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1 An approximate model for clinical trials

Suppose that subjects arrive for treatment. With each is associated a d-dimensional vector
x of prognostic factors, which may be included in the ensuing analysis via a q1-dimensional
vector f (x) of regressors (possibly) interacting with treatments and a q2-dimensional
vector g (x) of regressors whose e¤ect is common to all treatments. Each is assigned,
upon arrival, to one of p treatment groups (perhaps a control); possible purposes of the
study are to (i) estimate the treatment e¤ects, (ii) perhaps to predict these e¤ects, given
a particular treatment and covariate vector, (iii) perhaps to, over time, assign patients to
the best treatment. In this current document the assignments initially depend (at most)
only on the current value of x and not on the outcomes, and so are mutually independent.
Then we consider �response adaptive�methods.
An element of randomness is required in order that the investigator remain �blinded�

to the subject/treatment pairings; thus we derive functions f�i (�)gpi=1 and suppose that
an assignment will be made to group i with probability �i (x).
Possible applications:

1. Clinical trials �determine the better treatment, conditional on the covariates.

2. Treatment regimes �monitor the outcomes sequentially, with an eye to determining
the best treatment for a patient with covariates x.

3. Response surface exploration, computer experimentation �this is speculative, but
suppose one seeks the location x of the minimum of a response surface with multiple
local minima. There could be two �treatment�groups, corresponding to accepting a
value of x into the study or not. A value of x resulting in a smaller loss would be ac-
cepted with accepted with probability �i (x). The idea is that even an unfavourable
value of x should sometimes be accepted, in order that one not be trapped in a local
minimum.

Assume that x has a density m (x) with respect to a measure � (dx) on a region
� � Rd. Typically some factors will be discrete and others continuous, and then � will be
a product �1��2 of d1-dimensional counting measure and (d� d1)-dimensional Lebesgue
measure. Then for functions � (x),

E [� (x)] =

Z
�

� (x)m (x)� (dx) :
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The experimenter�s (approximate) model is that, given x, the (possibly transformed,
as in the case of a GLM) response of a subject to treatment i 2 f1; 2; :::; pg is

Y ji;x � �i + f
0 (x)�i + g

0 (x)
 + �i (x) "; (1)

for i.i.d. errors " with mean zero and variance one. This allows for the elements of
f (x) : q1 � 1 to interact with the treatments and those of g (x) : q2 � 1 to have an
e¤ect common to all treatments. In order that the treatment e¤ects �i be identi�able it
is assumed that the mean of f 0 (x)�i + g

0 (x)
 has been absorbed into them, i.e. that

E

��
f (x)
g (x)

��
= 0q�1 (q

def
= q1 + q2): (2)

The regressors may be assumed to have been standardized as well as centred. Set

P ff = E [f (x)f 0 (x)] : q1 � q1; (3a)

P gg = E [g (x) g0 (x)] : q2 � q2; (3b)

P fg = E [f (x) g0 (x)] : q1 � q2: (3c)

We assume that P ff and P gg are nonsingular, in which case we may also assume that f
and g have been normalized in such a way that

P ff = Iq1 ;P gg =
1

p
Iq2 ;P fg = 0q1�q2 : (4)

[How? �First ensure that P ff = Iq1 ;P gg =
1
p
Iq2 by pre-multiplying f and g by

P
�1=2
ff and (pP gg)

�1=2 respectively. Then replace g (x) by ~g (x) = g (x)�P 0
fgf (x)

and �i by ~�i = �i+Pfg
 in (1), which then becomes Y ji; x � �i+f
0 (x) ~�i+~g

0 (x) 
;
with P f~g = 0.]
To formalize the approximate nature of (1), we de�ne the parameters by

(f�i;�ig
p
i=1 ;
) = arg min

(f��i;��igpi=1;�
)

pX
i=1

Z
�

�
E" [Y ji;x]���i � f 0 (x)��i � g0 (x)�


�2
m (x)� (dx) :

Carrying out the minimization, and de�ning

 n;i (x) = E [Y ji;x]� �i � f 0 (x)�i � g0 (x)
;

results in the constraints

E

��
1

f (x)

�
 n;i (x)

�
= 0; (5a)

E

"
g (x)

 
pX
i=1

 n;i (x)

!#
= 0: (5b)
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Thus the �true�model is speci�ed by

Y ji;x = E [Y ji;x] + �i (x) ";

with
E [Y ji;x] = �i + f

0 (x)�i + g
0 (x)
 +  n;i (x) and E [Y ji] = �i:

The dependence of the  �s on n is for the asymptotics �in order that bias and variance
decrease at the same rate we must impose bounds on the magnitudes of the  n;i �and
we will in fact assume that there are limit functions

 i (�) = lim
n!1

p
n n;i (�) :

With � (x) = (�1 (x) ; � � �; �p (x))0 and �2 (x) =
�
�21 (x) ; � � �; �2p (x)

�0
we impose a bound,

for given �20, of either
E
�
k� (x)k2

�
� �20; (6)

or q
E
�
k�2 (x)k2

�
� �20: (7)

