
R
S
x¡2i (c0x2 + b0 ¡ a0=x2)+ dx; to minimise the loss at »i over a0; b0; c0 uncondi-

tionally, and to then recover the original parameters from (a; b; c) = (a0; b0; c0) =Ji.

We ¯nd that the ¯rst inequality in Step 20 holds for all º, so that »0 is the minimax

design. See Table 3 for some numerical values, and Example 3.3 for a di®erent approach to

this problem.

Example 2.4. Wiens (1990) found that for the partial second order regression model

with interactions: z(x) = (1; x1; x2; x1x2)
T and a square design space S centred at 0, the

Q-optimal symmetric, exchangeable design density was of the form m¤(x) = (a + b(x21 +

x22)+ cx
2
1x
2
2)
+. For this model the eigenvalues in Theorem 2.2 have a quite simple structure,

since the relevant matrices are diagonal. For the full second order model this is no longer

the case; due to the ensuing computational di±culties this model was not considered. We

obtain designs for the full model in Example 3.4 below.

3. RESTRICTED MINIMAX DESIGNS

Assume that S is symmetric about 0 and invariant under permutations of the coordinate

axes. The symmetry can often be arranged through an a±ne transformation of the indepen-

dent variables, in which case there is no loss of generality. Invariance under permutations of

the axes is a natural requirement when there is no a priori reason to prefer one coordinate

over another. For the approximate regression model de¯ned by (2) and (3) we propose to

search for minimax designs within the class ¥0 of measures with densities of the form

m(x) =

ÃX
j

¯jzj(x
2
1; :::; x

2
q)

!+
; (10)

with the ¯j restricted in such a way that m(¢) is exchangeable. The squaring of the inde-

pendent variables ensures the symmetry of m(x). The optimal design in ¥0 is obtained by

choosing the ¯j to minimise the appropriate maximum loss function in Theorem 2.2.

As is seen in the examples below, these restricted minimax designs perform almost as well

as the unrestricted designs, in those cases in which the latter have been constructed. By

Theorem 3.1 they generally have the limiting behaviour that one would expect, tending to

the continuous uniform design as º ! 0 and to the classical, variance-minimising designs as

6



Table 1. Numerical values for the approximate straight-line model;
unrestricted and restricted A-optimal minimax densities

Unrestricted design1 Restricted design2

º a b loss a b loss
0 1 0 0

0:1 0:932 0:820 1:269
0:445 1:778 0:028 4:450 0:625 4:500 5:169

1 2:345 0:071 9:154 ¡0:012 12:134 9:951
10 8:815 0:969 69:263 ¡3:419 36:224 69:470
100 60:225 11:426 570:339 ¡45:250 241:806 570:394
1000 530:587 121:381 5233:269 ¡485:606 2125:479 5233:276
1m¤(x) = (a¡ b=x2)+ 2m¤(x) = (a+ bx2)

+

º ! 1. As well the designs are numerically straightforward, having the same parametric

form regardless of the structure of the eigenvalues which appear in Theorem 2.2. This

fact has enabled us to construct the restricted designs in cases not readily amenable to an

unrestricted treatment.

Theorem 3.1. Assume that S is a compact subset of Rp satisfying the conditions of Lemma
2.1 and that z(x) is continuous in x on S. Then for each º > 0 there is a minimax

design measure »º in ¥
0. Express each maximum loss (7) - (9) as º times \variance" plus

\bias": supf2F L(f; ») = ºV (») + B(»). Then: (i) any weak limit point »0 of »º as º ! 0

satis¯es B(»0) = inf»2¥0 B(»); and (ii) any weak limit point »1 of »º as º ! 1 satis¯es

V (»1) = inf»2¥0 V (»).

To apply Theorem 3.1 in the case º ! 0, suppose that \1" is an element of z(x),

i.e. that the model contains an intercept. Then the continuous uniform design »0 is a

member of ¥0. By Theorem 2b of Wiens (1998) this is the unique minimiser of B(») in

¥ and by Theorem 3.1, inf»2¥0 B(») = inf»2¥B(») = limº!0 B(»º). In the case º ! 1,
suppose that the minimiser »1 of V (») in ¥ is unique and is such that we can construct a

sequence of designs »0º 2 ¥0 tending weakly to »1. Then V (»0º) ! V (»1) by Theorem 3.1

and so inf»2¥0 V (») = inf»2¥ V (») = limº!1 V (»º). The details of such constructions are

straightforward in particular examples, and will not be given here.

