Notes on Maximum Entropy Design

Douglas P. Wiens¹

April 7, 2019

1 Information and entropy

Shannon (1948), as discussed in Lindley (1956), showed that subject to reasonable conditions the information about a parameter Θ taking values in a space Ω , with prior density $p(\theta)$ with respect to some dominating measure (taken here as Lebesgue measure, for simplicity) is measured by

$$
I_0 = \int_{\Omega} p(\theta) \log p(\theta) d\theta = E_{\Theta} [\log p(\Theta)].
$$

Suppose that a r.v. $Y \in \mathbb{R}^n$ has a density $p(y|\theta)$ possibly depending upon θ , and that Y is observed with the intention of acquiring information about θ . After an experiment ξ is performed, resulting in an observation y, the posterior distribution of θ is

$$
p(\theta|y) = p(y|\theta) p(\theta) / p(y)
$$

and the information is now

$$
I_1(y) = \int_{\Omega} p(\theta|y) \log p(\theta|y) d\theta.
$$

Thus the amount of information provided by the experiment is

$$
I\left(\xi,y\right)=I_1\left(y\right)-I_0,
$$

and the average amount of information provided by the experiment is

$$
I(\xi) = E_Y [I(\xi, Y)] = E_Y E_\Theta \left[\log \frac{p(\Theta|Y)}{p(\Theta)} \right]
$$

;

alternate expressions (following from the above) being

$$
I(\xi) = \begin{cases} E_Y E_\Theta \left[\log \frac{p(Y|\Theta)}{p(Y)} \right], \\ \int_{\Omega} \int_{\mathbb{R}^n} p(y, \theta) \log \frac{p(y|\theta)}{p(\theta)p(y)} dy d\theta. \end{cases}
$$

Following Sebastiani and Wynn (2000), the Shannon entropy (also known as the *Boltzmann-Shannon entropy* - see Lee (2002)) of a random vector $Z \in$ \mathbb{R}^N is the negative of information:

$$
Ent(\Theta) = E_{\Theta} [-\log p(\Theta)],
$$

¹Department of Mathematical and Statistical Sciences; University of Alberta, Edmonton, Alberta;Canada T6G 2G1. e-mail: doug.wiens@ualberta.ca

so that the average amount of information provided by the experiment is

$$
I(\xi) = Ent(\Theta) - E_Y[Ent(\Theta|Y, \xi)].
$$

If, as is typically assumed, $Ent(\Theta)$ does not depend on the experimental design, then an experiment is optimal, in the sense of maximizing $I(\xi)$, if it minimizes $E_Y[Ent(\Theta|Y,\xi)]$. Under further conditions, among them that $Ent(Y|\xi)$ and $E_Y[Ent(\Theta|Y,\xi)]$ are bounded, Theorem 1 of Sebastiani and Wynn (2000) applies and yields that minimization of $E_Y[Ent(\Theta|Y,\xi)]$ is equivalent to maximization of

$$
Ent(Y|\xi) = -\int_{\mathbb{R}^n} \left(\log p(y|\xi)\right) p(y|\xi) dy.
$$

This motivates the name ëMaximum Entropy Samplingí, as in Shewtry and Wynn (1987).

If the experiment yields observations $y = (Y_1, ..., Y_n)' \in \mathbb{R}^n$, with joint density $f_n(y|\theta)$, then in the above

$$
p(\mathbf{y}|\xi) = \int_{\Omega} f_n(\mathbf{y}|\theta) p(\theta) d\theta.
$$

Suppose the Y_i are independent, with densities $p(y_i|\theta)$ parameterized by their means $\mu_i = \mu(\mathbf{x}_i)$ for design variables \mathbf{x}_i ranging over $\chi = {\mathbf{x}_1, ..., \mathbf{x}_N}$. There may be nuisance parameters as well. If $n_i = n \xi_i$ observations are made at \mathbf{x}_i $(i = 1, ..., N)$ then (with $\prod_{j=1}^{0} = 1$) we have

$$
f_n(\mathbf{y}|\theta) = \prod_{i=1}^N \prod_{j=1}^{n_i} p(y_j; \mu(\mathbf{x}_i) | \theta).
$$