We use the notation A �B for the direct sum diag (A;B) of matrices, and A 
B
for the Kronecker product (aijB). With s = p + pq1 + q2 (= the number of regression
parameters) we de�ne a p� s matrix R by

R (x) =

�
Ip
...Ip 
 f 0 (x)

...1pg0 (x)
�
:

The ith row of R is

r0i (x) =

0@0; � � �0; i#1; 0; � � �; 0| {z }
1�p

...00 � � � 0
i
#

0f 0 (x)00 � � � 00| {z }
1�pq1

...g0 (x)| {z }
1�q2

1A ; (8)

Then with n (x) = ( n;1 (x) ; � � �;  n;p (x))
0 and (x) = ( 1 (x) ; � � �;  p (x))0 = limn!1

p
n n (x),

the constraints (5) become

E [R0 (x) n (x)] = 0s�1 = E [R0 (x) (x)] : (9)

We also impose a bound
E
�
k (x)k2

�
� �2: (10)

The constraints (2) and (3) are now conveniently expressed as

E [R0 (x)R (x)] = Is: (11)

Example: p = 2 treatments, d = 2 covariates: X1 = �1 with probability 1=2 each and
X2 has density 3

16
(1 + 5x22) I (�1 � x2 � 1) (symmetric with variance 1=2) independently
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of X1. Put x = (X1; X2)
0, f (x) = X1, g (x) = X2. Interpretation: X1 denotes gender and

may interact with the treatments, X2 is (transformed and standardized) blood pressure
of the subject and has a common e¤ect. We have

E [f (x)] = E [X1] = 0; E [f (x) f
0 (x)] = E

�
X2
1

�
= 1

and
E [g (x)] = E [X2] = 0; E [g (x) g

0 (x)] = E
�
X2
2

�
= 1=2;

to satisfy (3). Then

R (x) =

�
1 0 X1 0 X2

0 1 0 X1 X2

�
:

2 Asymptotic MSE

Denote by fxijgnij=1 and fyijg
ni
j=1 the covariates and responses associated with the subjects

assigned to treatment i, and de�ne vectors

yi = (yi1; � � �; yini)
0 and zi = ( i (xi1) ; � � �;  i (xini))

0 :

Conditional on the �-algebra Fn generated by the �rst n =
P
ni arrivals and their

treatment assignments, we represent the complete data as

yn�1 =
�
y01; � � �;y0p

�0
= V � + z +�1=2":

Here " is an n � 1 vector of random errors arising with y, �n�n is the diagonal matrix
with diagonal elements �2i (xij), with these ordered in the same manner as the elements
of y,

�s�1 =
�
�1; � � �; �p;�01; � � �;�0p;
 0

�0
;

zn�1 =
�
z01; � � �; z0p

�0
;

and V is an n� s matrix whose (i; j)th row (these are ordered in the same manner as the
elements of y) is �recall (8) �given by v0ij = r

0
i (xij).

We suppose that the analyst will carry out weighted least squares (wls) estimation,
with weights wi (x) 2 [0; 1]. Let W be the diagonal matrix with diagonal elements
wi (xij), with these ordered in the same manner as the elements of y. Then the wls
estimate is

�̂ = (V 0WV )
�1
V 0Wy = � + (V 0WV )

�1
V 0Wz + (V 0WV )

�1
V 0W�1=2":

With ti (x)
def
= wi (x) �i (x),At (x)

def
= �pi=1ti (x) andAt;�2w (x)

def
= �pi=1�2i (x)wi (x) ti (x),

we de�ne

M t = E [R0 (x)At (x)R (x)] ;

Qt;�2w = E [R0 (x)At;�2wR (x)] ;

qt; = E [R0 (x)At (x) (x)] :
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Example continued: Here we have

At (x) =

�
t1 (x) = w1 (x) �1 (x) 0

0 t2 (x) = w2 (x) �2 (x)

�
;

At;�2w (x) =

�
�21 (x)w1 (x) t1 (x) 0

0 �22 (x)w2 (x) t2 (x)

�
;

M t = E

266664
0BBBB@
At (x) X1At (x)

�
t1 (x)
t2 (x)

�
X2

� X2
1At (x)

�
t1 (x)
t2 (x)

�
X1X2

� � X2
2 (t1 (x) + t2 (x))

1CCCCA
377775 ;

qt; = E

240@ At (x)
X1At (x)

X2

�
t1 (x) t2 (x)

�
1A (x)

35 ;
andQt;�2w is likeM t but with all six occurrences of ti (x) replaced by �2i (x)wi (x) ti (x),
i = 1; 2.

