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This manual details the implementation of the profile matching techniques intro-
duced in Robust Estimation of Air-Borne Particulate Matter (Wiens, Florence
and Hiltz, Environmetrics, 2001 - included as an appendix). The program con-
sists of a collection of functions written in S. It runs in S-Plus, including the
student version. A graphical user interface is supplied for easy implementation
by a user with only a passing familiarity with S-Plus. A description of the soft-
ware is given, together with an extensive example of an analysis of a data set
using the software.

The software is available at
http://www.stat.ualberta.ca/ wiens/publist.htm

where it is linked to the listing for Wiens, Florence and Hiltz (2001).
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1. INSTALLATION AND START-UP
The user should have a directory, containing sub-directories . Data and . Prefs, from which
S-Plus can be invoked. Put the file match.ssc into this directory, then open this script file
and ‘run’ it from within S-Plus. The software is now installed and this step need not be
repeated. To use the software, enter the command match.start(). This will open the
‘Scan’ menu.

2. THE ScaAN MENU

In this menu - see Figure 1 for an example - the user is prompted to input the names of
the Excel files containing the profiles and ambient data. If they are in the same directory
as that from which S-Plus was invoked, only the file names need be entered. Otherwise the
path is required, e.g. C:\directory\ filename.zls.

The user specifies the column numbers in which the various parts of the input are to be
found. The current default of ‘Ambient.C in columns 642%(1:31)" means that the measured
ambient values are to be found in columns 8, 10, ..., 68. This is equivalent to entering the
input 8 10 12 14 ... 68, with a space between each number. For Excel files which are exactly
in the format as the sample files included with this documentation, only the ‘31’ ( = the
number of species in the ambient records) would be changed in each individual application.
To have other arrangements of columns read, e.g. columns 8-40 inclusive and then columns
45,49, 51, the user would enter 8:40 ¢(45,49,51).

The Excel files must contain no blank rows or columns.

Now click on Apply. The data files will be read into matrices profiles1, sv.ests1, ambientl,
rv.estsl and total.massl. The matrices profiles! etc. are assigned to ‘frame 0’ (the session
frame) and so can be viewed and used from the Commands window throughout the current
S-Plus session.

The sources are ordered and numbered, if desired, according to one of two user-specified
options: (i) the correlation of the profile with the average (across receptors) ambient vector,
or (ii) the Mahalanobis distance of the profile from the average ambient vector. In both
these cases (and only for the purposes of this ranking), each species vector is first normalized
so as to have an average of zero and a sample variance of one.

At this point the ‘Fit’ menu will have opened, along with a report as in Figure 2.

3. THE FI1T MENU
This menu starts the fitting program, by executing the function fit.start(), which in
turn executes receptor.fit() described in the help file later in this section. The functions
fit.start and receptor.fit have the following formats, arguments, and defaults:

fit.start <- function(use.sources = l:length(sourcenames), sourcegroupings =
NULL, use.species = 1:length(speciesnames), use.receptors = 1:length(receptornames),
option = “2”, intercept = F, est.corr = T, transform = “none”, robust = T,
psi.type = “Huber”, k.Huber = .5, k.Hampel = ¢(.5,1.5,5), alpha.robust = .1,
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Figure 1: Scan menu, set for the analysis in Section 4. The ‘31’ refers to the number of
sources in the data files.

positive.variances = T, printlevel = 1, plots = T, tolerance = .01, max.iter =

20)>
receptor.fit <- function(profiles, ambient, sv.ests, rv.ests, total.mass, option =
“27 intercept = F, est.corr = T, transform = “none”, robust = T, psi.type

= “Huber”, k.Huber = .5, k.Hampel = c¢(.5, 1.5, 5), alpha.robust = .1, posi-
tive.variances = T, printlevel = 1, plots = T, tolerance = .01, max.iter = 20)?

The user inputs, from the menu, the sources, species and receptor records to be included
in the fit. See Figure 3 for an example. The default values (= all of the possible values)
may be changed as follows. Suppose that the Use sources: window reads 1:89. To fit
sources 2,3, ...,8,10, 17,19 instead, replace 1:89 with 2:8 ¢(10,17,19). Note that the Report
window, which has opened by this point, contains lists of the available sources, etc. - see
Figure 2. Similarly, to fit species 1-31 without 5, 6, 7, 23, 12, 21 and 2 one can enter, in

2fit.start() can be run from the Commands window, as a stand-alone function. The only required
arguments are the lists use.sources, sourcegroupings, use.species, use.receptors of indices of the sources,
source groupings, species and receptors to be used in the fit. It is also necessary that frame 0 have had
the relevant objects assigned to it: profilesl, sv.estsl, ambientl, rv.estsl, sourcenames, speciesnames,
receptornames, total.massi. To see the required formats of these objects, run the program from the menus
at least once, and then look in frame 0 (“Is(pos=0)") to see what is there.

3receptor.fit() runs as a stand-alone function, without the necessity of assignments. The required and
optional arguments are as described in the receptor.fit help in §5.
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The following species was dropped from either

the amhient or profile record, due to being ahsent in the other:
[1] MO¥

The following species had missing profile data

and so were removed before ordering the sources:

HaX MGH PHx REX ZRx N3I 341 CLI §4C .

The avajlable receptor records are:

] CHIL3 CHIL3 CHIL3 CHIL3® CHIL3 CHILZ CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3 CHIL3
] CHIL3 CHIL3 CHIL3 CHIL3® CHIL3 CHILZ CHIL3 CHIL3 CHIL3 CHIL3 CHILZ PIMEZ PIMEZ PIMEZ PIMES PIMES PIME3
[35] FIMEZ PIMEZ PIME3 PIMEZ PIMES PIME3 PIME3 FIME:Z PIMES PIMEZ PIMEZ PIMES PIME3 PIME3 FIME3Z PIMES PINMEZ
] PIMES PIME3 PIMES

The available species are:
[1] 1 Nix 2 MGx 3 ALx 4 3Ix 5 PHX 6 30X 7 CLX 5 EPX 5 CaX 10 TIX 11 WAX 12 CRx 13 MNX 14 FEX 15 NIX
[16] 16 CUX 17 ZNX 18 ASX 19 SEX Z0 BRX Z1 REX 22 SRX 23 ZRX 24 PBX 25 N3I Z6 541 27 CLI 28 N4C 29 ECT 30 OCT

The available zources are:

(1] 10c 2 mmo--cs 3 MU---ci 4 MU0--CH 5 MOC--C3 6 MUCH 7T MLIU955 8 FRCONC

[9] 9 MDSOUsS03 10 MOUC--CH 11 PHDIES 12 Mwo9Ol0 13 Mw?525 14 MDWISU255 15 MOVE3Z 16 MOO--CC
[17] 17 Mw5050 15 MOVERL 19 MU---CC 20 M-MD-CH z1 MDasuss 2z M-ND-C3 23 MLZSU75% 24 MVZSTs
[23] &5 MUC--CC 26 M-ND-CC 27 PHAUTO 28 H2s04 29 AMBAUL 30 AMAUL 31 ML50U505 32 WIDAIC
[33] 33 PHRD 34 MARO 35 MARLOO 36 MARTA 37 MaR3S0 38 LIME 39 MARZS 40 CHCRIUC
[41] 41 5SFCRUC 42 PHPVEDCE 43 PRDNM3 44 PRLAPC 45 FRITC 46 30ILz5 47 PRLESC 43 PRLEPC
[49] 49 30ILO§ 50 30IL1Z 51 30ILO1 52 30ILZY 53 30ILO3 54 30ILOS 55 30IL16 56 30IL1S
[57] 57 30ILZ4 58 50ILZ: 5% 30IL1S 60 30ILZS 61 30IL04 62 30IL1T 63 30ILZ6 64 30ILOS
[65] 65 PEDRSC o6 PHUPRD1 &7 PR3CAE 65 30IL31 6% FHFVED 70 50ILZ1 71 30IL13 72 30ILO7
[73] 73 PEDEPC 74 50IL2z 75 30IL20 76 50IL30 77 30IL11 78 50IL14 79 30IL10 80 30ILO0G
[81] 81 PEDESC 82 50IL23 &3 PHCONSTR 84 30IL18 55 PHOVERAG 56 PHDS30IL &7 PHBAREAG 88 PHUPEDZ
[G9] 59 AMNIT

LR R PR R PP R AR S PP R R R 2 A R EE P 1

Figure 2: Output following the scanning of the data files. The list of profile/ambient
correlations has been omitted from this display.
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Figure 3: Fit window with options chosen for the Effective Variance fit.

the Use species: window, the line ¢(1:31)[—c(5:7,23,12,21,2)] as in Figure 3. The various
options can also be changed from their default values at this point.

