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Abstract. Based on a data set consisting of 13,489 felled trees for 16 different species, 20 nonlinear
height-diameter functions were evaluated for major Alberta species. Because of the problem of
unequal variations for the dependent variable height, all functions were fitted using weighted
nonlinear least squares regression (w; = 1/DBH)). The examination and comparison of the weighted
mean squared errors, the asymptotic t-statistics of the parameters, and the plots of studentized
residuals against the predicted height show that many concave and sigmoidal functions can be used
to describe the height-diameter relationships. The sigmoidal functions such as the Weibull-type
function, the modified logistic function, the Chapman-Richards function, and the Schnute function

generally gave most satisfactory results.



Introduction

Predicting total tree height based on observed diameter at breast height outside bark is
routinely required in practical management and silvicultural research work (Meyer, 1940). The
estimation of tree volume, as well as the description of stands and their development over time rely
heavily on the accurate height-diameter functions (Curtis, 1967). Many growth and yield models
also require height and diameter as two basic input variables, with all or part of the tree heights
predicted from measured diameters (Burkhart et al., 1972; Curtis et al., 1981; Wykoff et al., 1982).
In the cases where the actual measurements of height growth are not available, height-diameter
functions can also be used to indirectly predict height growth (Larsen and Hann, 1987).

Curtis (1967) summarized a large number of available height-diameter functions and using
the Furnival’s index of fit (Furnival, 1961),' compared the performance of the linear functions based
on the second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) data. Since then, many
new height-diameter functions have been developed. With the relative ease of fitting nonlinear
functions and the nonlinear nature of the height-diameter relationships, nonlinear height-diameter
functions have now been widely used in height predictions (Kozak and Yang, 1978; Schreuder et
al., 1979; Curtis et al., 1981; Wykoff et al., 1982; Wang and Hann, 1988; Farr et al., 1989).

For major Alberta species, this study compared most of the published nonlinear height-
diameter functions as well as some functions not previously applied to the height-diameter
relationship. Although the main purpose of the study was to fit the most appropriate height-
diameter functions for major Alberta species, the principles and procedures used here are generally

applicable for other nonlinear model comparisons.

The data
Alberta Forest Service (AFS) provided 13,489 felled-tree data for this analysis. The data were

collected over the last two decades and the sampling trees were randomly selected throughout the
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inventory areas of the province to provide representative information for a variety of densities,
heights, species compositions, stand structures, ages, and site conditions. The data set was initially
used for developing individual tree volume equations. It contains records of many different variables
for individual trees and their surrounding environment. A detailed description of how the data are
collected and recorded can be found in Alberta Phase 3 Forest Inventory: Tree Sectioning Manual
(AFS, 1988). Two variables available from the records, diameter at breast height (DBH) outside
bark and total tree height for each tree, were selected to be used in this analysis.

The 13,489 trees include 16 different species. To facilitate the analysis, species are classified
into different species groups according to their similarity, importance, management objectives, and
number of observations (Table 1). Summary statistics including the mean (Mean), minimum (Min),
maximum (Max), and standard deviation (Std) for total tree height and DBH by species group are

shown in Table 2.

Functions selected for comparison

The selection of the height-diameter functions was based on the examination of the height-
diameter relationship as revealed by plotting total tree height against DBH for various species
groups. Two typical examples for white spruce (Picea glauca (Moench) Voss) and aspen (Populus
tremuloides Michx.) are shown in Figure 1 and Figure 2. It is clear that the height-diameter
relationship for white spruce (Firure 1) has a typical sigmoidal shape, with an inflection point
occuring in the lower portion of the data points. On the other hand, the shape of the height-
diameter relationship for aspen (Firure 2) may be regarded as either concave or sigmoidal, with no
apparent inflection point. Hence, both the typical concave functions and the sigmoidal functions
were selected for evaluations. Additional nonlinear functions that are common in biological studies
were also selected by considering the plots of height versus DBH compared to the typical graphs

of the various functions. Table 3 provides a complete list of the selected functions. Notice some of
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the functions (such as 1 and 6) often appear in transformed forms, and the dependent variable may
take the form of H-1.3 (Curtis, 1967). The quadratic height-diameter functions, first presented by
Trorey (1932) and advocated by Ker and Smith (1955) and previously used in the Pacific Northwest
(Staebler, 1954) and British Columbia (Watts, 1983), were not considered because extrapolation

of the functions often leads to unrealistic height predictions.