Theorem 1 Assume that for i = 1; :::; p the group sizes ni ! 1 in such a way that
ni=n! �0;i, for constants �0;i 2 (0; 1), as the study size n!1. Then the mean squared
error matrix, conditional on Fn, satis�es

mse
hp

n�̂ jFn
i
a:s:!M�1

t

�
Qt;�2w + qt; q

0
t; 

�
M�1

t : (12)

In the following, a special role is played by assignment probabilities and weights sat-
isfying the condition that their product be constant:

For i = 1; :::; p, ti (x) � ti (necessarily = E [wi (x) �i (x)] ), for all x: (13)

Under (13), and using (2), (9) and (4), the components of the asymptotic mse simplify
to

M t = �pi=1ti � (�
p
i=1ti 
 Iq1)�

 
1

p

pX
i=1

ti

!
Iq2 ;

Q11 = �pi=1tiE
�
wi (x)�

2
i (x)

�
; (14)

q =

0@ 0p�1
0pq1�1

E [(
Pp

i=1 ti i (x)) g (x)]

1A ; (15)

where in (14) the subscript 11 refers to the upper-left p� p block. The other blocks of Q
turn out not to be needed at this point.
[In the case that (13) holds since both wi (x) and �i (x) are independent of x, and if

as well the �2i (x) are independent of x, then a special case uses e¢ cient weights wi =
(
Pp

i=1 �
2
i )/�

2
i (/ 1=�2i and normalized by

Pp
i=1w

�1
i = 1) and �0;i = w�1i . This results

in asymptotic unbiasedness (qt; = 0s�1) andM t = Is; Qt;�2w = (
Pp

i=1 �
2
i ) Is, whence

mse
hp

n�̂ jFn
i
a:s:! (

Pp
i=1 �

2
i ) Is.]
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3 Contrasts of treatment e¤ects

Suppose that interest is on a complete set of orthogonal contrasts

�p�1�p� =

�
�
...0p�1�s�p

�
�;

where the rows of � are mutually orthogonal and sum to zero, i.e.�
10p=
p
p

�

�
is a p� p orthogonal matrix. De�ne loss

L1 (�;w; ;�) = lim
n!1

det

�
mse

�p
n

��
�
...0p�1�s�p

�
�̂

�
jFn
��

:

The following result extends Theorem 2 of Wiens (2005), where treatment/covariate in-
teractions were not considered. (See also the technical report Wiens (2000).

Theorem 2 Suppose that the variance functions �2i (x) are constant: �
2
i (x) � �2i . Then:

(i) For any such variance functions, any vector � (�) = (�1 (�) ; :::; �p (�))0 of assign-
ment probabilities, any vector w (�) = (w1 (�) ; :::; wp (�))0 of weights and any  , the loss
L1 (�;w; ;�) exceeds that using weights and assignment probabilities satisfying (13).
(ii) De�ne wi = E [wi (x)]. The loss L1 (�) using weights and assignment probabilities
satisfying (13) does not depend upon  , and is

L1 (t;�) =
Pp

i=1
ti=wi
�2i

p
Qp
i=1

ti=wi
�2i

: (16)

Note: At this point we should try to maximize over (6) or (7), then �nd
minimizing ratios ti=wi.

Corollary 1 Suppose that for i = 1; :::; p both wi (x) � wi and �i (x) � �i are independent
of x. Then the loss (16) becomes

L1 (�;�) =
Pp

i=1
�i
�2i

p
Qp
i=1

�i
�2i

: (17)

This does not depend on w, and for given � is minimized by assignments described as
follows. Assume that the groups have been relabelled, if necessary, so that �21 = maxi �

2
i .

Then �i
def
= �21=�

2
i � 1. De�ne a function, for � � 0, by

h (�) = �� 1�
X
i

�i � 1
p� 1 + �i

�

:

Then there is a unique zero �� � 1 of h (�), and (17) is minimized by �� =
�
��1; :::; �

�
p

�0
given by ��i = 1=

�
p� 1 + �i

��

�
if i > 1, and ��1 = 1�

Pp
i=2 �

�
i .
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Remarks: Corollary 1 is proven as Theorem 3 of Wiens (2005). From this corollary it
follows that �� =

Pp
i=1 �i�

�
i . When p = 2, we �nd �

�
i = �i= (�1 + �2). When p = 3 the ��i

are obtained from

�� =

r
�2�3 + �2 + �3

3
cos

0@1
3
arctan

s
(�2�3 + �2 + �3)

3

27� 22 �
2
3

� 1

1A :

When all �2i are equal, the corollary gives �
�
i � 1=p.

4 Minimax prediction

A problem of obvious interest is that of estimating the mean responses to treatments, given
the covariates. One will estimate E [Y ji;x] = r0i (x)�+ n;i (x) by Ŷi (x) = r0i (x) �̂, with
asymptotic mse

msei (x) = lim
n!1

E

�np
n
�
r0i (x)

�
�̂ � �

�
�  n;i (x)

�o2
jFn
�

and integrated (i.e., expected w.r.t. x) mse

imsei = E [msei (x)] =
Z
�

msei (x)m (x)� (dx) :

Theorem 3 (i) With notation as above, we have that L2 (�;w;�; )
def
=
Pp

i=1imsei is
given by

L2 (�;w;�; ) = tr
�
M�1

t Qt;�2wM
�1
t

	
+
n

M�1

t qt; 


2 + E

�
k (x)k2

�o
:

(ii) De�ne Kt = E
�
R0 (x)A2

t (x)R (x)
�
. The maximum loss over  , subject to (9) and

(10) is obtained from

max
 

n

M�1
t qt; 



