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Abstract There is some, not inconsiderable, resistance to the adoption of
robust methods �and not only in design. In design this might originate because
so many of the �optimally robust�designs are computationally quite intensive.
Here we consider situations in which the classically optimal designs have been
obtained, and call for replication at a small number of design points. We put
forward the thesis that a fair degree of robustness can be obtained, simply by
spreading the replicates out into clusters of nearby, but distinct, locations.

1 Introduction

� Experimenter �ts (the �null�model) a, linear or nonlinear, response

E0 [Zjx] = �0 (x;�) ; (1)

with a p-dimensional parameter vector �, where the independent vari-
ables x are chosen from a design space � � Rq of �nite measure. We
denote by � (dx) the (continuous or discrete) uniform probability mea-
sure on �. Unbeknownst to the experimenter, the true (�alternate�model)
response is

E1 [Zjx] = �1 (x) : (2)

� As is common, if the model is truly nonlinear we consider locally optimal
designs, in which the experimenter speci�es an initial estimate ��, ex-
pands around it, and �ts the resulting linear approximation model. For
this, de�ne

f (x) = _�0 (x;��) and Y = Z � [�0 (x;��)� f 0 (x)��] ;

obtaining the null approximation

E0 [Y jx] = f 0 (x)�; (3)

with regressors f (x).
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� De�ne
M� =

Z
�

f (x)f 0 (x)� (dx) ;

and assume thatM� is positive de�nite. We de�ne the �target�parame-
ter �0, e¤ecting the best L2-approximation of the alternate response by
the linear approximation to the null responses, by

�0 = argmin
�
D1 (�) ; (4)

where

D1 (�) =

Z
�

fE1 [Zjx]� E0 [Zjx]g2 � (dx)

=

Z
�

fE1 [Zjx]� E0 [Y + (�0 (x;��)� f 0 (x)��)]g
2
� (dx)

=

Z
�

f�1 (x)� �0 (x;��)� f 0 (x) (� � ��)g
2
� (dx) : (5)

De�ne also
� 2 = D1 (�0) = min

�
D1 (�) : (6)

� Choice of ��. The �best�starting value is

��;0 = argmin
��
D0 (��) ; (7)

where

D0 (�) =

Z
�

f�1 (x)� �0 (x;�)g
2 � (dx) :

Assuming that ��;0 is a critical point,Z
�

f�1 (x)� �0 (x;��;0)gf (x)� (dx) = 0;

and so if this starting value is used, we have �� = ��;0 and so

D1 (�) =

Z
�

f�1 (x)� �0 (x;��;0)� f 0 (x) (� � ��;0)g
2
� (dx)

= D0 (��;0) + (� � ��;0)0M� (� � ��;0)0

with a minimum at �0 = ��;0. We de�ne

� 20 = D0 (��;0) = min
�
D0 (�) :
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� Let � be a design on � intended for (3), with I points of support, placing
ni observations at xi (

PI
i=1 ni = n). We also view � as a probability

measure, in terms of which

M � =

Z
�

f (x)f 0 (x) � (dx) =

IX
i=1

ni
n
f (xi)f

0 (xi) ;

r� =

Z
�

f (x) �1 (x) � (dx) =

IX
i=1

ni
n
f (xi) �1 (xi)

s� =

Z
�

f (x) �0 (x;��) � (dx) =
IX
i=1

ni
n
f (xi) �0 (xi;��) :

The covariance matrix and bias vector of the least squares estimate �̂,
when the data actually arise from (2) and the error variance is �2, are

cov
h
�̂
i
= �2 [X 0 (�)X (�)]

�1
=
�2

n
M�1

� ; (8)

bias
h
�̂
i
= E

h
�̂
i
� �0

= M�1
�

IX
i=1

ni
n
f (xi) f�1 (xi)� �0 (xi;��)g � (�0 � ��)

= M�1
� (r� � s�)� (�0 � ��) : (9)

� Let �0 be a design on � which is optimal for (3), with respect to some
optimality criterion � (�) (typically based onM �) to be minimized. Sup-
pose that the study is of size n, and that then the implementation of �0
calls for replicates to be made at several locations. We intend to con-
struct and investigate �cluster�designs ~� in which the replicates called for
by �0 are instead spread out amongst nearby locations. We will compare:

1. �
�
~�
�
with � (�0); of course the latter is smaller but we hope to

�nd that the relative e¢ ciency, as measured by � (�0) =�
�
~�
�
, is not

much less than one.