The user can also input ‘Source groupings’, which work as follows. Suppose that an initial
fit of sources 20:35 (with other inputs as in Figure 3) showed that sources 20,21, 22 and 26
were highly correlated with each other, and that sources 29 and 30 were highly correlated
with each other. These correlations might well result in collinearity problems, essentially
because highly correlated source profiles are statistically almost indistinguishable from each
other. A possible remedy is to fit the sum of these profiles, rather that the individual
profiles. Thus, the user might re-fit the data, but now in the Group sources: window he
would enter ¢(20,21,22,26), ¢(29,30). This will result in the profiles for sources 20, 21, 22
and 26, and the corresponding variance estimates in sv.ests, being summed. Similarly the



profiles and variance estimates for sources 29 and 30 will be summed. In the output, the
summed profiles will be labelled ‘20 + 21 + 22 + 26’ and ‘29 + 30’; a legend giving the names
of the profiles being summed will also be displayed.

If multiple receptor records are chosen then the ambient vectors are pooled, using the
a-trimmed mean. Throughout this manual a = 0 unless robust=TRUF, in which case « is
set by the user, with a default value of .1. The receptor variance estimates are pooled in
the same way. If option # “ev”, the resulting receptor variance estimates are then divided
by the number of receptors being pooled, thus yielding the (squared) standard errors of the
trimmed means. The total.mass values are pooled in the same manner.

Click on Apply to start the fitting. When the data are exceptionally ill-conditioned,
or variance estimates are exceptionally poor, the program may crash when it attempts to
invert an almost singular matrix. I have addressed as much as possible of this numerical
instability by requiring that all matrix inversions employ a preliminary Choleski decom-
position. If however the problem still arises, the user should re-run the program with
highly correlated profiles summed as described above, or with a different choice of options.
Setting est.corr=FALSFE is fairly safe in this respect. On the other hand, choosing posi-
tive.variances=FALSE (a choice which is forced by option=“ev”) can very often cause this
singularity problem. (Note that “positive.variances” appears as “+4’ve variances?” in the
Fit menu.)

After the fitting is done, the complete output is assigned to frame 0 as output. It may
be viewed here in its entirety, and manipulated as desired.

4. KEXAMPLES
4.1. Example 1

In this section I outline an analysis of REVEAL data similar to that analyzed in Lowen-
thal et al. (1997) and kindly supplied by Dr. D. H. Lowenthal. ~Assuming that the file
match.ssc has been run, and that the data files ambient.xzls and profiles.zls reside in the
same directory as that from which S-Plus was invoked, one has these files scanned by enter-
ing

> match.start( )

from the Commands window, and then choosing the options of the Scan menu as in Figure
1. Click on Apply; after the scanning is complete the Report window will open as in Figure
2. Since the correlations ordering was chosen in the Scan menu, the Report window will also
contain a listing (not shown here) of the correlations of the source profiles with the mean
ambient vector.

As in ‘Case I’ in Table 2 of Lowenthal et al., we fit the ambient data from the Chilliwack
receptors (numbers 1 - 28) using sources PHPVRD, MUCH, MAR100, AMBSUL and AM-
NIT. From the Report window, these are numbers 69, 6, 35, 29 and 89. We fit all species
except those labelled 5: PHX, 6: SUX, 7: CLX, 23: ZRX, 12: CRX, 21: RBX, 2: MGX and
MOX, which was previously removed due to a lack of ambient data. We will first give the
Effective Variances fit. See Figure 3; note that choosing the ‘ev’ option forces est.corr =



The following speciez had miszing profile data
and so were remowved:
1 Na¥ 27 CLI .

Correlations between sources are:
&9 PHPVED & MIICH 35 MARLOOD 29 AMBSUL 89 AMNIT
89 PHPVED 1.00000000 0, 54600037 -0,08341704 -0,12883650 -0.14345372
& MUOCH 0.54500087 Ll.00000000 -0,053348675 -0,07352367 -0.07074354
35 MARIOO -0.03841704 -0,083343675 1.00000000 0,95346755 -0.08269007
29 AMBSUL -0.12883650 -0.07352367 0.95346755  1.00000000 -0.01863238
89 AMNIT -0.1434837:2 -0.07074354 -0.08269007 -0.01863235 L1.00000000

Input choices:
option "ew
est.corr "FALZE"™
positive.wariances "FALSE™
transform "none’
robust "FALSE™

4 iterations required

rr

Parameter estimates, standard errors, t-ratios
and one-zided p-walues:

estimate std. error t-ratio p-walue
69 PHEVED 567.6381 58,4038 9.71%2 0,0000

6 MIOCH 2942.87535 663.9137 4.4326 0.000zZ
35 MaR1Ooo 1221.6973 Z06.41581 5.9186 0.0000
289 AMEB3IUL Z563.93685 £73.Z001 9.35848 0.0000
g9 AMNIT =2337.86689 286.4717%7 9.9063 0.0000
ANV
35 d4Af M3=53/df F p

Regression 474.6942 5 94,9388 25,3471 0
Error 53.5866 16 3.349:2
Total 528.2808 21

Percentage of total (weighted) sum of squares accounted
for by the regression is 100%ER. =gd= 59.86

Masz accounted for (std.dew.) iz 103.74 % [ &.53 %)
Chi-zquare (= 22 of studentized rezsidualszs/sdf) iz 4.54
with p-value (= prob. of a larger walue) of 0 .

Figure 4: Output from the Effective Variances fit, with input as in Figure 3.
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Figure 5: Graphics from the Effective Variances fit.

F, robust = F, positive.variances = F. If the user inputs other values of these options then
they are overridden.

The resulting output is as in Figures 4 and 5.

Recall that the ‘ev’ option forces positive.variances = F. Were some of the variance
estimates equal to zero? If so, the corresponding species could have had a very large
influence on the fit, since the weight assigned to a species is inversely proportional to its
effective variance. Such large weights are almost certainly unjustified, since zero variances
probably reflect a lack of useful information or intuition rather than a conviction that the
profiles values are in fact constant, i.e. without variation. Entering the command

> (output$sv.ests==0)

from the Commands window yields a matrix of T's and F's, a T representing a 0 in the sv.ests
matrix. This output reveals that nearly all species had zero source variance estimates in the

AMBSUL and AMNIT columns, and 11 of these had zeros in the MAR100 column as well.
Thus these 11 species would have zero in three of the five columns of the sv.ests matrix,

8
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Figure 6: Graphics for the fit of Figure 7.

possibly giving them unrealistic influences on the fit. Indeed, all but two of these 11 have
very small studentized residuals. This might be due to their conforming well to the model,
but might instead be forced by their large influence. To see the effect of this influence, I
re-run the analysis using the choices option = 1, est.corr = F, robust = F, positive.variances
= T. Thus only the variance estimates change, relative to the previous fit. The results
are in Figures 6 and 7, and show a significant change in the parameter estimates and a
significant improvement in the residuals as measured by the chi-square value. However, the
source contribution estimates ély..., 05 are now all not significantly larger than zero.

In Figures 8 and 9 I give the output from a robust fit, using robust = T, option = 2,
est.corr = T and Huber’s ¢) with £ = .5. All of the source contribution estimates are again
significant. This example then illustrates a point noted in Wiens, Florence and Hiltz (2001)
- the sensitivity of the CMB results to the quality of the variance estimates which form part
of the input data. The robust methods presented there and implemented here afford some
protection against this instability.