2 + E
�
k (x)k2

�o
= �2chmax

�
M�1

t KtM
�1
t

	
: (18)

Thus with � = �2= (1 + �2) the maximum loss max L2 (�;w;�; ) is 1 + �2 times

L02 = (1� �) tr
�
M�1

t Qt;�2wM
�1
t

	
+ �chmax

�
M�1

t KtM
�1
t

	
:

(iii) De�ne Lt (x) = At (x)R (x)M
�2
t R

0 (x), with diagonal elements

Lt;ii (x) = ti (x) r
0
i (x)M

�2
t ri (x) :

The maximum loss over �, subject to (7), is obtained from

max
�

tr
�
M�1

t Qt;�2wM
�1
t

	
= �20

vuutE

"
pX
i=1

w2i (x) fLt;ii (x)g
2

#
: (19)
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De�ne � = �2= (�20 + �2). The maximum of L2 (�;w;�; ) over both  and �, subject to
these constraints, is �20 + �2 times

L2 (w; t)
def
= max

 ;�
L2 (�;w;�; ) =

�
�20 + �2

�
= (1� �)

vuutE

"
pX
i=1

w2i (x) fLt;ii (x)g
2

#
+ �chmax

�
M�1

t KtM
�1
t

	
: (20)

Example continued: The matrix Kt has the same structure asM t, but each ti (x) is
replaced by its square.

Note: I see two ways to proceed from here.

1. We could consider only the loss maximized over  . For this we could proceed se-
quentially, estimating variances as we go along then using e¢ cient weights �see §4.1.
Or we could choose weights and variance functions and minimize L02 numerically,
over parametric classes f�i (x;�)g.
Example continued: I computed

L02 = (1� �) tr
�
M�1

t Qt;�2wM
�1
t

	
+ �chmax

�
M�1

t KtM
�1
t

	
for �i (x) = i2 (12 + x1 + 10x2) and both with weights wi (x) = 1=�2i (x) (in which
case Qt;�2w =M t and ti (x) = �i (x) =�

2
i (x)) and wi (x) � 1 (OLS). I looked at

several parametric families f�i (x;�)g, each of the form �1 (x;�) = 1=
�
1 + eS(x;�)

�
,

�2 (x;�) = 1� �1 (x;�): (recall x = (�1; x2) and i = 1; 2), and one �ve-parameter
family:

(a) S (x;�) = �1 + �2x1 + �3x2,

(b) S (x;�) = �1 + �2x1 + �3x2 + �4x
2
2,

(c) S (x;�) = �1 + �2x1 + �3x2 + �4x
2
2 + �5x1.

Recall x = (�1; x2). Thus the expectations over x1 are simple to compute -
they are just averages of functions evaluated at x1 = 1 and x1 = �1. Then
the integrations over x2 were done using Simpson�s Rule. The matlab minimizer
fminsearch was used to minimize over �. I prepared plots of �1 (x = (1; x2) ;�)
and �1 (x = (�1; x2) ;�) vs. x2 �Figures 1 and 2.

2. Minimize L2 (w; t) by minimizing E
�Pp

i=1w
2
i (x) fLt;ii (x)g

2� over wi (x) 2 [0; 1] sub-
ject to E [

Pp
i=1wi (x)] = 1, thus obtaining minimax weights w�;i (x; t), and then

minimizing L2 (w�; t) over t subject to
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Figure 1: E¢ cient weights wi (x) / 1=�2i (x); � = :5.
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Figure 2: Constant weights, � = :5.

(
Pp

i=1 �i (x) =)
Pp

i=1
ti(x)
w�i (x;t)

= 1. A problem is that for �xed x, the minimizing
weights will be unrealistic �they will be

wi (x; t) =

�
1; if fLt;ii (x)g2 = mini fLt;ii (x)g2 ;
0; otherwise,

withM t andQt;�2w singular. But note that these weights satisfywi (x) = w2i (x), so
that E [

Pp
i=1w

2
i (x)] = 1, which is the maximum possible. So I propose constraining

E [
Pp

i=1w
2
i (x)] as well:

E

"
pX
i=1

w2i (x)

#
= w20 2

�
p�1; 1

�
:
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It is su¢ cient to �nd weights 2 [0; 1] satisfying the constraints and minimizing

E

"
pX
i=1

w2i (x) fLt;ii (x)g
2 + �1

pX
i=1

w2i (x)� 2�2
pX
i=1

wi (x)

#

=

pX
i=1

E
�
w2i (x)

�
fLt;ii (x)g2 + �1

�
� 2�2wi (x)

�
for Lagrange multipliers �1 and �2. For this we minimize the integrands pointwise.
Put y = wi (x), li (x; t; �1) = [Lt;ii (x)]

2+�1 and consider the problem of minimizing
the quadratic polynomial � (y) = li (x; t; �1) y

2 � 2�2y over y 2 [0; 1]. The critical
point is �2=li (x;�1). If this is positive, then � (y) is a minimum at this point, and
so its minimum in [0; 1] is at min (�2=li (x;�1) ; 1). If the critical point is negative,
then � (y) is a maximum at this point and the minimum in [0; 1] is at 1. Thus
minimizing weights are

w�;i (x; t;�) =

�
�2=li (x; t; �1) ; if 0 < �2=li (x; t; �1) < 1;

1; otherwise.

