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1. INTRODUCTION

Consider the following problem, of interest in environmetrics. There is a set T =

{t1, . . . , tN} of locations at which environmental monitoring stations may be placed. The

agency responsible is to choose, from these, locations S = {ti1, . . . , tin}. At these locations
one will observe, with measurement error, a stochastic process X(t) (air quality index, pol-

lution level, etc.): Y (t) = X(t)+�(t). The purpose is to predict X(t), possibly for t ∈T \S.
Suppose however that - as is typically the case in spatial studies - the spatial correlation

structure of {X(t) |t ∈T } is possibly misspecified, that there is a possibly misspecified re-
gression structure governing E [X(t)], and that �(t), while uncorrelated with X(t) and with

�(t0) for t 6= t0, has a possibly misspecified variance structure. In the face of these model

uncertainties, one is to choose S in some “optimal” manner, and then do (robust) estimation
and prediction.

The above is an outline of the problems addressed in this article, the sole generalization

being that no restriction is made on the dimension of t ∈ Rd. Our framework is sufficiently

broad as to encompass several scenarios:

1. No locations have yet been chosen, and we are free to choose any n sites.

2. There is an existing network of n0 sites at locations S0 and we are to choose n − n0

further sites. Scenario 1 is this case with n0 = 0. See Thompson (1997, p. 18) for a

discussion.

3. There is an existing network of n1 sites at locations S1 and we must eliminate n1 − n

of them. This is equivalent to setting T = S1 and then finding the n best sites which
are to remain.

We assume that:

• VAR[�(t)] = f2(t) for a variance function f2(·). Define FN×N = diag (f2(t1), . . . , f
2 (tN)).

• X(t) = E [X(t)] + δ(t), where COV[δ(t), δ(t0)] = g(t, t0) for a covariance function g.

Define GN×N by gij = g (ti, tj).
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• The mean response is approximately linear in regressors zj(t):

E [X(t)] ≈ zT (t)θ,

where z(t) = (z1(t), ..., zp(t))
T and the parameter vector θp×1 makes the approximation

most accurate, viz.,

θ (= θN) = argminv

X
t∈T

¡
E [X(t)]− zT (t)v

¢2
. (1)

We define h(t) such that

E [X(t)] = zT (t)θ + h(t).

The definition of θ implies the orthogonality conditionX
t∈T

z(t)h(t) = 0p×1. (2)

We aim to predict a set Cx of M linear functions of x = (X(t1), . . . , X (tN))
T . It is

our intention to obtain predictors which are robust against misspecified functions f , g and

h. For example, f could be erroneously specified as constant, g erroneously specified as

isotropic, h erroneously specified as ≡ 0.
Spatial design problems for correctly specified models have been studied by Martin (1986),

Fedorov and Hackl (1994), Stein (1995) and Thompson (1997), among others. Schilling

(1992) and McArthur (1987) assess some particular sampling designs. To our knowledge

this is the first work to explicitly seek robustness of spatial design against model uncertainties.

We will proceed as follows. Let y = (Y (ti1) , . . . , Y (tin))
T . For a matrix AM×n defining

a set Ay of linear predictors, the mean squared error matrix is

MSE (A; f, g, h) = E
h
(Ay−Cx) (Ay−Cx)T

i
.

In §2 we derive the best linear unbiased predictorsA0y, assuming that f, g and h are correctly

specified as f0, g0 and h0 ≡ 0. Our loss function is the average diagonal element of the mse

matrix:

L (A; f, g, h) =M−1tr (MSE (A; f, g, h)) . (3)

Thus

A0 = argmin
A∈A

L (A; f0, g0, h0) , (4)
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where A is the class of M × n matrices satisfying the unbiasedness constraint

E [Ay] = E [Cx] for all θ. (5)

The corresponding estimate of θ is the Generalized Least Squares Estimate (GLSE). We

shall also discuss a “robustified” predictor, optimized for use with a Generalized M-estimate

(GM-estimate) of θ.

We exhibit the “realized” loss L (A0; f, g, h), attained when A0 is used but the true

functions are f , g and h. This sets the stage for a treatment, in §3, of our robust design
problems - we aim to choose the locations S so as to minimize the maximum realized mean
squared error, as f , g and h range over neighbourhoods of f0, g0 and h0 defined by

Fα =
©
f(·) | tr (F− F0)2 ≤ Nα2, f(t) ≥ 0

ª
,

Gβ =
©
g(·, ·) | tr (G−G0)

2 ≤ Nβ2, G ≥ 0
ª
,

Hγ =

(
h(·) |

X
t∈T

h2 (t) ≤
√
Nγ,

X
t∈T

z(t)h(t) = 0

)
.

In these definitions F0 and G0 are the covariance matrices under f0 and g0 and G ≥ 0

refers to the ordering by non-negative definiteness. We specify a smaller radius for Hγ than

for Fα or Gβ in order that the contributions of bias and variance to mean squared error be
approximately of the same magnitude.

A mathematical description of our design problem is that we design so as to minimize

maxf,g,hL (A0; f, g, h) where, as will be seen below, A0 defined by (4) results in the use of the

well known “universal kriging” predictor, or a robustification of this predictor as described

in §2.2. A possible alternate approach would be to instead minimize maxf,g,hL (A; f, g, h)
over both the design and A, i.e. we might also seek a minimax linear predictor. There is

some precedent for such an approach - Marcus and Sacks (1976), Heckman (1987) - in design

problems in which parameter estimation is the primary goal. The optimal linear estimator

is then typically not the classical GLSE. Given the popularity of the GLSE among linear

estimates, we have opted to proceed as described above.

Example 1.1: If p = 1 and z(t) = 1 then X(t) has “approximately constant” mean

θ + h(t), where
P

t∈T h(t) = 0. Then if M = 1 and C = (1, .., 1) we are predicting

XTotal =
P

t∈T X(t) by a linear function X̂Total = a
Ty. The loss in this case is L (a; f, g, h) =

E

·³
X̂Total −XTotal

´2¸
.
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Example 1.2: Suppose that M = N − n and C is the incidence matrix for T \S, i.e. C
is the result of omitting, from IN , rows i1, ..., in. Then we are predicting X (t) by a linear

function X̂ (t) = aTt y for each t /∈ S. The matrix A has rows aTt , and the loss is

1

N − n

X
t/∈S

E

·³
X̂ (t)−X(t)

´2¸
. (6)

If instead M = N and C = IN , then the loss is

1

N

X
t∈T

E

·³
X̂ (t)−X(t)

´2¸
, (7)

which is the Average Mean Squared Prediction Error (AMSPE). Our robust optimality

criterion is then analogous to the classical notion of I-optimality.