Example: Suppose that

(i) for independent variables **x** belonging to a design space $\chi \subset \mathbb{R}^q$, (ii) for regressors $f(x) \in \mathbb{R}^d$ and a function $\psi(x)$, arbitrary but with $\int_{\chi} \psi^2(x) dx =$ 1 and \int_{χ} **f** (**x**) ψ (**x**) d **x** = **0**,

the conditional density is $p(y|\theta, \eta) = (\sigma_{\varepsilon} \sqrt{2\pi})^{-1} e^{-\frac{1}{2}(\mathcal{O}(\varepsilon))}$ $\left(y - \mathbf{f}'(\mathbf{x})\theta - \frac{\eta}{\sqrt{n}}\psi(\mathbf{x})\right)^2$ $\frac{2\sigma_{\varepsilon}^2}{2\sigma_{\varepsilon}^2}$. Then if y_i is observed at the design point \mathbf{x}_i , if $\mathbf{F}_{n \times d}$ has rows $\{\mathbf{f}'(\mathbf{x}_i)\}_{i=1}^n$, and if $\boldsymbol{\psi} = (\psi(\mathbf{x}_1), ..., \psi(\mathbf{x}_n))'$

$$
f_n(\mathbf{y}|\boldsymbol{\theta},\eta) = \left(2\pi\sigma_{\varepsilon}^2\right)^{-n/2} e^{-\frac{1}{2}\left\|\frac{\mathbf{y}-\mathbf{F}\boldsymbol{\theta}-\frac{\eta}{\sqrt{n}}\boldsymbol{\psi}}{\sigma_{\varepsilon}}\right\|^2}
$$

:

The interpretation is that the experimenter will take $\eta = 0$, under the mistaken assumption that the true mean value is adequately specified by $f'(x)\theta$. If $\boldsymbol{\theta} \sim N(\boldsymbol{\theta}_0, \mathbf{R}^{-1}), \text{ with}$

$$
p(\boldsymbol{\theta}) = \left|2\pi \mathbf{R}^{-1}\right|^{-1/2} e^{-\frac{1}{2}(\boldsymbol{\theta}-\boldsymbol{\theta}_0)' \mathbf{R}(\boldsymbol{\theta}-\boldsymbol{\theta}_0)},
$$

and if η has (true) prior $p(\eta)$, then

$$
p(\mathbf{y}|\xi) = \int_0^\infty \int_{\mathbb{R}^d} f_n(\mathbf{y}|\boldsymbol{\theta}, \eta) p(\boldsymbol{\theta}) p(\eta) d\boldsymbol{\theta} d\eta
$$

= $(2\pi\sigma_\varepsilon^2)^{-n/2} |2\pi \mathbf{R}^{-1}|^{-1/2} \int \left\{ \int_{\mathbb{R}^d} e^{-\frac{1}{2} \left[\left\| \frac{\mathbf{y} - \mathbf{F}\boldsymbol{\theta} - \eta \boldsymbol{\psi}/\sqrt{n}}{\sigma_\varepsilon} \right\|^2 + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\prime \mathbf{R} (\boldsymbol{\theta} - \boldsymbol{\theta}_0) \right]} d\boldsymbol{\theta} \right\} p(\eta) d\eta.$ (1)

With

$$
\mathbf{c}_{n\times 1} \stackrel{def}{=} \frac{\mathbf{y} - \mathbf{F}\boldsymbol{\theta}_0 - \eta \boldsymbol{\psi} / \sqrt{n}}{\sigma_{\varepsilon}},
$$

$$
\mathbf{b}_{n\times 1} \stackrel{def}{=} \frac{\mathbf{F}'\mathbf{c}}{\sigma_{\varepsilon}},
$$

$$
\mathbf{V}_{d\times d} \stackrel{def}{=} \left(\frac{\mathbf{F}'\mathbf{F}}{\sigma_{\varepsilon}^2} + \mathbf{R}\right)^{-1},
$$