In order that these weights satisfy the constraints, the multipliers are to be deter-
mined from

E

"
pX
i=1

w�;i (x; t;�)

#
= 1; (21a)

E

"
pX
i=1

w2�;i (x; t;�)

#
= w20: (21b)

This now looks like a substantial numerical problem. We are to minimize

L2 (w�; t) = (1� �)

vuutE

"
pX
i=1

w2�;i (x; t;�) fLt;ii (x)g
2

#
+ �chmax

�
M�1

t KtM
�1
t

	
over fti (x)gpi=1 subject to

pX
i=1

ti (x)

w�i (x; t;�)
= 1;

with � = � (t) determined from (21).

4.1 Sequentially minimizing the maximum (over  ) loss

See Note 1 above. A possibility is to calculate an estimate of the maximum (over  ) loss
after the �rst n assignments have been made, with ni to group i, and to then minimize the
(updated) estimate over the p possibilities for the n+ 1th assignment. In the description
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below I use variances and weights depending only on the treatment group, since estimating
variances which depend as well on the covariates might require too much data. But my
description is easily modi�ed to take into account other variance structures.
If the �rst n covariates are fxjgnj=1 and if the sample variance estimates in the p

treatment groups are f�̂2i:ng
p
i=1 then we set ŵi = 1=�̂

2
i:n and estimate

At (x) = �pi=1wi�i (x)

by
Ât (x) = �pi=1ŵiIi (x) ;

where
Ii (xj) = I(covariates xj resulted in an assignment to group i):

The idea here is that

E [Ii (xj)] = P (covariates xj resulted in an assignment to group i) = �i (xj) :

Similarly, estimate
At;�2w (x) = �pi=1w2i �2i �i (x)

by
Ât;�2w (x) = �pi=1ŵ2i �̂2i:nIi (x) = Ât (x) : (22)

ThenM t and Kt are estimated by

M̂ t = M̂
(n)

t =
1

n

nX
j=1

R0 (xj) Ât (xj)R (xj) ;

K̂t = K̂
(n)

t =
1

n

nX
j=1

R0 (xj) Â
2

t (xj)R (xj) ;

and Qt;�2w has the same estimate asM t, by virtue of (22). The loss after n assignments
is thus estimated by

L̂n = tr
n
M̂

�1
t

o
+ �2chmax

n
M̂

�1
t K̂tM̂

�1
t

o
: (23)

Now if the n+1th arrival presents with covariates xn+1, and if the assignment is to group i,
then all of these estimates can be updated, yielding possible estimates L̂n+1 (i), i = 1; :::; p.
Here L̂n+1 (i) is computed as at (23), but with

Ât (xn+1) = ŵidiag(0; ::; 0;

i
#
1; 0; :::; 0);

so that

M̂
(n+1)

t =
n

n+ 1
M̂

(n)

t +
ŵi

n+ 1
ri (xn+1) r

0
i (xn+1) ;

K̂
(n+1)

t =
n

n+ 1
K̂

(n)

t +
ŵ2i
n+ 1

ri (xn+1) r
0
i (xn+1) :
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The actual assignment is made to group

i� = argmin
i
L̂n+1 (i) :

The procedure described above has asymptotic optimality properties. In order to
state the result we letM denote the collection of all design probability density functions
with respect to �(x) on a space X . For a design m 2 M and true standard deviations
� = (�1; � � � ; �p)0, we have

L(m;�) = tr
�
M�1

t (m;�)
	
+ �2chmax

�
M�1

t (m;�)Kt(m;�)M
�1
t (m;�)

	
; (24)

whereM t(m;�) and Kt(m;�) denote theM t and Kt determined by the design m and
standard deviation �, respectively. Given N � n, let m̂N denote the sequential optimal
design constructed as described above, and �̂N = (�̂1:N ; � � � ; �̂p:N)0 the estimated standard
deviation. We have

L̂N(m̂N ; �̂N) = tr
n
M̂

�1
tN(m̂N ; �̂N)

o
+�2chmax

n
M̂

�1
tN(m̂N ; �̂N)K̂tN(m̂N ; �̂N)M̂

�1
tN(m̂N ; �̂N)

o
;

where M̂ tN(m̂N ; �̂N) andKtN(m̂N ; �̂N) denote theM t andKt determined by the design
m̂N and standard deviation �̂N , respectively.
To ensure the consistency of �̂N [I think these have to be regression-based vari-

ance estimates, not merely the sample variances of the responses, if we hope
to prove them consistent.] and L̂N(m̂N ; �̂N), we need the following two assumptions.
Let "ij = (Yij � E[Yijji;xj]) =�i. We assume that "ij�s are independently and identically
distributed [but they aren�t - they depend on xj] and satisfy the moment condition

E[j"ijj4+�]
def
= � <1; for some � > 0:

Further for the initial number of subjects n, we assume that

lim
N!1

(logN)2=n = 0; lim
N!1

n=N = 0:

Theorem 4 Under the two aforementioned assumptions, and as N !1,
(i) �̂i:N

Pr! �i, for all i = 1; � � � ; p; and
(ii) L̂N(m̂N ; �̂N)

Pr! minm2M L(m;�).