In a similar vein Sacks and Schiller (1988) considered the construction of designs, as-

suming that f0(·) and g0(·, ·) were correctly specified and that E [X(t)] was known and
≡ 0. They used the loss function maxtE

h¡
aTt y−X(t)

¢2i
, and remarked upon the lack of

robustness, to changes in g0, of their procedures.

Example 1.3: If p = d + 1 and z(t) =
¡
1, tT

¢T
then the regression response is approxi-

mately linear in the coordinates of t.

The maximum loss is exhibited in Theorem 2, §3. In §4 we obtain optimal robust designs
by minimizing this maximum loss. For small values of N and n this can be done exactly, by

performing an exhaustive search of all
¡
N
n

¢
designs. For more realistic values we investigate

two algorithms, both of which seem to give at least nearly optimal solutions in reasonable

amounts of time. The first is a simulated annealing algorithm, whereas the second employs

a sequential search technique.

Post-design, robust parameter estimation and process prediction are considered in §5,
where we also carry give the results of a simulation study. A summary of our findings is

that considerable benefits are to be gained by robust estimation and prediction procedures,

when the error distribution is contaminated, for only a small premium in efficiency at the

assumed model. Both robust and nonrobust procedures gain in efficiency when combined

with a judiciously chosen design. In §6 we revisit a data set from the literature, in order to
illustrate an application of our methods.

All derivations are in the Appendix.
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2. OPTIMAL AND ROBUST PREDICTION

In this section we shall first determine the optimal linear predictor of Cx, assuming that

F0 and G0 are completely and correctly specified and that h0 ≡ 0. We exhibit the loss

L (A0; f, g, h), attained at arbitrary f ∈ Fα, g ∈ Gβ, h ∈ Hγ. We then discuss modifications

resulting from replacing, in the predictor, the GLSE θ̂ by a Generalized M-estimate.

The observed data vector y may be decomposed as y = Q1 (x+ ε), where Q1 : n×N is

the incidence matrix for S, x = (X (t1) , ..., X (tN))T and ε = (ε (t1) , ..., ε (tN))T . Define

h = (h (t1) , ..., h (tN))
T , Z = (z(t1), ..., z(tN))

T ,

Z1 = Q1Z : n× p, G1 = Q1G : n×N,

F11 = Q1FQ
T
1 : n× n, Σ11 = Q1 (G+ F)Q

T
1 : n× n.

We assume throughout that Σ11 is positive definite.

In this notation the unbiasedness condition (5) is equivalent to

AZ1 −CZ = (AQ1 −C)Z = 0M×p, (8)

and the generalized least squares estimator (GLSE) of θ is θ̂ = Ry, where

R =
¡
ZT
1Σ

−1
11 Z1

¢−1
ZT
1Σ

−1
11 : p× n.

2.1. Linear Prediction; F0 and G0 completely specified

Theorem 1. The best linear unbiased predictor (BLUP) of Cx is (cCx)GLS = A0y, where

A0 = CP0 :M × n for

P0 = ZR0 +G
T
1,0Σ

−1
11,0 (In − Z1R0) : N × n. (9)

The subscript 0 indicates evaluation at (f, g) = (f0, g0).

Define the M ×N matrix B0 = C (P0Q1 − IN), with B0Z = 0M×p. Let d0 and f1 be the

n × 1 vectors consisting of the diagonal elements of AT
0A0 and F11 respectively. For the

BLUP the loss (3) is

L (A0; f, g, h) =
¡
dT0 f1 + tr

¡
B0GB

T
0

¢
+ kB0hk2

¢
/M. (10)
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Remarks:

1. A more succinct description of the BLUP is

cCx = C ¡x̂+GT
1,0Σ

−1
11,0e

¢
, (11)

where x̂ = Zθ̂, ŷ = Z1θ̂, θ̂ is the GLSE and e = y − ŷ is the residual vector. If

h ≡ 0 then the first component Cx̂ is an unbiased estimate of CE [x] = CZθ and the
second component has an expected value of 0. If as well f = f0 and g = g0, the two

components are uncorrelated.

2. If p = 1 and z(t) = 1, so that Z = 1N and Z1 = 1n, then

P0 = G
T
1,0Σ

−1
11,0

Ã
In −

1n1
T
nΣ

−1
11,0

1TnΣ
−1
11,01n

!
+
1N1

T
nΣ

−1
11,0

1TnΣ
−1
11,01n

.

3. The matrix B0 = Ã0−C, where Ã0 is obtained by augmenting A0 by zeros in columns

corresponding to locations in T \ S.

2.2. Generalized M-estimation; F0 and G0 completely specified

In this section we discuss generalized M-estimation in the spatial model, and propose a

correspondingly robust predictor. Write the regression model as

y = Z1θ +Q1h+Q1 (ε+ δ) .

Let σn be a scale functional for ε such as (n
−1trF11,0)

1/2
, and put S11,0 = Σ11,0/σ

2
n. Then

the above becomes

v = U1,0θ + k1 + η,

where v = S
−1/2
11,0 y, U1,0 = S

−1/2
11,0 Z1, k1 = S

−1/2
11,0 Q1h and where η = S

−1/2
11,0 Q1 (ε+ δ) has

covariance matrix σ2nIn if (f, g) = (f0, g0). Here S
1/2
11,0 is any matrix satisfying S

1/2
11,0S

1/2T

11,0 =

S11,0. Denote by
©
uTi
ªn
i=1

the rows of U1,0.

For absolutely continuous, bounded, odd, weakly increasing functions ψi and a continu-

ous, bounded, even function χ, the GM-estimate θ̂GM and corresponding scale estimate σ̂n
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are defined as members of any sequence satisfying

nX
i=1

ψi

µ
η̂i
σ̂n

¶
ui = oP

¡
n1/2

¢
, (12)

nX
i=1

·
χ

µ
η̂i
σ̂n

¶
− τn

¸
= oP

¡
n1/2

¢
, (13)

for η̂i = vi − uTi θ̂GM and a bounded sequence of constants {τn}. For consistency at

the normal distribution we take τn = EΦ [χ (η/σn)]. Common choices of ψi are ψi (r) =

w (ui)ψ (r/s (ui)) for positive function w(·), s(·). With s (u) ≡ 1 this describes a Mallows-
type GM estimate (Hill, 1977). Schweppe (Merrill and Schweppe, 1971) proposed s (u) ≡
w (u). Corresponding to these proposals, one-step estimates for exactly linear models

(k1 ≡ 0) were investigated by Simpson, Ruppert and Carroll (1992) and Coakley and

Hettmansperger (1993). For ordinary M-estimators (s (u) ≡ w (u) ≡ 1, ψi ≡ ψ), Sil-

vapullé proved asymptotic normality for fixed (by design) carriers in exactly linear models;

Wiens (1996) extended these result to GM-estimators, and to the kinds of approximately

linear models considered in the current work. See Field and Wiens (1994) for a study of

one-step ordinary M-estimators of regression, under dependence.