The following species had missing profile data
and zo were removed:
1 Nax 27 CLI .

Correlations between sources are:
59 PHPVED & MIICH 35 MaR100 29 AMEBAUL 89 AMNIT
69 PHPVED 1.00000000 0,54600037 -0.08841704 -0.128583650 -0.143453372
6 MOCH 0.54600087 L1.00000000 -0.083458675 -0.07352367 -0.07074354
35 MAR1OO -0.03841704 -0,083348675  1.00000000 0.95346755 -0.08269007
29 AMESUL -0.12883650 -0.07352367 0.95346755  1.00000000 -0.01863238
89 AMNIT -0.14348372 -0.07074354 -0.03269007 -0.01863238  1.00000000

Input choices:
option "1
est.corr "FALZE™
positive.variances ""TRUE™
transform "none”
robust "FALIE™
3 ilterations required

Parameter estimates, standard errors, t-ratios
and one-zided p-values:

eztimate std. error t-ratio p-value
69 PHPVED 313.6985 T4z22.911 0,0423 0.4834

6 MOCH 3016.8083 56494.219 0.0534 0.4790

35 MaRlon e01.491:2 21895.6d2 0.0275 0.4592

29 AMBSUL =2617.1475 25169.756 0.1040 0.4592

89 AMNIT =524.03zZ4 175Z4.600 0.1ell 0.4370
ANOVL

33 df Ma=5574dE F p

Regression 1792.0179 5 35.8036 152952.6354 0
Error 0.0037 la 0.000Z
Total 179.0217 Z1

Percentage of total (weighted) sum of sdquares accounted
for by the regreszsion is 100%E.sqd= 100

Mazs accounted for (std.dew.) iz 95,95 % [ 569.49 %)
Chi-zfquare (= 2z of studentized reziduals/sdf) iz 0O

with p-walue (= prob. of a larger walue) of 1 .

Figure 7: Output with positive.variances = T, other choices as in EV fit.
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The following speciez had miszing profile data
and so were removed:
1 N 27 CLI .

Correlations between sources are:
59 PHPVED & MIUCH 35 MAR1OO 29 AMBAUL 89 AMNIT
69 PHPVED 1.00000000 0,54600037 -0,08841704 -0,128583650 -0.14345372
6 MOCH 0.54600087 1.00000000 -0.03348675 -0,07352367 -0.07074354
35 MARI1OO -0,083841704 -0.083343675 1.00000000 0,95346755 -0.08269007
29 AMBSUL -0,12883650 -0.07352367 0,.95846755  1.00000000 -0.01863238
89 AMNIT -0.143458372 -0.07074354 -0.03269007 -0.018632358 1.00000000

Input choices:
option "2
est.corr "TRUE™
positive.wvariances "TREUE™
transform "none’
robust "TRUE™
2 iterations required

Parameter estimates, standard errors, t-ratios
and one-zsided p-wvalues:

estimate std. error t-ratio p-walue
69 PHEVED 494,53775 45,1562 10,9532  0,0000

6 MIOCH 30358.7602 £70.5651 11.2312 0.0000

35 MARIOO 595.8337 1858.6662 3.1531 0.0030

29 AMBAIUL 2324.4579 1029.26z28 Z.2584 0.0191

g9 AMNIT =249:z.85852 T02.2538  3.5498 0.0013
ATOWVL

35 df M3=53/df F p

Regression 577<dd.4513 5 11545.5903 14,2242 0
Error 12920.7321 16 811.9208
Total 70735.15834 21

Percentage of total (weighted) sum of squares accounted
for by the regresszion is 100*RE.=dgd= S851.63

Mazz accounted for (std.dev.)] iz 93.66 % [ 1l7.45 %)
Chi-zfquare (= 22 of studentized residuals/sdf) iz 1300.67
with p-wvalue (= prob. of a larger walue) of 0 .

Figure 8: Output from a robust fit; option = 2, est.corr = T.
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Figure 9: Graphics for the fit of Figure 8.

4.2. Example 2

This example, with simulated data, illustrates the point that the robust and non-robust
fits are typically in broad agreement when applied to“clean” data. It also illustrates the
use of receptor.fit() as a stand-alone function (recall the footnote on p. 3).

Begin by simulating a data set with n = 9 species and p = 4 sources, with the ambient
measurements made at one receptor. Then compute two fits, differing only in their value of
“robust”.

set.seed(3)

profiles <- matrix(data=rnorm(36), nrow=9) + 4

sv.ests <- .2xprofiles

ambient <- as.vector(profilesx*J%c(1,.1,.01,.001) + rnorm(9, sd=1))
rv.ests <- as.vector(.2*sv.ests[,1])

total.mass <- c(3,1)

12



Non-robust fit

receptor.fit(profiles, ambient, sv.ests, rv.ests, total.mass,

option = 1, est.corr = F, robust = F, psi.type = ‘ ‘Huber’’,
k.Huber = 1, weight.type = ‘‘hat’’, plots = T)
Output:

Correlations between sources are:

Source 1 Source 2 Source 3 Source 4
Source 1 1.0000000 0.1360449 -0.486613433 0.356425751
Source 2 0.1360449 1.0000000 -0.257986423 0.357644982
Source 3 -0.4866134 -0.2579864 1.000000000 0.008312503
Source 4 0.3564258 0.3576450 0.008312503 1.000000000

Input choices:
option ‘17’
est.corr ‘‘FALSE’’
positive.variances ‘‘TRUE’’
transform ‘ ‘none’’
robust ¢ ‘FALSE’’
3 iterations required

Parameter estimates, standard errors, t-ratios
and one-sided p-values:
estimate std. error t-ratio p-value

Source 1  0.7307 0.3635 2.0103 0.0503

Source 2  0.0000 0.4297 0.0000 0.5000

Source 3  0.0951 0.2761 0.3447 0.3722

Source 4 0.8135 0.5668 1.4353 0.1053
ANOVA

SS df MS=SS/df F p

Regression 1567.1773 4 39.2943 153.1748 0
Error 1.2827 5 0.2565
Total 158.4599 9

Percentage of total (weighted) sum of squares accounted
for by the regression is 100*R.sqd= 99.19

Mass accounted for (std.dev.) is 54.64 % ( 18.66 %)
Chi-square (= ss of studentized residuals/df) is 15.7
with p-value (= prob. of a larger value) of O .

13



Robust fit

receptor.fit(profiles, ambient, sv.ests, rv.ests, total.mass,

option = 1, est.corr = F, robust = T, psi.type = ‘‘Huber’’,
k.Huber = 1, weight.type = ‘‘hat’’, plots = T)
Output:

Correlations between sources are:

Source 1 Source 2 Source 3 Source 4
Source 1 1.0000000 0.1360449 -0.486613433 0.356425751
Source 2 0.1360449 1.0000000 -0.257986423 0.357644982
Source 3 -0.4866134 -0.2579864 1.000000000 0.008312503
Source 4 0.3564258 0.3576450 0.008312503 1.000000000

Input choices:
option ‘17’
est.corr ‘‘FALSE’’
positive.variances ‘‘TRUE’’
transform ‘ ‘none’’
robust ¢ ‘TRUE’’
3 iterations required

Parameter estimates, standard errors, t-ratios
and one-sided p-values:
estimate std. error t-ratio p-value

Source 1  0.6842 0.4205 1.6271 0.0823

Source 2  0.0000 0.4817 0.0000 0.5000

Source 3  0.1467 0.3072 0.4775 0.3266

Source 4  0.8421 0.6773 1.2434 0.1344
ANOVA

SS df MS=SS/df F p

Regression 134.9609 4 33.7402 155.7891 0
Error 1.0829 5 0.2166
Total 136.0438 9

Percentage of total (weighted) sum of squares accounted
for by the regression is 100*R.sqd= 99.2

Mass accounted for (std.dev.) is 55.77 % ( 19.16 %)
Chi-square (= ss of studentized residuals/df) is 14.56
with p-value (= prob. of a larger value) of O .
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5. RECEPTOR.FIT HELP FILE
receptor.fit receptor.fit

DESCRIPTION
Fits the receptor model (see DETAILS).