Methods
All 20 height-diameter functions have only one independent variable so the general form

of the functions can be written as:

[1] H;=£(D,,0)+e,

where D; is the ith observation of the independent variable DBH, 6 is a vector [0, 8,, ..., ep] of
p parameters, 6,, 8,, ..., 8, correspond to a, b, ¢, d in the selected functions and the maximum p
= 4; H; is the ith observation of the dependent variable height; & is the random error term.

A fundamental nonlinear least squares assumption is that the error terms g; are independent
and identically normally distributed with zero mean and constant variance o?, that is, g; ~ N(0, o).
However, in many forestry situations there is a common pattern of increasing variation for larger
values of the dependent variable. This is clearly evident from the scatter plots of height versus DBH
in Figure 1 and Figure 2, where the values of the error g; are more likely to be small for small DBH
and large for large DBH. When the problem of unequal error variances occurs, weighted nonlinear
least squares (WLS) is applied with the weights selected to give less importance to observations

with large errors. The estimated 6 for WLS is obtained by minimizing:

[2] SSE(8)=-% w; (H;-H,)?
i=1

where H; is the observed total tree height and H, is the predicted total tree height by the fitted
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function; w; is the weight corresponding to the point (D;, H)) and theoretically, is taken to be
inversely proportional to the variance of the error term.

The WLS estimates of the parameters use an iterative process with a starting value of 8
chosen and continually improved until the weighted error sum of squares SSE(8) is minimized.
Although there are many different methodologies that are available for obtaining the nonlinear least
squares estimates (Gallant, 1987; Seber and Wild, 1989), in general, one should be aware that the
estimates of the parameters are nor unbiased, normally distributed, or minimum variance; rather,
they achieve these properties only asymptotically (Ratkowsky, 1983, 1990; Gallant, 1987; Rawlings,
1988). As shown in Table 2, sample size for all species groups is reasonably large and therefore
asymptotic test statistics are applicable.

It should be noted that the use of the weighted nonlinear least squares changes the
estimates of the parameters and the standard errors of the estimates relative to the values obtained
in the absence of weighting (Ratkowsky, 1990). The interpretations of the weighted statistics are
not as straightforward as those in the cases of without weighting (Freund and Little, 1986; Carroll
and Ruppert, 1988). However, comparison of the fit statistics for various functions can be made if
the same weight is consistently used in all the function fittings and the same nonlinear least squares
iteration procedure such as the Gauss-Newton method is used.

The use of the WLS requires a known weight w;. In many practical applications, however,
this weight may not be readily available so an estimate based on the results of an unweighted least
squares fit is often necessary. Although there are many different procedures that are available for
approximately estimating the weight or implementing the generalized nonlinear least squares
techniques (Gallant, 1987; Judge et al., 1988), a simpler procedure that is based on the analysis
of the studentized residuals can be equally efficient.

Studentized residuals are the scaled version of residuals that are obtained by dividing each

residual by its standard error:



* I;
(3] ;- =

JMSETI-h,))

where ri* is the studentized residual, 1; is the residual, MSE is the mean squared error defined later

in [4], and h; is the ith diagonal element of the nonlinear "hat matrix" F(F“F)'F as shown in
Gallant (1987) and Rawlings (1988). Studentized residuals are designed to take into account that
residuals (r;) have intrinsically unequal variances even though the theoretical error term (e,) is
assumed to have constant variance (Draper and Smith, 1981 ; Montgomery and Peck, 1982; Neter
et al., 1990). For a correctly identified function, when the assumptions of the regression analysis
are met, the studentized residuals have zero mean and constant variance, and the plot of
studentized residuals against the predicted values of the dependent variable will show a
homogeneous band. For that reason, the use of the studentized residuals has been recommended
by Draper and Smith (1981), Montgomery and Peck (1982), Carroll and Ruppert (1988), and
Rawlings (1988).

