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SUMMARY

We study the problem of robust estimation of a location parameter
when the error distribution is assumed to lie in a Lévy neighicurhood
of a symmetric distribution G: PE,S(G) = {F|G(x-8)-e < F(x) =< G(x+5)+e
for all x} . Under reasonably general conditions on G , Huber's (1564)
theory is applied to obtain the distribution Fy in PE,S(G) which
minimizes Fisher information for location. Then it is shown that Huber's
minimax property for M-estimators also holds for R-estimators in L&vy
neighbourhoods. We also show that the minimax property for L-estimators
fails to hold in Lévy neighbourhoods. The method of proof is to construct
a sub-neighbourhood of distributions Fy , with FO € Fy< P€36(G) , such
that the asymptotic variance of the L-estimator which is asymptotically

efficient at FO is minimized over FO at FO .
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1. INTRODUCTION AND SUMMARY

Let X]""’Xn be a random sample from a distribution F{x-8) ,
where & is an unknown location parameter. Huber (1964) presented a
general theory of robust estimation of & when F 1is assumed to be
an unknown member of a specified convex, vaguely compact neighbourhood
F . 1In this paper we specialize Huber's theory to cases where

F = P€ G(G) , a Lévy neighbourhood of a distribution G :
P G(G) = {F|G(x=8)-e < F(x) = G(x+8)+e for all xI . (1.1)

and 8§ =0 ;

ro| —

Here ¢ and & are assumed to be fixed, with 0 < ¢ <
G is a fixed distribution symmetric about O .

It {Tn} is a sequence of M-, R- or L-estimators of 6 , then
under mild regularity conditions, n1/2(Tn—e) converges in distribution
to the normal Taw with mean 0 and variance V(T,F), so that Huber's
minimax variance theory applies.

The Lévy model, discussed in Chapter 2 of Huber (1981), is an
important neighbourhood structure in robust estimation theory. It is
based on the "Lévy distance", which metrizes the weak topology (Theorem
3.3 of Huber (1981)). From the point of view of practical application,
the two-parameter family PE,S(G) allows wide flexibility in modelling
the possible departures from G against which one wishes to protect.
The choice & = 0 yields the important Kolmogorov neighbourhood model
as a special case. The choice € =0 yields a Lévy band about &
whose width at x decreases to 0 as x approaches = ; this may

be a more realistic model than the fixed-width Kolmogorov band.



In Section 2 the distribution F0 is found which minimizes Fisher
information for location I(F) (= f[(f')z/f]dx if F has an absolutely
continuous density f , = » otherwise) over all F in Pe,S(G) . This
is carried out, for all choices of & and & , under regularity
conditions on G which are only slightly stronger than strong unimodality,
and which include the normal distribution &(x) = (ZW)-1/28XD(-X2/2) and
the logistic distribution as special cases. The minimum information FO
is also found under some less restrictive conditions on G . The Cauchy
and t-distributions are then included as special cases, although the
solutions then require restrictions on the choice of ¢ and & . The
minimum information distributions obtained are, not surprisingly,
qualitatively similar to solutions previously obtained in the special

case of Kolmogorov neighbourhoods (8 = 0) by Huber (1964) and Sacks

and Ylvisaker(1972) when G = & and by Wiens (1986) for more general G .
Huber's (1964) theory yields the following minimax property for

M-estimators: if TO denotes the M-estimator which is asymptotically

efficient {i.e., V(TD,FO) = T/I(FD)) at the minimum information F, in

P CS(G) , then the minimum value of sup{V(T,F): F ¢ P, G(G)} is 1/I(FO),

attained at TO . In Section 3, we investigate whether the minimax
property also holds for the R- and L-estimators that are asymptotically
efficient at the minimum information FO in PE,G(G) . See Section 4.7
of Huber (1981) for further background for this problem. We show, under
the conditions of Section 2, that the minimax property does hold for

R-estimators, by generalizing Collins' (1983) proof for the special case

G=¢& and & =20.



We also show iﬁ Section 3, agafn under the conditions of Section 2,
that the minimax property fails for L-estimators. This result was
previously obtained in the special case G=¢ , 8§ =0, ¢ > .07 by
Sacks and Ylvisaker (1972). Their method was to show that there is an

F, e P 3) for which V(LO,FO) < V(LO,F]) where Lg denote the

1 E,O(
L-estimator which is asymptotically efficient at FO . Unfortunately
their method entails tedious numerical approximations that do not
generalize easily. Our method is quite different and requires no
approximations: we show that there is a subset Fj, < PE’S(G) over
which V(LO,F) is non-constant and attains its minimum value at FO .
The proof is based on a simple comparison of the influence curve of

L at F and at other F ¢ F. .
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2. MINIMUM INFORMATION DISTRIBUTIONS IN PE 5 -

Throughout this paper, we shall assume:

A) The distribution function G(x) is symmetric and fully stochastic,
with an absolutely continuous density g(x) and twice continucusly
differentiable (except possibly at zero) score function
g(x) = -g'(x)/9(x) .