USAGE
receptor.fit (profiles, ambient, sv.ests, rv.ests, total.mass,
option=%2”, intercept=F, est.corr=T, transform="‘“none”,
robust=T, psi.type=“Hampel”, k.Huber=.5, k. Hampel=c(.5, 1.5, 5),
alpha.robust=.1, positive.variances=T, printlevel=1,
plots=F, tolerance=.01, max.iter=20)

REQUIRED ARGUMENTS

profiles an n X p matrix (n > p) of measured source contributions; columns
represent sources (profiles), rows represent species.

ambient a vector or matrix of ambient measurements at the receptor(s).

sv.ests a ‘source variances’ matrix, of the same size as profiles, whose

(i,7)™" element contains an estimate of the variance of the (i, j)™

element of profiles.

rv.ests a ‘receptor variances’ vector or matrix, of the same size as ambient,
whose elements are estimates of the variances of the corresponding
elements of ambient.

total.mass a vector or matrix with elements massc = total mass and
massu = standard error of this total.
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option

intercept

est.corr

transform

robust

psi.type

k.Huber
k.Hampel
alpha.robust
weight.type

positive.var-
1aM.CES

printlevel

plots
tolerance

max.iter

OPTIONAL ARGUMENTS

if = “1” then the profiles matrix is used as the matrix of
independent variables in each regression; if = “2” then at each
iteration a maximum likelihood estimate A of the matrix A of mean
source contributions is computed and used as the matrix of
independent variables in the next iteration. If = “ev” (“Effective
Variances”) then the other arguments are set to est.corr=F,
robust=F, positive.variances=F and the input values of these
arguments are ignored.

if TRUE, an intercept model is fitted. The default is to not fit an
intercept.

if TRUE then the common correlation matrix €2 of the
within-profile measurements is estimated. If FALSE then Q2 =1

is assumed.

if = “log” then the ambient vector and profiles matrix are replaced
by their logarithms and the variance estimates are adjusted accordingly.
If = “sqrt” then this is done using the square roots.

if TRUE then the least squares regression estimates are

replaced by M-estimates.

Possible choices of types of ¢ function used for the M-estimates

are “Huber” and “Hampel”. Ignored if robust = FALSE.

Tuning constant for “Huber” psi.type, ignored if robust = FALSE.
Tuning constants for “Hampel” psi.type, ignored if robust = FALSE.
Trimming proportion for trimmed means when robust = TRUE.
Weights used in the M-estimation if robust = TRUFE. Options are
“hat” (see §3.7, Wiens et. al 2001) or “mahal” - Mahalanobis-distance
based weight w")(x;; v = v/2), as at (7) of Du and Wiens (2000).

if TRUE (the default) then any receptor or source variance estimate
= 0 is replaced by the mean positive estimate for that species.
WARNING: Changing this option can result in program termination
due to singular covariance matrix estimates.

if = 0 then no printout is produced. If =1 then a printout is
produced containing (see VALUE below for descriptions) thetahat
and an anova table. If = 2 then as well the printout contains
history, option, Ahat, relative.contributions and resids.

if TRUE then residual and relative.contributions plots are produced.
Iterations cease when the maximum relative change in the
parameter estimates drops below tolerance.

Maximum number of iterations which will be carried out. If this

is exceeded before tolerance is attained, a warning is printed.
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VALUE

sv.ests

0. €e8ts

profiles
ambient

total.mass
history
Omegahat
SIGMAhat
Ahat

cov.thetahat

thetahat

resids

relative.
contributions

a list with the following components:

the sv.ests matrix which formed part of the input, modified as
described above if it contained zeros.

the pooled rv.ests vector, modified as described above if it
contained zeros.

the profiles matrix which formed part of the input.

the ambient vector, pooled over receptors.

the total.mass vector, pooled over receptors.

a matrix containing the results of each iteration - parameter
values and their maximum relative convergence measures.

the estimate € of the profile correlation matrix €2; if

est.corr = F then Q = L.

an n X n X p array whose k' face (1 <k <p)isann xn

matrix 3, - the estimated covariance matrix for the k" profile.

an n X p matrix A which is the estimate of the matrix A of

mean source contributions; if option = 1 then A= profiles.

a P x P matrix (P = p + (intercept==T)) which is the

estimated covariance matrix of the regression parameter
estimates.

a list consisting of a matrix with P rows, one row for each
regression parameter estimates, and some individual columns

of this matrix. Columns are the estimates, their standard errors,
their t-ratios and the corresponding one-sided p-values, i.e.

the p-values associated with the hypotheses Hy : 6 = 0

vs. H;: 0 > 0.

a list consisting of a matrix with n rows, one row per species.

and some individual columns of this matrix. Columns are the
measured ambient values y;, the fitted values g; and their standard
deviations, the residuals e; = y;— 3; and their standard

deviations s(e;), and the studentized residuals e;/s(e;).

a matrix with n 4+ 1 rows and p + 2 columns. The first column
contains values 100g; /y;, representing the % of the concentration
of species i at the receptor which is accounted for by the regression.
The last row of this column is 100 Y 3;/ 3 v;, representing the %
of total receptor concentration accounted for by the regression.
The second column gives standard errors of the entries in the first.
The other entries of the matrix give the percentages accounted for
by each source, i.e. the (i, 7)™ entry is 100 [profile]; ; - 0,/ y;

(with the numerator and denominator summed over species

in the last row).
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anova a list consisting of: 1. a matrix containing a breakdown of the total
weighted sum of squares SST into sums of squares SSFE (due to
error) and SSR (due to the regression effect). Also given are
the corresponding degrees of freedom and mean squares, and the
F' statistic and p-value for the hypothesis 6, = --- =0, = 0.
2. R? =SSR/SST = the proportion of SST accounted for
by the regression.
3. x? = 3 (studentized resids)? /df(SSE) and associated p-value.
4. %mass accounted for and its standard deviation in %.

option the option which formed part of the input.

transform the value of transform used in the input.

k the number of iterations required.

NOTES
If p =1 care must be taken to ensure that profiles and sv.ests
are matrices, not vectors.

DETAILS
With y = ambient and X = profiles, the model being fitted is
y=A0+¢ X=A+|6;--- 6, for independent zero-mean
error vectors €,01,...,6,. The §; have a common correlation
matrix 2 but possibly different variances, as estimated by
sv.ests/,j]. The €; have possibly different variances, as estimated
by rv.ests. The algorithm iterates back and forth between
two steps: 1) Generalized Least Squares or M-estimation of 6,
using the other parameters of the model to determine a suitable
transformation of the independent and dependent variables;
2) estimation of these other parameters, using the current
estimate of 6.

EXAMPLE
set.seed(13) # Simulate some data:
profiles <- matrix(data=abs(rnorm(24)),nrow=6)
sv.ests <- .5*profiles
ambient <- as.vector(abs((profiles%*%¢(1,.1,.01,.001)

+ rnorm(6,sd=1))))

rv.ests <- as.vector(.5*sv.ests[,1])
total.mass <- ¢(10,1)
# Run receptor.fit on these data:
qwel <- receptor.fit(profiles, ambient, sv.ests, rv.ests, total.mass)
# Some source concentration estimates are zero;
# remove these sources and try again:
qwe2 <- receptor.fit(profiles[,-c(1,2)], ambient, sv.ests|,-c(1,2)],
rv.ests, total.mass)
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SUMMARY

We present a modification of the Chemical Mass Balance model commonly used for apportioning pollutants
measured at a receptor site to particular sources, given profile data from these sources. The standard
Effective Variance model is included as a special case. We present a package of estimation methods for
these models; a ‘robustness option’ is highlighted. A simulation study is carried out to compare and contrast
the various approaches. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: ambient profiles; chemical mass balance; effective variance; Generalized M-estimate; iteratively
reweighted least squares; least absolute deviations; least squares; maximum likelihood; New-
ton—Raphson; regression; source profiles

1. INTRODUCTION

Inhalable particulate matter (PM) in the atmosphere is a major environmental and pubic health
concern in North America and elsewhere (Burnett ez al., 1995; Dockery et al., 1993). PM collected
at a receptor site is generally grouped according to size fractions: fine (< 2.5 pug) and coarse (2.5—
10 pg). The chemicals associated with these PM fractions offer unique challenges beyond their
physico-chemical attributes because they represent complex mixtures of often multiple point
sources of pollutants (see Hopke, 1991 and references therein). The objectives for monitoring air
quality at a receptor site then become those of sampling (defining frequency and duration),
estimation (determining ambient chemical concentrations) and apportionment (allocating the
total ambient particulate mass among all regional sources detected at the receptor, both natural
and anthropogenic, given the sources’ chemical profiles). These activities are often further
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extended to include both temporal and spatial variation (Brook ez al., 1997, CEPA/FPAC, 1998;
Chow et al., 1992).