To robustify the predictor, we make the observation that (11) can be obtained as the

solution to the problem of minimizing, over M × n matrices V, the MSE of the unbiased

predictor Cx̂ + Ve, assuming that (f, g, h) = (f0, g0, 0) and that θ̂ is the GLSE. This is

because the first order conditions

∂

∂V
E
£
kC (x̂− x) +Vek2

¤
= 0

result in the equations

CE
£
(x̂− x) eT

¤
+VE

£
eeT

¤
= 0M×n. (14)

For the GLSE these have a solution VGLS = CG
T
1,0Σ

−1
11,0. To this may be added an arbitrary

M × n member of the row space of ZT
1Σ

−1
11,0, but since such a matrix is orthogonal to e it

does not affect the predictor.

We propose to replace the GLSE in (11) by θ̂GM , the residuals e = S
1/2
11,0

³
v−U1,0θ̂

´
by

robustified residuals S
1/2
11,0p̂, where p̂ has elements σ̂nψi (η̂i/σ̂n), and to obtain an approximate
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solution VGM to (14). As detailed in the Appendix, this results in the optimal robust

predictor

(cCx)GM = (cCx)GLS.rob +VGLSS
1/2
11,0Kp̂, (15)

where VGLS = CG
T
1,0 (σ

2
nS11,0)

−1
, K = diag

³
...,
³
ψ0i (0) /E

h
ψ2i

³
ηi
σn

´i´
− 1, ...

´
, and

(cCx)GLS.rob = C hZθ̂GM + σ−2n G
T
1,0S

−1/2T
11,0 p̂

i
is (11) after making the replacements described above.

Remarks:

4. Simulation studies indicate that the second summand in (15) contributes very little,

and can safely be ignored.

5. For the GLSE we have K = 0, and (15) agrees with (11).

6. For a Huber M-estimate θ̂H with ψi(r) = ψ (r), we have K = κIn,where

κ =
¡
ψ0 (0) /E

£
ψ2 (·)

¤¢
− 1.

For Huber’s score function ψc(r) = sign(r) ·min(|r|, c), evaluated at the normal distri-
bution we find that κ = τ−1n − 1 > 0, for

τn = EΦ

£
ψ2c (·)

¤
= 1− 2Φ(−c)− 2c (φ (c)− cΦ(−c)) .

3. ROBUST DESIGN

In this section we obtain the maximum loss of the BLUP, for f ∈ Fα, g ∈ Gβ, h ∈ Hγ, and

discuss numerical approximations to be used in the repeated evaluation of this maximum,

leading to minimax designs.

We propose to use those designs, optimized for use with the GLSE, even when θ̂ is a

GM-estimate. One reason for this is of course the relative intractability of the MSE of the

GM-estimate, making it very difficult to maximize. A more compelling reason is that our

experience has been that the robust designs seem to depend very little on the choice of the

estimate - see for example Sinha and Wiens (2002).
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Theorem 2. For the BLUP of Theorem 1 the maximum value of L (A0; f, g, h), for f ∈
Fα, g ∈ Gβ, h ∈ Hγ is

max
Fα,Gβ ,Hγ

L (A0; f, g, h) =

L (A0; f0, g0, h0) +

√
N

M

·
α kd0k+ β

n
tr
³£
B0B

T
0

¤2´o1/2
+ γλmax

¡
B0B

T
0

¢¸
, (16)

where λmax denotes the largest eigenvalue. The maximum is attained if f(t) = f0(t) for

t /∈ S,

f1 = f1,0 + α
√
Nd0/ kd0k , (17)

G = G0 +
β
√
Nn

tr
³
[B0BT

0 ]
2
´o1/2BT

0B0, (18)

and h is an eigenvector of BT
0B0, with khk

2 = γ
√
N , corresponding to λmax.

Note that if M = 1, as when XTotal is being predicted, then B0 is a row vector and in

(16), n
tr
³£
B0B

T
0

¤2´o1/2
= λmax

¡
B0B

T
0

¢
= B0B

T
0 .

3.1. Modifications for large M

The algorithms described in the next section call for the repeated calculation of the loss

(16), hence of the eigenvalues of the M ×M matrix B0B
T
0 . For large values of M this is

not feasible in a reasonable amount of time. This in particular is a problem when the loss is

(6) or (7), so that M is N −n or N respectively, if N is realistically large. We have noticed

however that in these cases λmax
¡
B0B

T
0

¢
is typically very close to the largest eigenvalue of

the n× n matrix PT
0P0.

To explain this closeness, we first define Q2 to be the incidence matrix for T \S, so that

Q =

µ
QT
1

...QT
2

¶T

is an orthogonal matrix. For loss (6), C = Q2 and so

QCTCQT = 0n×n ⊕ IN−n. (19)

For loss (7), C = IN and

QCTCQT = IN . (20)

Lemma 1 shows that our approximation of the largest eigenvalue becomes exact as kF0k→
0,∞.
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Lemma 1. Assume that one of (19), (20) holds. Then

λmax
¡
B0B

T
0

¢
= λmax

¡
PT
0P0

¢
+ o (1)

as either:

A1) kF0k→∞ in such a way that Σ−111,0 → 0 and R0 →
¡
ZT
1Z1

¢−1
ZT
1 , or

A2) kF0k→ 0.

Conditions A1) and A2) hold if F0 = σ2IN and σ2 →∞ and 0 respectively.

When (19) or (20) hold and M > 25, we replace λmax
¡
B0B

T
0

¢
by the much more easily

computed λmax
¡
PT
0P0

¢
in (16). This approximation is surprisingly accurate. As examples,

we computed the relative error

re =

¯̄̄̄
¯1− λmax

¡
PT
0P0

¢
λmax (B0BT

0 )

¯̄̄̄
¯

for various choices of N , and for a number of randomly chosen n-element subsets of T . For

C = IN and (N,n) = (49, 5), (100, 10) and (400, 20), the average values of re over 100 trials

were .05%, .12% and .05% respectively, when the regressors were z (t) = (1, t1, t2)
T and F0,

G0 were as described in §4.1 below. Varying the regression function or the choices of F0

and G0 typically resulted in even smaller relative errors.