In Theorem 1 below, we shall as well assume:

B) The function J(&)(x) = 2g'(x) - Ez(x) is strictly decreasing
on (0,=) , and E(O+) >0 .

In Theorem 2, we assume either B) or:

c) 1) £(x) 1is positive, and x&(x) 1is strictly increasing, on

(0,) .
ji)  &(x)/x s non-increasing on (0,=) .
iii) &(x) has no Tocal minima in (A,®) , where A is defined
by A:(R) =1 .
As at Lemma 1 of Wiens (1986), B) impiies that & 1is positive
and strictly increasing on (0,») , so that g 1is strongly unimodal.

This in turn implies C) i) and C) iii), and that

o(x) = g (x) - G(x) , (2.1)

where G = 1-G , is strictly decreasing on (0,») , with po(=) =0 .
Assumption C) i), together with the identity (xg(x))' =
g(x)(1-x{x)) , implies that

Tim xg(x) =0 , T1im x&(x) <1 , Timxg(x) > 1 ;
X-+co x~0 X300



hence the existence of a unique point A as in C) iii). Now C) iii)

implies that
e (x) = max(0,p(x)) (2.2)

is non-increasing on (A,») . For if not, there must exist a point
Xy > A at which p(xo) is non-negative and increasing. By C) 1),

1im o(x) = 0 , and so p{x) must possess a Tocal maximum. But since
X-rco

p'(x) = —g(x)g’(x)/gz(x) , the local maxima of p are Tocal minima
of &£ , and this contradicts C) iii).

Examples of distributions satisfying B) are the logistic, normal,
and more generally those with densities gk(x) oroportional to
exp(—]x!k/k) ,1 < k=2 . Somedistributions satisfyina C) but not B)
are the "Student's" t , and those with densities gk(x) , k=<1,

The motivation behind Theorems 1 and 2 below is discussed in Wiens
(1985, 1986), where they were proven for & = 0 ., Recall (Huber, 1981)
that the necessary and sufficient condition for FO € PE,G to minimize

information there is

oo

| 3ug (R(F-Fg)(x) = 0 (2.3)

for all F e P with I(F) <= .,
£,0 .
The proofs of Theorems 1 and 2 consist of verifying that the
exhibited Fy exist, belong to P_ . , and satisfy (2.3). We make

frequent use of the functions p(x) and



2(a) = atana ,
j& coszxdx (@) 5 () 2( )

_ 0 _ (o) o +{o) +2 (o ; 54
k(a) o:coszu 201 2&2 : )
n(e) = 2k(a)a(a) = (1+2(a))sec’a - 1,

h(e) = 2(@) ((1+m(a)) = lo)cos®a/(1 +2(a)) ,
(x) = %—— G(x) - xg(X)k°£'](xa(X)/2) ¥

for o e [0,m/2] , x ¢ [0,2] . Note that &(a) and k(a) are strictly

increasing, to « , with 2(0) =0, k(0) =1, and

0 ) = ]'k(@&*‘m(o‘) . (2.5)

THEOREM 1.  Under assumptions A) and B), there is ¢,(G) > 0 such that
for 0<e<e,and 0 <8 <38,(e) , the minimum information Fo ePE 5 (G)

is described by

AqX
bo(x) = hp(-x) = Tiytan ——, E(x=8) , Ay = &(b-6)]

fG(—x) {—*iijiii— cos’

5 WX
—— 5 9(x=8), g(b-6)exp(-A,(x-b))}
Lcos

fg(x)

2
on [0,a] , [a,b], [b,®») respectively. The constants b =a =& and

Aoz 0 are determined by

i) Fola) = G(a-6) -¢ i) Fole) =1 ii1) yylal) = wplah) .

il
]

The curve &,.(e) 1is decreasing from « at € =0 to 0 at ==¢, ,

'

it

and is defined by 1) -1iii) together with "b



Proof. U4e first show that if solutions to i) - iii) are given, then
FO € P s and minimizes information there. Note that fD(x) and

Volx) = —fé(x)/fo(x) are continuous, and that

K-i , X € [0,a)
I(9g) (x) = J(g)(x-8) , x ¢ (a,b) .
‘)\g » X € (bsm)

On fb,») , wo(x) = g£(b-8) < £(x-§) . Intearating this relationshin

over [b,t] , t >b , gives fo(t)

v

g(t-8) = a(t+8) , which together

with i) ensures that

IA

G(x-8)-e < FO(X) G(x+8)+e (2.6)

for x =a . To establish (2.6) for x e [0,a] , define

ﬂT(X) g(x'd) '\bo(x) 3 nz(x) = E(X'FS) "wo(x) E)