Statistical and chemometric methods that have been used for partitioning ambient pollutants
measured at a receptor site include principal component analysis (including factor analysis),
multiple linear regression and chemical mass balance (CMB) models. These techniques have been
used singly and in combination. The CMB model has been used in several studies in Canada and
the United States because the theory has been well developed over the past 30 years and MS-
Windows-based software has been made publicly available by the U.S. Environment Protection
Agency (EPA) (see Lowenthal et al., 1997 and references therein).

Watson et al. (1984; henceforth referred to as WC&H) developed an Effective Variance (EV)
CMB model. This and subsequent CMB applications, developed for the EPA largely by J. G.
Watson and colleagues at the Desert Research Institute (DRI), Reno, Nevada (U.S.A.), make a
number of assumptions which are to be met before fitting ambient and source chemical profiles.
(The current version of DRI’s CMB software can be downloaded by anonymous FTP from
eafs.sage.dri.edu/model/cmb8MMDD.exe , where MMDD stand for month and day.)
These assumptions include (from Watson et al., 1991): (1) compositions of source emissions are
constant over the period of ambient and source sampling; (2) chemical species do not react with
each other, i.e. they add linearly; (3) all sources with potential for significantly contributing to
the receptor have been identified and have had their emissions characterized; (4) the source
compositions are linearly independent of each other; (5) the number of sources of source cat-
egories is less than or equal to the number of chemical species; (6) measurement uncertainties
are random, uncorrelated, and normally distributed.’

Of course practitioners often apply methods developed under possibly untenable assumptions,
in the hopes that assumptions which are ‘close’ to being satisfied will result in applications which
are ‘close’ to being appropriate. There is now a wealth of robustness studies including that such
an attitude can be seriously misguided, and that seemingly minor violations of assumptions such
as normality or independence can result in a very significant deterioration in the performance of
an otherwise appropriate or even optimal statistical procedure. Mathematical descriptions of the
difficulty can be phrased in terms of discontinuities in the quality of the procedures, at those
points at which the assumptions are violated.

While we do not argue the utility and contributions made by the CMB method developed at
DRI, we suggest that adding robustness to the estimation methods can reduce the risk of spurious
conclusions regarding apportionment of emission sources based upon results where assumptions
are not or cannot be met. Most often, these sorts of violations would arise because: (1) the user
of the CMB software would be using source profiles obtained from data libraries containing
chemical profiles compiled in many different locations, not from actual data locally obtained (see
e.g. Lowenthal ez al., 1997) and not always having a knowledge about the data’s quality during
gathering and handling, and (2) it would often be impossible, or economically infeasible, to test
whether or not all assumptions were met.

In Section 2 of this article we present a modification to the CMB model. We discuss the
similarities with, and differences from, other approaches in the literature. In Section 3 we develop
estimation methods for this model based on least squares, and then a set of robust alternatives.
In a simulation study carried out in Section 4 we compare our methods with analyses carried out
using the DRI effective variance CMB model and previously published data. We argue that the
new methods afford additional and necessary security against erroneous allocations of PM
chemistry among emission sources.

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12:25-40
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2. THE MODIFIED CMB MODEL

In this section we use the notation

y = nx 1 vector of ambient measurements; thus the ith element y; is the ambient amount of
species i. Typically all measurement units are ug/m?®.

A = nxp matrix whose jth column a; consists of the n ‘true’ profile values at source j; thus a;
refers to species i, source j and is the amount of species i in the emissions from source j as
perceived at the receptor.

X = nx p matrix whose jth column x,=(X,;, .., X,;)” consists of the measured profile values at
Source j.

0 = px 1 vector of total mass contributions of the sources to the receptor; 0, refers to source j.

Assume that, apart from random error, one has
P
y= a0 (D

for unknown source contributions 0;, to be estimated. The ambient amounts y; are measured with
error g, the variation of an error depending on the species. Assume that these n errors in the

measurement of y are independent of each other. Thus, with ¢ = (¢, ..,¢,)",
V= A0+g )
E[] =0, COV[s =X, 3)
Here X, = diag(a7, ..., 02) is a diagonal matrix with diagonal elements of 67 = VAR[¢,].

The a; are not known and are observed with error; i.e. one observes a random vector x; rather
than a;. The errors x,—a; = 0, may be correlated. It is assumed that the variances may vary both
with the species and with the source, but that the correlation structure within each profile is the
same across sources. Thus

X; = a,+0; 4)
E[5] =0, COV[p] =L, ®)
where the structure of the n x n covariance matrix X; is
1/2 1/2
X =ACQAR
We assume that the errors d; are independent of &. In the expression above,
A; = diag(o7, ..., 0,)

is a diagonal matrix of variances for the species within source j, and Q is a correlation matrix.
Since the n xn matrix £ must be estimated from only p observation vectors, it appears that

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12:25-40
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further structure must be imposed. Assume that all off-diagonal entries of € are equal to a
common value p, necessarily > — 1/(n—1) in order that Q be positive semi-definite.

In the development (WC&H) of the Effective Variance (EV) CMB model, it is assumed that
the measurements X;; are independently and normally distributed with means a; and variances
o;. WC&H thus assume, in the notation above, that Q@ = I,, the n x n identity matrix. The o7
and ¢} are assumed known in the theoretical developments of the EV model and the models
proposed here. In the implementations these variances are estimated (often before the data are
submitted to an analyst) and the estimates are substituted for the true values.

Data given to CMB analysts tend to be ‘noisy’ and ‘dirty’. It is typically difficult to have much
faith in the accuracy of much of the data and in particular in the variance estimates. Thus, as
well as using classical least squares based methods, we shall propose robust procedures which
are not overly sensitive to gross errors in the variance estimates and in other features of the data.

Practitioners might also question the assumption, in the formulation of the EV model, that
the X;; are independently distributed. Our assumption that the correlation structure is constant
across sources, and of a constant value, is also somewhat questionable. It is however less so than
the assumption of WC&H that it is constant with correlation matrix Q = 1I,,.

The normality assumption is not used explicitly by WC&H, although it is used implicitly to
justify the use of Least Squares as an estimation procedure. Least Squares is well-known not to
be robust against long-tailed (i.e. longer than normal) error distributions.

Our assumptions that the errors ¢; are uncorrelated is necessary when the data include only
one ambient value y; per species or a mean over time or locations, so that estimation of correlations
between the ambient measurements is not always possible. Ohtaki ez al. (1997) adopt a model
somewhat similar to the one described here. However, they assume the availability of data from
multiple receptors; this allows for estimation of COV][y] by the sample covariance matrix,
summing across receptors.

Ohtaki et al. (1997) consider 0 as a realization of a random vector. The mean contributions
are assumed to satisfy

but the non-negativity is then addressed in an ad hoc (but sensible) manner which does not
guarantee that the solution will satisfy this constraint. In fact Hopke (1985, p. 134) comments
‘...in a mass balance, source contributions should only be positive. It is possible to use a
constrained least-squares fit, but this approach has not yet been seriously explored.” In particular,
these constraints are not assumed in the EV model or its CM B implementation. Since a primary
purpose of the present article is to extend the EV and CMB techniques by adding considerations
of robustness, the constraints are also not imposed here. We do however make a post hoc
modification to the parameter estimates to ensure non-negativity.