Figure 3 shows an example of the plot of studentized residuals against the predicted height
for the modified logistic function 19 fitted to aspen data with unweighted nonlinear least squares.
The plot reveals an obvious unequal error variance problem and suggests that a weighting factor
in the form of w; = 1/DBH;* should achieve the desired equality of error variance. This function
was then fitted with WLS using six alternative values for k (k= 0.5, 1.0, 1.5, 2.0, 2.5, 3.0).
Comparison of the plots of studentized residuals showed that the most appropriate value to be k
= 1.0, which resulted in an approximately homogeneous band of the error variance as shown in
Figure 4. Accordingly this weighting value w; = 1/DBH; was used in all remaining analysis. The
calculation and the plotting of the studentized residuals is readily available on the SAS software
(SAS Institute Inc., 1985).

The studentized residuals based chosen weight w; = 1/DBH, was shown appropriate for all

the major Alberta species. The weight implies that the variance of H; or the variance of the errors
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is proportional to the corresponding DBH;. The weight also agrees with the weight chosen by Larsen
and Hann (1987) and Wang and Hann (1988) for major Oregon tree species and by Farr et al.
(1989) for western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Sitka spruce (Picea sitchensis
(Bong.) Carr.) in Alaska and British Columbia based on different procedures.

The fitting of the nonlinear height-diameter functions for various species groups was
accomplished using the PROC NLIN procedure on SAS statistics software (SAS Institute Inc., 1985).
The Gauss-Newton method as described in Gallant (1987) was applied in all the function fittings.
To ensure the solution is the global rather than the local least squares estimates, different initial

values of the parameters were chosen for the fits.

-Compan'son criteria

Three different criteria are selected for judging the performance of the chosen height-
diameter functions:
1. The asymptotic t-statistic

For any appropriate height-diameter function, the estimated coefficients should have small
asymptotic standard errors. The asymptotic t-statistic, which tests the null hypothesis that each
coefficient is zero, should be significant, meaning that the coefficient is reasonable to be included
in the function. It is relatively common in nonlinear modelling situations that a function may
include many unnecessary parameters, which may result in serious statistical consequences and lead
to convergence difficulties in parameter estimation. The principle of parsimony which favours the
simpler functions with good statistical properties should be preferred and the problem of
overparameterization (Draper and Smith, 1981; Ratkowsky, 1990), whenever possible, should be
avoided.
2. Mean squared error (MSE)

Mean squared error is error sum of squares divided by its degrees-of-freedom:



(4] Mop-SSE(B)
n_

where SSE(8) is defined in [2], »n is the number of observations, p is the number of parameters
included in the function. MSE is an asymptotically unbiased estimate of the error variance which
is often used as a measure of how well the function fits the data. Unlike the use of the coefficient
of determination (R?), which always tend to increase as extra parameters are added, the MSE takes
account of the number of parameters and may increase as extra parameters are added if the
reduction in the error sum of squares is not sufficient to compensate for the loss in the number of
error degrees of freedom (Kvalseth, 1985; Freund and Littell, 1986). The use of the other criteria
such as those described by Draper and Smith (1981), Judge et al. (1988), and Neter et al. (1990),
including the adjusted coefficient of determination R, % which is a rescaling of R? by degrees of
freedom, and the C‘!J statistic, is closely related to MSE and will likely lead to the same conclusions
(Montgomery and Peck, 1982; Rawlings, 1988).
3. The plot of studentized residuals against the predicted height

Various residual plots that portray the discrepancy between the original data and the fitted
functions have been regarded as among the most important criteria for judging the appropriateness
of the fitted functions. They have been used extensively in detecting model inadequacies and
studying the validity of the regression assumptions (Belsley et al. 1980; Draper and Smith, 1981;
Cook and Weisberg, 1982; Rawlings, 1988). The plot of studentized residuals against the predicted
height is used in this analysis. An adequately fitted height-diameter function should not show a
consistent underestimate or overestimate for the dependent variable height. The plot should reveal

an approximately homogeneous band of the error variance.

