Technical Report 89-25

ON DELETING INFLUENTIAL RESPONSES UNDER A MODEL OF ASYMMETRIC ERRORS IN REGRESSION

BY

M. Hlynka, J.N. Sheahan and D.P. Wiens

ON DELETING INFLUENTIAL RESPONSES UNDER A MODEL OF ASYMMETRIC ERRORS IN REGRESSION

by

M.Hlynka,* J.N. Sheahan,† and D.P. Wiens**

1. INTRODUCTION

This report consists of some heuristic proposals for choosing the support of re-descending ψ -functions, used in M-estimation of regression parameters. It is meant to be read in conjunction with Hlynka, Sheahan and Wiens (1990), which will be referred to as HSW.

This report comprised a section of an early version of HSW. All definitions necessary for an understanding of this report are contained in Section 1 of HSW. Some of the references are detailed in the bibliography of HSW, others in the bibliography of this report. Equation numbers refer to equations in HSW.

2. ESTIMATION OF a_0 IN (1.5).

In this section, we assume that in the linear model (1.1), F is known to belong to the class \mathcal{F} of (1.5) and that ϵ and σ are known. Now if a_0 were also known, the optimal M-estimator of θ would be the solution of (1.2) with ψ given by (1.3), $\hat{\sigma} = \sigma, y_0$ and y_1 given in (1.6) and ω as near zero as desired - see Lind, Mehra and Sheahan (1989). When a_0 is unknown an asymptotically optimal procedure is as follows: Find a consistent estimator \hat{a}_0 of a_0 ; then solve (1.2) with \hat{a}_0 replacing the unknown a_0 in (1.3). The aim of this section is to present some heuristic methods for estimating a_0 . We remark that if σ is unknown one can obtain scale equivariance either by solving (1.2) with $\hat{\sigma}$ as given there,

^{*} Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario N9B 3P4

^{† **} Department of Statistics and Applied Probability, University of Alberta, Edmonton, Alberta T6G 2G1

^{** †*} Research supported in part by the Natural Sciences and Engineering Research Council of Canada

or by simultaneous estimation of θ and σ , as in Sheahan (1988).

To simplify the discussion we assume $\epsilon = 0$ and without loss of generality we assume $\sigma = 1$. Then the distribution of the i.i.d. errors is standard normal in an <u>unknown</u> interval $(-a_0, a_0)$ and completely unknown outside $(-a_0, a_0)$. We may assume that the error distribution is non-normal in every interval containing (a_0, a_0) , for otherwise we can re-define a_0 by $a_0 = \sup\{a_0^* | \text{ the distribution is of standard normal form in } (-a_0^*, a_0^*)\}$. Our aim is then to estimate the point a_0 where outside $(-a_0, a_0)$ the distribution is not of standard normal form.

2.1. One heuristic procedure for estimating a_0 is to make a normal probability plot of the ordered residuals $\widehat{U}_1 \leq \ldots \leq \widehat{U}_n$, where

$$\widehat{U}_i = X_i - c_i'\widetilde{\theta}, \quad i = 1, \dots, n$$
(2.1)

and $\tilde{\theta}$ is an initial consistent and shift equivariant estimator of θ . Such an estimator can be constructed as follows, in the case where F has a positive and continuous density f. Let $\tilde{\theta}_L$ be the least absolute deviation estimator, defined in the Introduction to HSW. It was shown by Koenker and Bassett (1978) - see also Bassett and Koenker (1978) and Ruppert and Carroll (1980) - that

$$\tilde{\theta}_L \longrightarrow_{\mathcal{P}} \theta + (F^{-1}(\frac{1}{2}), \dots, F^{-1}(\frac{1}{2}))'.$$

If $F^{-1}(1/2) = 0$ we define $\tilde{\theta} = \tilde{\theta}_L$. If $F^{-1}(1/2) \neq 0$ but the column space of $C^{(n)}$ contains the vector $(1, \ldots, 1)'$, one can, by transforming X, arrange that $F^{-1}(1/2) = 0$. If finally the median of the error distribution is not zero and the column space of $C^{(n)}$ does not contain the unit vector, we obtain a consistent estimator by defining $\tilde{\theta}$ to be the Newton's method solution of (1.2) with $\tilde{\theta}_L$ as initial value and a ψ -function with "artificially-trimmed" support - see Lind, Mehra and Sheahan (1989) sec. 3.2, where $\tilde{\theta}$ is denoted $\tilde{\theta}(2)$.