A further simplification in evaluating the AMSPE, if the loss is (6) or (7), is to write

tr
¡
B0G0B

T
0

¢
=

½
tr
¡£
G1,0Q

T
1

¤ £
AT
0A0 + 2Q1P0 − In

¤
− 2G1,0P0

¢
+ tr (G0) , if C = Q2,

tr
¡£
G1,0Q

T
1

¤ £
AT
0A0

¤
− 2G1,0A0

¢
+ tr (G0) , if C = IN ;

tr
³£
B0B

T
0

¤2´
=


tr
³£
AT
0A0

¤2
+ 2AT

0A0

´
+N − n, if C = Q2,

tr
³£
AT
0A0

¤2
+ 4AT

0A0 + 2 [Q1A0]
2

−4Q1A0 − 4AT
0A0Q1A0

¢
+N, if C = IN .

With the exception of tr (G0), which must only be calculated once, the traces on the right

hand sides are of n× n matrices.

4. DESIGNS: ALGORITHMS AND EXAMPLES

4.1. Test cases

We begin by exhibiting some optimal designs in situations in which N and n are small

enough that the optimization can be carried out by an exhaustive search of all
¡
N
n

¢
possible
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designs. We consider two types of correlation structures. The first - Gaussian correlations

- employs nominal covariances g0(t, t
0) = σ22 exp

©
−λ kt− t0k2

ª
. The second - exponential

correlations - uses g0(t, t
0) = σ22 exp {−λ kt− t0k}. In our examples we set σ2 = 1, and

choose λ so that the nearest neighbour correlation is .8. The ideal error variances are taken

to be σ21 ≡ 1.
Figure 1 exhibits optimal designs withN = 25 and n = 6. In all cases we takeC = IN , so

that we aim for estimation of AMSPE as at (7). Each of the designs in Figures 1(b) and 1(c)

took about 180 seconds to compute (using MATLAB, on a 2200 MHz PC with 1 gigabyte of

RAM). The modifications of §3.1 led to the same designs, in about 100 seconds. For Figure
1(a), in which the fitted model is in fact the correct one, these times were approximately

halved. In all three cases, the same designs were obtained when the loss was given by (6).

4.2. Simulated annealing

We have found that simulated annealing can be quite successful in determining the op-

timal robust designs. Our algorithm is a modification of that of Sacks and Schiller (1988).

It depends on a sequence {πj} of acceptance probabilities and parameters {n0, δ0, δ1, ν,m},
and is described as follows.

Suppose that at the jth stage (j = 0, 1, 2, ...) of the process we are considering a con-

figuration S(j) =
n
t
(j)
i1
, . . . , t

(j)
in

o
, with loss L(j) as at (16). Pick, at random, a location

t ∈ T \S(j) and determine in sequence the loss that arises if one of the t(j)ik in S
(j) is replaced

by t. If the least of these is less than L(j), then the corresponding configuration is accepted.

Otherwise, this configuration is accepted with probability πj.

Note that we are specifying that the same location not appear more than once in the

design. Many practical situations, e.g. geological sampling, require this. It is not a crucial

point however and the method works equally well when replicates are allowed.

For large values of N we sometimes modify this step by employing a suggestion of Royle

(2002). The suggestion was made in connection with exchange algorithms but is also

applicable to the current situation. In this “100p% nearest neighbour” modification we test

only those t
(j)
ik
for which

°°°t(j)ik − t°°° < pmaxt0∈T kt0 − tk.
The preceding step is repeated n0 times, or until a new configuration is accepted, whichever

comes first. If a new configuration is accepted it is labelled S(j+1), and its loss is labelled
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Figure 1: (a) Optimal scenario on an N = 25 point square grid in the unit square with
n = 6 sites chosen. Inputs are f0(t) ≡ σ21 = 1, Gaussian correlations g0(t, t

0) =
σ22 exp

©
−λ kt− t0k2

ª
with σ22 = 1, λ = 3.5703 for a nearest neighbour correlation of

e−.0625λ = .8. Regressors are z (t) = (1, t1, t2)
T and C = IN . Fitted model is correct:

α = β = γ = 0. The optimal sites are {1, 4, 12, 15, 21, 24} respectively - counting left to right
across row 1, then row 2, etc. Equivalent designs obtained by rotating this design through
90◦, 180◦ and 270◦ have sites {1, 5, 8, 16, 20, 23}, {2, 5, 11, 14, 22, 25} and {3, 6, 10, 18, 21, 25}
respectively. All result in a loss of 0.73358.
(b) As in (a), but now α = .25, β = γ = 1. The optimal design shown has sites
{1, 4, 10, 16, 22, 25} and loss 3.2377, and is invariant under a rotation through 180◦. The
only other optimal design, obtained by rotating the one shown through 90◦ or 270◦, has sites
{2, 5, 6, 20, 21, 24}.
(c) As in (b), but with exponential correlations: g0(t, t

0) = exp {−λ kt− t0k} with λ =
.8926 for a nearest neighbour correlation of .8. The optimal design shown has sites
{1, 3, 5, 21, 23, 25} and loss 3.0897, and is invariant under a rotation through 180◦. The
only other optimal design, obtained by rotating the one shown through 90◦ or 270◦, has sites
{1, 5, 11, 15, 21, 25}.
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Figure 2: Output from 100 runs of the simulated annealing algorithm with the 20% nearest
neighbour modification. Design space T is a 21× 21 point grid from which n = 12 sites are
chosen. Regressors are z(t) = (1, t1, t2)

T and the parameters are α = .025, β = γ = 1. (a)
Minimum loss (AMSPE) vs. run. (b) Accepted loss vs. stage in best run; minimum loss
= 5.2955. (c) Acceptance probabilities vs. stage in best run. (d) Best design found has
sites {1, 5, 17, 21, 84, 85, 357, 358, 421, 424, 438, 441}.

L(j+1). If no new configuration is accepted, then S(j) is relabelled as S(j+1), L(j) as L(j+1).

One then moves on to the next stage.

The sequence of acceptance probabilities is defined by π0 = .7 and

πj+1 =


min

³
1,

πj
1−δ0

´
, if no new configuration was accepted at the jth stage,

(1− δ1) πj,
if a new configuration was accepted,
and L(j+1) < (1− ν)mini≤j L

(i),
πj, otherwise.

Iterations cease when there have been m evaluations of the loss since the last change in the

value of the acceptance probability. The initial state S(0) is the best of m randomly chosen

configurations.

This describes one “run” of the annealing algorithm. We have found it best to carry
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out a number of runs, with different parameter values. Typically, in a run we will randomly

choose n0 ∈ [.1 (N − n) , .5 (N − n)], δ0 ∈ [.1, .5], δ1 ∈ [.3, .5], ν ∈ [.01, .05] and m ∈ [50, 200].
For the situations illustrated in Figure 1, the optimal configuration was generally found in

no more than 4 runs. To carry out four runs requires about 15 seconds of computing time.