Results and discussion

Table 4 shows the least squares estimates of the parameters. The asymptotic ¢-statistics for
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testing the null hypothesis that each parameter is zero are calculated, and the insignificant
parameters are marked. The weighted MSE are summarized in Table 5. The R? values for the fitted
functions ranged from 0.70 to 0.92, with the average about 0.85.

Results in Table 4 indicate that for two parameter functions 1 to 9, there is no problem in
parameter estimations. With the exception of the parameter @ in function 7 for species group 6b,
all the t-statistics for the parameters of the functions are significant at @ = 0.05 level. The weighted
MSE results of the two parameter functions shown in Table 5 indicate that functions 3, 4, and 5
have lower MSE values compared the others, with function 4 generally gives most satisfactory
results. Function 8 has very poor performance with large MSE values. The examination of the plots
of studentized residuals for function 8 showed biased height estimates for all species groups when
DBH is small. The performance of the remaining two parameter functions is roughly the same and
can be regarded as intermediate.

Judged from the plots of studentized residuals and the weighted MSE values, the three
parameter functions 10 to 19 generally perform better than the two parameter functions. Parameter
a in function 16 showed several insignificant t-statistics (Table 4). The parameter estimates for the
remaining functions are generally satisfactory, with a few exceptions of insignificant t-statistics in
functions 10, 12, 15, and 19 for species group 4a and function 15 parameter b for species group
6b. All insignificant t-statistics occur when the sample sizes are relatively small. In terms of the
weighted MSE values for three parameter functions 10 to 19 (Table 5), functions 12, 13, 15, 18,
and 19 generally give lower values. Functions 10 and 14 give rather similar results and can also be
regarded as satisfactory. Function 17 has large MSE values and the plots of studentized residuals
showed biased estimates when DBH is small. Occasionally, function 11 fit the data well in some
particular cases but perform poorly in general.

Although the four parameter function 20 fitted the data well when the sample size is large

(such as for species group 1 and 3), the function failed to converge for species group 2b and 6b,
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and in fitting for species group 4a, has resulted in insignificant t-statistics for parameters b, ¢, and
d (Table 4). Several additional four parameter functions (include Bailey’s (1980) function) fitted
but not reported here also suggested that they might perform well for large samples, however,
insignificant t-statistics occured frequently, and in many cases, failed to converge or converged at
local rather than the global minimum when the sample size was small. The gain of using the four
parameter function may not be substantial. Depending on the choice of the initial values of the
parameters and the size of the samples, the fittings of the four parameter functions may also be
rather time consuming.

In terms of the fit of the functions for each species group, several functions may give similar
results and perform nearly equally well. However, judging from the weighted MSE values, the
asymptotic t-statistics of the parameters, and the principle of parsimony, the following functions are
most appropriate for each species group taken independently of the others:

1). The Chapman-Richard function 12 for white spruce;

2). The fractional function 16 for lodgepole pine, whitebark pine, and limber pine;
3). The Gompertz function 14 for jack pine;

4). The Weibull function 13 and the modified Schnute function 15 for aspen;

5). The two parameter Michaelis-Menten function 3 for white birch;

6). The Mitscherlich function 4 for balsam poplar;

7). The modified exponential function 10 for black spruce and engelmann spruce;
8). The modified logistic-type function 19 for balsam fir;

9). The Gompertz function 14 for douglas fir, alpine fir, alpine larch, tamarack, and western larch.

Conclusions and recommendations
This comparison of nonlinear height-diameter functions shows that depending on the sample

sizes and the species groups, many functions perfoﬁn well in describing the height-diameter



