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Summary

Multiglicative correction factors are derived for the limiting F distributions of
several test statistics for parameter subsets in nonlinear regression. The factors depend
on the first and second derivatives of the model and are related to measures of intrin-
sic nonlinearity. An examgle is given for which the correction is substantial. A simi-

lar factor is obtained for the lack of fit test in nonlinear regression.

Some key words: intrinsic nonlinearity; lack of fit; limiting distribution; nonlinear

regression; parameter subsets




1. Introduction

Recently, Hamilton (1986) discussed several approaches to hypothesis testing and
confidence region construction for parameter subsets in nonlinear regression models.
Accurate approximations were obtained using a geometric approach and first and
second derivatives of the expectation function. The limiting statistical properties of
the various approaches are examined in this paper, and correction factors are derived
for the commonly used, but approximate F distribution. An example shows that
these factors can have a large effect. A similar correction factor is obtained for the

lack of fit test.

The nonlinear regression model is y=7(8) + ¢, where ¥, 7(6) and € are n
dimensional vectors respectively containing the observed responses, their expectations
and a spherically normal error with zero mean and variance ¢?I. The expectation vec-
tor depends nonlinearly on the p parameters 67 = (87,07), and also on some expla-
natory variables. In this article, the null hypothesis of interest is that the first p,
parameters, 6,, equal specified values 6, o Hamilton (1986) discusses four statistics
used for this test and its associated confidence region:
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In these expressions e = y—n(0) is the residual vector for a given 8. The matrix
P = VIVIV)"VZ denotes the projction matrix onto the subspace spanned by the
columns of §1/§0 = V = (V,,V,), and P, is the similar projection onto the subspace
spanned by the columns of §1/36, = V,. The symbols ~and ~ above a character indi-
cate evaluation using 0, o and, respectively, 0, equal to its restricted maximum Iikeli-
hood estimate @,, or its unrestricted maximum likelihood estimate @,. Similarly, ~
denotes evahiation with él and éz, the maximum likelihood estimates. F; is the fami-
liar likelihood ratio statistic, F, and F, are derived from score statistics using different
estimators for the nuisance parameters 8,, and F, uses the large sample normality of
8, and its independence from the residuals & For linear models the four F ratios are
equal and follow an F distribution with py and n—p degrees of freedom. For non-

linear models the F distribution is only an apprbximation except in certain cases.

Johansen (1983) showed that, as o2 goes to zero, the limiting distribution of F

when all the parameters are of interest is, to terms of order o3,

1—o*yn/p(n—p) (1.1)

times that of an F with p and n—p degrees of freedom. The factor ¥ depends on
d1n/86 and §21/§0? evaluated at 8, and is closely related to measures of intrinsic non-
linearity proposed by Beale (1960) and Bates and Watts (1980). Similar multiplicative

factors are presented in the following section for the F ratios enumerated above.

2. The correction factors

The correction factors are obtained by determining the limiting distributions of

the F ratios as o2 goes to zero, using an approach similar to that of Johansen (1983).
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Details of the derivation are shown in the appendix. Separate expansions are obtained

for the squared lengths in the numerator and denominator of each F ratio about the

true value of @ up to order four in e. Evaluation of these expansions is complicated,
but is facilitated by use of the vec operator, which places the column vectors of a
matrix into one bﬁg vector, the vec permutation matrix, and associated identities
related to differentation (see e.g. Henderson and Searle, 1979; Magnus and Neu-
decker, 1979; Wiens, 1985). In all four cases the numerator and denominator expan-

sions have the form

I(P—Pyel? + ¢ (€) + f,(€) +0,(c0%) 2.1
and

I(I—P)el? + ¢p(€) + fix(€) +0,(c%) (2.2)

respectively, where ¢; and f;; are homogeneous polynomials of degree three and four
in the elements of €, for j=1, 2 and i = 1,..., 4 When divided by o2, (2.1) and
(2.2) are, to terms of O,(0?), independently distributed as (1+a;;0%/p)x2 and
{1+0y,0%(n—p)ix2_,, where ap; = c~*E[f,]. Thus, to the same order of approxi-