Example 3.1. For the model of Example 2.1, (10) gives m(x) =
³
¯0 +

Pq
j=1 ¯jx

2
j

´+
.

With a := ¯0, and b := ¯1 = ::: = ¯q for exchangeability, this density agrees exactly with the
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Figure 1: Unrestricted (solid lines) and restricted (broken lines) A-optimal minimax densities
for the approximate straight line model. (a) º = 0:445; (b) º = 10. Explicit descriptions
of the densities are in Table 1.

form of the Q- and D-optimal densities m¤(x). See Table 1 and Figure 1 for a comparison of

the unrestricted and restricted A-optimal design densities when q = 1. In the unrestricted

case, the design is available only for º ¸ :445. For moderately large º the loss of the

restricted minimax design is only marginally greater than that of the unrestricted design.

As º !1 both designs approach the variance-minimising design with mass of :5 at each of

§1=2.
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Figure 2: Q-optimal (solid lines), D-optimal (dotted lines) and A-optimal (dashed lines)
minimax densities for approximate degree-q polynomial regression. (a) q = 2, º = 1; (b)
q = 2, º = 100; (c) q = 3, º = 1; (d) q = 3, º = 100. Explicit descriptions of the densities
are in Table 2.

Example 3.2. For the polynomial model with z(x) = (1; x; :::; xq)T , ¥0 consists of those
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Table 2. Numerical values for the approximate quadratic
and cubic models; restricted minimax densities

Quadratic model1 Cubic model2

® ¯1 ¯2 ® ¯1 ¯2 ¯3
º = 1

Q 34:845 ¡0:117 0:026 375:733 ¡0:265 0:021 0:002
D 35:095 ¡0:044 0:020 202:398 ¡0:102 0:008 0:003
A 178:081 ¡0:188 0:009 2753:817 ¡0:323 0:026 0:000

º = 100
Q 1606:184 ¡0:224 0:002 25589:67 ¡0:332 0:025 0:000
D 2984:049 ¡0:225 0:001 39087:81 ¡0:334 0:026 0:000
A 3904:564 ¡0:232 0:001 59911:30 ¡0:355 0:031 ¡0:001
1m¤(x) = ® (x4 + ¯1x2 + ¯2)

+ 2m¤(x) = ® (x6 + ¯1x4 + ¯2x2 + ¯3)
+

designs with densities

m(x; a;b) =

Ã
a+

qX
j=1

bjx
2j

!+
:

See Figure 2 for plots in the quadratic and cubic cases, with values of the constants in Table

2. As noted previously by Studden (1977) for variance-minimising designs, and Wiens (1999)

for bias-minimising designs, the Q- and D-optimal designs are very similar. As º !1 all

three tend to their variance-minimising counterparts.

From the plots in Figure 2 one sees that a rough guide to implementation is to locate

the q + 1 sites at which these classical designs place all of their mass, and to then replace

the replicates at these sites by groups of observations at distinct but nearby sites. This

observation is reinforced in the ¯rst case study of Section 4.

Example 3.3. For the quadratic model without intercept, as in Example 2.3, the designs

in ¥0 have densities m(x; a; b) = (ax2 + bx4)+. See Table 3 for some numerical values. The

maximum loss values are seen to be almost identical to those of the unrestricted minimax

design given in Example 2.3. The relative di®erence between the losses is greatest near

º = 0, this being caused by the fact that, lacking a constant term, the restricted density

cannot approach the (unbiased) uniform density. Examples of both the unrestricted and

restricted minimax densities are shown in Figure 3.

Example 3.4. For the partial second order model considered in Example 2.4, ¥0 again

contains the unrestricted minimax design. For the full second order model with q = 2:
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Figure 3: Unrestricted (solid lines) and restricted (broken lines) Q-optimal minimax densities
for the approximate, no intercept quadratic model with regressors (x; x2). (a) º = 0:1; (b)
º = 10. Explicit descriptions of the densities are in Table 3.