11

relationships for major Alberta species. The choice of a particular function may depend on the
relative ease of achieving convergence to a solution, the function’s mathematical properties and its
biological interpretations, and sometimes personal preference. Although any function may be
considered superior or inferior in a particular situation, in general, the following functions are
recommended for general use since they often give relatively lower MSE values, significant
asymptotic t-statistics, and satisfactory plots of studentized residuals against the predicted values
of the dependent variable. Any one of these functions could be used when the same model form
is desirable for several species. The recommended functions also have the flexibility to assume
various shapes with different parameter values and produce satisfactory curves under most
circumstances. All the curves assume biologically reasonable shapes that prevent the unrealistic
height predictions in the cases of extrapolating the functions beyond the range of the original data.
1). Function 12: H=1.3+a(1-e®®)¢, This three parameter Chapman-Richards function has been used
extensively in describing the height-age relationships. The results shown in this analysis indicate
that the function is also well suited for modelling height-diameter relationships. One limiting form
of the function - equation 14 also gives satisfactory fits, especially when the sample size is relatively
small, such as the fits for species group 2b, 4a, and 6b. However, equation 14 may not fit as well
as either the Weibull-type function or the Chapman-Richards function when the sample size is large.
A cautionary note for the Chapman-Richards function is that it approaches the asymptote too
quickly when the dependent variable is only weakly related to the independent variable.

2). Function 13: H=1.3+a(1-e" ). This Weibull-type function is consistently among the best
height-diameter functions. It is interesting to see that in fitting species group 4a data, the three or
four parameter Chapman-Richards function fails to produce significant t-statistic for the parameter
b. However, the Weibull function performs better and gives all significant t-statistics for the
parameters.

3). Function 19: H=1.3+a/(1+b"'D*). Although termed as the modified logistic-type function, the
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function is quite different from the commonly used logistic function (such as equation 11). It has
an inflection point at: H=1.3+a(c-1)/2¢c, D=[b(c+1)/(c-1)1"V¢, which allows the function to
accommodate many shapes that are commonly described by other sigmoidal functions. The function
has an asymptote at H = 1.3 + a. It fits the height-diameter relationship well and is consistently
among the best height-diameter functions. As examples, the fits of the function for white spruce and
aspen are shown in Figure 5 and Figure 6. The plot of studentized residuals against the predicted
height for aspen was shown in Figure 4. It is clear that the function appropriately fits the data.
4). Function 18: H=1.3+a-e®”®*9)_ This exponential-type function is particularly well suited for
deciduous species. It has an asymptote at H=1.3+a and an inflection point at H=1.3+a-e?, D=-c-
b/2. The function might slightly overestimate height for large diameter trees.
5). Function 15: H={y,b+(cb-ylb)[1-e‘atD‘DD}]/[l-e‘a(Dz‘Dﬂ)]}1/ b, This modified Schnute function (with
origin set at D = 0, H = 1.3) was shown to fit the height-diameter relationships reasonably well.
With the versatility of this function and its abilities to describe various biological shapes, and the
relatively easy parameter estimations and interpretations, further application and evaluation of the
function should prove useful. The function may not be so complicated as it looks.

It should be straightforward to extend the functions analysized in this study to model other
forestry relationships such the volume-age, height-age, and basal area-age functions. The parameter

estimates in Table 4, if appropriately scaled, might be used as the initial values in new applications.
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Table 1. Species, species code, and species group

Species group  Species Species code Scientific name
1 White spruce SW Picea glauca (Moench) Voss
2a Lodgepole pine PL Pinus contorta var. latifolia Engelm.
Whitebark pine PW Pinus albiculis Engelm.
Limber pine PF Pinus flexilis James
2b Jack pine PJ Pinus banksiana Lamb.
3 Aspen AW Populus tremuloides Michx.
4a White birch BW Betula papyrifera Marsh.
4b Balsam poplar PB Populus balsamifera L.
5 Black spruce SB Picea mariana (Mill.) B.S.P.
Engelmann spruce SE Picea engelmannii Parry
ba Balsam fir FB Abies balsamea (L.) Mill.
6b Douglas fir FD Pseudoisuga menziesii (Mirb.) Franco.
Alpine fir FA Abies lasiocarpa (Hook.) Nutt.
Alpine larch LA Larix lyallii Parl.
Tamarack LT Larix laricina (Du Roi) K. Koch
Western larch LW Larix occidentalis Nutt.
Table 2. Species group based tree summary statistics
Species Number DBH (cm) Height (m)
group of sample
trees Mean Min Max Std Mean Min Max  Std
1 3101 2641 1.20 89.00 12.19 20.09 1.70 38.40 6.98
2a 3199 22,10 1.10 66.60 8.59 18.11 1.72 37.60 5.18
2b 659 18.01 1.60 45.00 9.81 14.74 2.58 28.20 6.38
3 3647 21.36 1.10 64.40 10.12 1877 223 2194 546
4a 102 12.11 1.60 32.00 5.87 11.88 3.18 2150 4.13
4b 510 22,75 1.10 52.90 9.79 17.76 290 31.95 4.88
5 1628 14.10 1.10 55.30 6.08 12.20 1.76 30.63 4.26
ba 508 21.15 1.30 53.00 9.19 16.11 1.78 31.40 5.50
6b 135 20.60 3.30 48.70 9.72 1326 3.35 2233 4.98
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Table 3. Nonlinear height-diameter functions selected for comparison