mation, F, is distributed as

(1—y,0DFL, (2.3)
|
where 5
o o |
Vi n—p 71 . (2.4) |

For i = 3 and 4 the expressions for «;; are prohibitively complicated, involving

numerous terms and up to third derivatives of 7 with respect to 8. Because it is
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unlikely such terms could be used in practice, they are not reported here. Fori=1
and 2, however, the expectations reduce to manageable expressions which depend on

am/90 and §°n/86? but not on 8°1/99>. Their values are

0!11 = gy + an “= Xy (2-5)

au=——%br{(VTV)'1 s (VTV)la I-Plb

+%br[{vec(VTV)“l}{»ec(VTV)'l}T a I-Plb (2.6)
i =——;-b{{(VZTV,)"1 s (VIV)la P-P,b,

+%b{[{vec(V{Vz)-l}{veC(Vsz)-l}r « P-P)Jb, 2.7
gy = —%b{{(V{VQ"l a (VIV)la I-Plb,

+ 20T ec(VIV) Y oec(VIV) ™ @ 1Pl (28)

where b=1ec §21/90% and b, =vec ?n/3§0%. In these expressions, the matrix
differentiation conventions of Wiens (1985) are followed. Thus §7/90 is an naXp
matrix and §*1/96% = §(vec §1/§6)/80 is an npXp matrix. The vector b is therefore
np?x1 and contains all the second derivatives §%1,/30;00;, for
i=1.u,n,j=1l.,p and k =1,.., p. The np?X1 vector b, contains only the
second derivatives with respect to the nuisance parameters @,. Each of the terms
a4, Oy and o, is the difference between two positive terms and can be positive or
negative. For tests of composite hypotheses the correction factors are evaluated using
the hypothesized value for @, and the restricted estimate 0,. For the associated
confidence regions the factors are calculated using the unrestricted maximum likeli-

hood estimates 8, and §,. Spptvoll points out in the discussion of Johansen’s (1983)
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paper that it may be more accurate to allow the correction factors to vary over the

confidence region, although to do so complicates matters numerically.

3. Relationship to previous wark

Johansen (1983) considered the likelihood ratio statistic F; when all the parame-
ters are of interest. In this case oy and a, disappear, so from (2.4) and (2.5),
¥1 = nayy/p(n—p), and then a comparison of (1.1) and (2.3) shows that oy, =1y.
Jobansen’s (1983) result refines that of Beale (1960), whose more conservative factor
replaces y by —(p+2)N;./02 in (1.1). Beale (1960) showed that Noin is 2 measure
of intrinsic nonlinearity of the expectation surface, which consists of all points 1(0).
The formula for Ny, is the same as 02y/(p+2) if the sign of the first term in (2.6) is
Changed from negative to positive. Bates and Watts (1980) showed that N min 1S One
quarter of their mean square intrinsic curvature. Inspection of (2.7) and (2.8) shows
that a,;+ay, gives an expression identical to that for @5, but for the model with
only p, parameters obtained by fixing 8, at the hypothesized value. The sum oty o,
therefore measures the intrinsic curvature of the restricted expectation surface, and

%1, measures the difference in intrinsic curvature between the entire and restricted

expectation surfaces.

The awkwardness of the correction factors for Fa and F, reflects the fact that
both these statistics are based on rather crude methods of eliminating 6,. Hamilton
(1986) showed that a quadratic expansion for F4 in terms of the tangent plane coordi-
nates is more complicated than similar expansions for F; and F,, while the expansion

for F4 is unrealistically simple.