Y1(X) = Fo(x) - [6(x-8)-e] » v,(x) = G(x+8)+e-Fy(x) .

for x ¢ [0,a] . We require Yi(x) > 0 on [0,al] ; the behaviour of
Y; depends upon that of ns -

By A) and 1i1), n1(0) <0 and n1(a) =0 . If n](x) <0
throughout [0,a] , then for t e [0,a]l , 1= exp(jt n1(x)dx) = G(t—a)/fo(t),
contradicting (i). Thus N has a zero Xg <2 necessarily exceeding & ,
at which it is increasing. We claim that n](x) >0 on (xo,a) , s0 that

Xg is the unique zero of ny - If not, then there is x; ¢ (xo,a) with

nq(xq) =0, n{(x1) =0,n"(x;) = 0 . But, with J'(£)(x) = d/dx J(g)(x) ,
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[0(2) (x-8) +£°(x=8)1 = [A] +uf5(x)] (2.7)

™
=
—d
—
pd
~—
1]

ZHE(X) = JI(E)(X—S)-+2g(x—6)n;(x) +n1(x)[xﬁ.p¢§(x)] (2.8)

0 < 2n(x;) = 3'(8)(x;=8) +ny (x )& #3301 < 9" (£)(xy=8)

contradicting B). Thus Xg is unique.

We have Y](O) >0, y}{a) =0 . If e is ever negative, then
there is a point t with y](t) g &, Y;(t) =0, y;(t) >0, implying
fo(t) = g(t-8) and n1(t) 20 . Thus t = X, and nq(x) >0 on
(t,a) , implying, by integration, that fO(t) < g{t-8) , a contradiction.

Similarly, since yz(x) is non-negative at 0 and at a , if it
is ever negative then there is a point t with yz(t) & 0 yé(t) =0,
y;(t) >0 , implying g(t+§) = fo(t) R nz(t) <0 . Since n, 18
non-negative at 0 and at a , there is a point v with nz(v) <0,
né(v) = n;(v) > 0 . As before, this implies that J'(g)(v+s) =0,
contradicting B).

Thus FO € PE,(S s
it suffices to consider symmetric distributions F . For these, the

We must check (2.3); as at Huber (1981, p. 89)

left hand side of (2.3) is twice

@ 5 b e }
Jo AJd(F-Fg) + Ja &) (x-8)d(F-Fy) - Jb AJd(F-F

which after an integration by parts becomes



i

A

(x2-3(8) (a-8)) (F=Fy) (@) + (15+3(£) (5-8)) (F=Fy) (b) - A5(F=F) (=)

¢b
T (F-Fgd(x)d" (€} (x-8)dx . (2.9)
a
Note that FO < F on [a,b] , that (F-FO)(oo} < 0 , and that by (iii),

xg + J(g)(b-8) = 25'(b=68) >0 .

By (2.7)3 (2-8):

0 > 2n)(a) = J(E)(a-6) - 2] . (2.10)

Thus all terms in (2.9) are non-negative. It remains only to
establish the existence of constants satisfving (i) - (iii). For this,
set q = kla/Z , A=a-§ , B=b-6. Then (i)-{iii) are equivalent to
L. mla) = &(A)(X-E(A)-e)/a(A)

(22(c)/E(A))-A
o(B) .

s &

Il =

It is most convenient to solve for o , § and B 1in terms of

e and A . Define EO(A) = min(p(A),t(A)) , S ={(Ae)|0 s A<,

0<e<e (A}, and Tet (g,A) ¢ S . Since e < t(A) < 138 G(A) ,
0 P

A

there is ael0 ,%J satisfying I. For this a , determine § from II.

Note that

8 ol s i) zA‘EéA) > m(a) 2me2”V(AZ(A)/2) = AE(A)ken™ | (AZ(A)/2)

<«=> ¢ < 1(A)

and that A < B iff e < o(A) . Both inequalities then hold for



= s

(e,A) ¢ S . Put B = p~1(€) , to satisfy III.

We will show that %%-> 0 for all &8 =0, and that <'(A) > 0.
Then T(A) increases from 0 at A =0, p(A) decreases to 0 at
A = » , and so there is a unique point of intersection (A,,e,(A,)) .
The region S s then bounded above by T(A) on [0,A.] , and by
p(A) on [A*,») , For fixed e ¢ [0,e,] , the solution is then valid
for those & = &(e, between &(e,T 1(3)) and 5(8,9_1(8)) := 8,(¢)

with 6,(0) = L) =0.