Table 3. Numerical values for the approximate, no-intercept quadratic model with
regressors (x; x2)T and the unrestricted and restricted Q-optimal minimax densities

Unrestricted design1 Restricted design2

º a b c loss a b loss
0 0:000 1:000 0:000 1:000 22:703 ¡71:351 1:055

0:1 0:011 1:436 0:309 1:160 21:707 ¡64:716 1:184
1 0:147 2:798 2:398 2:157 12:355 ¡2:370 2:216
10 1:763 10:097 17:153 8:910 ¡32:630 267:951 8:944
100 15:449 31:572 207:962 63:262 ¡415:472 2027:816 63:272
1000 165:233 279:163 1795:547 563:415 ¡4348:981 18489:91 563:416
1m¤(x) = (cx2 + b¡ a=x2)+ 2m¤(x) = (ax2 + bx4)

+

z(x1; x2) = (1; x1; x2; x1x2; x
2
1; x

2
2)
T , the designs in ¥0 have densities

m(x1; x2; a; b; c; d) =
¡
a+ b(x21 + x

2
2) + cx

2
1x
2
2 + d(x

4
1 + x

4
2)
¢+
:

See Figure 4 for plots of the Q-, D- and A-optimal design densities when º = 5. Explicit

expressions are:

Q-optimality: m¤(x1; x2) = 216:419 (x41 + x
4
2 + 0:306x

2
1x
2
2 ¡ 0:210(x21 + x22) + 0:011)+,

D-optimality: m¤(x1; x2) = 369:556 (x41 + x
4
2 + 0:430x

2
1x
2
2 ¡ 0:213(x21 + x22) + 0:007)+,

A-optimality: m¤(x1; x2) = 1:856 (x41 + x
4
2 + 0:442x

2
1x
2
2 + 2:168(x

2
1 + x

2
2) + 0:149).

All three designs have concentrations of mass at the boundary of the square, in particular

at (§1=2;§1=2) and to a lesser extent at (§1=2; 0) and (0;§1=2). Substantial mass is

however placed all along the boundary and, in the Q- and D- cases, near the origin. The

designs can roughly be described as smoothed versions of central composite designs.
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Figure 4: Restricted minimax design densities for approximate, full second order model with
º = 5. (a) Q-optimal density; (b) D-optimal density; (c) A-optimal density.

4. CASE STUDIES

We discuss two case studies - one arising in the oncology literature and one from a

consulting project undertaken by one of us (Heo). In the ¯rst case, a polynomial response

is to be ¯tted. A design as in Example 3.2 is implemented by choosing the sites xi to be

n uniformly spaced quantiles of the minimax design measure. In the second case, a second

order response is anticipated. A design as in Example 3.4 is implemented by choosing the

sites in such a manner that the empirical moments, up to a certain order which is O(n),

match those obtained from the minimax density. Thus, in either case, we construct discrete

measures »n which have the property that they converge in measure to the minimax design

»¤ as n!1. In each case the ¯nite sample implementation is intuitively sensible as well as
robust. A balance is struck between full e±ciency and robustness by placing observations

at varied locations near the sites at which the variance-minimising designs place all of their

mass. This `within-site' variation permits the ¯tting and exploration of alternate models.

4.1. Dose response experimentation

In typical bioassays or dose response experiments, one observes the proportion px of

subjects exhibiting a particular response as a result of exposure to, or administration of,

an agent at level x. An objective is to estimate the probability P (x) of the occurrence of

the response. To convert this to a regression-based problem it is usual to transform to the

px-quantile Y = G
¡1(px) for a suitable distribution G. For de¯niteness we assume G to be

the logistic distribution, so that Y = ln(px=(1 ¡ px)) is the logit. The regression function

11
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Figure 5: Implementation of the D-optimal design of x4.1; approximate cubic response.

