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Abstract: Suppose one will estimate the regression parameters using or-
dinnary M-estimation, with ‘M-loss’, defined at (5), replacing squared error
loss. Although some details remain to be filled in here, it seems to show that,
ignoring asymptotically neglible terms, the designs, robust against model mis-
specification as well as outlying y-values, are identical to the minimax robust
designs for Least Squares.

1 Introduction

1.1 Model development

We consider an approximate regression model
E[Y ()] ~ f' () 0px1; (1)

here the values of x € x (the design space) will be chosen by the experimenter.
At such values of z, F'[Y (z)] is observed with additive random error:

Y(z)=E[Y (2)] +e(z),

for i.i.d. errors ¢ (implying that the distribution of € () does not depend on

The measure p(dz) on x C R? is either Lebesgue measure or counting
measure (normed to have unit mass), depending on the structure of the design
space. For a convex, even, non-negative function p, with derivative v, we define
0 to be that which makes makes the approximation in (1) most accurate:

0 = argmin | p(ELY (@) ~ f'(2)t) u(dz).

Equivalently, with

we have

/ b (7 (x)) f () p (dx) = 0. 2)
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We bound the approximation error in (1) by assuming that

/ 2 (@) u (de) < 73/n, 3)

for a user-specified constant 7o. Here n is the proposed number of observations.
Let &, be the design measure, placing mass

n;

&, (z:) = -

at x;; we may later broaden this definition so as to allow any probability
measure on x to be a design, with an approximation (so that n¢, () is an
integer) possibly required prior to implementation.

Estimation will be by M-estimation:

-~

b, — argmein/ oV () — F' (2)0) €, (d);

equivalently, with residuals

we have

/ b (7 (2)) £ ()€, (dz) = 0. (4)

et e the class of functions 7 (+) defined by (2) and (3). Wit V (z) =
Let T be the cl f functi defined b d With Y
f' (z) 0,, we define our loss as ‘Integrated Expected Error’:

(1) = / 2{p (B (@) -V (@)} 4 (dz)

_ AE{p(T(m)—f'(m) (.- 0))} s dz). (5)

We seek a minimax design ¢, i.e. one which minimizes

L&) = max I & 7).

1.2 Asymptotic normality

To start, I think we should determine a sequence {6,} for which 8, is /n-
consistent — i.e. /n (@n — 0n> = Op(1). See (6) for a plausible conjecture.
Note that we can write
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and then write (4) as
0= 3 S u ({7 @)+ (@)~ £ (2) 00~ 0)) ~ F (@) (8~ 6.)) £ ()
{i|n;>0} j=1

here {¢; (x;)} are the errors associated with the n; replicates at ;.

For remainders R;, one term expansions around f'(z;) (Hn — 0n>, ie.

U ({r @)+ (@) ~ £ (2) (6, - 0)} — £ () (8, - 6.))
= w7 (@)t (@)~ ' (2) (0, 0)))
0 ({7 (@) + 5 (@)~ f' (@) (0.~ ODF' () (8.~ 0,) + B

together with R,, = % > iR give

0 = = 3 S ulre) e () 1 @) (0. O)F ()

{ilni>0} j=1

_% > iwl ({7 (@) + & (w:) = f' (%) (00 — 0)}) f () f' (:) (Hn - 9n> + R,

{i|n;>0} j=1
whence

Vi (6.-6.) = [% > Zzw’<{r<mi>+ej<mz>—f’(m»(en—e)})f<wi>f'<wi>] -

{in;>0} j=1

{% Z izb {1 (z) +&j (z) — F' (25) (6, — O)}) f (=) + \/ﬁRn}

{i|n;>0} j=1
_ [ [ @)+ e @)~ f @ 0.~ 0N f @) F @)e, <dw>} o
.{Jﬁ/w<{7<w>+€(w) (@) (6, - O f ()€, <dw>+mn}.
IF we can show that \/nR, = op(1) and that (6, — ) is O (n=/2) then this

will give an asymptotic normal approximation to the distribution of y/n <9n — 9n> .