A)
S.(e
Ta show that —%—> 0 we first calculate, from II and I,

2(A)6'(A) = 22" (w)a' (A)E(A) - 22(a)E'(A) - £2(A) ,
' (a)a’ (A)E(A) = £2(A) (1+m()) + £'(Am(a)
whence

m' (o) €2 ()" (A) = [22" (o) (T+m(a) ) -m' (o) 1E2(A) 422 (a)k  (@)E' (A) . (2.11)

In terms of the new variables, (2.10) is

28" (8)2%(a) < £2(A) (% +22(a)) »
which in (2.11) gives

22" (0] [14m{e) -k(a) ] - 2k* (o) [o? + ba) + 22(a) ]
Sok(a)[1+m(a)-k(a)-ok'{a)]
= 0 5

m' (o) 8" (A)

vV
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using (2.4), (2.5}). Thus &'(A) >0 . Now put
B(A.S) = & - B(R) - (s+A)g(A)ker™ ((8+R)E(R)/2)

By I and II, BR(A,8) = ¢ , so that

33 BB(A,S)///BB(A,G)

] 3 A E]Y)
Since 38(A,8) & f) 29, 0 dimplies that §§L53§l-> 0 for all 8§ =0
38 > 3A 3 A -t
and that in particular =t'(A) = g%-B(A,O) >0 . O
Remarks:

1. The curve 6*(3) is defined by placing A =B in I-1II.

Equivalently,

2(14m(a)) = (e+B(A)™1 , & = p(A) , &, = (h(a)/a(A))-A . (2.12)

Then (A,.e,) are obtained by requiring as well &, = 0 . See Table I
for values of &,(e) 1in the case G= & , the normal cumulative. Note
that (A,.e,). are the limiting values for the validity of the "small &"
solution in the Kolmogorov model (8 = Q) , obtained by Huber (1964)

if 6= (where e, = .03033 , A, = 1.3496) , and by Wiens (1986)

under the conditions of Theorem 1.

2. For the neighbourhood PE E(G) , the relevant constants are obtained

2

by placing 6 = e 1in I1-III. The solution is valid for 0 < e < g »

where € is obtained by placing &, = & in (2.12). See Table II

for numerical values, if G = & .



=T =

3. 1In the case e = 0 , the solution is valid for all & = 0 , with

B=2 and (a,A) determined from

n(o) = £(A)(F-GA))/g(A) » &= (20(a)/E(A)) -A

See Table III for numerical values, if G =& .
4., I1f F. 1is as in Theorem 1, then

B
1(Fy) = 2 j £'(x)dG(x) + dag(A)g(A)/sin 20 .

THEOREM 2. Under assumptions A) and either B) or C), there exists
£.(G) such that for all e ¢ [, ,%J and all & ¢ [0,=) , the minimum

information FO € Pg 5 is described by

AR )\.ia
wo(x) = -wo(-x) = {k1 tan 5 3 A= hI tan —E_'}
gla=s) 2 M¥
fo(x) = . ~x) { P cos” —— gla-8)exp(-r(x-a))

on [0,a] , [@a,») respectively. The constants are determined by
i) Fy(a) = 6(a-8)- , 1i) Fy(=) =1, and satisfy as well
ii) wo(a) < g(a-8) .

If B) holds, then this e, coincides with that of Theorem 1.

The solution is then also valid for 0 < ¢ =< ¢,

Su(e) 6 <,

where ¢&,(e) 1is as at (2.12).



w W &

Proof: We first establish the existence of constants satisfying

i) - iii). With o = l1a/2 , A= a8, i) - iii) are equivalent to
1. 2(14m(a)) = (e+G(A)7]

(h(a)/g(A))-A

o(A) . ]

Let a,8 be defined, by 1. and 2., as functions of e and A,

™o

.

[o7]
1}

w
.
m
v

for

- 'G(A) = EU(A) )

N =

sL(A) = max(Q,p(A)) = ¢ <

so that 3. holds, with o = 0 . We require as well & = 0 .

In Theorem 3 of Wiens {1985,1986), the present Theorem was proven e
in the special case 6 = 0 . The existence of constants satisfying 1.-3.,
with 6 =0, A=A , was established for all sufficiently large € under
assumptions A) and C) i). Under assumption B), it was shown that such
constants exist for all ¢ = g, , with e, coinciding with that of
Theorem 1. Now note that the 1imiting solutions defined by (2.12) also
satisfy 1.-3.

