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1. INTRODUCTION

This report consists of some heuristic proposals for choosing the support of re-descending
y-functions, used in M-estimation of regression parameters. It is meant to be read in con-
junction with Hlynka, Sheahan and Wiens (1990), which will be referred to as HSW.

This report comprised a section of an early version of HSW. All definitions necessary
for an understanding of this report are contained in Section 1 of HSW. Some of the refer-
ences are detailed in the bibliography of HSW, others in the bibliography of this report.

Equation numbers refer to equations in HSW.

2. ESTIMATION OF ag IN (1.5).

In this section, we assume that in the linear model (1.1), F' is known to belong to
the class F of (1.5) and that € and ¢ are known. Now if ay were also known, the optimal
M-estimator of # would be the solution of (1.2) with ¢ given by (1.3), 7 = o,y and
y1 given in (1.6) and w as near zero as desired - see Lind, Mehra and Sheahan (1989).

When aq is unknown an asymptotically optimal procedure is as follows: Find a consistent

estimator dy of ag; then solve (1.2) with @o replacing the unknown ao in (1.3). The aim of
this section is to present some heuristic methods for estimating ag. We remark that if o is

unknown one can obtain scale equivariance either by solving (1.2) with & as given there,
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or by simultaneous estimation of § and o, as in Sheahan (1988).

To simplify the discussion we assume € = 0 and without loss of generality we assume
o = 1. Then the distribution of the ii.d. errors is standard normal in an unknown
interval (—ag, ap) and completely unknown outside (—ao,ap). We may assume that the
error distribution is non-normal in every interval containing (ag, ag ), for otherwise we can
re-define ag by ag = sup{a}| the distribution is of standard normal form in (—ag,a})}.

Our aim is then to estimate the point ag where outside (—ao, ao) the distribution is not of

standard normal form.

2.1. One heuristic procedure for estimating ag is to make a normal probability plot of the

ordered residuals {7 1<...< E’n, where

o~

U,‘=.Yi—ci-9~, t=1,...,n (2.1)

and @ is an initial consistent and shift equivariant estimator of . Such an estimator can be
constructed as follows, in the case where F has a positive and continuous density f. Let
61 be the least absolute deviation estimator, defined in the Introduction to HSW. It was

shown by Koenker and Bassett (1978) - see also Bassett and Koenker ( 1978) and Ruppert
and Carroll (1980) - that
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If F‘l(l/.‘Z) = 0 we define § = éL.. If F“1(1/2) # 0 but the column space of C™ contains

the vector (1,...,1), one can, by transforming X, arrange that F—1(1 2) = 0. If finally the
g g

o —

median of the error distribution is not zero and the column space of C™ does not contain
the unit vector, we obtain a consistent estimator by defining 8 to be the Newton’s methol
solution of (1.2) with 6; as initial value and a p-function with “artificially-trimmed”
support - see Lind, Mehra and Sheahan (1989) sec. 3.2, where 8 is denoted 9(’2).

If (~ap,dy) is an interval within which the normal probability plot is “approximately”
linear and outside of which the plot becomes non-linear, or linear with a different slope,
we propose 4o as an estimator of ao. This procedure, which can be somewhat rigorized

by a regression analysis, is rather easy to implement and provides a reasonable “starting”

value for the tests that follow.
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2.2 The idea here is to perform a goodness of fit test for various values of ay: Parti-
tion R! into m intervals (—oo,b1),(b1,b2),...,(b1,bm—1),(bm—1,00). For any fixed ay,
let j and { be the indices for which b; < —aq < bj4; and b < ag < bpy. With U as
defined in (2.1), let Ny,..., Ng be the numbers of the U; that will fall in the intervals
(—@0,b5+1), (bj+1,b542)- ..., (b, ap) respectively, and let E(N;) be the corresponding :*"

expected frequency under normality of the error distribution in (—ag,a¢),2 = 1,..., V.

Now define

, K (N, = B(Ny))?

and reject the hypothesis that F is normal in (—ag,ao) if the observed value of y?(aq)
exceeds Xza[fi’-—p—l]’ the upper a% criticial point of a x? distribution with K —p —1 degrees
of freedom.

An estimator of ag 1s then
a; = max{ao|x*(a0) < Xopx—p-y }-

A reasonable starting value for the above tests is the @ of sec. 2.1. (We remark that as
a variation of this method one may employ a “minimum x2” procedure, simultaneously

estimating 8 along with the testing procedure).