Number and form!

References

[ T R N

~

.H=1.3+aD"

H=13+¢*>/(@+D)

. H=1.3+aD/(b+D)
.H=1.3+a(1-e"D
. H=1.3+D?%/(a+bD)?

.H=1.3+a-e?P

.H=1.3+10°DP

8. H=1.3+aD/(D+1)+bD
9. H=1.3+a[D/(1+D)]®

10.
11,
12.
13.
14.
15.

16.
17.
18.
19,
20.

He1. 3+ 00
H=1.3+a/(1+b-e*P)
H=1.3+a(1-ePD)¢
H=1.3+a(1-ePD%)

-cD
H=1.3+aeb*

H=1.3+aD"P"
H=1.3+a-e”(0+0)
H=1.3+a/(1+bD
H=1.3+a(1-b-e*D)d

H=1.3+D?%/(a+bD+cD?)

Stoffels and Van Soest, 1953; Stage, 1975; Schreuder et al., 1979
Wykoff et al., 1982

Bates and Watts, 1980; Ratkowsky, 1990

Meyer, 1940; Farr et al., 1989; Moffat et al., 1991

Niéslund, 1936; Loetsch, et al., 1973

Ek, 1973; Burkhart and Strub, 1974; Cao et al., 1982; Burk and Burkhart,
1984; Buford, 1986; Bolstad and Allen, 1987; Zakrzewski and Bella, 1988
Larson, 1986

Watts, 1983

Curtis, 1967; Pordan, 1968

Curtis et al., 1981; Larsen and Hann, 1987; Wang and Hann, 1988
Pearl and Reed, 1920; Robertson, 1923

Richards, 1959

Kozai; and Yang, 1978; Yang et al., 1978

Winsor, 1932; Medawar, 1940

H={y]b+(cb_y]b)[1_e'afD-Do)]/[l_e'a(Dz-Do)]}I/b

Schnute, 1981; Bredenkamp and Gregoire, 1988; Yang and Feng, 1989
Curtis, 1967; Pordan, 1968

Sibbesen, 1981

Ratkowsky, 1990

Ratkowsky and Reedy, 1986

Richards, 1959

'H=total tree height in metres; D=DBH in centimeters; a, b, ¢, d =parameters to be estimated; e=base of the natural logarithm

(=2.71828); 1.3=a constant commonly used to avoid the prediction of a height less than 1.3 metres when DBH is small. For

equation 15: ¥1=1.3, D4=0.0, D,=100.0.
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Function Parameter