In order to show the existence of the constants for ail & = 0 and
sufficiently large e , or & 2 6,.(e) of Theorem 1 (if e < £,(G) and
i AO = [
8y = S(EO,AG) . 0y = a(aO,AO) is any solution to 1. and 2., with s

B) holds), it then suffices to verify the following statement. If ¢

gy € [eL(AO),gu(AO)] and sL(A) non-increasing on (Ao,w) , then for
every A= AO g G(EO,A) defined by 1. and 2. remains non-negative and
tends to « as A -« ,

If C) holds but not B), we take AO > K . If B) holds, we may take

any AO . In either case, EL(A) is non-increasing and €9 remains in



= T

[e (A),e ()] for A=A, . Differentiating 1. and 2. gives

38(e,A) _ ZOLZSECZock’(a 22(0&)
2A m' (o) a(A

£(A)
28 [eop(a)]

Since g 2 eL(A) > p{A) for A= AO 5 S(EG,A) is an increasing,

non-negative function of A= AO . Furthermore,

Tim G(EO,A) = 1im =
Aosoo Acvoo g(A)

This establishes the existence of F0 3 For'symmetric F e Pe,s 1
the Teft-hand side of (2.3) is 2(1?-&A2)(F(a)—F0(a))-+2A2(]-F(w)) =4
It thus remains only to verify that FO € Pe,é "

That (2.6) holds for x = a follows from €) iii) in a manner very
similar to that used for the case & = 0 1in Wiens (1985). As there,
(2.6) may hold on [a,=) only for sufficiently large ¢ - the existence
of solutions to 1. - 3. is not, in general, sufficient to guarantee (2.6).
If B) holds however, (2.6) follows, for all x and all e for which
sojutions to 1. - 3. exist, exactly as in Theorem 1.

To extend (2.6) to [0,a] if B) fails, note that C) ii) ensures that
in (8,a) , &(x=8) remains above the line segment joining (8,£(0)) to
(a,2(a=8)) . This, and the convexity of Yy » implies that £(x-8) -wo(x)
has a unique root Xg € (8,a) . The first inequality in (2.6) now follows
exactly as in Theorem 1, where B) was invoked to establish the uniqueness
of x5 . Similarly, C) ii) implies that E(x+6)-—¢0(x) has at most one
root in (0,a) ; the second inequality in (2.6) now follows as 1in

Thecrem 1. g
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COROLLARY 1. Under assumptions A) and B}, the minimum information

Es & PE is as described by Theorem 1, for 0 < e < ¢,

0 50

0<4§ < 6*(3) ; and by Theorem 2, for all remaining e < § <o,

3

I'\)l-—' ]

Remarks:

5. Corollary 1 applies to the logistic and normal distributions, and
more generally to those with densities gk(x) , 1< k<2 . For
the Laplace distribution (k = 1) it appiies as well, with

e, = 0 . See Table II for numerical values for P_ (8)..
% €,

3

6. If FO is as in Thecrem 2, then

2
1t - et
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3. MINIMAX PROPERTIES OF M-, R- AND L-ESTIMATORS

Consider the M-, R- and L-estimators of & which are asymptotically
efficient at the minimum information Fg in Pe,S(G) . Using the
definitions and notation of Chapter 3 of Huber (1981), the e%ficient
M-, R- and L-estimators have score functions wo(x) = -fé(x)/fo(x) R
JG(U) = wO(Fa](u)) and mo(u) = wé[FéT(u)]/I(FO) respectively. It
follows from general theory [see Huber (1964) or Section 4.6 of Huber (1981)1]
that the minimum possibie value (among all M-estimators of 8) of the
supremum of the asymptotic variance as F ranges over. Pa,é s }/I(FO) ,
attained by wO at FO .  We now check whether this minimax property
also holds for the R- and L-estimators which are asymptotically efficient
at FO . Throughout this section we shall use the usual formulas for the
asymptotic variances of R- and L-estimators without discussion of the
regularity conditions under which asymptotic normality holds. For such
regularity conditions, see Huber (1981) or Serfling (1980).

Consider first the R-estimator with score function Jo(u) = wO(FB](u)),
0 <u<1. Its asymptotic variance, under those distributions F in

PE 6(G) with absolutely continuous density f , is given by

2

jJS[F(x)]f(x)dx
[-  3LF(x)IF" (x)dx]?

V(3gsF) = (3.1)

THEOREM 3. Suppose that F0 is the minimum information distribution in
PE 6(G) which is either: (i) given by Theorem 1 under assumptions A)
and B); or (ii) given by Theorem 2 under assumptions A} and either B)

- . . =1 .
or C). Then, with J, defined by Jo(u) = wO[FO tull » V(JO,F) is
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maximized over Pe S(G) at FO s S0 that the minimax property holds.

L]

Proof. First assume that A) and B) hold and consider case (i).