3. ESTIMATION METHODS

We first outline the estimation methods used, assuming that the regressions will be carried out
by least squares. A robust alternative will then be described and evaluated.
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By rearranging Equations (2)—(5) the observed vector y may be represented as

y = XO0+f (6)
where

has mean 0 and covariance matrix COV|[f] =V, given by

4
V=X,+) ¢x%.
j=1

J

Two estimation approaches, Option 1 and Option 2, are investigated and discussed in this
study. Option 1 relies on the observation that if V were known then one could apply Generalized
Least Squares (GLS) to (6) to estimate 0:

0 = arg min(y —X0)"V~'(y—X)0)
— (XTv—lx)—lev—ly
If @ were known then one could estimate V, in a manner described below.

Option 2 relies on the observation that if A were known one could apply GLS to (2) to
estimate 0:

A

0 = argmin(y —A0)"E; ' (y—A0)

= (AT TA)TTATE .
Again, if @ were known then one could estimate A.

Each option suggests an iterative procedure: estimate ; use this estimate to estimate V or A;
re-estimate @ as above, then re-estimate V or A; iterate to convergence. We shall first describe

each estimation in detail. Section 3.5, in which the various steps are put together to outline the
entire procedure, also serves as a summary and comparison of the two options.

3.1. Estimation of A

If all parameters except A are known, and if the errors are normally distributed, then from
Equations (2)—(5) the log-likelihood for A, apart from some inessential constants, is given by

—2logl = (y—A0)" E;‘(y—AO)—ki(x,-—a,-)T L (x,—a). (7

J=

To obtain the maximum likelihood estimate (MLE) one maximizes log/. The matrix of partial
derivatives, with (i, /)th element ¢ log //da;, has jth column

Copyright © 2001 John Wiley & Sons, Ltd. Environmetrics 2001; 12:25-40
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g =X (y—A0)0,+X ' (x;—a).
Solving the equations g, = g, = -+ =g, = 0 gives the MLE A, with jth column
4, =x,+0XV ' (y—X0). ®)

Although 4; is the MLE only under an assumption of normality, it is in any event a reasonable
estimator. It adjusts x;, which is the (only) estimate of a; if no other data are available, by taking
into account the regression on y. This adjustment vanishes if y—X6@ = 0, as it should since then
y is perfectly predicted by X and gives us no information which is not already contained in X.

3.2. Estimation of

Since A; "7, = A; '*(x,—a;) has correlation matrix €, if all other parameters are known then

an estimate of Q (igndring the structural assumption discussed in Section 2) is given by the
correlation matrix obtained from the p columns

AP(x—8)= —0A7 PEV Y= X0)= —0.QA1* V' (y—X0). ©)

If Option 1 is chosen and the robustness option described in Section 3.7 is not, then we use this
last expression, with Q evaluated at its value in the previous iteration of the numerical procedure
and with A, and V estimated as shown below. Otherwise we use the first expression in (9). We
compute an a-trimmed correlation matrix R from these columns, and then p is estimated by the
a-trimmed mean of the off-diagonal elements of R. We take o = 0 for the least squares option
being described here; the robust option employs o = 0.1. In either case the required structure is
imposed on the estimate of Q by defining ,, to be (x—1/(n—1), p) for i #j.

3.3. Estimation of A; and X,

Estimates of s}, of o}, form a part of the data; one can estimate A; by
S, = diag(s},, .., sy)
and then X, by
5= 51" 0",
with typical element

[Ej]i,k = Qiksi/'skja 1 <ik<n.
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3.4. Estimation of V

Given estimates s? of o2, § of 6 and £, of ¥, can one estimate V = X, +37_, 0>, by
~ P A ~
V=S+) 0%,
=1

where S, = diag(s7, ..., s2).

3.5. Iterative procedure for Options 1 and 2; least squares

We describe here the numerical procedure by which the estimates are obtained. The parameters
0, Q, X, V and possibly A are first set equal to simple initial values, then successively updated
until the values of 0 stabilize.

Step 0. Initialization step:

00" =0,
Q-Q0 =1,
L, <X’ =8,
VeV =S,
For Option 2 only;
A« A? =X,

Step k > 1. Updating. Compute, in the indicated order:

arg min(y —X0)"V-'(y—X0) = X'V 'X)"'X"V-'y, Option 1,

00" = {
arg min(y —A0)'(S; '(y—A0) = (ATS,;'A)"'A'S; 'y, Option 2,
then truncate at 0: 0 «<ma (0°,0) forj=1,...,p,

Q «— Q® 35 described in Section 3.2,

¥, X - 5)°08)",

V4
Vevh=s 1Y 6y,
j=1

For Option 2 only:
A < AW with jth columna, = x;,+0,X,V ' (y—X6),
then truncate at 0: a;«-ma (ay, 0).
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Iterate until convergence is attained. Convergence is defined in terms of relative convergence
0" i.e. convergence is declared when [|® — 0%~ ||/ 0%~V | < tolerance for, say, tolerance = 0.01.
Here | - | is the Euclidean norm.

The algorithm employed by WC&H is that of Option 1, with the difference that Q is never
updated; it remains = I,,.

3.6. Inferences

For Option 1, approximately valid inference procedures are obtained by applying standard
regression theory to the model y = Xz +f, COV[f] = V, X fixed, V known. Then V is replaced by
V (=the value of V at the termination of the iterative estimation procedure). Option 2 can be
handled in an analogous manner. This gives

. n (XTV-IX)~!, Option I;
E[0] ~ 0;est.cov.(0) = { o - i .
(ATS;'A)~!', Option2

The p-values are computed using a 7, , approximation to the distribution of the standardized
ratio

where 5*(0,) = [est. cov.(9)]; is the estimated variance of ;. The use of the 1,_,, rather than the
normal, reference distribution is the usual penalty paid for estimation of the standard error of
the regression estimate.

An ANOVA (Analysis of Variance) breakdown starts by transforming to weighted data:

7X) = (V-"2y,V-2X)  (Option 1),
(7.A) = (S, "?y.S;'?A)  (Option2). (10)

Then the Total Sum of Squares SST = ||§|* is broken down into the Sum of Squares due to the
Regression SSR (=the sum of squares |X(X"X)~'X"§|? or [[A(ATA) ~'AT§|%, as appropriate, of
the fitted values in terms of the *“ ~** data) and the Sum of Squares due to Error SSE=SST— SSR.

For Option 1 the fitted values ¥ = X0 = Ky where K = X(X"V'X) X"V, and residuals
e = (I—K)y have approximate covariance matrices KVK and (I—K)V(I—K) respectively. These
are estimated by replacing V by V. For Option 2 X is replaced by A, V by S,. This sets the stage
for the usual range of diagnostic procedures based on residual analyses.

3.7. Adding robustness to the CM B analysis

Robustness is achieved for the two options partly by substituting the following into the least
squares regressions described in Section 3.5:
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" 5, —XT0 )
argmin, Y w;¢ (yS>’ Option 1;
. i=1
0= - (11)
! NI'_AI' 0 .
arg min, . wié <yS> , Option 2.
i=1

Here §, X and A are as at (10), S is a robust measure of scale and the w, are weights designed to
bound the influence of outlying regressors. Thus @ is a Mallows-type Generalized M-estimate. If
E(t) = £ and w; = 1 then (11) gives the least squares estimates of Section 3.5. Alternative forms
of &, for robustness against outliers, are obtained by replacing /2 = j{)x dx by &(r) = jglp(x) dx,
where /(x) is a bounded score function. Common choices are ‘Huber’s y function’

X, x| <k,

Ve = {k-sign(x), X >k;

for a user-chosen value of k, and ‘Hampel’s 3-part redescending y function’

x, |x| < kla

k, * sign(x), ky < x| < ky;
Y(x) = ky—|x] .

k, ki,—kz sign(x), k|x| < ks;

0 ks < |x|.

for user-chosen values k, < k, < k;. In both cases, letting k— oo or k— oo results in the least
squares estimate, with (x) = x. Finite values of these tuning constants result in estimates which
bound the influence of large residuals on the fit. The Huber estimate gives all sufficiently large
residuals the same influence, while the Hampel estimate cuts the influence of very large residuals
to zero. See Hampel er al. (1986) for discussion. The default values used here are k = 0.5,
(ky, ks, k3) = (0.5,1.5,5); for these choices plots are given in Figure 1.