4, Numerical Method

The oy can be calculated accurately and efficiently using a technique similar to
that of Bates et al (1983). Orthogonal matrices U =(U,,U,) , Ny and N, are
obtained in suc;h a way that their columns form bases for the tangent plane to the
expectation surface at é, the normal acceleration space and the remainder of the sam-
ple space. Then (VIV)™1= LL?, where U=VL and L is lower triangular,

I-P = N;N7 + N,N7, and P—P, = U;U{. These decompositions simglify (2.6) to

_ -% hec A2 + i—t{g(e;f a I)Ae I?

where e, is the vector of length p with 1 in.the i'th row and zeroes elsewhere, and
A=(LT ¢« ND(§?n/96¥L. The matrix A is rpXp, where r<p(p+1)/2 is the
dimension of the normal acceleration space, and contains the nonzero entries in the
intrinsic acceleration array, AN, of Bates and Watts (1980). The first part of &y is
minus one half the sum of squares of all the entries in A¥, and the second is one
quarter the sum of squares of the traces of the faces of AN,

The constants o, and oy, are similar functions of a p;pyXp; matrix
Ay, =UEs UN(GM/80DL,, and an rP2XPs matrix
Ay, =(Lhe NI)N3?n/§0)Ly,, which contain the same entries as the first p; and
last 7 faces of the intrinsic curvature array for the restricted model with 6, fixed. The

intrinsic arrays and therefore the oy; are invariant under parameter transformations.

The necessary reduction of the model derivatives is achieved as follows. Let

W=(W,W,) be an nXp(p+1)/2 matrix containing the distinct vectors




&

8?1/36,80,, where W, contains the second derivatives with respect to the components

of 8. Obtain the QR decomposition (Vy,V,IW,, W,) = (U,,U,IN,,N,)S, where

R 0 Uf{wW, Ufw,
Rz Ry UTW, UIW,
0 0 NIW, NI'W,
0 ¢ 0 0

The columns of second derivatives can be pivotted to improve accuracy. Then
L=R"% L,, =Ry}, and the second derivative contributions to A, Ay and A, are
N{W, UfW,, and NfW,. Determination of r, and multiplications involving L and

L, can be achieved as in Bates et al (1983).
5. Testing for lack of fit

The usual test statistic for evaluating lack of fit in regression is

£ = =G5/ =p)
° ZEXGy—3) (n—k)

where £ is the number of distinct settings of the independent varables and n, is the
number of replications y; at the i'th setting, x,. The average and fitted values of y at
X, are ¥ and ¥ respectively. The denominator sum of squares is distributed exactly
as o2 ,; however, unlike the linear regression case, the numerator sum of squares

is neither exactly c’x,f_p nor exactly independent of the denominator.,
The statistic Fy is the likelihood ratio statistic for the test Hyy=n(0) +¢
versus H,: y=XB + €, where 8, = ElyIx,], i = 1,..., &, and X is the matrix of indi-

cators. The model under Hy is a submodel of that under H,, and a parameterization

!
{
i
i
i

s it
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¢ = ¢{(0) can be found for which the null hypothesis is Hg ¢; =0, where ¢, is
(k—p)x1. Thus, previous results can be applied, with i =1, p =%, and p, = p. For-
tunately it is not necessary to find ¢ or the model derivatives with respect to ¢
because of the invariance of the «;; under reparameterizations. Indeed, under H, the
model is linear in B, and the residual sum of squares is exactly X2, so o, =0 and
0ty = Ogpt0ay,. The sum g+, can be evaluated using the derivatives of the non-
linear model with respect to 6, and equals Johansen's (1983) y. From (2.4) and (2.3),

F is distributed as
Fg ~ (1+0%y/p)FEp (5.1)

The multiplicative correction factor for testing lack of fit is always closer to unity than

is Johansen’s (1983) factor (1.1) for the likelihood ratio test.

6. Examples
Data for the model 7, = 0,(1—8,e %) is given in problem N, pg. 524 of
Draper and Smith (1981). The multiplicative factors for the likelihood ratio test and

the score test are shown in Table 1 for their data set #1, using parameter estimates

8 = (263.71, 0.94801, 4.86911x10~%) and s2 = 50.98.
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Table 1: Multiplicative correction factors for hypothesis tests

parameters fixed | likelihood ratio | score

1 1.0023 1.0000

2 0.6500 0.6499

3 1.0024 1.0000

12 1.0014 1.0000

13 1.0014 1.0000

23 1.0014 1.0000

123 1.0011 1.0000

The first column of the table gives the indices of the parameters fixed by the null
hypothesis, and all possible subsets are considered. The second and third columns give
the multiplicative factors from (2.3), (2.4) and (2.5)- (2.8), calculated using the
numerical techique described in section 4. The score test is exact for all the parame-
ters in any model, and for the subset of nonlinear parameters in a partially linear
model (Hamilton, Watts and Bates, 1982; Hamilton, 1986), and this explains why the
score factor is exactly unity for the last three rows of the table. The factors are similar
for the two tests and are very close to unity, apart from the case where 0, is of

interest. A confidence interval for 6, without regard for the correction would be much
too large.