Without loss of generality, it suffices to show that V(JO,F) < (JO,FD)

for all F in P_ 6(G) that are strictly increasing with absolutely

continuous density F . Since fJ [F(x)]dF(x jJ (t)dt = fJg[FO(x)]dFO(x),

it suffices to show that

JELF(x) 1" j 92LF o (x) 1f g (x)dx (3.2)

1
1 — 8

for all such F . Proceedingias in the proof of Case A of the theorem of

Collins (1983), the inequality (3.2) is equivalent to

co

[ogfol(alx))p! (x)ex + | Lpfal(alx))p’ (x)1Pdx

-0

v
[e]
-

(3.3)

g—— 8

where q(x) and p(x) are defined by

q(x) = x + p(x) = FB]C'F(X) :

Note that p(x) = 0 for all x ¢ [a,b] , since F(x) = FO(X) = G(x-§)-¢
for all x e [a,b] . Similarly note that p(x} <0 for all x e [-b,-a].

Also note that

(35Fg) (x) = {0,(E'9) (x+6) €. (£ 9)(x-6) ,0}

on (-»,b], [-b,-a]l, [-a,al, [a,b], [b,») respectively, where

C0 = %—A%g(a-&)/cosz(xla/z) .
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Since assumption B) implies that &' > 0 , we have that

o

J (wéfo)(q(x))[p'(x)]2dx >0 . It remains to show that

[ aatp! (iix 2 0 . set x, = a7 (@) 4 %y = 7 (0)

{eo]

X . = q_1(—a) and x_, = q'](—b) , and integrate by parts to obtain

<o

[ (07 alx)p! () = (pley)-px_)) Gy (£'9) (261

+ (plx)-plx_p))(£'g) (b-8)

X

i j =3 (g'g)" (q(x)+8)q" (x)p(x)dx
X
b

fxb

- J (£'g) ' (g(x)-8)q"' (x)p(x)dx . (3.4)
X
a

To show that (3.4) is non-negative, it suffices to show that

p(x) =2 0 for all x ¢ [xa,xb] (3.5)

p(x) =0 forall xelx,.x_1., (3.6)

CO—(E'g)(aﬂé) 5 B, (3.7)

-(g'g)'(y) = 0 for all y e [-b+s, -a+s] (3.8)

and ~(£'g)'(y) = 0 for all y e [a-8,b-6] . (3.9)

But (3.5) and (3.6) follow exactly as in the proof in Collins (1983},

and  C,-(6'9)(a-6) = Fy(a)lug(a-)-€'(a-0)] = 3 Fo(a)[23-3(£)(a-6)] > O
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by (2.10). Finally note that (&'g)'(y) = -(g'g)'(-y) = %—g(y)J'(E)(y) <0
for all y > 0 by assumption B) so that (3.8) and (3.9) hold, completing
the proof in case (i).

The proof in case (ii) follows exactly as in the proof of case B) in

Collins (1983). 0

Now consider the L-estimator with score function
mo(u) = wé[FB](u)]/I(FO) for u e (0,1) . The asymptotic variance of

this estimator under F ¢ P 6(6) is

]

V(mg,F) = [ 1C°(x;F)dF

where the influence curve IC(x3;F) 1s given by

x o0
mo(F))dy = | D1=FU) Img(F(v) ey

-—CO

IC(x;F) = j

—-Co

Note that V(mO,F) can be written as EFICZ(

X is a random variable with distribution F , since EFIC(X;F) =0 for

L:FY'= varFIC(X;F) , where

all F ¢ PE 6(G) . A useful alternative version is

1
1C(F (W)3F) = - | (Ilustl-ting(£)dF (1) .
0

If F 1ds continuous, we then have

V(my,F) = Vary[IC(F™ (U)5FT

where U denotes a uniform random variable on [0,1]. Note also that

IC(FB](U);FD) = $(F6](“))/I(FO) . with V(mg.Fg) = 1/1(Fg) .
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THEOREM 4. Suppose that FO is the minimum information distribution

in PE 6(G) under the conditions of either Theorem 1 or Theorem 2.

Then, with mD(u) = wé[Fa](u)]/I(FO) , we have that
sup{V(mO,F): FePE’S(G)} > V(mO,FO) 4

so that the minimax property fails for L-estimators.

Proof. Under the conditions of either Theorem 1 or Theorem 2, define a

subset FO of Pe,é(G) as follows:

(G)|F s continuous and F(x) = Fo(x)

FO = {F ¢ P€,5

whenever |[x] = al} .

We will show that V(mO,F) is non-constant on F, , and attains
its minimum value there at FO . The first part of the proof will be
to show that, for all F « FO 5
CovLIC(F™T(U)3F) L IC(FG (U)3F )T = Var[IC(FG' (U)3FE)T (3.10)

Then (3.10) immediately implies that
V{moF.) = p2¥(m,.F) (3.11)
getgl — BT -

where P is the correlation between IC(FBT(U);FO) and IC(F“1(U);F) .