Can 6,, — 0 be defined through (4) and Fisher consistency? This would
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give

= > ZE T (@) + & () — () (6, — 0))] f (2);

{i|n;>0} j=1

as above this results in

0,0 = [ Z ZE¢ (z +5J($Z)>f(mz)f/(mz)] :

{i|n;>0} j=1

{ ZZE wz+ag<wz>>1f<wi>+sn}

{i|n;>0} j=1

- | / B (@) + = @) (@) (@), (02)]
{[Evi@+e@if @@ +s,| (6)

X

From now on I will assume that the errors are symmetrically distributed, so
that E ¢ (¢)] = E[¢" (¢)] = 0. It remains to show that the remainder S, is
o (n—1/2)

If all this can be justified then, ignoring terms which are o (nfl/ 2) we have

0,—6=M_b,, for

M, - / B (r () +e (@) f (@) f' ()€, (dz),

b, - / Bl (7 (@) + = (@) f (2)€, (do):
then
[/¢ ({7 (z) +e(2) — f' () M;'b,}) f f’(a:)sn(dw)}l-
{ﬂfxw ({r (@) + 2 (2) — f" <w>M;1bn}>f<w>sn<dw>+0p<1>}
A iz, + op(1)}
Thus

Vn <0n — 9) ~\Vn(0, —0)+nA, 'z, = /nM ‘b, +nA 'z, (7)
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1.3 Evaluation of IE
To evaluate (6), and then (5), this, first expand M,, and b,, around 7 (z) as

Mo = /EW( (@) +4" (e (2) 7 (@) f (x) f' (2) &, (dz) +0(n1/?)
e [rearn o
b, = /E[¢(€(w))+w’(6(fv))7(w)1f(w)én(dw)+0(n_1/2)

= EWﬂ/(aﬂh/:f(w)T(aﬁéﬁ(dw>+-0(”LQ)3

M, 'b, = Mg, bo, + o0 (n /%), (8)

n

nz/f(w)f’(w)f = [ £lo)r

x
Now note that by the WLLN, A,, = E'[A,] + 0, (1), where, expanding around
7(z) = f' () Mg ,bou,

BIA = [ B (@) 4 @)~ f @My b)) S (@) @), () 0 07

thus

where

= [ @)+ (@) (7 (@)~ £ (@) My bua) | £ () £ (@€, (do) + 0 (n717)

X

= M, +0 (n_1/2) )

Finally,
Az, = i / b ({r (@) +&(2) - ' (@) M;"b,}) £ (2)€, (do)
NG / [ (= (@) + 0/ (¢ (@) (7 () — 1 (@) M;;"D,)] £ (2)€, (de) + 0, (1)
where it should be easy to show that
Vi / ¥ (e (@) (7 (@) - £ (@) M;'b,) f (2)€, (da)
- LE[w'(e(w))ﬁ(T(w)—f’( 2)M; b)) £ ()€, (d2) + 0, (1)
- E[w’(s)]/xx/ﬁr(w)f(w)& \/_/f M, b, + 0, (1)

= +/nb, —v/aM, M, 'b, + 0, (1),
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which is o, (1). Thus
Vi, = Vi [ (@) f @), d2)+ o, (1)

N % > ilﬁ(gj(wi))f(ﬂ?i)JrOp(l)

{iln;>0} j=1

~ AN (0,E [¢* (¢)] M) ,

and so

VnA tz, ~ AN <0, 27[1#—2(%1\%711) . (9)

(EW ()

U
~

e

By (7), (8) and (9), and with o2 = E [¢* ()] / (E [¢/' (£)])’,
6,6~ AN <M07}1b07n, %EMQ;) .

Expanding (5) and using (2) results in

IE = /Xp (7 (2)) p(dz) + ' (0) /Xf’ (z)E {(én - 9) (én - e)'] f (@) p(dz)+o(n)
~ [ oty ne) v 0) [ (o) |[Mibo by, Mik + EMGL £ (@) (i) 0 (a7
= / p(7(x))p(de) + ' (0) bgynM(I}LCMay}lbgyn + %‘ztrCMQ}l +o(n"), (10)
where

Cz/f(w)f’(fb)u(dw)-

2 Summary and conclusions

Ignoring terms which are o (n™!), the loss is given by (10). This is exact when
p(1) = 72, i.e. for LSE, and in general differs from that for LSE only in the
additive term fx p (7 (x)) 1 (dx), which does not depend on the design, and
the multiplicative constant 1)’ (0), which can be absorbed into ¢2. Thus the

e

ensuing minimax design problem is EXACTLY the same as for least squares
— i.e., is a problem which has already been solved. Too bad.