2. The behaviour of the two designs under the alternate model, as
measured by the integrated mean square error (imse) of

Ẑ (x) = [�0 (x;��)� f 0 (x)��]+Ŷ (x) = �0 (x;��)+f 0 (x)
�
�̂ � ��

�
;

as an estimate of (2). This is de�ned by

imse(�) =
R
�
E

�n
Ẑ (x)� �1 (x)

o2�
� (dx); in the Appendix we
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show that

imse (�) =
�2

n
tr
�
M�M

�1
�

�
+



M 1=2

�

�
M�1

� (r� � s�)� (�0 � ��)
�


2+� 2:
(10)

We shall evaluate and compare imse(�) and imse
�
~�
�
.

� Brie�y outline minimax?

1.1 Linear null models

� If the null model is linear, i.e. �0 (x;�) = f 0 (x)�, then Y = Z and
(1), (3) agree, and f (x) does not depend on the parameters. Both
(4) and (6) simplify: �0 (x;��) = f 0 (x)��, M�1

� s� = �� and so, with

r�
def
=
R
�
f (x) �1 (x)� (dx),

�0,linear = M�1
� r�;

� 2linear =

Z
�

(�1 (x)� f 0 (x)�0)
2
� (dx) =

Z
�

�21 (x)� (dx)� �00,linearM��0,linear:(11)

Similarly,M�1
� s� =M

�1
� s� = ��, and the bias and imse simplify:

bias
h
�̂
i
linear

= M�1
� r� �M�1

� r�:

imse (�)linear =
�2

n
tr
�
M�M

�1
�

�
+



M 1=2

�

�
M�1

� r� � �0,linear
�


2 + � 2:

� Box and Draper (1959) consider linear null and alternative responses,
i.e. �1 (x) = g

0 (x)�, with g (x) = (f 0 (x) ;h0 (x))0 so that (3) is nested

within (2). They study designs under which bias
h
�̂
i
linear

vanishes; a suf-

�cient condition for this is
R
�
f (x) g0 (x) � (dx) =

R
�
f (x) g0 (x)� (dx).

For instance if the elements of g (x) are powers of x this requires the
moments of the design to agree with those of the uniform distribution
on � up to a su¢ ciently high order. Box and Draper (1959) also inves-
tigate designs minimizing the imse; they are led to comment (p. 622)
that �... the optimal design in typical situations in which both variance
and bias occur is very nearly the same as would be obtained if variance
were ignored completely and the experiment designed so as to minimize
the bias alone�.
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2 Examples

2.1 Example 1: SLR, quadratic alternative

� This example somewhat revisits those of Box and Draper (1959) and Hu-
ber (1975). But in the former the emphasis was on constructing designs
minimizing the imse at the alternate model, and in the latter on the
construction of designs with giving minimax protection within a class of
alternatives. Here we focus on the properties of the cluster designs.

� We take � = [�1; 1], f (x) = (1; x)0, �0 (x;�) = f 0 (x)� and �1 (x) =
3
p
5
2
�
�
x2 � 1

3

�
, so that (11) holds with r� = �0 = 0 and

M� =

�
1 0
0 1

3

�
:

We consider symmetric designs only, with � = fxi; ni=ngIi=1. Denote by

�2 =
IX
i=1

ni
n

�
x2i �

1

3

�
the di¤erence between the second moment of the design, and that of �.
Then

M � =

�
1 0
0 �2

�
;

r� =
3
p
5

2
�

�
�2
0

�
;

so that bias
h
�̂
i
linear

= r� and

imse (�)linear =
�2

n
tr
�
M�M

�1
�

�
+



M 1=2

� M�1
� r�




2 + � 2
=

�2

n

�
1 +

1

3�2

�
+ � 2

�
45

4
�22 + 1

�
:

� We compare �0, which places half of the observations each endpoint of �,
with ~�, which spreads these replicates out into clusters of equally spaced
points, over two subintervals [�1;�1 + c] and [1� c; 1]. The value of �c�
is chosen so that these two intervals together constitute 100p% of �, with
p chosen by the user, For instance if n = 10 and p = :1, then c = p and
~� = f�0:900;�:925;�:950;�:975;�1:00g. See Figure 1.
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Figure 1: Response functions and design points of ~�.

� As well as imse(�) we compute the losses �D =
�
cov

h
�̂
i�1=2

and

�I = tr
�
M�cov

h
�̂
i�
; (integrated variance),both for �0 and ~�. We then

display the ratios imse
�
~�
�
=imse(�0) and �

�
~�
�
=� (�0) for � 2 f�D; �Ig.