Figure 2 illustrates the output from a set of 100 runs of the annealing algorithm, with

N = 441 points arranged in a square grid, from which n = 12 locations are chosen. There are¡
441
12

¢
≈ 1023 possible designs. The parameters used were α = .025, β = γ = 1, the correla-

tions were of the Gaussian type, loss was AMSPE and the regressors were z(t) = (1, t1 , t2)
T .

The 20% nearest neighbour modification to the annealing algorithm was employed, as were

the simplifications of §3.1. Each run required 5.6 seconds of computing time and 342 eval-
uations of the loss, on average.

Although it is time consuming, we can successfully run the annealing algorithm with

inputs at least as large as n = 100, N = 5000. Of course designs for predicting XTotal (see

Example 1.1) can be obtained much more quickly.

4.3. Sequential design

Choosing the design points sequentially is an obvious alternative, and one which we have

also investigated. One “run” of our algorithm consists of randomly choosing p points from

T , then finding that (p+1)th point which minimizes the loss when appended to the current
p-point design, and repeating until n points have been determined. We run the algorithm

numerous times, and choose the best of the resulting designs.

For each of the scenarios of Figure 1, we ran the sequential procedure 190 times, thus

using about the same amount of time as 4 runs of the annealing algorithm. Although

the optimal designs were rarely found in this way, the sequentially determined designs were

at least close to optimal. The amounts by which their loss exceeded the minimum loss,

expressed as a percentage of the minimum loss, were typically < 2%.

For large values of N it does not seem feasible to carry out many runs of the sequen-

tial approach. There is no substitute here for the nearest neighbour modification, which

drastically reduces the number of evaluations of the loss which are required in the annealing

algorithm. Figure 3 shows the result of 15 runs of the sequential procedure using the same

inputs as in Figure 2. Each run required 3907 evaluations of the loss, and the total sequence
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Figure 3: Output from 15 runs of the sequential procedure. Inputs are the same as for
Figure 2. (a) Loss vs. run. (b) Best design found, with loss 5.4327, has sites {21, 24, 48,
61, 85, 147, 253, 389, 400, 424, 437,441}.

of runs required 10 minutes of computing time - the same as 100 runs of the simulated an-

nealing algorithm. The loss for the best design found was 5.4327, exceeding that in Figure

2 by 2.6%.

5. ROBUST ESTIMATION AND PREDICTION: DETAILS AND
SIMULATIONS

The preceding development has assumed a known covariance structure. In practice,

one would typically posit a parametric form for this structure, and substitute parameter

estimates. These might be obtained from a preliminary or previous study, and could then be

used prior to constructing a static design for the current study. Alternatively the estimation

and design steps could be carried out iteratively and sequentially. In any event, robust

estimation methods are required.

Robust methods for variogram estimation were studied by Cressie and Hawkins (1980)

and by Genton (2001; see also references to earlier work therein). Both employ judiciously

chosen order statistics of the differences |X (t)−X (t0)|, or the second differences. (In

particular, it is assumed in the references of this paragraph that X (t) is observable, i.e. that

σ21 = 0.) Nonparametric covariogram estimation is studied by Genton and Gorsich (2002).

Militino and Ugarte (1997) propose 1-step Schweppe-type GM-estimation of regression, after

applying a transformation, based on the residuals from an initial least trimmed squares fit

which ignores the dependence structure, to achieve an approximately diagonal covariance

matrix.
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We propose here a method of GM-estimation of the regression parameters, and corre-

spondingly a robust method of prediction, appropriate when measurement errors are present.

We suppose that the experimenter assumes the measurement errors ε(t) to have common

variance σ21, and the covariance function to be of the form

g(t, t0) = σ22ρλ (kt− t0k) ,

for an isotropic correlation function ρλ depending on a, possibly multidimensional, parameter

λ. Under the assumed regression model, the data vector y has mean Z1θ and covariance

matrix σ21S, where Z1 has rows z
T (ti1) , . . . , z

T (tin) and S = In + ζΦ for ζ = σ22/σ
2
1 and

Φjk = ρλ
¡°°tij − tik°°¢.

Regression/scale step (“R/S”): Given a trial value Ŝ = In + ζ̂Φ̂, put v = Ŝ−1/2y,

U = Ŝ−1/2Z1 and obtain trial estimates θ̂ = θ̂GM and σ̂1 = σ̂n as at (12) and (13), with

ψi (r) = w (ui)ψc1 (r), χ (r) = ψ2c1 (r) and τn as in Remark 6, with c = c1. In our simulations

the only nonconstant regressors are the locations t, so that influential carriers are not an

issue. Thus we take constant weights w (ui) ≡ 1. We “solve” (12) and (13) by carrying

out three iterations of reweighted least squares, in each step.

Covariance step (“C”): Given a trial value θ̂, set r =
³
y− Z1θ̂

´
/σ̂1 and let the robus-

tified residual vector ψ have elements ψc2 (ri). Minimize, over ς and λ, the function

log(det(S)) + ξc2
¡°°S−1/2r°°¢ ,

where

ξc(t) = 2

Z t

0

ψc(x)dx =

½
t2, |t| ≤ c,

2c|t|− c2, |t| ≥ c.

If the likelihood is Gaussian, then these steps yield the maximum likelihood estimates

when c1 = c2 = ∞. The covariance step gives the MLE of ς and λ if the density of r is

of the form |S|−1/2 p
¡°°S−1/2r°°¢ for p(t) ∝ exp (−ξc(t)/2). We have, at least initially, used

c1 = 1.5, c2 =
√
n. In order to keep the estimate ς̂ away from zero, we have sometimes

found it effective to increase these values somewhat - see the example in §6.
The MATLAB function fmincon carries out the minimization in step C quickly and

effectively. It is generally sufficient to iterate five times between R/S and C.
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Table 1. Simulation results for M-estimation and prediction.
Regression biases and prediction errors, with standard errors in

parentheses. True and assumed correlations both of the exponential form.