Example here (continuation). I �rst simulatedN values of x1 (by randomly permuting
N=2 1�s and N=2 �1�s) and of x2. To simulate x2 I compute F�1 (U), where F (x2) =
(5x32 + 3x2 + 8) =16 (�1 � x2 � 1) is the d.f. of X2 and U is uniformly distributed on
(0; 1). Then values of Y are simulated, using normally distributed random errors with �i =
i, � = (0; 1)0, � = (1; 0)0 and 
 = 1. Thus in treatment group 1, E [Y ] = X1+X2+ n;1 (x)
and in treatment group 2, E [Y ] = 1 +X2 +  n;2 (x). To simulate the  n;i I compute the
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Figure 3: Output for a simulation as described in the continuation of the Example with
N = 1000 and an intital sample of size 50. True �i =

p
i for i = 1; 2. Minimum loss using

a � as in Figure 1. is 7.7.

model matrix F =

�
1
...X1
...X2

�
, using all N rows, �nd the N � (N � 3) matrix Q2 whose

columns form an orthogonal basis for the orthogonal complement of col (F), and then set

 n;i = Q2ci=
�p

N kcik
�
, where ci is a vector of N � 3 standard normals. The results are

terrible - see Figure 3 for the case that the errors in each group are homoscedastic; Figure
4 when they are as used in producing Figures 1 and 2. What�s more, this procedure
is deterministic - there is no randomness in the assignments to treatments.

5 Robust CARA (Covariate-adjusted, response-adaptive)
design

Remarks:

1. The response adaptive methods of Rosenberger and Sverdlov make the next assign-
ment based on, e.g., the vector of �̂�s after the �rst n assignments. The methods of
Atkinson & Biswas, and of Rosenberger et al. mentioned there (§8) look like they
might be candidates for robusti�cation.

2. Along the lines of Pronzato (preprint), we could (initially, take p = 2 �a treatment
and a control, say) try to optimize the probability that assignments are made to
the best treatment. This probability could perhaps be represented in the form
F0 (� (x;�)) for an assumed distribution function F0 and a function � (x;�) (perhaps
= E [Y jx]?); robustness could be brought in by taking neighbourhoods of F0 (as in
Li and Wiens 2011) and �.
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Figure 4: Output for a simulation as described in the continuation of the Example with
N = 1000 and an intital sample of size 50. True �i (x) as in Figures 1 and 2. Compare
the minimum loss with that using a � as in Figure 1.

3. In our notation, the approach of Pronzato seems to be to choose � (x) in order to
minimize a convex combination of a function of the mse matrix and the �regret�-
the ethical cost of assigning a patient to an inferior treatment. This also looks like
a promising area in which to robustify �see L� (�;F ) below.

4. I expect that problems such as we are addressing here can also be cast in a machine
learning framework � this would certainly increase the possible audience. What
those guys call �active learning�is what we call experimental design.

5. What else?

Here is a possible way to begin. Assume that p = 2, so that there is a treatment and a
control, say. Then �0 = (�1; �2;�

0
1;�

0
2;


0). Use a subscript n to indicate evaluation after
n treatment allocations have been made and the responses observed. De�ne

�(x;�) = E [Y j1;x]� E [Y j2;x] = (�1 � �2) + f
0 (x) (�1 � �2) :

Suppose that, for some d.f. F , we adopt a rule that we assign to treatment 1 with prob-
ability

�
(n+1)
1 (x) = F

�
�
�
x; �̂n

��
and otherwise to treatment 2: �(n+1)2 (x) = 1��(n+1)1 (x) = �F

�
�
�
x; �̂n

��
. (This assumes

that large values of Y are preferred, i.e. indicative of a successful outcome. If F = �0 is
point mass at 0, then the assignment is to treatment 1 i¤ �

�
xn+1; �̂n

�
� 0. But then

there is no randomization, and so clinicians would not be blinded. So we might want F
to be in a neighbourhood of a proper d.f. like the Normal.)
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Some asymptotics would have to be added in here but I expect we could establish
that the theory of §2 continues to hold, with �1 (x) = F (� (x;�)), �2 (x) = �F (� (x;�)).
(i.e. the estimate is consistent and we can replace the (random) assignment probabilities
by their limits in probability.) Treatment 1 is inferior if �(x;�) < 0, and treatment 2 is
inferior if �(x;�) > 0. Since �(n+1)1 (x)! F (� (x;�)) and �(n+1)2 (x)! �F (� (x;�)) the
asymptotic probability of an incorrect assignment is then

P (error)! E [F (� (x;�)) I (� (x;�) < 0)]+E
�
�F (� (x;�)) I (� (x;�) > 0)

� def
= PF (�) :