� For instance, with n = 10; p = :1; � = � = 1 we obtain

Losses =
imse phiD phiI

xi0 6.15000 0.12247 0.15000
xitilde 4.81891 0.13240 0.15844
ratio 0.78356 1.08108 1.05625

With these parameters but � = �=
p
n only the �rst column changes:

imse
xi0 0.75000

xitilde 0.62448
ratio 0.83265

� Would either of these designs detect a quadratic response of the form
considered here? The F-test of the null hypothesis that the response is
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linear, vs. the alternate that it is quadratic, based on N observations
has power

P
�
F 1n�3

�
�2
�
> f�

�
;

where P
�
F 1n�3 > f�

�
= � determines f� and the non-centrality parame-

ter (derived in the Appendix) is

�2 (�) = (45=4)Nvar�
�
X2
� � 2
�2
: (12)

Of course var�0 [X
2] = 0 and there is no power. With N = n = 10 as

above, var~� [X
2] = :0045 and the powers of the test, with size � = :05,

and � = � or �=
p
n are only :095 and :054, respectively. These improve

if p is increased.

� To maximize the power of this test a design should maximize var� [X2],
this is the design with masses (:25; :50; :25) at (�1; 0;�1). Putting this
amount of mass at 0 is somewhat extreme; a reasonable �compromise�
design, for e¢ ciency of estimation and a reasonable power in this test,
would be the D-optimal design for quadratic regression, placing mass 1=3
at each of (�1; 0; 1). In fact this is the solution of Studden (1982) to the
problem of maximizing the power of the test, subject to the requirement
that the variance of the estimate of the quadratic coe¢ cient be no more
than 9=8 that of the optimal design for estimating this coe¢ cient. We
consider this D-optimal design next.

2.2 Example 2: Quadratic null, nonlinear alternative

2.3 Example 3: MM null, exponential alternative

� Source: Biedermann and Yang (2015)

� Null (i.e., experimenter�s �tted) model is Michaelis-Menten:

E [Y jx] = �0 (x;�) =
�1x

�2 + x
; �1; �2 > 0; 0 � x � B;

here we have set � = (�1; �2)
0. The alternate model will be either this

MM model with an incorrect initial value, or the exponential response

�1 (x;�) = �1
�
1� e��2x

�
;

where � = (�1; �2)
0, or both. We tentatively take B = 400 and � =

(:1; 1)0.
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Figure 2: Michaelis-Menten and exponential responses. Left: optimal local
value ��;0; right: local value �0 6= ��;0.

� For a design � with I points of support, placing ni observations at xi
(
PI

i=1 ni = n), the information matrix is

M (�;��) =
1

n

IX
i=1

nif (xi)f
0 (xi) ;

where

f (x) = _�0 (x;��) =

 
x

�2+x

� �1x
(�2+x)

2

!
j��

=
x

�2 + x

�
1

� �1
�2+x

�
j��

:

� For a design of size n = 2m, the D-optimal (local) design �0 has

x1 = � � �:xm =
B��;2

B + 2��;2
;

xm+1 = � � � = xn = B:

� We �rst compute

��;0 = argmin
��

Z
�

f�1 (x)� �0 (x;��)g
2 � (dx) ;

� 20 =

Z
�

f�1 (x)� �0 (x;��;0)g
2 � (dx) ;
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Figure 3: Ratios �D
�
~�1j��;2

�
/�D (�1j��;2) .

the e¢ ciency measures based onM (�) and

imse (�) =
�2

n
tr
�
M�M

�1
�

�
+



M 1=2

� M�1
� (r� � s�)




2 + � 20;
at �0 and ~�, using the �perfect�starting value �� = ��;0. This tests the
robustness of the designs against model misspeci�cation alone. In this
case, using the values given above, �� = ��;0 = (:1004; :3919)

0, we have
� 0 = :0231, the design �0 places mass of :5 at each of :390 and 400, and
using p = :1, ~� has design points :39(5)20:39 and 380(5)400. (Note: all
are inside of the design points of �0; this seems to make a big di¤erence.)
The output is

imse phiD phiI
xi0 0.19618 3.13075 0.19564

xitilde0 0.12519 5.28728 0.12465
ratio 0.63814 1.68882 0.63714

� We then take an �incorrect� starting value �� = (:1; :05)0 6= ��;0, for
which �0 = (:1002; :2364)0 from (4) and � = :0252 from (6). We then
again compute the e¢ ciency measures based on M (�) and imse(�) at
(10) at �0, with mass of :5 at each of :05 and 400 and the corresponding
clustered design ~� with design points :05(5)20:05 and 380(5)400. This
tests the robustness of the designs against both model misspeci�cation
and incorrect starting values. See Figure 2. The output is
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imse phiD phiI
xi0 0.19978 0.40015 0.19914

xitilde0 0.11336 0.67089 0.11273
ratio 0.56745 1.67659 0.56606

� The robustness is attained both against the model form and the choice
of starting value. To see the e¤ect of the starting value alone we took
�1 (x) = �0 (x;�), an incorrect starting value �� = (:1; :05)