Errors/ Method2 %RNB %ARPE ASPE
Regression1

Nearest neighbour correlation = .2
U/U M 12.49 (.81) 4.34 (.13) 1.07 (.07)

GLS 11.96 (.77) 4.24 (.12) 1.03 (.06)
M+D 7.89 (.36) 3.73 (.06) .79 (.03)
GLS+D 7.79 (.35) 3.72 (.06) .78 (.03)

U/C M 13.35 (.80) 4.78 (.13) 1.36 (.09)
GLS 13.03 (.73) 4.69 (.12) 1.29 (.07)
M+D 8.14 (.37) 4.07 (.08) .93 (.04)
GLS+D 7.95 (.39) 3.99 (.08) .90 (.03)

C/U M 13.73 (.72) 4.67 (.13) 1.30 (.08)
GLS 16.83 (1.82) 5.23 (.36) 2.06 (.59)
M+D 8.49 (.40) 3.84 (.07) .84 (.03)
GLS+D 9.87 (.69) 4.19 (.16) 1.09 (.13)

C/C M 15.89 (1.72) 5.24 (.27) 2.02 (.48)
GLS 23.68 (3.24) 6.82 (.64) 4.43 (1.18)
M+D 8.64 (.50) 4.15 (.09) 1.01 (.05)
GLS+D 13.21 (1.56) 5.38 (.44) 2.77 (.79)

Nearest neighbour correlation = .8
U/U M 12.60 (.71) 3.87 (.12) .91 (.08)

GLS 12.37 (.68) 3.79 (.11) .87 (.08)
M+D 8.80 (.44) 3.59 (.10) .72 (.04)
GLS+D 8.89 (.44) 3.55 (.09) .70 (.04)

U/C M 12.87 (.68) 4.16 (.12) 1.04 (.06)
GLS 12.36 (.67) 4.07 (.12) 1.00 (.06)
M+D 9.27 (.49) 3.73 (.09) .79 (.04)
GLS+D 8.87 (.46) 3.62 (.09) .74 (.03)

C/U M 14.66 (.95) 4.36 (.15) 1.27 (.21)
GLS 23.63 (5.53) 6.08 (.95) 8.92 (5.31)
M+D 8.44 (.44) 3.65 (.12) .77 (.06)
GLS+D 14.56 (2.95) 5.31 (.83) 4.66 (2.54)

C/C M 14.84 (.85) 4.39 (.16) 1.20 (.10)
GLS 26.15 (6.38) 7.55 (1.75) 19.07 (14.21)
M+D 10.17 (.44) 3.87 (.09) .86 (.04)
GLS+D 19.22 (4.98) 6.61 (1.56) 14.91 (11.23)

1. U = Uncontaminated, C = Contaminated. 2. “+D” = sites chosen by design.

17



Table 2. Simulation results for M-estimation and prediction.
Regression biases and prediction errors, with standard errors in

parentheses. True correlations exponential, assumed correlations Gaussian.

Errors/ Method2 %RNB %ARPE ASPE
Regression1

Nearest neighbour correlation = .2
U/U M 12.25 (.67) 4.54 (.12) 1.18 (.06)

GLS 12.04 (.63) 4.49 (.11) 1.15 (.06)
M+D 7.94 (.37) 3.91 (.09) .87 (.04)
GLS+D 7.78 (.37) 3.89 (.08) .85 (.03)

U/C M 12.32 (.65) 4.53 (.11) 1.20 (.06)
GLS 12.25 (.67) 4.50 (.11) 1.18 (.06)
M+D 8.13 (.37) 3.97 (.07) .89 (.03)
GLS+D 8.10 (.41) 3.94 (.07) .88 (.03)

C/U M 12.87 (.76) 4.83 (.33) 1.72 (.46)
GLS 25.53 (6.29) 7.89 (1.65) 14.45 (9.91)
M+D 8.14 (.41) 3.80 (.07) .84 (.03)
GLS+D 18.06 (4.85) 6.46 (1.32) 13.76 (10.51)

C/C M 13.59 (.83) 4.85 (.17) 1.62 (.32)
GLS 18.94 (2.34) 5.96 (.51) 3.54 (1.15)
M+D 8.41 (.41) 4.09 (.08) .96 (.04)
GLS+D 11.71 (1.26) 5.08 (.38) 2.21 (.61)

Nearest neighbour correlation = .8
U/U M 13.98 (.81) 4.07 (.14) 1.01 (.09)

GLS 13.64 (.82) 4.02 (.13) .97 (.08)
M+D 8.26 (.37) 3.61 (.09) .74 (.03)
GLS+D 8.16 (.36) 3.51 (.08) .71 (.03)

U/C M 13.75 (.85) 4.28 (.14) 1.11 (.07)
GLS 13.58 (.85) 4.17 (.13) 1.06 (.07)
M+D 9.52 (.48) 3.72 (.10) .80 (.04)
GLS+D 9.28 (.46) 3.67 (.10) .78 (.04)

C/U M 13.29 (.93) 4.46 (.25) 1.33 (.24)
GLS 14.89 (1.54) 4.68 (.28) 1.60 (.36)
M+D 8.92 (.43) 3.73 (.10) .79 (.04)
GLS+D 10.40 (.63) 4.07 (.17) 1.02 (.11)

C/C M 15.66 (2.26) 4.82 (.55) 4.76 (3.64)
GLS 27.68 (7.16) 7.32 (1.36) 14.73 (9.46)
M+D 9.64 (.47) 3.83 (.11) .86 (.06)
GLS+D 16.28 (2.47) 5.71 (.69) 4.62 (1.76)

1. U = Uncontaminated, C = Contaminated. 2. “+D” = sites chosen by design.
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A small simulation study was carried out to test these methods. The main conclusions

remained constant across a range of inputs, and are reported in detail here for the following

cases. We considered an N = 10 × 20 grid of equally spaced locations. We simulated

100 populations of size N , and from each randomly chose a sample of size n = 15. The

distribution of the measurement error ε was either N(0, σ21 = 2) (“uncontaminated errors”)

or (“contaminated errors”) was this distribution mixed with 1 “slash” error - a N(0, σ21 = 2)

variable divided by an independent uniform U [0, 1] variable - per sample. The marginal

distribution of δ(t) was N(0, σ22 = .5). Thus ζ = .25. The true correlations were of an

exponential form, with ρλ(d) = e−λd and λ chosen for a nearest neighbour correlation of

either .2 or .8. The fitted regression model used regressors z(t) = (1, t1, t2)
T . The true

regression response was either E [X(t)] = zT (t)θ, with θ = (10, 10, 10)T , (“uncontaminated

regression”) or was E [X(t)] = zT (t)θ + h (t) (“contaminated regression”), with h (t) ∝
t1t2 + at1 + bt2 + c and the constants chosen to satisfy (2) and

P
t∈T h

2 (t) =
√
N . Note

that (2) ensures that θ, as above, is still the best fitting parameter, in the sense of (1), even

under a contaminated regression. With contaminated errors or covariances however the

“best” parameters (σ21, σ
2
2, λ) are no longer those used in the simulations. Thus we base our

comparisons on the accuracy in the estimation of θ, and on the accuracy of the predictions

of X(t). The former is gauged by the percent relative norm of the bias of θ̂:

%RNB = 100 ·

°°°θ̂ − θ°°°
kθk ,

together with the associated standard errors. The latter is gauged by the percent average

relative prediction error:

%ARPE = 100 · avert∈T

Ã¯̄̄̄
¯X̂(t)−X(t)

X(t)

¯̄̄̄
¯
!
,

with X̂(t) computed as at (15) with C = IN , and by the average squared prediction error:

ASPE = avert∈T

µ³
X̂(t)−X(t)

´2¶
.

