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Abstract: Suppose one will estimate the regression parameters using or-
dinnary M-estimation, with �M-loss�, de�ned at (5), replacing squared error
loss. Although some details remain to be �lled in here, it seems to show that,
ignoring asymptotically neglible terms, the designs, robust against model mis-
speci�cation as well as outlying y-values, are identical to the minimax robust
designs for Least Squares.

1 Introduction

1.1 Model development

We consider an approximate regression model

E [Y (x)] � f 0 (x)�p�1; (1)

here the values of x 2 � (the design space) will be chosen by the experimenter.
At such values of x, E [Y (x)] is observed with additive random error:

Y (x) = E [Y (x)] + " (x) ;

for i.i.d. errors " (implying that the distribution of " (x) does not depend on
x).
The measure � (dx) on � � Rq is either Lebesgue measure or counting

measure (normed to have unit mass), depending on the structure of the design
space. For a convex, even, non-negative function �, with derivative  , we de�ne
� to be that which makes makes the approximation in (1) most accurate:

� = argmin
t

Z
�

� (E [Y (x)]� f 0 (x) t)� (dx) :

Equivalently, with

� (x)
def
= E [Y (x)]� f 0 (x)�;

we have Z
�

 (� (x))f (x)� (dx) = 0: (2)
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We bound the approximation error in (1) by assuming thatZ
�

� 2 (x)� (dx) � � 20=n; (3)

for a user-speci�ed constant � 0. Here n is the proposed number of observations.
Let �n be the design measure, placing mass

�n (xi) =
ni
n

at xi; we may later broaden this de�nition so as to allow any probability
measure on � to be a design, with an approximation (so that n�n (x) is an
integer) possibly required prior to implementation.
Estimation will be by M-estimation:

�̂n = argmin
�

Z
�

� (Y (x)� f 0 (x)�) �n (dx) ;

equivalently, with residuals

�̂n (x) = Y (x)� f 0 (x) �̂n

we have Z
�

 (�̂n (x))f (x) �n (dx) = 0: (4)

Let � be the class of functions � (�) de�ned by (2) and (3). With Ŷ (x) =
f 0 (x) �̂n we de�ne our loss as �Integrated Expected Error�:

ie (�; �) =

Z
�

E
n
�
�
E [Y (x)]� Ŷ (x)

�o
� (dx)

=

Z
�

E
n
�
�
� (x)� f 0 (x)

�
�̂n � �

��o
� (dx) : (5)

We seek a minimax design �0, i.e. one which minimizes

L (�) = max
�2�

ie (�; �) :

1.2 Asymptotic normality

To start, I think we should determine a sequence f�ng for which �̂n is
p
n-

consistent �i.e.
p
n
�
�̂n � �n

�
= OP (1). See (6) for a plausible conjecture.

Note that we can write

�̂n (x) = � (x) + " (x)� f 0 (x)
�
�̂n � �

�
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and then write (4) as

0 =
1

n

X
fijni>0g

niX
j=1

 
�
f� (xi) + "j (xi)� f 0 (xi) (�n � �)g � f 0 (xi)

�
�̂n � �n

��
f (xi) ;

here f"j (xi)g are the errors associated with the ni replicates at xi.
For remainders Ri, one term expansions around f 0 (xi)

�
�̂n � �n

�
, i.e.

 
�
f� (xi) + "j (xi)� f 0 (xi) (�n � �)g � f 0 (xi)

�
�̂n � �n

��
=  (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)

� 0 (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)f 0 (xi)
�
�̂n � �n

�
+Ri

together with Rn = 1
n

P
i niRi give

0 =
1

n

X
fijni>0g

niX
j=1

 (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)f (xi)

� 1
n

X
fijni>0g

niX
j=1

 0 (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)f (xi)f 0 (xi)
�
�̂n � �n

�
+Rn;

whence

p
n
�
�̂n � �n

�
=

24 1
n

X
fijni>0g

niX
j=1

 0 (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)f (xi)f 0 (xi)

35�1 �
8<: 1p

n

X
fijni>0g

niX
j=1

 (f� (xi) + "j (xi)� f 0 (xi) (�n � �)g)f (xi) +
p
nRn

9=;
=

�Z
�

 0 (f� (x) + " (x)� f 0 (x) (�n � �)g)f (x)f 0 (x) �n (dx)
��1

�

:

�p
n

Z
�

 (f� (x) + " (x)� f 0 (x) (�n � �)g)f (x) �n (dx) +
p
nRn

�
:

IF we can show that
p
nRn = oP (1) and that (�n � �) isO

�
n�1=2

�
then this

will give an asymptotic normal approximation to the distribution of
p
n
�
�̂n � �n

�
.

Can �n � � be de�ned through (4) and Fisher consistency? This would
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give

0 =

Z
�

E [ (Y (x)� f 0 (x)�n)]f (x) �n (dx)

=

Z
�

E [ (� (x) + " (x)� f 0 (x) (�n � �))]f (x) �n (dx)

=
X

fijni>0g

niX
j=1

E [ (� (xi) + "j (xi)� f 0 (xi) (�n � �))]f (x) ;

as above this results in

�n � � =

24 1
n

X
fijni>0g

niX
j=1

E 0 (� (xi) + "j (xi))f (xi)f
0 (xi)

35�1 �
8<: 1n X

fijni>0g

niX
j=1

E [ (� (xi) + "j (xi))]f (xi) + Sn

9=;
=

�Z
�

E [ 0 (� (x) + " (x))]f (x)f 0 (x) �n (dx)

��1
:�Z

�

E [ (� (x) + " (x))]f (x) �n (dx) + Sn

�
: (6)

From now on I will assume that the errors are symmetrically distributed, so
that E [ (")] = E [ 00 (")] = 0. It remains to show that the remainder Sn is
o
�
n�1=2

�
.