E (Y jx) = E (G¡1(px)) is then approximated by G¡1(P (x)). Since P (x) is unknown a

further approximation - E (Y jx) ¼ zT (x)µ - is often made, where zT (x)µ is a polynomial in
x, typically of low degree. The model described by (2) and (3) is then appropriate. Of

course VAR(Y jx) may vary with x as well, due to the nature of the data as proportions
and to the transformation. As in Wiens (1998) this can also be incorporated at the design

stage, although we have not done so in this example.

Hoel and Jennrich (1979) describe an experiment cited by Guess, Crump and Peto (1977)

in which 235 experimental animals are exposed to varying doses of a carcinogen. They con-

sider the construction of designs for extrapolation in this situation, assuming that E (Y jx)
is a cubic polynomial. The range of x is [1; 500] and their design for minimum variance

estimation of P (1=2) places nx = (63; 125; 35; 12) observations at x = (1; 82:6; 342; 500) re-

spectively. Wong and Lachenbruch (1996) also consider cubic estimation in dose response

experimentation; the variance minimising D-optimal design exhibited by them and trans-

formed to [1; 500] places an equal number of observations at each of x = (1; 138:9; 362:1; 500).

Note that neither of these designs allows for the estimation of polynomial responses of degree

higher than three.

We have computed an implementation of the restricted minimax D-optimal design for

approximate cubic regression, as in Example 3.2 with º = 10. The density is m¤(x) =

5633:710(x6 ¡ 0:3128x4 + 0:0239x2 ¡ :0002)+ on [¡1=2; 1=2]. Since experimentation of this
type requires replication, we chose to place nx = 5 observation at each of N = 47 sites xi,

with xi being the ((i¡ 1)=(N ¡ 1))-quantile of the minimax design measure »¤. Thus with

12



N0 := (N ¡ 1)=2 we found points fxigN0¡1i=1 ½ (0; 1=2) satisfying
R xi
xi¡1

m¤(x)dx = (2N0)
¡1,

with x0 := 0. The design is then f§xigN0¡1i=1 together with f0;§1=2g. When transformed to
[1; 500] this gave the design of Figure 5. As anticipated in Example 3.2, this minimax robust

design can be viewed as being obtained from the variance-minimising design by breaking up

the four groups of replicates into clusters of replicates. The averages of the clusters are

f4:28; 139:76; 361:24; 496:72g. Smaller values of º lead to a more uniform spread to the

clusters; larger values to closer agreement with the variance-minimising design.

4.2. Wastewater ozonation

Prairie farmers in Alberta have traditionally stocked dugouts with trout for recreational

purposes. Some are now attempting commercial ¯sh culturing indoors, year-round. Because

of limited water supplies, attempts are being made to recycle waste water for this purpose.

Most solids in wastewater from trout-rearing facilities settle readily, but a suspension of ¯ne

\particulate" material remains. Several studies have shown that ¯ne particulate adversely

a®ects ¯sh health and productivity. The wastewater engineering research team at the

Alberta Environmental Centre conducted a bench-scale experiment to determine the amount

of total suspended solid (TSS) remaining after applying ozone (O3) at application rates

ranging from 0 to 2 mg/L (see Heo and James 1995). Because ozonation is to be used for

disinfection and the associated capital cost is high, the team wanted to determine an optimal

O3 rate, minimising the worst cost. Another factor which is important in the removal of

suspended solids is the gas to liquid ratio, denoted GL. Uncertainties about the exact nature

of the relationship between TSS, O3 and GL led to the assumption of an approximate second

order model as in Example 3.4.

Both factors were linearly transformed to the range [¡1=2; 1=2]. The Q-optimal design
»¤, with º = 5 as in Figure 4(a), was then implemented as follows to yield n = 48 design

points. We chose n0 := n=8 points (x1; x2) in f0 · x1 · x2 · 1=2g and then obtained
the remaining 7n0 sites by symmetry and exchangeability. The n0 points fx1i; x2ign0i=1 were
chosen such that the moments e2j;2k :=

Pn0
i=1

¡
x2j1ix

2k
2i + x

2k
1i x

2j
2i

¢
= (2n0) matched up as closely

as possible with the theoretical moments E»¤[X
2j
1 X

2k
2 ] obtained from »¤. We did this for

the J(J + 3)=2 choices (k; j) with k = 0; :::; j and j = 1; :::; J , with J being the smallest

integer for which J(J + 3)=2 exceeds the number (2n0) of coordinates to be chosen. Thus

n = 48, n0 = 6 yielded J = 4 and 14 even order moments to be matched up. Of course all
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Figure 6: Implementation of the Q-optimal design of Figure 4(a) for approximate second
order regression; n = 48.