Estimates for various species groups

1 2a 2b 3 4a 4b 5 6a 6b
;8 a 1.7313 2.0196 1.3150 2.8211 1.9024 2.6947 1.2137 1.2469 1.1000
b 0.7353 0.6899 0.8126 0.6056 0.6986 0.5871 0.8344 0.8163 0.7954
2 a 3.6042 3.4766 3.3789 3.3910 3.0097 3.3238 3.2087 3.4184 3.2256
b -16.1901 -13.8574 -12.6489 -10.1272 -7.5330  -10.9470 -11.3747 -14.3731 -14.1907
3 a 62.9784 51.4152 65.6462 39.9983 33.4618 37.0257 59.4777 58.3695 51.2611
b 58.0915 43.2873 65.5679 24.7274 24.2608 26.0386 60.7484 59.0756 64.0364
4 a 38.8548 32.4692 37.9810 27.1204 21.3657 25.3302 34.1127 34.1281 29,9225
b 0.0270 0.0349 0.0260 0.0549 0.0614 0.0512 0.0283 0.0285 0.0263
5 a 1.8737 1.6413 1.6840 1.1800 1.0601 1.3209 1.5986 1.8069 2.0261
b 0.1519 0.1639 0.1666 0.1753 0.2089 0.1813 0.1814 0.1663 0.1805
6 a 35.2854 30.8991 27.5419 28.2674 18.3182 26.6049 22.7872 29.3762 23.8673
b -14.4531 -12.1948 -10.7183 -8.5007 -5.6927 -0.4854 -0.3829 -12.8412 -12.3567
7 a 0.2388 0.3048 0.1189 0.4509 0.2793 0.4305 0.0838 0.0953 0.0413*
b 0.7350 0.6903 0.8126 0.6053 0.6986 0.5871 0.8347 0.8167 0.7955
8 a 3.8180 4.9317 2.0670 6.4194 3.2636 6.5487 1.5058 1.3123 1.8794
b 0.5738 0.5487 0.6401 0.5349 0.6306 0.4507 0.6746 0.6418 0.4951
9 a 35.9867 31.6026 28.3882 28.9552 19.2299 27.1752 23.6995 29.9060 24.4681
b 15.2897 13.0009 11.6357 9.3290 6.5500 10.1979 10.3221 13.5674 13.2207
10 a 4.3207 4.2512 6.1440 3.8984 6.1541 4,3133 4.6202 4.0034 4.4488
b -6.5426 -5.7514 -6.6024 -4.7580 -5.8482 -4.5425 -5.6452 -6.4430 -6.0225
c -0.4872 -0.4588 -0.2204 -0.5182 -0.1778*  -0.3614 -0.3577 -0.5375 -0.3793
121 a 26.0850 23.7434 21.8863 22.5297 16.9311 21.5241 17.0593 19.2315 17.3308
b 8.5482 5.9593 8.5656 5.9461 5.7035 5.0012 8.59054 15.9742 9.7975
c 0.1339 0.1311 0.1612 0.1704 0.1996 0.1404 0.2063 0.2204 0.1703
12 a 32.0363 29.4214 31.7252 25.7461 25.3245 26.0462 25.0216 23.6894 22.3239
b 0.0456 0.0457 0.0376 0.0669 0.0409* 0.0464 0.0518 0.0724 0.0522
c 1.2974 1.1381 1.1150 1.1308 0.8779 0.9465 1.2004 1.6232 1.3270
13 a 31.0481 29.0401 29.8908 25.4088 26.2522 26.1321 24.5127 22.4771 20.8982
b 0.0209 0.0318 0.0269 0.0486 0.0579 0.0535 0.0308 0.0179 0.0219
c 1.1973 1.0902 1.1061 1.0892 0.9017 0.9659 1.1361 1.3905 1.2490
14 a 27.8725 25.2831 24.1320 23.5467 18.4726 22.6368 18.8367 20.9530 19.0959
b 2.8490 2.4343 2.7151 2.3800 2.2367 2.1570 2.8446 3.6061 2.9034
c 0.0848 0.0873 0.0943 0.1152 0.1235 0.0951 0.1247 0.1259 0.0988
15 a 0.0494 0.0466 0.0450 0.0696 0.0382* 0.0464 0.0536 0.0929 0.0685
b 0.6387 0.8289 0.7717 0.8151 1.2179 1.0716 0.7411 0.2072 0.4335*
C 32.4840 30.3314 30.5534 26.8357 26.5976 27.0745 26.1924 23.8101 21.9696
16 a 2.6944 1.4431 0.3504* 0.8408 -0.2324* 0.0038* 1.2706 4.4024 2.4627*
b 0.6514 0.6806 0.9442 0.4951 0.7813 0.7027 0.8044 0.4670 0.9370
c 0.0214 0.0233 0.0168 0.0284 0.0273 0.0270 0.0246 0.0311 0.0273
17 a 36.8921 28.4645 39.5300 26.1702 22.7752 22.9433 20.8584 27.8154 35.2386
b -13.0405 -16.5206 -8.3474  -13.1935 -7.4274  -20.9985 -14.1796 -15.7403 -8.1497
c 1.3051 1.5168 1.1040 1.5795 1.3156 1.7680 1.5780 1.4637 1.0545
18 a 43.4552 38.6721 43.7438 33.6553 31.0846 33.2971 31.7946 34.2258 33.0533
b -24.1871 -21.4197 -28.1548 -14.5592 -18.4473 -18.4014 -18.5302 -18.7186 -25.2112
¢ 5.0167 5.0827 T.3227 3.5766 5.8302 5.5088 4.0490 3.1265 5.8787
19 a 39.3710 37.5445 46.1750 31.3194 41.9635* 34.4682 32.8728 27.6307 28.4451
b 0.0130 0.0203 0.0174 0.0328 0.0365 0.0369 0.0204 0.0109 0.0146
c 1.3408 1.2169 1.1253 1.2487 0.9155 1.0589 1.2307 1.5829 1.3299
20 a 32.5525 30.8722 24.4874%* 25,4676 20.7813 25.2716 31.3035 23.3678 17.8206**
b 1.0200 1.0413 0.2528** (0,9687 0.8247* 0.9574 1.0334 0.9716 0.0314%**
e 0.0428 0.0383 0.0878** 0.0709 0.0767* 0.0530 0.0298 0.0766 0.1069**
d 1.2034 0.9570 9.4899**  1.2419 1.5810* 1.1025 0.8964 1.7781 90.9244**