In our simulations we have taken S to be the median absolute deviation (around the median)
of the residuals, normalized for consistency at the Gaussian distribution. We use weights

1.0
1.0

= z <
< [=TE -
o o
6 4 2 0 2 4 6 € 4 2 0 2 4 6
(a) (b)

Figure 1. Huber (a) and Hampel (b)  functions, using default values of the tuning constants. Horizontal
axis represents regression residual, vertical axis the relative influence of this residual on the regression fit.
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w; = (1—="hy)/ \/F” (a suggestion of Welsch, 1980), where the leverages /;; are the diagonal elements
of the ‘hat’ matrix formed from the regressors. Regressors far from their centroid yield leverages
and thus small weights. These weights are known not to be completely robust, since clusters of
outliers can draw the centroid towards themselves, thus diminishing their apparent leverages.
However, more robust weighting schemes are typically much more computationally demanding
and require a relatively large number of observations, hence are not feasible for the large numbers
of simulations, with n = 8 only, carried out in this study. See Du and Wiens (2000) for a
discussion.

The solutions to (11) are initiated by first computing the least absolute deviations estimator,
which minimizes the sum of the absolute values of the residuals rather than of their squares. This
is followed by three iterations of a Newton—Raphson algorithm for (11). Finally, one step of the
iteratively reweighted least squares regression algorithm is performed. See Simpson and Chang
(1997) for details.

Robust up-dating of the matrix A is performed as follows. Rather than minimizing (7), we
minimize its analogue

SIS Py —AO) )+ z ST 2 (x—a)).

Define a function u(z) = w(\ﬂ)/\ﬂfor t>0, =1 for t = 0. By differentiation we obtain the
equation

A =F(A) (12
where
X, w(A)0, . .):p A Qp
F(A),., = X+71(A) <:TEA;1 ifng;>’

w(A) =X, ' (y—A0),
70(A) = u((y—A0)'E; ' (y— Ah)),
7,(A) = u((—a)" L '(x,—a)).

Equation (12) suggests a natural iterative scheme. We first replace X, X, 0 by their current
estimates X, S,, 0. Then with A, :=A®, for m =0, 1,... we compute

Oy =

) (tolerance'|Am| )
in[———————,1},
HF(Am)_AmH

Am+ 1= (1 - am)Am + OCml?(‘l&m)'

If both sequences converge, with «,, having a non-zero limit, then the limit of A,, satisfies (12).
Note that o, < <|F(A,) —A,l/|A,] > tolerance, so that an approximate solution is obtained
by iterating until «, = 1, which also implies that A,,,, = F(A,). Our program iterates until
m = 20ora, = 1;if oy < oy we take A*+*Y = A® i.e. no updating is performed at this kth stage.
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The equalities in (9) no longer hold, since they are derived from (8). To update € under the
robustness option we compute R from the columns given by the first term in (9).

The inferential procedures of Section 3.6 remain asymptotically valid, once the estimate of the
covariance matrix of @ is appropriately modified. Following Hinkley (1977) and Wu (1986) we
use the one-step weighted jackknife estimate as proposed in Du and Wiens (2000), together with
a finite-sample correction factor of Huber (1981). The estimate is described as follows. Let the
matrix Z be either X (for Option 1) or A (for Option 2), with rows z,. Define

n
T Tp-I
P= Z WiziZ; ,p; = wit; P~ 2,

wi T p . var(y’
2 w=1t n aver(y’)’

where aver(y) and var(y) are the sample mean and variance of the y/'((7;, —z! 9)/5). Then the
estimated covariance matrix is
i <~ z; 0)

CJ:KZ'S2'< Zq// < YT0>>2'P1Q1P1~

4. SIMULATIONS

WC&H describe some calculations of their model, and include some typical ‘true’ profile values
a;. As in the smaller of their simulation studies, we chose their n = 8 species: Na, Al, Si, Cl, V
Ni, Br and Pb. Therefore, the values of the A matrix are as represented in their Table 1; the p = 4
possible emission sources are Marine (M), Urban dust (UD), Auto exhaust (AE) and Residual
oil (RO). The relevant values from Table 1 of WC&H are reproduced in our Table I, together

Table I. Partial replications of ‘values of variables for generating simulated data and solving
mass balance equations’ from WC&H.*

Acrosol Marine Urban dust Auto exhaust Residual oil
properties a; apn ap Uiy

Na 0.40 0.0125 0 0.035

Al 0 0.0884 0.011 0.0053

Si 0 0.223 0.0082 0.0096

Cl 0.40 0 0.03 0

\% 0 0.00023 0 0.0344

Ni 0 0.000093 0.00018 0.0536

Br 0 0.0002 0.05 0.00013
Pb 0 0.0037 0.20 0.0011

*The “10-set averages’ of the estimates, from Table 2 of WC&H (£ one ‘known’ standard deviation of é/), were 17.742.4,
32.342.9,32.0+5.0, 14.74+1.0.
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with a summary of the estimates obtained by WC&H. The values s;; are as described in the
footnotes to their Table 1 —s; = (0.1-x;)*, with a few exceptions. Similarly 57 = (0.1 (X0),)".
The true values of source contributions are 6 = (20, 35,30, 15)". In our computations any s? or
sy equal to 0 was replaced by the o-trimmed mean (with « as in Section 3.2) of all positive variance
estimates for that species. This admittedly ad hoc measure ensured the invertibility of S, and V.
All the results from our simulations and discussion which follow are based upon code developed
in the S-Plus software package (MathSoft Inc., Seattle, Washington, U.S.A.) and available from
us (contact doug.wiens@ualberta.ca ).

We first simulated independent vectors 4y, . . ., §,, where 6, was normally distributed with mean
vector 0 and covariance matrix X; = A} QA/”*. Here, as in WC&H, A; = S; = diag(sy, . ., s,);
i.e. the ‘estimated’ variances are in fact exactly correct. Then X = A+ d,,...,d,| was computed

and truncated at 0 so that all elements would be non-negative. A response vector was then
simulated: y = A@+¢, where ¢ was normally distributed with mean vector 0 and covariance
matrix X, = S, = diag(si, ..., s2). The first set of simulations used Q = I, (independent measure-
ments within species across sources) for a comparison with the WC&H simulations; this series
of analyses served as our internal control to verify both our understanding of and concordance
with results by WC&H and to test our algorithms.

The procedure outlined above yielded one simulated data set (y, X), from which estimates
were computed. This procedure was repeated N times. The results are summarized in our Table
IT for N = 1000, Q@ = 1,. Table III reports the results in the case Q = €, an equi-correlation
matrix with all off-diagonal elements equal to 0.2.

In these tables the ‘self-estimated standard deviations’ are the sample averages of the 1000
standard errors computed along with the estimates themselves, using the covariance matrix
estimates from Sections 3.6 and 3.7. These should be compared with the simulated standard
deviations (accompanying the averages of the simulated estimates of the parameters), presented
in the tables in the form ‘average + one simulated standard deviation’. The latter standard
deviations are obtained by taking all 1000 of the simulated estimates, and then calculating their
sample standard deviations. They should be viewed as the ‘true’ standard deviations of the
regression parameter estimates.

From Table IT we conclude that our Options 1 and 2 do not suffer from unnecessarily estimating
Q, compared to the WC&H’s EV method which, correctly, in this case, assumes that Q = 1. The
EV method — which is identical to Option 1 using least squares and not estimating €2, apart from
the protocol detailed above for handling variance estimates which equal 0 — performed somewhat
better for us than for WC&H. See the footnote to Table I for some summary values from WC&H.