moments with at least one odd order are zero, and the 14 moments obtained by exchanging

j and k will be matched as well. The matching was done by numerical minimisation ofP
j;k

¡
e2j;2k ¡E»¤[X2j

1 X
2k
2 ]
¢2
, yielding the implementation shown in Figure 6 with

fx1i; x2ign0i=1 = f(0:011; 0:500); (0:023; 0:038); (0:085; 0:332);
(0:235; 0:456); (0:373; 0:466); (0:432; 0:500)g:

5. SUMMARY

We have presented new, parametric classes of regression designs. Within several such

classes we have isolated members which are minimax robust against a broad class of depar-

tures from the assumed linear (in the regressors) model. In those cases in which minimax

members of a broader, in¯nite dimensional, class of designs have already been obtained, it

has been seen that they often coincide with the minimax members of the restricted classes

of designs studied here. When they do not it is typically the case that the new designs are

mathematically and numerically simpler than those previously obtained, or sought but not

obtained due to their extreme complexity. Examples have been given of polynomial and

second order designs which are optimal with respect to generalisations of the common Q-,

D- and A-optimality criteria. Two implementation methods have been illustrated in the

case studies. The resulting designs are intuitively sensible as well as robust, and roughly

correspond to breaking up the replicates in the classical, variance-minimising designs into

clusters of observations at nearby sites.
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APPENDIX: DERIVATIONS

Proof of Lemma 2.1: The assumption on S implies that A0 is invertible. Lemma 1 of

Wiens (1992) then states that if supF L(f; ») is ¯nite, » is absolutely continuous with respect
to Lebesgue measure. Let m(x)dx = »(dx) represent its density.

Suppose that
R
S
kz(x)k2m(x)2dx =1. Choose an index j so that R

S
zj(x)

2m2(x)dx =

1 and let fn(x) = m(x)zj(x)1fm·ng(x). This is a bounded function and kfnkL2 ! 1 as

n ! 1. De¯ne gn(x) = fn(x) ¡ cn(x), where cn(x) = zT (x)A¡1
0

R
S
fn(y)z(y)dy. Note

that
°°R

S
fn(y)z(y)dy

°° · R
S
kz(y)k2m(y)dy · supS kz(x)k2, and so the functions cn are

uniformly bounded and jkfnkL2 ¡ kgnkL2 j · kcnkL2 . Now let hn(x) = ´gn(x)= kgnkL2 so
that hn 2 F . The jth coordinate of b(hn;») isZ
S

hn(x)zj(x)m(x)dx = (´= kgnkL2)
½Z

S

m2(x)z2j (x)1fm·ng(x)dx¡
Z
S

m(x)zj(x)cn(x)dx

¾
= ´

(
kfnk2L2 ¡ dn
kfnkL2 ¡ en

)
;

where (dn) and (en) are bounded sequences of numbers. Since kfnkL2 ! 1; we see that
kb(hn;»)k ! 1 as n!1. This implies that supF L(f; ») =1 which gives a contradiction.

Proof of Theorem 2.2: Note that

G» =

Z
S

£¡
m(x)I¡A»A

¡1
0

¢
z(x)

¤ £¡
m(x)I¡A»A

¡1
0

¢
z(x)

¤T
dx;

so that G» is positive semi-de¯nite. We will prove that

´G
1=2
» (Sp) µ fb(f; ») : f 2 Fg µ ´G1=2

» (Bp), (A.1)

where Sp = fbj jjbjj = 1g and Bp = fbj jjbjj · 1g are the unit sphere and the unit ball in
Rp, respectively. Using (4)-(6) this gives

sup
f2F

LQ(f; ») =
¡
¾2=n

¢
tr
¡
A¡1
» A0

¢
+ ´2 sup

k¯k=1
¯T
³
I+G

1=2
» H¡1

» G
1=2
»