0 6= �, com-
puted �0 = (:1; :3049)0 from (4) and � = :0485. We compare the D-
optimal design �0 with the corresponding cluster design ~�, both of which
are the same as in the previous bullet, obtaining a change in the �rst
column of the output:

imse
xi0 0.20149

xitilde0 0.11508
ratio 0.57115

� We also computed the �standardized maximin�design �1 which is �opti-
mally robust�in the classical sense, against misspeci�ed starting values.
This has been derived in Dette and Biedermann (2003), and is described
as follows. Suppose that one seeks robustness against a range of ini-
tial values ��;2 2

h
�
(0)
2 ; �

(1)
2

i
. (Since the model is conditionally linear in

�1, initial values for this parameter are not needed.) Put �0 = �
(0)
2 =B,

�1 = �
(1)
2 =B. Then �1 has equal masses at B and

x1 = B � �1
p
�0 (1 + �0)� �0

p
�1 (1 + �1)p

�1 (1 + �1)�
p
�0 (1 + �0)

=

�
(1)
2

r
�
(0)
2

�
B + �

(0)
2

�
� �(0)2

r
�
(1)
2

�
B + �

(1)
2

�
r
�
(1)
2

�
B + �

(1)
2

�
�
r
�
(0)
2

�
B + �

(0)
2

� :

For instance if �(0)2 = �
(1)
2 = ��;2, l�Hospital�s Rule gives x1 = B��;2=B +

2��;2, as must be the case.

Using B = 400 as above, we computed the maximin design for the rangeh
�
(0)
2 ; �

(1)
2

i
= [:05B; :50B]. Apart from the value ofB this is as for case �B�

of Example 1 in Dette and Biedermann (2003). We obtained x1 = 44:76.
We compared �1 with the design ~�1, computed as in the previous bullet
but with clustered based on the D-optimal design with initial value �� =
(:1;
�
�
(0)
2 + �

(1)
2

�
=2)0 = (:1; 225) . We found that the support points of ~�1
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are 105:88(5)125:88 and 380(5)400. If these designs are then employed

with initial values ��;2 2
h
�
(0)
2 ; �

(1)
2

i
, then the ratios of maximum losses

(recall that �loss�is the root of the determinant of the covariance matrix),

i.e. �D
�
~�1j��;2

�
=�D (�1j��;2), are pictured in Figure 3, and are < 1 over

most of the range of ��;2.

Appendix: Derivations

Derivation of (10). Note that a consequence of the minimization de�ning
�0 is thatZ

�

f (x) f�1 (x)� �0 (x;��)� f 0 (x) (�0 � ��)g
2
� (dx) = 0: (A.1)

This allows imse to be partitioned into, �rst two and then three, orthogonal
components as

imse (�) =

Z
�

E

�n
�1 (x1)� �0 (x;��)� f 0 (x)

�
�̂ � ��

�o2�
� (dx)

=

Z
�

E

�n
�1 (x)� �0 (x;��)� f 0 (x) (�0 � ��)� f 0 (x)

�
�̂ � �0

�o2�
� (dx)

=

Z
�

E
h
f�1 (x)� �0 (x;��)� f 0 (x) (�0 � ��)g

2
i
� (dx)

+

Z
�

E

�
f 0 (x)

�
�̂ � �0

�2�
� (dx)

= � 2 + tr

�
M�

�
cov

h
�̂
i
+ bias

h
�̂
i
bias

h
�̂
i0��

:

Substituting (8) and (9) gives (10). �
Derivation of (12). We consider symmetric designs, on the basis of which N
observations are made (so even clustered designs ~� might be replicated). Let
x1; :::; xN be the, not necessarily unique, design points. The experimenter �ts
a quadratic model, so that the mean vector of the data Y N�1 is

�N�1 =X� =

�
1
...u
...v
�
�
def
=

�
X1
...v
��

�1
�2

�
;

where u = (x1; :::; xN)
0, v = (x21; :::; x

2
N). The noncentrality parameter of the

F-statistic used to test the hypothesis that �2 = 0 is

�2 =
mint kX� �X1tk2

�2
:
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The minimizing t satis�esX 0
1 (X� �X1t) = 0, whence t = (X

0
1X1)

�1
X 0

1X�

and �2�2 = k(I �H1)X�k2, where H1 = X1 (X
0
1X1)

�1
X 0

1. Put S2 =PN
i=1 x

2
i , S4 =

PN
i=1 x

4
i . From

(I �H1)X� = (I �H1)

�
X1
...v
�
� =

�
0
... (I �H1) v

�
� = �2(I �H1) v;

and v0H1v = v0X1 (X
0
1X1)

�1
X 0

1v = (S2; 0)

�
N 0
0 S2

��1�
S2
0

�
=
S22
N;

we obtain �2�2 = �22v
0(I �H1) v = �22

n
S4� S22

N

o
= N�22var� [X

2]. Since

�1 (x) has �2 =
3
p
5
2
� , the power of the test is based on (12). �
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