The correction factor for testing lack of fit can be illustrated using the data from

462.6/4

Hamilton (1986). For this data set Fs = 297/5

= 1.46, and the degrees of freedom

are 4 and 5. The correction factor (5.1) is 1.00006, which is so close to unity that it

has little effect on the table values. Thus the conclusion of no lack of fit remains valid.

YA R IR s 47
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7. Discussion

Results like those in Table 1 were obtained for 89 data sets corresponding to 37
different models with up to 5 parameters. The likelihood ratio factor for all the param-
eters was between 1 and 1.025 in every case, and exceeded 1.01 only 5 times. As
mentioned in section 5, the factor for testing lack of fit is even less extreme. Thus, on
the basis of this sample of data sets, it may be concluded that the correction factor can
be ignored when testing all the parameters or when testing lack of fit, unless the test
statistic is very close to the critical value.

The correction factors for subsets were usually farther from 1 than the correction
factors for all the parameters, and the smallest subsets usually had the most extreme
factors for a given data set. The likelihood ratio factor was usually positive and
farther from 1 than the score factor, which was usually less than 1. The subset likeli-
hood ratio factors were all between .6500 and 1.0612, while the subset score factors
were all between .6499 and 1.0021. Because the subset factors are occasionally sub-

stantially different from 1, their calculation is recommended.

Appendix
We first outline the passage from (2.1), (2.2) to (2.3), then derive (2.1), (2.2)

and evaluate the oy;.

Make the orthogonal decomposition € = v+w+f = (P—P,)e+P,e+(I-P)e, and
let Q;, Q, represent the terms in (2.1), (2.2). Evidently, f;(€) = ¥ mf pcPap for

some n*X1 vectors m; of constants, wWhere P = dalg fPla @lel, [ denotes an
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iterated Kronecker product, and the summation is constrained by a+b+c =4, With
$,(s) = (1—2s 02)P/2, the characteristic function yi(s,t) = Elexp(isQ, + #Q,)] may
be expanded as

U(s,2) = ¢, (), () + Ellisf (()+itf y()lexp(is v 1>+ ILD] + O {(s+2)0’} .

The expectations over the ¢; have vanished for reasons of symmetry. Similarly, those
utilizing odd a or b are also zero. The remaining expectations are easily evaluated

after noting that l»l, IL!, v/1v], {/ 1| are mutually independent. Thus

E[f(€)exp(is w2+t IL1)] = Tmf ipe®p 40 (5)Pn—pss EIE[popc ]
= a;¢, (s)p,—, () + O {(s+2)},

whence w( ¢P1{—(1+a10 2o Nnpl— t2(1+a202/n-p)}+0 {(s+2)a3)
and (2.3) follows.

We now obtain (2.1), (2.2) for F,, F,, and F,. The derivation for F, requires a
separate but similar development, not reported here. Those for Fy, F,, and F; can
be unified by the following device. Put H, ., = (O,, | I,), and consider the three
6 wpes (e,0,,0.,1,K¢)=@G6,8,1,,1,,p), G0 0,HH,py,
(& 0, 8, I,, H, p,). Each of the F, is composed of terms of the form IQe!?, where

=Q(8) is a projction matrix, Q its evaluation at 8,. For F ,» We require the
choices (e,Q) = (¢, I,,), (&, 1,,); for F, we use (&, P-P,), (8, I-P); for F; we use
(e, P=P,), (&, 1~P). In each case Kb, = 8. is g X1. For e either & or &, 8, is defined
by the ¢ normal equations KV7 {y-1(8,)} = 0. From this, we can expand 6. —0. in