we have that the term in square brackets in (1) is

$$
\begin{split}\n&=\left\|\mathbf{c}-\frac{\mathbf{F}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)}{\sigma_{\varepsilon}}\right\|^{2}+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\prime}\mathbf{R}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
&=\mathbf{c}'\mathbf{c}-2\mathbf{b}'\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\prime}\mathbf{V}^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
&=\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)^{\prime}\mathbf{V}^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)-\mathbf{b}'\mathbf{V}\mathbf{b}+\mathbf{c}'\mathbf{c} \\
&=\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)^{\prime}\mathbf{V}^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)+\mathbf{c}'\left(\mathbf{I}_{n}-\frac{\mathbf{F}\mathbf{V}\mathbf{F}'}{\sigma_{\varepsilon}^{2}}\right)\mathbf{c} \\
&=\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)^{\prime}\mathbf{V}^{-1}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}-\mathbf{V}\mathbf{b}\right)+\mathbf{c}'\left(\mathbf{I}_{n}+\frac{\mathbf{F}\mathbf{R}^{-1}\mathbf{F}'}{\sigma_{\varepsilon}^{2}}\right)^{-1}\mathbf{c};\n\end{split}
$$

here we use that

$$
\mathbf{I}_n - \frac{\mathbf{F} \mathbf{V} \mathbf{F}'}{\sigma_{\varepsilon}^2} = \mathbf{I}_n - \frac{\mathbf{F} \mathbf{R}^{-1}}{\sigma_{\varepsilon}} \left(\frac{\mathbf{F}' \mathbf{F} \mathbf{R}^{-1}}{\sigma_{\varepsilon}^2} + \mathbf{I}_d \right)^{-1} \frac{\mathbf{F}'}{\sigma_{\varepsilon}} = \left(\mathbf{I}_n + \frac{\mathbf{F} \mathbf{R}^{-1} \mathbf{F}'}{\sigma_{\varepsilon}^2} \right)^{-1}.
$$

The integral in braces in (1) is

$$
|2\pi \mathbf{V}|^{1/2} e^{-\frac{1}{2}\mathbf{c}' \left(\mathbf{I}_n + \frac{\mathbf{F} \mathbf{R}^{-1} \mathbf{F}'}{\sigma_{\epsilon}^2}\right)^{-1} \mathbf{c}} \cdot \int_{\mathbb{R}^d} |2\pi \mathbf{V}|^{-1/2} e^{-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0 - \mathbf{V} \mathbf{b})' \mathbf{V}^{-1} (\boldsymbol{\theta} - \boldsymbol{\theta}_0 - \mathbf{V} \mathbf{b})} d\boldsymbol{\theta}
$$

= $|2\pi \mathbf{V}|^{1/2} e^{-\frac{1}{2}\mathbf{c}' \left(\mathbf{I}_n + \frac{\mathbf{F} \mathbf{R}^{-1} \mathbf{F}'}{\sigma_{\epsilon}^2}\right)^{-1} \mathbf{c}},$

and so

$$
p(\mathbf{y}|\xi) = (2\pi\sigma_{\varepsilon}^{2})^{-n/2} |2\pi \mathbf{R}^{-1}|^{-1/2} |2\pi \mathbf{V}|^{1/2} \int e^{-\frac{1}{2}\mathbf{c}' (\mathbf{I}_{n} + \frac{\mathbf{F} \mathbf{R}^{-1} \mathbf{F}'}{\sigma_{\varepsilon}^{2}})^{-1} \mathbf{c}} p(\eta) d\eta
$$

=
$$
|2\pi (\sigma_{\varepsilon}^{2} \mathbf{I}_{n} + \mathbf{F} \mathbf{R}^{-1} \mathbf{F}')|^{-1/2} \cdot \int e^{-\frac{1}{2}\sigma_{\varepsilon} \mathbf{c}' (\sigma_{\varepsilon}^{2} \mathbf{I}_{n} + \mathbf{F} \mathbf{R}^{-1} \mathbf{F}')^{-1} \sigma_{\varepsilon} \mathbf{c}} p(\eta) d\eta.
$$

i.e.

$$
\mathbf{y}|\eta \sim N\left(\mathbf{F}\boldsymbol{\theta}_0 + \eta\boldsymbol{\psi}/\sqrt{n}, \sigma_\varepsilon^2\mathbf{I}_n + \mathbf{F}\mathbf{R}^{-1}\mathbf{F}'\right),\tag{2}
$$

in agreement with Sebastiani and Wynn (2000) when $\eta = 0$.