(25)
Now a possible continuation is to consider a convex combination of the asymptotic error
probability (25) and the maximum imse from some version of Theorem 3:

L� (�;F ) = (1� �)PF (�) + �L (t) :

This could be evaluated at �1 (x) = F (� (x;�)), �2 (x) = �F (� (x;�)). Then we could
seek an optimizing (minimizing) F . (Perhaps integrate out � w.r.t. some prior?) Or leave
F �xed and establish asymptotic optimality of a sequential procedure.
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Appendix: Derivations

Proof of Theorem 1: The (conditional) bias and covariance of �̂ are, respectively,

bias
h
�̂ jFn

i
=

�
V 0WV

n

��1
1

n
V 0Wz;

cov
h
�̂ jFn

i
=
�20
n

�
V 0WV

n

��1
V 0W�WV

n

�
V 0WV

n

��1
;

so that the conditional mean squared error of
p
n�̂ is

mse
hp

n�̂ jFn
i
= E

��p
n
�
�̂ � �

��2�
=

�
V 0WV

n

��1
V 0Wzp

n

z0WVp
n

�
V 0WV

n

��1
+ �20

�
V 0WV

n

��1
V 0W�WV

n

�
V 0WV

n

��1
:

(A.1)

In terms of the rows r0i of R, these terms are

V 0WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

wi (xij) ri (xij) r
0
i (xij) ;

V 0W�WV

n
=

pX
i=1

ni
n
� 1
ni

niX
j=1

w2i (xij)�
2
i (xij) ri (xij) r

0
i (xij) ;

1p
n
V 0Wz =

pX
i=1

ni
n
� 1
ni

niX
j=1

�
wi (xij) ri (xij) �

�p
n n;i (xij)

�	
:

As each ni !1, by the Strong Law of Large Numbers we have that for functions �i (x),

ni
n
� 1
ni

niX
j=1

�i (xij)
a:s:! P (group i) � E [�i (x) ji] =

Z
�

�i (x) �i (x)m (x)� (dx) :

From this observation it follows that

V 0WV

n

a:s:!M t;

V 0W�WV

n

a:s:! Qt;�;

1p
n
V 0Wz

a:s:! qt; ;

these in (A.1) yield (12). �
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Proof of Theorem 2: (i) De�ne U 1 = U (�;w;�) =
��
M�1

t Qt;�M
�1
t

�
11

��1
, and let

U 0 =
�
�pi=1

�2i
ti

R
�
wi (x)m (x)� (dx)

��1
be the evaluation of U 1 under (13). By (12),

L1 (�;w; ;�) = det
n
�U�1

1 �
0 +�

��
M�1

t qt; 
�
1

�
M�1

t qt; 
�0
1

�
�0
o

=
���U�1

1 �
0�� � n1 + �M�1

t qt; 
�0
1
�0 ��U�1

1 �
0��1� �M�1

t qt; 
�
1

o
:

(The subscript 1 refers to the leading p � 1 subvector.) In particular, L1 (�;w; ;�) ����U�1
1 �

0��. But under (13) we have, using (15), that �M�1
�0;w

q�0;w; 

�
1
= 0, whence

L1 (t;�) =
���U�1

0 �
0��, and it su¢ ces to show that ���U�1

1 �
0�� � ���U�1

0 �
0��; this in turn

will follow if we can establish that
U 0 � U 1; (A.2)

where ���denotes the ordering by positive semide�niteness. To show (A.2) we partition
the relevant matrices as

M t =

�
M 11 M 12

M 21 M 22

�
; Q�1

t;� =

�
Q11 Q12

Q21 Q22

�
; M tQ

�1
t;�M t =

�
J11 J12
J21 J22

�
;

whence U 1 = J11 � J12J�122 J21, and it su¢ ces to show that
J11 � U 0: (A.3)

We calculate (using identities in Corollaries 1.4.1, 1.4.2 of Khatri and Srivastava (1979))
that

J11 =

��
M 11 M 12

M 21 M 22

�
Q�1
t;�

�
M 11 M 12

M 21 M 22

��
11

=
�
M 11 M 12

�
Q�1
t;�

�
M 11

M 21

�
=
�
M 11 M 12

��� Q�1
11 0
0 0

�
+

�
�Q�1

11Q12

I

�
Q22

�
�Q21Q

�1
11 I

��� M 11

M 21

�
=M 11Q

�1
11M 11 +

�
M 12 �M 11Q

�1
11Q12

�
Q22

�
M 12 �M 11Q

�1
11Q12

�0
�M 11Q

�1
11M 11 = U 0;

where the �nal equality follows from the assumption of constant variance functions applied
to (14). This proves (A.3).