The second part, completing the proof of the theorem, will be to show

2

that PE = T “foran ~ 'Pie 'k, - 9 énd only if<F = F

0 o
To show that (3.10) holds for all F in F0 , we first set

n(u,t) = -{Ifu=st] -t}mo(t) .
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Then for F ¢ FO s, we calculate that

[1(F) TP{covLie(F™ (0)3F) T(rg (U0 ) 1-VarT TC(F} (U3 )1}
1

il

IZ(F ) j IC(FG () O){IC(F-1(u);F)-IC(FB](u);FO)}du

1 1

o [,
HF)JO{
IRl

The second-to-Tast step in (3.12) follows from Fubini's theorem. The

a(u,s)fy () { | ntune)a(F (0)-F (60) oo

0

0
1
J, tw | n(u,S)dFal(S)dU}d(F-](t)-Faq(t))

n

RSO CHORAIONE (3.12)

change of variables t = FG(Z) and u = F(z) yijelds that (3.12) is

oo

equal to j K(z)d(q%T(z)—z) ., where q;](z) = F_1(F0(z)) and

O

1Ry | n(Fg(x)Fl2)ug(x)dFy(x)

-0

K(z)

{e]

| tpbavpaitx<2) - Fol)Iex

Vp(2)Fy(2) .

So to show that (3.10) holds for all F « FO , it suffices to show that
J_w wé(Z)fO(Z)d(q;T(2)~2) =0 (3.13)

for all F ¢ FO . But (3.13) follows immediately from the fact that

vg(2)f,(2)
the definition of F

€y for lz| < a and that qF(z) =s2qTor.dzb = a by

0 *
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Now suppose that F is a member of F, for which pé =1,

0
We need to show that this implies that F = FO . But p% = T , together
with ELIC(F™'(u);F)] = ECIC(Fy'(u)s Fyl = O implies that

IC(F_T(u);F) = IC(Fax(u);FO) a.e. ue [0,1] , or equivalently:

1 . , (1 N i
| tmpe)ar (0)-rgte)) = | mp(0)a(FT @)-Fle)) ae. uelo1].
0 u
(3.14)
Letting u > 1 shows that the right side of (3.14) is zero a.e.
u e [0,1] . The change of variable t = FO(Z) then yields
J wé(z)d(q;1(z)-z) € 0 ade o ue [0:1] . (3:15)
Fg! (u)

But since q;](z) =z for |z| = a and wé(z) >0 for |z| <a , (3.15)
forces qET(z) =z for |z| <a . Thus F(z) = Fo(z) for all 2z , and

this completes the proof of the theorem. 0
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TABLE I: VALUES OF ¢&,{(e) FOR P 5(@)

> 8, () A=B=A2 o a=b A 1/I(FO)

0 o0 % m/2 0 0 %
.00002 5.2819 3.4577 1.4736 8.7396 . 7 9.3758
.0001 2.8295 3.0622 1.4152 5.8817 L4804 4.8134
.0005 1.3726 2« 8332 1.3247 4.,0058 .6614 2.7194
.001 . 9587 2.4364 1L.2123 2.895] L7495 2.2104
.01 . 1826 1.7241 1.0168 1.9067 1.0665 1.4139
Hie +0628 1.4921 L9071 1.5549 1.1668 b 8617
.03 .0016 1.3534 .8332 1. 3550 1.2298 1..3823

.03033 .0000 1.3496 L8311 1.3496 1.2316 1.3832



e=6 A

0 0
. 0001 L4389
.001 . 7026
.010 1.1428
.020 1.3322
.02556=eD 1.4084
.030 1.399
.050 1.386
.100 1.436
.200 1.629
.450 2.577
#0000 o

TABLE II: VALUES OF THE CONSTANTS FOR Pe

B
3.0622
2.4364
1.7241
1.4921

]

317
+3576
.2707
.2241
.2042
.1890
L1147
.9318
H375
. 1435

(o)

1/1(F)
1
1.0028
1.0205
i 127
12918
1,325
1.4398
17800
3.0015
8.8573
1062.1

[=e]



- TABLE III: VALUES OF THE CONSTANTS FOR PO 5(@)

8 A o M 1/1(Fy)
0 0 0 VZ 1
.0001 .3416 .2392 1.4004 1.0002
.001 .5465 .3774 1.3786 1.0015
.07 .8851 .5907 1.3199 1.0146
.05 1.2557 .7985 1.2231 1.0674
.10 1.4653 .9035 1.1544 1.1292
.25 1.8014 1.0529 1.0265 1.3053
.50 2.1065 1.1684 .8965 1.5926
1.00 2.4574 1.2785 .7396 2.1856
10.00 3.8737 1.5145 .2183 21.7091

co co ‘TF/Z 0 @



TABLE I: VALUES OF &,(e) FOR Pe 5(@)