´
¯

sup
f2F

LD(f; ») =
¡
¾2=n

¢p 1

jA»j(1 +
1

º
sup
k¯k=1

¯T
³
G
1=2
» A¡1

» G
1=2
»

´
¯);

sup
f2F

LA(f; ») =
¡
¾2=n

¢
tr(A¡1

» ) + ´
2 sup
k¯k=1

¯T
³
G
1=2
» A¡2

» G
1=2
»

´
¯:
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The maxima of the three quadratic forms over ¯ are ¸max(I+G
1=2
» H¡1

» G
1=2
» ) = ¸max(K»H

¡1
» ),

¸max(G
1=2
» A¡1

» G
1=2
» ) = ¸max(G»A

¡1
» ) and ¸max(G

1=2
» A¡2

» G
1=2
» ) = ¸max(G»A

¡2
» ) respectively,

yielding (7)-(9).

If G» is non-singular, the inclusion (A.1) is proven as Theorem 1 of Wiens (1992). If G»

is singular (as at the continuous uniform design) we proceed as follows. Take any design

»1 for which the corresponding matrix G»1 is invertible. Put »t = (1 ¡ t)» + t»1 and let
p(t) = jG(»t)j. Then p(t) is a polynomial in t 2 [0; 1] with p(0) = 0 and p(1) > 0, so

that p(t) is non-constant and non-negative on [0; 1]. Thus p(t) > 0 for all su±ciently small

t > 0.

To prove the right hand inclusion in (A.1), let f 2 F and pick bt 2 Bp so that

´G
1=2
»t
bt = b(f; »t) (A.2)

for su±ciently small t > 0. We have

kb(f; »t)¡ b(f; »)k · t
µZ

S

f 2(x)dx

¶1=2µZ
S

kz(x)k2 (m1 ¡m)2(x)dx
¶1=2

; (A.3)

so b(f; »t)! b(f; ») as t! 0. SimilarlyG»t ! G» and henceG
1=2
»t
! G

1=2
» , as the mapping

G 7! G1=2 is continuous on the space of symmetric positive semi-de¯nite matrices. Then

G
1=2
»t
! G

1=2
» uniformly on the compact set Bp. Choose a subsequence tn ! 0 and b 2 Bp

so that btn ! b and let tn ! 0 in (A.2) above to obtain ´G
1=2
» b = b(f; »).

For the left hand inclusion in (A.1), ¯x s 2 Sp and pick ft 2 F so that

´G
1=2
»t
s = b(ft; »t) (A.4)

for su±ciently small t > 0. As before, the left hand side converges to ´G
1=2
» s as t! 0. Since

F is weakly compact in L2 we can choose a subsequence tn ! 0 and f 2 F so that ftn ! f

weakly in L2. Then

kb(f; »)¡ b(ftn ; »tn)k · kb(f; »)¡ b(ftn ; »)k+ kb(ftn ; »)¡ b(ftn; »tn)k :

The ¯rst term goes to zero by weak convergence, and the second term goes to zero by

(A.3). Letting tn ! 0 in (A.4) we obtain ´G
1=2
» s = b(f;»).
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Proof of Theorem 3.1: We begin with some preliminary calculations: First note that

kA»k := ¸max(A») is uniformly bounded in » :

kA»k = sup
k¯k=1

Z
S

(¯Tz(x))2»(dx) ·
Z
S

sup
k¯k=1

(¯Tz(x))2»(dx)

=

Z
S

kz(x)k2 »(dx) · sup
x2S

kz(x)k2 =:M <1:

This also shows that kH»k =
°°A»A

¡1
0 A»

°° · kA»k2
°°A¡1

0

°° · M2
°°A¡1

0

°°is uniformly
bounded in ». Consider the bias term BQ in LQ; the others are very similar. The calcu-

lation above implies that ¸min(A
¡1
» A0A

¡1
» ) = ¸¡1max(A»A

¡1
0 A») ¸ M¡2 °°A¡1

0

°°¡1 := " > 0:

Therefore

BQ(») = sup
k¯k=1

¯TG
1=2
» A¡1

» A0A
¡1
» G

1=2
» ¯ ¸ " sup

k¯k=1

°°°G1=2
» ¯

°°°2 = " kG»k :

This gives us Z
S

m2(x) kz(x)k2 dx = tr(K») = tr(G») + tr(H») · c(B(») + 1);

for some constant c.