From each sample the M-estimate and associated predictions were computed. This was

then repeated, using the same sample but with the GLS estimate. Both sets of estimates

were then recomputed, using the same populations but now using designs determined as in
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§4. In constructing these designs we took α = β = γ = 1, and used the true values of σ21, σ
2
2

and of the nearest neighbour correlation. The assumed correlation structure used was the

same as in step C of the estimation procedure. The designs are quite stable under changes

in the correlation structure - see Figure 4.
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Figure 4: Designs for simulation study of §5. Correlation structures and nearest neighbour
correlations are (a) Exponential, .2; (b) Exponential, .8; (c) Gaussian, .2; (b) Gaussian, .8.

The results from the simulations are presented in Table 1, for the case in which the

true and assumed correlation structures coincided, and in Table 2 for the case in which

the assumed structure was Gaussian - ρλ(d) = e−λd
2
. In both cases the benefits of the

robust estimation were considerable when the errors were contaminated. When only the

regression was contaminated the GLSE was slightly superior, with the difference largely

disappearing when the sites were chosen by design, rather than at random. For both

estimation procedures, the benefits of the design were stronger when the assumed and true

correlations structures differed.

The simulations were also run with 2 slash errors per sample (not shown). This often

resulted in almost complete breakdown of the GLSE, while the M-estimates remained stable.

20



Table 3. Parameter estimates (standard errors in parentheses)
for coal-ash study.

n θ̂0 θ̂1 θ̂2 σ̂21 ς̂ λ̂
M-estimates

10 10.99 (.180) −.19 (.017) .06 (.013) .19 .39 1.00
30 10.59 (.059) −.13 (.006) .026 (.004) .42 .27 2.92

GLS estimates
10 10.99 (.181) −.19 (.017) .06 (.013) .13 .95 1.37
30 10.60 (.063) −.09 (.006) .01 (.004) .34 .77 14.68

6. EXAMPLE

We have restudied the “coal-ash” data, given by Gomez and Hazen (1970) and described

in Cressie (1991). There are 208 coal-ash core measurements obtained from the Pittsburgh

coal seam, at sites throughout a grid as displayed in Figure 5. The object of our study is to

obtain an efficient and robust design upon which to base regression estimates of the effects

in the east-west and north-south directions, corresponding to positive and negative values

of t1 and t2 respectively. An initial ten-point design, given in Figure 5(a), was chosen.

An approximate exponential correlation model was decided upon, and we then fitted a

regression model, with regressors (1, t1, t2), to these data. The initial M-estimates, with

tuning constants c1 = 1.5, c2 =
√
n, had ς̂ = 0. Upon increasing these to c1 = 2, c2 = 2

√
n

we obtained the values shown in Table 3. The corresponding standard errors of θ̂0, θ̂1, θ̂2,

determined from the asymptotic covariance matrix

asym.cov
h
θ̂
i
=

σ21
n

E
h
ψ2
³

η
σ1

´i
³
E
h
ψ0
³

η
σ1

´i´2 ¡UT
1,0U1,0

¢−1
, (21)

are also given in Table 3. The expectations in (21) were estimated by the corresponding

sample averages (using “n − p” as the divisor for the expectation in the numerator). The

GLS estimates and standard errors were very similar.

We then determined, by simulated annealing, robust designs (α = β = γ = 1) consisting

of a further 20 points chosen to minimize the maximum (estimated) loss (16). Despite

the similarity in the estimates, the corresponding designs - see Figures 5(b), 5(c) - were

slightly different. The parameters were then re-estimated. Note the implausibly large GLS
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estimate λ̂ = 14.68, implying that even observations from nearest neighbours are essentially

uncorrelated. This difference in the estimates perhaps accounts as well for the somewhat

different predictions - see Figure 6, where the GLS predicted values, and those obtained from

the M-estimates, are plotted against each other.
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Figure 5: Designs for the example of §6: (a) initial design, (b) final design based on initial
M-estimates, (c) final design based on initial GLS estimates.
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Figure 6: M-estimation based coal-ash predictions against the sorted BLU predictions.

7. SUMMARY

In this article we have derived robust methods for the design, estimation and prediction

of spatial processes. Our framework assumes that the stochastic process of interest is itself

subject to measurement error, and has a mean structure relying on a set of regressors.

The measurement error variances, the correlations between observations made at differing
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locations, and the regression structure are all typically only partially known, and may be

incorrectly specified by the experimenter. We have exhibited the Best Linear Unbiased

Predictor, and maximized a loss function, based on the mean squared error of this predictor,

over neighbourhoods quantifying the various sources of model uncertainty. Two algorithms

- one using simulated annealing and the other sequential in nature - have been introduced

in order to minimize the maximum loss, leading to minimax designs. Parameter estimation

and process prediction methods have also been introduced. These are based on generalized

M-estimators, and are robust against contaminated error distributions.

A simulation study has shown that the procedures perform much as hoped, affording

a substantial level of robustness when these model inadequacies are present, while being

almost as efficient as more classical methods otherwise.

APPENDIX: DERIVATIONS

Proof of Theorem 1: The method is as in Cressie (1991). We find that

MSE (A; f, g, h) = (AQ1 −C)
h
(Zθ + h) (Zθ + h)T +G

i
(AQ1 −C)T +AQ1FQ

T
1A

T ,

(A.1)

so that

MSE (A; f0, g0, h0) = (AQ1 −C)
h
(Zθ) (Zθ)T +G0

i
(AQ1 −C)T +AQ1F0Q

T
1A

T

and we seek

A0 = argmin
A

tr
£
MSE (A; f0, g0, h0)− 2 (AQ1 −C)ZΛT

¤
,

where Λ is an M × p matrix of Lagrange multipliers.

The first order conditions are

(AQ1 −C)ZθθTZTQT
1 + (AQ1 −C)GT

0Q
T
1 +AQ1F

T
0Q

T
1 −ΛZTQT

1 = 0M×n (A.2)

together with (8), by which the first term in (A.2) vanishes. This results in

A =
¡
CGT

1,0 +ΛZT
1

¢
Σ−111,0.