£ S, (€) A=B=1, a a=b A I(FO) 1/I(FO)

0 o o0 w2 o0 0 0 ©
.00002 5.2819 3.4577 1.4736 8.7396 o 1 .1067 9.3758
.00005 e dail 3.2363 1.4436 6.9733 L4740 1575 6.3507
.0001 2.8295 3.0622 1.4152 5.8917 .4804 .2078 4.8134
.0002 2.1042 2.8819 1.3809 4,9861 +5538 .2693 3.7130
.0005 13726 2.6332 1.3247 4.0058 .6614 .3677 2.7194
.001 .9587 2.4364 12723 3.3951 .7495 L4524 2.2104
.002 .6417 2.2317 1.2100 2.8735 .8422 .5406 1.8497
.005 L3414 1.9483 1.1093 2.2897 .9689 .6482 1.5427
.01 .1826 1.7241 1.0168 1.9067 | 1.0665 7072 1.4139
015 L1091 1.5892 .9550 1.6984 | 1.1246 .7264 T -876B
.02 .0628 1.4921 L9071 1.5549 | 1.1668 L7311 1.3677
025 .0289 1.4160 .8675 1.4448 | 1.2008 .7291 1.3716
. .02556 = 80.=.02556 1.4084 .8634 1.4339 | 1.2042 .7286 13725
.03 .0016 1.3534 B332 T-3560: | T-2298 L7234 1.3823
.03033 .0000 1.3496 .8311 1.3496 1.2316 . 7230 13832



£=4

.00001
.0001
.001
.01
015
.020
s
.02556=¢
.026
<330
.040
.050
.075
.100
.150
.200
.300
.450
.500

TABLE II: VALUES OF THE CONSTANTS FOR PE’E(®)
A B o a b N I(Fy) T/I(FO)
0 o 0 0 % V2 1 1
2759 | 3.6190 | .1939 .2759 | 3.6190 | 1.4053 | .9996 | 1.0004
.4389 | 3.0622 | .3055 .4390 | 3.0623 | 1.3917 | .9973 | 1.0028
.7026 | 2.4364 | .4776 .7036 | 2.4374 | 1.3576 | .9799 | 1.0205
1.1428 | 1.7241 | .7325 | 1.1528 | 1.7341 | 1.2707 | .8676 | 1.1527
1.2494 | 1.5892 | .7871 | 1.2644 | 1.6042 | 1.2451 | .8186 | 1.2217
1.3322 | 1.4921 | .8277 | 1.3522 | 1.5121 | 1.2241 | .7741 | 1.2918
1.4013 | 1.4160 | .8601 | 1.4263 | 1.4410 | 1.2061 | .7330 | 1.3642
1.4084 .8634 1.4339 1.2042 | .7286 | 1.3725
1.4073 .8619 1.4333 1.2027 | .7251 | 1.3791
1.399 .8494 1.4289 1.1890 | .6946 | 1.4398
1.388 .8228 1.4279 1.1525 | .6243 | 1.6017
1.386 .8005 1.4362 1.1147 | .5618 | 1.7800
1.403 .7546 1.4785 1.0208 | .4325 | 2.3122
1.436 7159 1.5365 .9318 | .3332 | 3.0015
1.524 L6471 1.6742 7731 | .1963 | 5.0947
1.629 .5831 1.8292 .6375 | .1129 | 8.8573
1.887 .4556 2.1866 L4167 | .0317 | 31.550
2.577 2172 307738 .1435 | .0009 | 1062.1
- 0 . 0 0 o




00001
0001
001
.01
.05
.10
.25
.50
1.00
5.00
10.00
25.00

50.00

TABLE II1: VALUES OF THE CONSTANTS FOR PO 6(®)

A

C
2147
3416
.5465
.8851
2557
1.4653
1.8014
2.1065
2.4574
3.4222
3.8737
4.4679
4.9009

o

o

0
.15812
2392
L3774
5907
.7985
29035

1.0529
1.7684
1.2785
1.4692
1.5145
1.5473
10582
/2

a

0
L2147
2417
.5475
+895]
1.3057
15653
2.0514
2.6065
3.4574
8.4223
13.8737
29.4679

54.9009

o

A
V2
1.4688
1.4004
1.3786
1.3199
1.2231
1.1544
1.0265
.8965
.7396
.3489
.2183
.1050
.0568

0

1/ 1(Fy)
1
1.00002
1.0002
1.0015
1.0146
1.0674
1.1292
1.3053
1.5926
2.1856
8.7375
21.7091
91.9864

312.1607

co