Note: * - the asymptotic t-statistic for the parameter is not significant at @ = 0.05 level; ** - convergence is not obtained.



20

Table 5. Comparison of nonlinear height-diameter functions: weighted mean squared errors

Weighted MSE for various species groups®

Function
1 2a 2b 3 4a 4b 5 6a 6b
1 0.5082 0.3886  0.2938  0.3863  0.3326 03677 02685  0.3366  0.3359
2 0.4675 0.3800  0.3564 03370 03781  0.3687 02702 02577  0.3373
3 0.4596 03702 02770 03265 03257 03465 0.2571 02865  0.3171
4 0.4539 0.3686 02748  0.3189%) 0.3261@ 03454 02566 02813 03147
5 0.4443 03685 02976  0.3218  0.3557 0.3542 02547 02466  0.3124
6 0.4832 0.3891 04049 03599  0.4268 03828 02876 02701  0.3584
7 0.5082 0.3886  0.2938  0.3863  0.3326 03677  0.2685  0.3366  0.3359*
8 0.5841 0.4210 03170 04778 03539 04112 0.2843 03894  0.3588
9 0.4751 0.3842 03801  0.3477  0.4009  0.3756  0.2784  0.2642  0.3474
10 0.4459 03668 02804 03234  0.3295* 03500 025020 02516 03158
Hi | 0.4935 03877 027012 03400 03314 03598 02915 02865  0.30352
12 04424 03674® 02720  03166@ 03268* 0.3458@ 025340 (0.24492 0.3089
13 0.4426®)  0.3675®) 027235 031651 03271@ 03459® 02539 024585 030803
14 0.4597 03761  0.2648) 0.3236  0.3267® 03504 02694 02533  0.3024)
15 0.4430%) 03676  02717® 0316500 03272¢ 034593) 02544 02463  0.3069*
16 0.4435 036671V 0.2767* 03200  0.3275* 0.3472* 02510® 02460  0.3131*
17 0.4658 04033  0.2857 03795  0.3596  0.4192  0.3014 02568  0.3080%
18 0.4433 03677  0.2708® 0.3181™ 03273 03463 02540 0.2455@ 030900
19 0.4427® 03671 02747  03180% 03279+ 03469 025254 0244500 0.3100
20 0442310 03668@ 02662+ 031651 03288* 0.3462@ 02507@ 024533 0.3100%

A the smallest five MSE values for each species group with ranks 1 (smallest) to 5 in parentheses; * - the MSE values

are not compared because the function has insignificant t-statistic(s) or the convergence is not obtained.
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