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1 Information and entropy

Shannon (1948), as discussed in Lindley (1956), showed that subject to reason-
able conditions the information about a parameter � taking values in a space

, with prior density p (�) with respect to some dominating measure (taken
here as Lebesgue measure, for simplicity) is measured by

I0 =

Z



p (�) log p (�) d� = E� [log p (�)] :

Suppose that a r.v. Y 2 Rn has a density p (yj�) possibly depending upon �,
and that Y is observed with the intention of acquiring information about �.
After an experiment � is performed, resulting in an observation y, the posterior
distribution of � is

p (�jy) = p (yj�) p (�) =p (y)
and the information is now

I1 (y) =

Z



p (�jy) log p (�jy) d�:

Thus the amount of information provided by the experiment is

I (�; y) = I1 (y)� I0;

and the average amount of information provided by the experiment is

I (�) = EY [I (�; Y )] = EYE�

�
log

p (�jY )
p (�)

�
;

alternate expressions (following from the above) being

I (�) =

(
EYE�

h
log p(Y j�)

p(Y )

i
;R




R
Rn p (y; �) log

p(yj�)
p(�)p(y)

dyd�:

Following Sebastiani and Wynn (2000), the Shannon entropy (also known
as the Boltzmann-Shannon entropy - see Lee (2002)) of a random vector Z 2
RN is the negative of information:

Ent (�) = E� [� log p (�)] ;
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so that the average amount of information provided by the experiment is

I (�) = Ent (�)� EY [Ent (�jY; �)] :

If, as is typically assumed, Ent (�) does not depend on the experimental de-
sign, then an experiment is optimal, in the sense of maximizing I (�), if it mini-
mizes EY [Ent (�jY; �)]. Under further conditions, among them that Ent (Y j�)
and EY [Ent (�jY; �)] are bounded, Theorem 1 of Sebastiani and Wynn (2000)
applies and yields that minimization of EY [Ent (�jY; �)] is equivalent to max-
imization of

Ent (Y j�) = �
Z
Rn
(log p (yj�)) p (yj�) dy:

This motivates the name �Maximum Entropy Sampling�, as in Shewtry and
Wynn (1987).
If the experiment yields observations y = (Y1; :::; Yn)

0 2 Rn, with joint
density fn (yj�) , then in the above

p (yj�) =
Z



fn (yj�) p (�) d�:

Suppose the Yi are independent, with densities p (yij�) parameterized by
their means �i = � (xi) for design variables xi ranging over � = fx1; :::;xNg.
There may be nuisance parameters as well. If ni = n�i observations are made
at xi (i = 1; :::; N) then (with

Q0
j=1 = 1) we have

fn (yj�) =
NY
i=1

niY
j=1

p (yj;� (xi) j�) :

Example: Suppose that
(i) for independent variables x belonging to a design space � � Rq,
(ii) for regressors f (x) 2 Rd and a function  (x), arbitrary but with

R
�
 2 (x) dx =

1 and
R
�
f (x) (x) dx = 0,

the conditional density is p (yj�; �) =
�
�"
p
2�
��1

e
�

�
y�f 0(x)�� �p

n
 (x)

�2
2�2" . Then

if yi is observed at the design point xi, if Fn�d has rows ff 0 (xi)gni=1, and if
 = ( (x1) ; :::;  (xn))

0

fn (yj�; �) =
�
2��2"

��n=2
e
� 1
2

y�F��
�p
n
 

�"


2

:

The interpretation is that the experimenter will take � = 0, under the mistaken
assumption that the true mean value is adequately speci�ed by f 0 (x)�. If
� � N(�0;R

�1), with

p (�) =
��2�R�1���1=2 e� 1

2
(���0)0R(���0);
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and if � has (true) prior p (�), then

p (yj�) =

Z 1

0

Z
Rd
fn (yj�; �) p (�) p (�) d�d�

=
�
2��2"

��n=2 ��2�R�1���1=2 Z (Z
Rd
e
� 1
2

�y�F��� =pn�"

2+(���0)0R(���0)�
d�

)
p (�) d�: (1)

With

cn�1
def
=
y � F�0 � � =

p
n

�"
;

bn�1
def
=
F0c

�"
;

Vd�d
def
=

�
F0F

�2"
+R

��1
;

we have that the term in square brackets in (1) isc�F (� � �0)�"

2 + (� � �0)0R (� � �0)
= c0c� 2b0 (� � �0) + (� � �0)0V�1 (� � �0)
= (� � �0 �Vb)0V�1 (� � �0 �Vb)� b0Vb+ c0c

= (� � �0 �Vb)0V�1 (� � �0 �Vb) + c0
�
In �

FVF0

�2"

�
c

= (� � �0 �Vb)0V�1 (� � �0 �Vb) + c0
�
In +

FR�1F
0

�2"

��1
c;

here we use that

In �
FVF0

�2"
= In �

FR�1

�"

�
F0FR�1

�2"
+ Id

��1
F0

�"
=

�
In +

FR�1F
0

�2"

��1
:

The integral in braces in (1) is

j2�Vj1=2 e
� 1
2
c0
�
In+

FR�1F0

�2"

��1
c
�
Z
Rd
j2�Vj�1=2 e� 1

2
(���0�Vb)0V�1(���0�Vb)d�

= j2�Vj1=2 e
� 1
2
c0
�
In+

FR�1F0

�2"

��1
c
;

and so

p (yj�) =
�
2��2"

��n=2 ��2�R�1���1=2 j2�Vj1=2 Z e
� 1
2
c0
�
In+

FR�1F0

�2"

��1
c
p (�) d�

=
���2� ��2"In + FR�1F

0
�����1=2 � Z e�

1
2
�"c0(�2"In+FR�1F0)

�1
�"cp (�) d�:
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i.e.
yj� � N

�
F�0 + � =

p
n; �2"In + FR

�1F
0
�
; (2)

in agreement with Sebastiani and Wynn (2000) when � = 0.

� The case in which � � N(0; �2�), independently of �, can be derived by
putting � = 0 in (2) but then making the replacements

F !
�
F
... =

p
n

�
;

�0 !
�
�0
�

�
;

R�1 !
�
R�1 0
00 �2�

�
;

obtaining

yj� � N

�
F�0; �

2
"In + FR

�1F
0
+
�2�
n
  0

�
;

with, up to an additive constant,

Ent (yj�) = 1

2
log

�����2"In + FR�1F
0
+
�2�
n
  0

���� :
Thus a maximum entropy design will maximize�����2"In + FR�1F

0
+
�2�
n
  0

���� = ����2"In + FR�1F
0
��� �1 + �2�

n
 0
�
�2"In + FR

�1F
0
��1

 

�
:

�BUT - should this really be called the �information about
�
�
�

�
?

�The moments above (with or without the normality) also follow
from �rst conditioning on � and calculating the expectations in
stages.
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