On the ‘clean’ data used for Tables IT and IIT most methods performed well, with only moderate
biases. Note, however, that the least squares Option 2 method resulted in large biases and huge
standard deviations in the estimates for UD when the correlation parameter was not estimated;
this was ameliorated when p was estimated. The least squares based methods with Option 2
tended to underestimate the standard errors, whereas the other methods tended to overestimate
them. The latter is generally preferable, since it leads to confidence intervals which, although
wider, have coverages at least as great as the nominal levels. As seen from Table I11, the estimation
of p when in fact p was non-zero did not result in any significant improvement. This can be
expected to change in larger datasets.

The values shown in Tables Il and III appear to be too good. This may be due to the fact,
pointed out above, that the ‘estimated’ variances were in fact exactly correct. To investigate the
robustness of the methods against incorrectly estimated variances, we multiplied each variance
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Table II. Simulation results: N = 1000, Q = I, n = 8, p = 4. ‘Clean’ data: ‘estimated’
variances are exactly correct.

True values (0)) M UD AE RO
20 35 30 15

Least squares; p not estimated (¢ = 0)

Option 1 Averages of simulated values*  20.0+2.8 353+3.7 29.9+3.9 15.0+1.6
Self-estimated standard 3.3 3.8 4.1 2.0
deviationsT

Option 2 Averages of simulated values*  19.44+2.9 42842289  30.54+5.0 153+18.2
Self-estimated standard 1.6 2.7 2.1 1.1
deviationst

Least squares; p estimated

Option 1 Averages of simulated values*  20.0+2.8 35.3+3.8 29.9+3.9 15.04+1.6
Self-estimated standard 33 3.8 4.0 2.0
deviationsT

Option 2 Averages of simulated values* 19.4+2.9 44.9+295.3 30.5+5.0 21.6+216.9
Self-estimated standard 1.6 2.7 2.1 1.1
deviationsT

Robust fit; p not estimated (p = 0)

Option 1 Averages of simulated values*  21.7+7.1 342445 31.6+7.2 15.1+1.9
Self-estimated standard 18.0 9.5 19.5 5.7
deviationsT

Option 2 Averages of simulated values*  18.8+3.7 35.5+5.1 32.34+10.2 15.1+£2.1
Self-estimated standard 4.3 7.3 5.9 2.9
deviationsT

Robust fit; p estimated

Option 1 Averages of simulated values*  21.8+9.1 343+49 30.5+5.0 152+2.1
Self-estimated standard 15.3 8.8 11.2 5.2
deviationst

Option 2 Averages of stimulated values* 18.7+3.6 354+5.1 32.44+10.3 15.1+£2.2
Self-estimated standard 4.8 8.1 6.8 3.2

deviationst

* + one standard deviation of é,, as estimated from the simulations.
T Obtained by averaging the estimated standard deviations over the simulations.

estimate by an independent realization of |C|, where C followed a Cauchy distribution. To
investigate robustness against outliers, 10 per cent of the receptor measurements were randomly
chosen and multiplied by 1/3 and 10 per cent were randomly chosen and multiplied by 3. The
simulations were then re-run on these severely corrupted data, with Q = 1. We suggest (see Table
1V) that our robust estimation methods fared somewhat better than the least squares based
estimates, primarily with respect to the accuracy of the standard errors.

In these simulations the robustness was implemented using a ‘Hampel’ score function with the
default tuning constants. Results obtained with the ‘Huber’ were quite similar to those reported
here.

5. SUMMARY AND CONCLUSIONS

We have presented a modified CMB model, together with a package of estimation procedures
including a robustness option. A special case of our methods is the EV method of WC&H. A
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Table I11. Simulation results; N = 1000, Q = Q,, n = §, p = 4, ‘clean’ data.

True values (0)) M UD AE RO
20 35 30 15

Least squares; p not estimated (4 = 0)

Option 1 Averages of simulated values*  20.1+2.9 354439 30.0+4.1 15.0+1.7
Self-estimated standard 3.3 3.8 4.1 2.0
deviationst

Option 2 Averages of simulated values* 194+4+3.1 42.9+2322  30.5+5.1 15.3+19.7
Self-estimated standard 1.6 2.7 2.1 1.1
deviationsT

Least squares; p estimated

Option 1 Averages of simulated values*  20.0+2.9 354439 29.9+4.1 15.0+1.7
Self-estimated standard 3.3 3.8 4.1 2.0
deviationst

Option 2 Averages of simulated values*  19.3+3.1 44.4+278.0 30.5+5.0 21.84+222.0
Self-estimated standard 1.6 2.7 2.1 1.1

deviationst

Robust fit; p not estimated (p = 0)

Option 1 Averages of simulated values* 21.7+7.7 344445 31.6+7.3 15.1+£2.0
Self-estimated standard 17.2 9.0 18.8 5.5
deviationst

Option 2 Averages of simulated values*  19.0+3.8 35.545.2 32.4+4+10.5 15.14+2.1
Self-estimated standard 4.2 7.1 6.0 2.8
deviationst

Robust fit; p estimated
Option 1 Averages of simulated values*  21.8+10.0 34.8+5.0 30.5+5.2 152+2.2

Self-estimated standard 15.1 8.0 15.9 5.8
deviationst

Option 2 Averages of simulated values*  18.9+3.8 35.5+5.2 32.34+10.6 15.1+£2.1
Self-estimated standard 4.8 8.1 6.6 3.2
deviationsT

* 4+ one standard deviation of 0,, as estimated from the simulations.
T Obtained by averaging the estimated standard deviations over the simulations.

simulation study in a particularly arduous situation (n = 8, p = 4) has shown that here most of
the various methods have similar performances with respect to the accuracy of the estimates, but
can vary widely in the estimation of their own standard errors. The protection against outliers
afforded by the robust methods can be expected to become more relevant with larger values of
n. Of course, the analyst is not restricted to the use of just one method. We recommend that a
thorough analysis includes a comparison of methods based on least squares with those of our
robust approach. Significant differences in the results should be interpreted as warnings of
particularly anomalous features in the data.
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Table IV. Simulation results; N = 1000, Q =1, n = 8, p = 4, ‘corrupted’ data.

True values (0)) M UD AE RO
20 35 30 15

Least squares; p not estimated (4 = 0)

Option 1 Averages of simulated values* 19.2+8.0 3524242 27.8+16.1 18.9+27.0
Self-estimated standard 3.3 3.9 4.0 2.7
deviationst

Option 2 Averages of simulated values* 19.64+9.1 34.74+16.3 38.84+66.6 19.4+4+31.5
Self-estimated standard 1.6 2.7 2.3 1.2
deviationsT

Least squares; p estimated
Option 1 Averages of simulated values*  19.9+9.8 35.9426.1 29.1+22.7 18.2427.0

Self-estimated standard 3.3 3.8 4.0 2.6
deviationst

Option 2 Averages of simulated values*  19.1+8.6 35.14£21.2 39.44+67.2 19.7+33.6
Self-estimated standard 1.6 2.7 2.1 1.2
deviationsT

Robust fit; p not estimated (p = 0)
Option 1 Averages of simulated values* 20.9+11.6 34.14+16.0 27.4+18.2 16.5+24.9

Self-estimated standard 28.2 15.8 25.7 17.1
deviationsT

Option 2 Averages of simulated values*  20.0+7.9 34.24+16.9 28.1+25.4 17.7429.6
Self-estimated standard 14.8 259 25.3 18.2
deviationst

Robust fit; p estimated
Option 1 Averages of simulated values*  21.0+11.7 33.6+15.6 26.9+17.8 16.6 +26.1

Self-estimated standard 27.1 17.1 24.3 15.5
deviationsT

Option 2 Averages of simulated values*  20.0+7.9 3424169 28.1+25.4 17.7+29.6
Self-estimated standard 14.8 259 25.3 18.2
deviationst

* 4+ one standard deviation of 0,, as estimated from the simulations.
T Obtained by averaging the estimated standard deviations over the simulations.
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