2.3. Since the procedure of sec. 2.2 requires an arbitrary partitioning of R! into intervals.
one may prefer to employ a Kolmogorov-Smirnov type of procedure instead. For fixed «y.
define

T(ag) = sup [Fn(u) — ®(u)|

u€(—ao,a0)
where F,(u) is the empirical distribution function of the residuals (2.1). Note that the
observed value t(ag) of T(ag) is often found graphically. We reject the hypothesis of
normality in (ao, ao) if ¢(ag) exceeds a critical point which may be obtained in tables in
non-parametric texts (e.g. the critical point for Lilliefors test). The procedure could start
with the @ of sec. 2.1. If (@) is significant (-indicating non-normality in (—ag,dg)), we

compute t(ay) where aj < ag, then t(a}) with aj < ag etc., continuing until an af* is
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obtained for which #(ag*) is not significant. On the other hand, if t(ao) is not significant,
we compute t(ag) for an ag > @, and continue moving to the right of @y until significance
is obtained. Finally we will reach points a§ and a}*, a8 < ag* with t(ag) not significant and
t(ag") significant. We can then repeat the whole procedure for selected points in (af, al*).

Ultimately we will obtain an approximation to a reasonable estimate
@y = max{ag|t(ag) is not significant}
of the true aq.

2.4. The procedures of secs. 2.2 and 2.3 are sensitive to the following reality: Their power
may be low when the statistics are computed at values of a, that exceed but are close to
the true ag. For example, suppose we conduct the 2 test to see if there is evidence against
normality of the errors in (—a§, aj). Suppose it happens that ay = ag + 6 where qq is the
true parameter value and 6 > 0 is small. Only the few residuals that fall in (—ag,—aop)
and (ag,ag) will aid us in detecting non-normality, and their ability to do this with the
x* test, which uses all of the residuals, will be masked by the contributions, towards the
value of x?(ay), provided by the vast majority of residuals in (—ao,ag), these being values
of genuine approximately normal variables.

This observation suggests a possible improvement: For a range of values of aq, conduct
the tests of secs. 2.2 and 2.3 using only residuals in neighbourhoods of —ag and «j. Taking

Lilliefors test for example, we define

S(ao) = sup | Fn(u) — @(u)]

where 4,, = (—~ap—6n, —ao+6,)U(ag—6n,a0+6,), and 6, depends only on n and satisfies

0n — 0 as n — oco. An estimator of the true aq is then

a3 = max{ag| the observed value of S(ao) is not significant}.

2.5 At the cost of quite extensive analytical and computational inconvenience, we can

estimate ag using a likelihood ratio approach. (Recall that, for simplicity of presentationn,
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we are supposing that € = 0 in (1.5)). The density of U; in the model (1.1) can, from (1.5).

be written as

¢(u)I(|u| < ap) + g(u)I(Ju| > ao)

where g is a (assumed to exist) density of the unknown tail portion of F' and I(A) denotes
the indicator function of a set A. The likelihood function of the sample z = (21,...,z,)

1s then

L(8,a0,gle) = [[{e(: — i0)I(|w: — 6] < ao) + g(z: — i) (|2, — c}6] > ag)}.
=1

In this, we propose replacing § by the estimate 6 of sec. 2.1. In order to use L to perform
a likelihood ratio test of the alternatives Hy : ap = ag, Hy 1 ag > af, we have to contend
with the complication that g is unknown. One possibility, which we have not explored
theoretically, is to replace g by a certain least favourable density go for the likelihood ratio

test of Hy versus H,. Specifically, if we define

M(X;6,a5,9) = sup L(8, a, 9| X)/L(8, a3, 9| X),

we let go minimize the power of the test based on A, of Hy versus Hy, at some specified
alternative.

A rather complicated estimate of ag is then defined as
a4 = max{a}|\(z;0,a},g0) is not significant}.

As with the preceding procedures, an initial choice for the null hypothesis value af of a,

would be the @y of sec. 2.1.

2.6. Finally we note that, instead of estimating merely ag, we could consider estimating
the tail portions of F' inself. This procedure is adaptive and seems to rely on a very large
amount of data. Since it is not in the spirit of robust procedures, which are semi-parametric

and designed to work for moderate sample sizes, we will not elaborate on this procedure.
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