If all this can be justi�ed then, ignoring terms which are o
�
n�1=2

�
we have

�n � � =M�1
n bn, for

Mn =

Z
�

E [ 0 (� (x) + " (x))]f (x)f 0 (x) �n (dx) ;

bn =

Z
�

E [ (� (x) + " (x))]f (x) �n (dx) ;

then

p
n
�
�̂n � �n

�
=

�Z
�

 0
��
� (x) + " (x)� f 0 (x)M�1

n bn
	�
f (x)f 0 (x) �n (dx)

��1
��p

n

Z
�

 
��
� (x) + " (x)� f 0 (x)M�1

n bn
	�
f (x) �n (dx) + oP (1)

�
def
= A�1

n

�p
nzn + oP (1)

	
:

Thus
p
n
�
�̂n � �

�
�
p
n (�n � �) +

p
nA�1

n zn =
p
nM�1

n bn +
p
nA�1

n zn: (7)
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1.3 Evaluation of IE

To evaluate (6), and then (5), this, �rst expandMn and bn around � (x) as

Mn =

Z
�

E [ 0 (" (x)) +  00 (" (x)) � (x)]f (x)f 0 (x) �n (dx) + o
�
n�1=2

�
= E [ 0 (")]

Z
�

f (x)f 0 (x) �n (dx) + o
�
n�1=2

�
;

bn =

Z
�

E [ (" (x)) +  0 (" (x)) � (x)]f (x) �n (dx) + o
�
n�1=2

�
= E [ 0 (")]

Z
�

f (x) � (x) �n (dx) + o
�
n�1=2

�
;

thus
M�1

n bn =M
�1
0;nb0;n + o

�
n�1=2

�
; (8)

where

M0;n =

Z
�

f (x)f 0 (x) �n (dx) ; b0;n =

Z
�

f (x) � (x) �n (dx) :

Now note that by the WLLN, An = E [An] + op (1), where, expanding around
� (x)� f 0 (x)M�1

0;nb0;n,

E [An] =

Z
�

E
�
 0
��
� (x) + " (x)� f 0 (x)M�1

0;nb0;n
	��

f (x)f 0 (x) �n (dx) + o
�
n�1=2

�
=

Z
�

�
 0 (" (x)) +  00 (" (x))

�
� (x)� f 0 (x)M�1

0;nb0;n
��
f (x)f 0 (x) �n (dx) + o

�
n�1=2

�
= Mn +O

�
n�1=2

�
:

Finally,

p
nzn =

p
n

Z
�

 
��
� (x) + " (x)� f 0 (x)M�1

n bn
	�
f (x) �n (dx)

=
p
n

Z
�

�
 (" (x)) +  0 (" (x))

�
� (x)� f 0 (x)M�1

n bn
��
f (x) �n (dx) + op (1)

where it should be easy to show that

p
n

Z
�

 0 (" (x))
�
� (x)� f 0 (x)M�1

n bn
�
f (x) �n (dx)

=

Z
�

E
�
 0 (" (x))

p
n
�
� (x)� f 0 (x)M�1

n bn
��
f (x) �n (dx) + op (1)

= E [ 0 (")]

Z
�

p
n� (x)f (x) �n (dx)� E [ 0 (")]

p
n

Z
�

f 0 (x)f (x) �n (dx)M
�1
n bn + op (1)

=
p
nbn �

p
nMnM

�1
n bn + op (1) ;
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which is op (1). Thus

p
nzn =

p
n

Z
�

 (" (x))f (x) �n (dx) + op (1)

=
1p
n

X
fijni>0g

niX
j=1

 ("j (xi))f (xi) + op (1)

� AN
�
0; E

�
 2 (")

�
M0;n

�
;

and so
p
nA�1

n zn � AN

 
0;

E
�
 2 (")

�
(E [ 0 (")])

2M
�1
0;n

!
: (9)

By (7), (8) and (9), and with �2"
def
= E

�
 2 (")

�
= (E [ 0 (")])

2,

�̂n � � � AN

�
M�1

0;nb0;n;
�2"
n
M�1

0;n

�
:

Expanding (5) and using (2) results in

IE =

Z
�

� (� (x))� (dx) +  0 (0)

Z
�

f 0 (x)E

��
�̂n � �

��
�̂n � �

�0�
f (x)� (dx) + o

�
n�1
�

=

Z
�

� (� (x))� (dx) +  0 (0)

Z
�

f 0 (x)

�
M�1

0;nb0;nb
0
0;nM

�1
0;n +

�2"
n
M�1

0;n

�
f (x)� (dx) + o

�
n�1
�

=

Z
�

� (� (x))� (dx) +  0 (0)b00;nM
�1
0;nCM

�1
0;nb

0
0;n +

�2"
n
trCM�1

0;n + o
�
n�1
�
, (10)

where

C =

Z
�

f (x)f 0 (x)� (dx) :

2 Summary and conclusions

Ignoring terms which are o (n�1), the loss is given by (10). This is exact when
� (�) = � 2, i.e. for lse, and in general di¤ers from that for lse only in the
additive term

R
�
� (� (x))� (dx), which does not depend on the design, and

the multiplicative constant  0 (0), which can be absorbed into �2". Thus the
ensuing minimax design problem is EXACTLY the same as for least squares
�i.e., is a problem which has already been solved. Too bad.


