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1 Information and entropy

Shannon (1948), as discussed in Lindley (1956), showed that subject to reason-
able conditions the information about a parameter © taking values in a space
2, with prior density p () with respect to some dominating measure (taken
here as Lebesgue measure, for simplicity) is measured by

Iy = /919(9) logp (0) df = Eg [logp (©)] .

Suppose that a r.v. ¥ € R" has a density p (y|f) possibly depending upon 6,
and that Y is observed with the intention of acquiring information about 6.
After an experiment & is performed, resulting in an observation y, the posterior

distribution of 6 is
pOly) =pyld)p(0) /p(y)

and the information is now

I (y) = /p(Hly) logp () do
Q
Thus the amount of information provided by the experiment is

I(gay> = [1 (y) - IO;

and the average amount of information provided by the experiment is

p(@IY)}
p(©) |’

1(6) = By [1(€,Y)] = Ey o {mg

alternate expressions (following from the above) being

EyE [1 Y|6)
OB s s )
f Q fR” log p(0)p(y) dyds.

Following Sebastiani and Wynn (2000), the Shannon entropy (also known
as the Boltzmann-Shannon entropy - see Lee (2002)) of a random vector Z €
R¥ is the negative of information:

Ent () = Eg[~1logp (0)],
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so that the average amount of information provided by the experiment is
I(§) = Ent(©) — Ey [Ent (B]Y,¢)].

If, as is typically assumed, Ent (©) does not depend on the experimental de-
sign, then an experiment is optimal, in the sense of maximizing I (§), if it mini-
mizes By [Ent (O]Y,€)]. Under further conditions, among them that Ent (Y|¢)
and Ey [Ent (©|Y, )] are bounded, Theorem 1 of Sebastiani and Wynn (2000)
applies and yields that minimization of Ey [Ent (O]Y,&)] is equivalent to max-
imization of

&WWOZ—/(@W@QW@@@-

n

This motivates the name ‘Maximum Entropy Sampling’, as in Shewtry and
Wynn (1987).

If the experiment yields observations y = (Y7,...,Y;,) € R", with joint
density f, (y|@) , then in the above

p@@ZAh@mmmw

Suppose the Y; are independent, with densities p (y;|#) parameterized by
their means p; = p (x;) for design variables x; ranging over y = {xy,...,Xy}.
There may be nuisance parameters as well. If n; = n¢, observations are made
at x; (i = 1,..., N) then (with H?:l = 1) we have

N n;

Fa(y10) =TT 1] (wis e (x2)16) .

i=1 j=1

Example: Suppose that
(i) for independent variables x belonging to a design space y C RY,
(ii) for regressors f (x) € R? and a function ¢ (x), arbitrary but with [ Y? (x) dx
1 and fx f(x)y (x)dx =0,

) (-0 w0’
the conditional density is p(y|6,n) = (o.v27) e 202 . Then
if y; is observed at the design point x;, if F, .4 has rows {f’ (x;)}_;, and if

P = (¢ (Xl) ey O (Xn))l

2
_Fo— "
y—Fo6 \/771#

Jg

fo (y16,7m) = (210%) e

The interpretation is that the experimenter will take 7 = 0, under the mistaken
assumption that the true mean value is adequately specified by f'(x) 6. If
0 ~ N(6y,R™1), with

N

p(6) = ‘27TR’1|_1/2 675(0700)’11(9490)7
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and if 1 has (true) prior p (n), then

pl) = [ [ 50 @ dod

1 —FO—ny/vul|l2, 0 _p Vv _
_ (27TO_§)—n/2{QWR_l‘—l/Q\/{/Rde ;{HL = 7H +(0—-60)'R(6 60)}(19}])(77) .

With
dey y — FOy — 771#/\/_

Chx1 = .
€

def F'c
bn><1 - )

st (F'F -1
Vd><d :f ( 0_2 +R> 5

we have that the term in square brackets in (1) is

FO—-6
- FO=0)" (g 6,R(6- 00
= C/C—Qb/(0—90)+( O)V 1(9 90)
— (0—6,— Vb V'(8—8,—Vb) —b'Vb +cc
!/
— (-6, Vb)V 1(0—00—Vb)+c’(1n—FVQF)c
0-5
—_ , FRIF\
— (6-0,— Vb)YV (6—0—Vb)+¢ (I, +— c;
O-E

here we use that

FVF FR! /FFFR! IRl 0 FR'F
—1, — +1,) —=(1,+

2 N 2 2
O—E UE 1>

-1

I, —

O¢ Oe o

The integral in braces in (1) is

-
2r V[ (o) e |20 V| 71/ 2 (0=00= VBV O=00=VE) g
Rd

1
1. FRIF
1/2 —3C€ (InJr 5 ) c
127 V|2 e oz

bl

and so

!
FR_1F

p(yle) = (2m0%) 7" 2aR| T 27V |2 / e LE) “p () dn

—1/2 . /6_%050,(J§I"+FR1FI)lascp (Tl) dn

_ ‘27? <U§In + FRle’)




4 Douglas P. Wiens

i.e.

yln ~ N <F90 +np/v/n, 021, + FR‘IF'> : (2)

in agreement with Sebastiani and Wynn (2000) when n = 0.

e The case in which n ~ N(0, 03]), independently of 8, can be derived by
putting = 0 in (2) but then making the replacements

0, >
6, — ,
o= (%
_ R 0
R ! - ( 0/ 0.2 >7
U
obtaining
/ o?
yl¢ ~ N <F00,U§In +FR'F + #wzﬁ) ,

with, up to an additive constant,

2
g

o’L, + FRTIF + —Lapo)/
n

1
Ent (y|§) = §1og

Thus a maximum entropy design will maximize

2 2 .
o’L, + FRIF + oy | = |0%1, + FRIF (1 + Tngy (o1, + FRF) v,b) |
n n

— BUT - should this really be called the ’information about ( z )?

— The moments above (with or without the normality) also follow
from first conditioning on 7 and calculating the expectations in
stages.
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