If $(-\hat{a}_0, \hat{a}_0)$ is an interval within which the normal probability plot is "approximately" linear and outside of which the plot becomes non-linear, or linear with a different slope, we propose \hat{a}_0 as an estimator of a_0 . This procedure, which can be somewhat rigorized by a regression analysis, is rather easy to implement and provides a reasonable "starting" value for the tests that follow.

2.2 The idea here is to perform a goodness of fit test for various values of a_0 : Partition \mathbf{R}^1 into m intervals $(-\infty, b_1), (b_1, b_2), \dots, (b_1, b_{m-1}), (b_{m-1}, \infty)$. For any fixed a_0 , let j and l be the indices for which $b_j \leq -a_0 \leq b_{j+1}$ and $b_l \leq a_0 \leq b_{l+1}$. With \widehat{U}_i as defined in (2.1), let N_1, \dots, N_K be the numbers of the \widehat{U}_i that will fall in the intervals $(-a_0, b_{j+1}), (b_{j+1}, b_{j+2}), \dots, (b_l, a_0)$ respectively, and let $E(N_i)$ be the corresponding i^{th} expected frequency under normality of the error distribution in $(-a_0, a_0), i = 1, \dots, K$. Now define

$$\chi^{2}(a_{0}) = \sum_{i=1}^{K} \frac{(N_{i} - E(N_{i}))^{2}}{E(N_{i})}$$

and reject the hypothesis that F is normal in $(-a_0, a_0)$ if the observed value of $\chi^2(a_0)$ exceeds $\chi^2_{\alpha[K-p-1]}$, the upper $\alpha\%$ critical point of a χ^2 distribution with K-p-1 degrees of freedom.

An estimator of a_0 is then

$$\widehat{a}_1 = \max\{a_0 | \chi^2(a_0) \le \chi^2_{\alpha[K-p-1]}\}.$$

A reasonable starting value for the above tests is the \hat{a}_0 of sec. 2.1. (We remark that as a variation of this method one may employ a "minimum χ^2 " procedure, simultaneously estimating θ along with the testing procedure).

2.3. Since the procedure of sec. 2.2 requires an arbitrary partitioning of \mathbb{R}^1 into intervals, one may prefer to employ a Kolmogorov-Smirnov type of procedure instead. For fixed a_0 , define

$$T(a_0) = \sup_{u \in (-a_0, a_0)} |F_n(u) - \Phi(u)|$$

where $F_n(u)$ is the empirical distribution function of the residuals (2.1). Note that the observed value $t(a_0)$ of $T(a_0)$ is often found graphically. We reject the hypothesis of normality in (a_0, a_0) if $t(a_0)$ exceeds a critical point which may be obtained in tables in non-parametric texts (e.g. the critical point for Lilliefors test). The procedure could start with the \hat{a}_0 of sec. 2.1. If $t(\hat{a}_0)$ is significant (-indicating non-normality in $(-\hat{a}_0, \hat{a}_0)$), we compute $t(a'_0)$ where $a'_0 < a_0$, then $t(a_0^2)$ with $a_0^2 < a'_0$ etc., continuing until an a_0^m is

obtained for which $t(a_0^m)$ is not significant. On the other hand, if $t(\widehat{a}_0)$ is not significant, we compute $t(a_0')$ for an $a_0 > \widehat{a}_0$, and continue moving to the right of \widehat{a}_0 until significance is obtained. Finally we will reach points a_0^* and a_0^{**} , $a_0^* < a_0^{**}$, with $t(a_0^*)$ not significant and $t(a_0^{**})$ significant. We can then repeat the whole procedure for selected points in (a_0^*, a_0^{**}) . Ultimately we will obtain an approximation to a reasonable estimate

$$\widehat{a}_2 = \max\{a_0|t(a_0) \text{ is not significant}\}$$

of the true a_0 .