Now ¯x º > 0; and let »n 2 ¥0 satisfy limn!1 supf2F L(f; »n) = inf»2¥0 supf2F L(f; »). In
particular, supnB(»n) <1, so that the corresponding densities mn(x) = (¯

T
nz(x

2
1; : : : ; x

2
q))

+

are bounded in L2(S; kz(x)k2 dx). By taking subsequences we may assume that ¯n= k¯nk
converges to s 2 Rp with ksk = 1; that mn converges weakly to mº in L

2(S; kz(x)k2 dx); and
that »n converges weakly to some probability measure »º. For any of the loss functions LQ ,
LD, or LA;, it is not hard to show that the map » 7! supf2F L(f; ») is lower semicontinuous
from ¥ into [0;1]. Therefore supf2F L(f; »º) = inf»2¥0 supf2F L(f; »); that is, »º is minimax.
It remains to show that »º 2 ¥0.
We begin by showing that supn k¯nk <1. Suppose not and write ¯n = k¯nk (s+ en)

where en ! 0. Then ¯Tnz = k¯nk (sTz+ eTnz) diverges to 1 if sTz > 0, and diverges to

¡1 if sTz < 0. Therefore we see that mn(x)!1 on the set
©
x : sTz(x21; : : : ; x

2
q) > 0

ª
and

mn(x) ! 0 on the set
©
x : sTz(x21; : : : ; x

2
q) < 0

ª
. The conditions in Lemma 2.1 show that

the set
©
x : sTz(x21; : : : ; x

2
q) = 0

ª
has Lebesgue measure zero. The divergence mn(x) !

1 contradicts the weak L2 convergence of mn unless
©
x : sTz(x21; : : : ; x

2
q) > 0

ª
also has
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Lebesgue measure zero. Thus we conclude that mº = 0 Lebesgue almost surely. For every

continuous function h with closed support in the set fx : kz(x)k > 0g this givesZ
S

h(x)»n(dx) =

Z
S

h(x)

kz(x)k2mn(x) kz(x)k2 dx

!
Z
S

h(x)

kz(x)k2mº(x) kz(x)k2 dx = 0 =
Z
S

h(x)»º(x)dx:

Since fx : kz(x)k > 0g has full Lebesgue measure, we conclude that »º is singular with respect
to Lebesgue measure, contradicting Lemma 2.1. Therefore we ¯nd that supn k¯nk < 1
must hold.

Hence, by taking a further subsequence, we can assume that ¯n ! ¯ 2 Rp. But then

the sequence mn converges uniformly to the function mº(x) = (¯Tz(x21; : : : ; x
2
q))

+, which

must be the density of »º. This proves that »º 2 ¥0.
Since »º is minimax, for any » 2 ¥0 we have B(»º) · ºV (»º) + B(»º) · ºV (») + B(»).

Taking the limit as º ! 0, and then the in¯mum over » 2 ¥0 shows that limº!0B(»º) =
inf»2¥0 B(»). For any sequence ºn ! 0 let »0 2 ¥ so that »ºn ! »0 weakly. Since

supnB(»ºn) < 1, the argument above shows that we may assume that »0 2 ¥0 and that
mn !m0 uniformly. It is then easy to see that B(»ºn)! B(»0), so thatB(»0) = inf»2¥0 B(»).

Similar arguments show that limº!1 V (»º) = inf»2¥0 V (»). For any sequence ºn ! 1
let »1 2 ¥ so that »ºn ! »1 weakly. Since x 7! z(x) is continuous, the map » 7! A» is

also continuous: Therefore the map » 7! V (») is continuous for any of our loss functions,

since we have VQ(») = tr(A¡1
» A0), VD(») = jA¡1

» j, and VA(») = tr(A¡1
» ). Then we have

V (»1) = limn V (»ºn) = inf»2¥0 V (»), so »1 is variance minimising in ¥0. If the variance

minimising measure is unique, we can even conclude that limº!1 »º = »1.
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