Substituting this into (8) gives

Λ = C
¡
Z−GT

1,0Σ
−1
11,0Z1

¢ ¡
Z1Σ

−1
11,0Z1

¢−1
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and (9) follows. Then from (A.1),

tr [MSE (A0; f, g, h)] = trAT
0A0F11 + trBT

0GB0 + kB0hk
2 .

Since F11 is diagonal, we may replace A
T
0A0 by its diagonal, obtaining (10). 2

Derivation of (15): Define an n × 1 vector p = σn (..., ψi (ηi/σn) , ...)
T , and let E1 — E3

be the n × n diagonal matrices with diagonal elements E [ψ0i (ηi/σn)], E [ψ
2
i (ηi/σn)], ψ

0
i (0)

respectively. Under appropriate conditions - see for example Wiens (1996) - there is an

expansion of the form

√
n
³
θ̂GM − θ

´
=
¡
n−1UT

1,0E1U1,0

¢−1 ¡
n−1UT

1,0E1k1 + n−1/2UT
1,0p

¢
+ oP (1) . (A.3)

Upon replacing θ̂GLS by θ̂GM and e by S
1/2
11,0p̂, equations (14) become

CE
£
(x̂− x) p̂T

¤
+VS

1/2
11,0E

£
p̂p̂T

¤
= 0M×n, (A.4)

and our robustified predictor is

(cCx)GM = CZθ̂GM +VGMS
1/2
11,0p̂.

Taking (f, g, h) = (f0, g0, 0) we approximate E
£
p̂p̂T

¤
by EΦ

£
p0p

T
0

¤
= σ2nE2. Using (A.3)

(with k1 = 0) and an approximation to E
£
p0δ

T
0

¤
given at (A.5) below, we approximate

E
£
(x̂− x) p̂T

¤
= ZE

h³
θ̂GM − θ

´
p̂T
i
−
¡
E
£
pδT

¤¢T
by

Z
¡
UT
1,0E1U1,0

¢−1
UT
1,0EΦ

£
ppT

¤
−GT

1,0S
−1/2T
11,0 E3.

With K = E3E
−1
2 − I this gives

VGM = σ−2n CG
T
1,0S

−1
11,0 +C

h
σ−2n G

T
1,0S

−1/2T
11,0 K− Z

¡
UT
1,0E1U1,0

¢−1
UT
1,0

i
S
−1/2
11,0

and

(cCx)GM = C
h
Zθ̂GM + σ−2n G

T
1,0S

−1/2T
11,0 p̂

i
+C

h
σ−2n G

T
1,0S

−1/2T
11,0 K− Z

¡
UT
1,0E1U1,0

¢−1
UT
1,0

i
p̂.

From (12),
¡
UT
1,0E1U1,0

¢−1
UT
1,0p̂ = oP (n

−1/2), whence we ignore this term and obtain (15).
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The approximation to E
£
p0δ

T
0

¤
arises as follows. Write the (i, j)th element as

σnE
h
ψi

³
αTi (ε+δ)

σn

´
δj
i
, where αT

i is the i
th row of S

−1/2
11,0 Q1. Expanding around ε0 + δ0 = 0

and terminating the expansion after the linear term gives

E
£
p0δ

T
0

¤
i,j
≈ σnE [ψi (0) δj] +E

£
ψ0i (0)

¡
αT
i (ε0 + δ0)

¢
δj
¤
.

and so

E
£
p0δ

T
0

¤
≈ E3S−1/211,0 G1,0. (A.5)

2

Proof of Theorem 2: To carry out the maximizations over Fα, Gβ and Hγ we shall first

ignore the non-negativity constraints in the definitions of Fα and Gβ, and the orthogonality
constraint in the definition of Hγ. We will then verify that the unconstrained maximizers

also satisfy the constraints.

For Fα we have, by the Cauchy-Schwarz inequality, that

dT0 f1 = dT0 f1,0 + d
T
0 (f1 − f1,0)

≤ dT0 f1,0 + α
√
N kd0k ,

with equality iff f1 − f1,0 is proportional to d0. This in turns holds iff f1 is given by (17).

Now note that the elements of f1 are positive, so that f1 also solves the constrained problem.

For Gβ the solution is similar - we note that G given by (18) solves the unconstrained

problem and is a non-negative definite matrix.

For Hγ, we have that kB0hk2 is maximized, subject to hTh ≤ γ
√
N , iff h is an eigen-

vector of BT
0B0, with khk

2 = γ
√
N , corresponding to the largest eigenvalue λmax

¡
BT
0B0

¢
=

λmax
¡
B0B

T
0

¢
. But then BT

0B0h = λmaxh and so

ZTh =
ZTBT

0B0h

λmax
= 0,

since B0Z = 0. Thus the orthogonality constraint (2) of Hγ is also satisfied.

Collecting these three maxima gives (16). 2

Proof of Lemma 1: (i) First assume A1). Then Q1P0 → H := Z1
¡
ZT
1Z1

¢−1
ZT
1 .

Disregarding terms which are o(1) we have Q1

¡
P0 −QT

1H
¢
= 0. Thus the columns of P0−
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QT
1H are orthogonal to the rows of Q1, hence are linear combinations of the columns of Q

T
2 ,

i.e. P0 = Q
T
1H+Q

T
2M for someM(N−n)×n (necessarily = Q2P0, implying thatMH =M).

Thus

B0 = CQ
T

µ
− (I−H)Q1

MQ1 −Q2

¶
.

Note that (I−H)Q1

¡
QT
1M

T −QT
2

¢
= 0. Using this we calculate that

B0B
T
0 = CQ

T
£
(I−H)⊕

¡
IN−n +MM

T
¢¤
QCT .

It now follows from either (19) or (20), and the fact that I−H has eigenvalues 0 and 1, that

λmax
¡
B0B

T
0

¢
= 1 + λmax

¡
MTM

¢
.

Write H = Λ1Λ
T
1 , where Λ

T
1Λ1 = Ip. Then

PT
0P0 = H+M

TM = Λ1

¡
Ip +ΛT

1M
TMΛ1

¢
ΛT
1

has the same non-zero eigenvalues as Ip +ΛT
1M

TMΛ1, so that the maximum eigenvalue is

λmax
¡
PT
0P0

¢
= 1 + λmax

¡
ΛT
1M

TMΛ1

¢
= 1 + λmax

¡
MTMH

¢
= 1 + λmax

¡
MTM

¢
= λmax

¡
B0B

T
0

¢
.

(ii) Under A2) we have that Q1P0 → In and the remainder of the derivation is very similar

to, but simpler than, that under A1). 2
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