• The case in which $\eta \sim N(0, \sigma_{\eta}^2)$, independently of θ , can be derived by putting $\eta = 0$ in (2) but then making the replacements

$$
\begin{array}{ccc} \mathbf{F} & \to & \left[\mathbf{F} \mathpunct{:}\!\!\! \psi/\sqrt{n}\right], \\ \bm{\theta}_0 & \to & \left(\begin{array}{c} \bm{\theta}_0 \\ \eta \end{array}\right), \\ \mathbf{R}^{-1} & \to & \left(\begin{array}{cc} \mathbf{R}^{-1} & \mathbf{0} \\ \mathbf{0}^{\prime} & \sigma_{\eta}^2 \end{array}\right), \end{array}
$$

obtaining

$$
\mathbf{y}|\xi \sim N\left(\mathbf{F}\boldsymbol{\theta}_0, \sigma_{\varepsilon}^2\mathbf{I}_n + \mathbf{F}\mathbf{R}^{-1}\mathbf{F}' + \frac{\sigma_{\eta}^2}{n}\boldsymbol{\psi}\boldsymbol{\psi}'\right),\,
$$

with, up to an additive constant,

$$
Ent(\mathbf{y}|\xi) = \frac{1}{2}\log \left|\sigma_{\varepsilon}^{2}\mathbf{I}_{n} + \mathbf{F} \mathbf{R}^{-1} \mathbf{F}' + \frac{\sigma_{\eta}^{2}}{n} \boldsymbol{\psi} \boldsymbol{\psi}'\right|.
$$

Thus a maximum entropy design will maximize

$$
\left|\sigma_{\varepsilon}^{2}\mathbf{I}_{n}+\mathbf{F}\mathbf{R}^{-1}\mathbf{F}'+\frac{\sigma_{\eta}^{2}}{n}\boldsymbol{\psi}\boldsymbol{\psi}'\right|=\left|\sigma_{\varepsilon}^{2}\mathbf{I}_{n}+\mathbf{F}\mathbf{R}^{-1}\mathbf{F}'\right|\left(1+\frac{\sigma_{\eta}^{2}}{n}\boldsymbol{\psi}'\left(\sigma_{\varepsilon}^{2}\mathbf{I}_{n}+\mathbf{F}\mathbf{R}^{-1}\mathbf{F}'\right)^{-1}\boldsymbol{\psi}\right).
$$

- BUT should this really be called the 'information about $\left(\begin{array}{c} \theta \\ \phi \end{array}\right)$ η \setminus ?
- The moments above (with or without the normality) also follow from first conditioning on η and calculating the expectations in stages.

References

- Lee, Jon (2002), "Maximum Entropy Sampling," in *Encyclopedia of Environ*metrics, eds. Abdel H. El-Shaarawi and Walter W. Piegorsch, Chichester: Wiley, pp. 1229-1234.
- Lindley, D. V. (1956), "On a Measure of Information Provided by an Experiment," Annals of Mathematical Statistics, 27, 986-1005.
- Sebastiani, P., and Wynn, H. P. (2000), "Maximum Entropy Sampling and Optimal Bayesian Experimental Design," Journal of the Royal Statistical Socieity, Series B, 1, 145-157.
- Shewry, M. C. and Wynn, H. P. (1987), "Maximum Entropy Sampling," Journal of Applied Statistics, 14, 165-170.
- Shannon, C. E. (1948), "A Mathematical Theory of Communication," Bell System Technical Journal, 27, 379-423 & 623-656.