Kronecker powers of €. The case e=e is then included via the relationship

ot s PR PR i
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62—62=KJT (6—0). Series expansions of e and 6 in powers of 0,—0. then yield
(2.1), (2.2).
Notation for, and properties of, the vec operator and vec- permutation matrix

I, are as in Wiens (1985). Write the normal equations as
(1, s {yn@ ) lec VKT =0 . (A.D)
Taylor series expansions around @« give
n(@.) =n(8,) + Gee VT KT@.~0.) 0 1)+ SH (KT @001 a 1,]
+ LI UET G013 & 1] +0,(09 (A.2)
vec VKT =vec VKT + {(B.—0.)7 & L, })(KPa 10b+0,(c?) . (A.3)
Here, c =wec §°1/963 is np3X1. Insert (A.2) and (A.3) into (A.1), together with
B.—0. =1(e) + ¢(&) +0,(c?) (A4)
where {(€) is 0,(0), ¢(€) is 0,(0%). Solving for! and ¢ gives
(e)=Me , ¢gle)=®" a I)N(ca € , (A.5)
where

M=KJT(ATA) AT |, A=V]JT |, R =A(ATA)YIAT |
N=1,s L,, a I)UT(ATA)™AT @ I-Ra vec KIT(ATA)'T}

—%{JT (ATAYIAT o JT(ATA)IAT o vec KIT(ATA)1AT} .

The use of KJ7 in the definitions of M and N extends the validity of (A.4) to the

case ¢ = e. Now (A.4) and (A.5) in (A.2) give
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«0,) = y—n(@,) =Se~T(ea €) —Ulca €a €+ 0,(a® (A.6)
where

S=L,—~VK’M , T=( & L), e VKT)N-i--%-{(KrM)[z]a vee 1}]

U=(F e L)E'Ma K/ a I)Navec I} + %(cr ¢ LKTM) q vec I}

Now expand Q in powers of 8. —f. and use (A.4), (A.5) to get

vec O =1ec Q + (§Q/90)KT Me
+(efa el a [I{NT(ba I)Ka I:hec 9Q/36

& %{(er)m s Iahec §7Q/6% +0,(c%) . (A7)

Inserting (A.6), (A.7) into I(ﬁﬁtl2 =(ef a )vec Q gives
IQel? = IQSel? + c(€) + f(€) +0,(c%) (A.8)
where c(€) is a homogeneous cubic polynomial in the elements of €, and

f(€) = (D) (vec TT QT — 21ec UTQS)
+[{NT(ba K)a ST a ST} ~-2(MTK s ST & T7)]vec 8Q/88

+ %{(MT K)?a ST a SThec §2Q/36% (A.9)
For each of the terms required in F;, F, and F3, QS is one of I-P, I~-P,, or P—P,.

The required versions of (2.1) and (2.2) are thus obtained as particular cases of (A.8)

and (A.9).

To evaluate the o = 0™*E[f(€)] and thus complete the derivation, we note that
o~Elel] = {1 +1_.4a I, )hec I:+ (vec I, @ vec I) (A.10)

(Magnus and Neudecker, 1979). The derivatives of Q, which are not required for Fy,
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may be calculated from the results in section 2 of Wiens (1985). When Q is of the

form C(CTC)~XCT for C an nXg matrix function of 8, then

8Q/4C = (I, DIC(CTO) e 1-Q} , 9Q/30 = (3Q/3CHAC/H8) (A.11)
52Q/90% = ((3C/80)7 a 121(3%Q/3CH(IC/0) + (I, & 3Q/9CN(H*C/30%1A.12)
0%Q/aC* ={I,, @ (L, I e I, )X
[L & (I, Hec CCTO ™ a CCTCY e 1-Q)
+{(CTC) e IQa vec I-Q}
-1, ,a LCCTC) " a (CTC)ICT @ vec I-Q}] (A.13)

Inserting (A.10), together with the appropriate versions (or differences of versions) of

(A.11) - (A.13) into (A.9) now yields (2.5)-(2.8), after a rather lengthly calculation.
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