2.4. The procedures of secs. 2.2 and 2.3 are sensitive to the following reality: Their power may be low when the statistics are computed at values of a_0 that exceed but are close to the true a_0 . For example, suppose we conduct the χ^2 test to see if there is evidence against normality of the errors in $(-a_0^*, a_0^*)$. Suppose it happens that $a_0^* = a_0 + \delta$ where a_0 is the true parameter value and $\delta > 0$ is small. Only the few residuals that fall in $(-a_0^*, -a_0)$ and (a_0, a_0^*) will aid us in detecting non-normality, and their ability to do this with the χ^2 test, which uses all of the residuals, will be masked by the contributions, towards the value of $\chi^2(a_0^*)$, provided by the vast majority of residuals in $(-a_0, a_0)$, these being values of genuine approximately normal variables.

This observation suggests a possible improvement: For a range of values of a_0 , conduct the tests of secs. 2.2 and 2.3 using only residuals in neighbourhoods of $-a_0$ and a_0 . Taking Lilliefors test for example, we define

$$S(a_0) = \sup_{u \in A_n} |F_n(u) - \Phi(u)|$$

where $A_n = (-a_0 - \delta_n, -a_0 + \delta_n) \cup (a_0 - \delta_n, a_0 + \delta_n)$, and δ_n depends only on n and satisfies $\delta_n \to 0$ as $n \to \infty$. An estimator of the true a_0 is then

 $\hat{a}_3 = \max\{a_0 | \text{ the observed value of } S(a_0) \text{ is not significant}\}.$

2.5 At the cost of quite extensive analytical and computational inconvenience, we can estimate a_0 using a likelihood ratio approach. (Recall that, for simplicity of presentation,

we are supposing that $\epsilon = 0$ in (1.5)). The density of U_i in the model (1.1) can, from (1.5), be written as

$$\phi(u)I(|u| \le a_0) + g(u)I(|u| > a_0)$$

where g is a (assumed to exist) density of the unknown tail portion of F and I(A) denotes the indicator function of a set A. The likelihood function of the sample $x = (x_1, \ldots, x_n)'$ is then

$$L(\theta, a_0, g|x) = \prod_{i=1}^n \{ \phi(x_i - c_i'\theta) I(|x_i - c_i'\theta| \le a_0) + g(x_i - c_i'\theta) I(|x_i - c_i'\theta| > a_0) \}.$$

In this, we propose replacing θ by the estimate $\tilde{\theta}$ of sec. 2.1. In order to use L to perform a likelihood ratio test of the alternatives $H_0: a_0 = a_0^*, H_1: a_0 > a_0^*$, we have to contend with the complication that g is unknown. One possibility, which we have not explored theoretically, is to replace g by a certain least favourable density g_0 for the likelihood ratio test of H_0 versus H_1 . Specifically, if we define

$$\lambda(X; \tilde{\theta}, a_0^*, g) = \sup_{a_0} L(\tilde{\theta}, a_0, g|X) / L(\tilde{\theta}, a_0^*, g|X),$$

we let g_0 minimize the power of the test based on λ , of H_0 versus H_1 , at some specified alternative.

A rather complicated estimate of a_0 is then defined as

$$\hat{a}_4 = \max\{a_0^* | \lambda(x; \tilde{\theta}, a_0^*, g_0) \text{ is not significant}\}.$$

As with the preceding procedures, an initial choice for the null hypothesis value a_0^* of a_0 would be the \hat{a}_0 of sec. 2.1.

2.6. Finally we note that, instead of estimating merely a_0 , we could consider estimating the tail portions of F inself. This procedure is adaptive and seems to rely on a very large amount of data. Since it is not in the spirit of robust procedures, which are semi-parametric and designed to work for moderate sample sizes, we will not elaborate on this procedure.

ADDITIONAL REFERENCES

- Bassett, G., Jr., and Koenker, R. (1978). Asymptotic Theory of Least Absolute Error Regression. <u>Journal of the American Statistical Association</u>, 73, 618-622.
- Hlynka, M., Sheahan, J.N., Wiens, D.P. (1990) On the choice of support of re-descending ψ -function in linear models with asymmetric error distributions. Metrika, to appear
- Koenker, R. and Bassett, G., Jr. (1978). Regression Quantiles. <u>Econometrika</u>, 46, 33-50.
- Ruppert, D. and Carroll, R.J. (1980). Trimmed Least Squares Estimation in the Linear Model. <u>Journal of the American Statistical Association</u>, 75, 828-138.

AND SOME OF THE THE PROPERTY AND THE PROPERTY OF THE PARTY OF THE PART