(ii) By Lemma 1 of Wiens (2005),
���U�1

0 �
0�� = 10pU 01pp jU 0j, and (16) follows. �

Proof of Theorem 3: (i) Using Theorem 1 we have

msei (x) = lim
n!1

E

�np
n
�
r0i (x)

�
�̂ � �

�
�  n;i (x)

�o2�
= r0i (x)

�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t

	
ri (x)

� 2 lim
n!1

�
E
hp

n
�
�̂ � �

�
jFn
i0
ri (x) n;i (x)

�
+  2i (x) ;
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and

imsei = E [msei (x)m (x)]

= tr
�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t � E [ri (x) r0i (x)]
	

� 2 lim
n!1

�
E
hp

n
�
�̂ � �

�
jFn
i0
E [ri (x) n;i (x)]

�
+ E

�
 2i (x)

�
:

Using (5a),

pX
i=1

imsei = tr
�
M�1

t

�
Qt;� + qt; q

0
t; 

�
M�1

t E [R0 (x)R (x)]
	

� 2 lim
n!1

n
E
�p
n (
̂ � 
) jFn

�0
E [g (x) n (x)]

o
+ E

�
k (x)k2

�
;

and the result follows from (5b), and (11).

(ii) With

B ( ) def= tr
�
M�1

t

�
qt; q

0
t; 

�
M�1

t

	
=


E �M�1

t R
0 (x)At (x) (x)

�

2 ;
we �rst show that, subject to (9) and (10),

max
 

�
B ( ) + E

�
k (x)k2

�	
= �2chmax

�
M�1

t KtM
�1
t

	
: (A.4)

Since B ( ) increases if  is multiplied by a constant exceeding unity, we may assume
equality in (10).
Denote by 	 the class of functions  (x), x 2 � constrained by (9) and (10). De�ne

�t (x) = At (x)R (x)�R (x)M t : p� s;

and assume that �;w are such that E [�0t (x)�t (x)] is nonsingular. (If not, take a
perturbation � our �nal result does not require the nonsingularity of this matrix.) It
follows from the de�nition ofM t, together with (11), that

E [�0
t (x)�t (x)] = E [R (x)At (x)�t (x)] =Kt �M 2

t :

De�ne

�t (x) = �t (x) [E [�
0
t (x)�t (x)]]

�1=2

= �t (x)
�
Kt �M 2

t

��1=2
: p� s;

and consider the class 	0 =
�
 � (x) = ��t (x)� j



�s�1

 = 1	. Note that
(1) E [�0

t (x)�t (x)] = Is,

(2) E [R0 (x)�t (x)] = 0s�s.
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By (1) and (2), 	0 � 	 and all members of 	0 attain equality in (10). We claim that
for any  2 	 there is  � 2 	0 with B

�
 �
�
� B ( ), so that

sup
	
B ( ) = sup

�
B
�
 �
�
: (A.5)

For this, let  2 	 be arbitrary and de�ne

� = E
�
M�1

t R
0 (x)At (x) (x)

�
;

� =

�
Kt �M 2

t

�1=2
M�1

t � 


�Kt �M 2
t

�1=2
M�1

t � 




 ;
 � = ��t (x)� :

Then  � 2 	0. Since B ( ) = k� k2, (A.5) will follow from

� �

2 � k� k2 : (A.6)

First, from the Cauchy-Schwarz inequality and the identities above we obtain

k� k2


� �

2 � ��0 � ��2 = �2




�Kt �M 2
t

�1=2
M�1

t � 




2 : (A.7)

Similarly,

�2 �
�
E
�
k (x)k2

�
� E
�
k � (x)k

2�	1=2
� jE [ 0 (x) � (x)]j

= �
k� k2


�Kt �M 2
t

�1=2
M�1

t � 




 ;
so that 


�Kt �M 2

t

�1=2
M�1

t � 




 � k� k2

�
: (A.8)

From (A.7) and (A.8),
k� k2



� �

2 � k� k4 ;
yielding (A.6) and hence (A.5).
We must now maximize

B
�
 �
�
= �2�0

�
Kt �M 2

t

�1=2
M�2

t

�
Kt �M 2

t

�1=2
�

over k�k = 1, obtaining

maxB ( ) = �2chmax

n�
Kt �M 2

t

�1=2
M�2

t

�
Kt �M 2

t

�1=2o
= �2chmax

�
M�1

t

�
Kt �M 2

t

�
M�1

t

	
= �2chmaxM

�1
t KtM

�1
t � �2;
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from which (A.4) and then (18) follow.
It remains to establish (19). Denote by d (x) the p-vector with (non-negative) elements

di (x) =
��
�pi=1�i (x)w2i (x)

�
R (x)M�2

t R
0 (x)

�
ii

= wi (x)
�
At (x)R (x)M

�2
t R

0 (x)
�
ii

= wi (x)Lt;ii (x) :

Then using (7) and the Cauchy-Schwarz inequality,

tr
�
M�1

t Qt;�M
�1
t

	
=

Z
�

d0 (x)�2 (x)m (x)� (dx) � �20

q
E
�
kd (x)k2

�
= �20

vuutE

"
pX
i=1

w2i (x) fLt;ii (x)g
2

#
;

and thus bound is attained by

�2� (x) = �20
d (x)q

E
�
kd (x)k2

� :
Now (20) is immediate. �
Proof of Theorem 4: (i) The proof follows the same argument of that in the proof of
Theorem 4 (i) in Wiens and Li (2014). [See my earlier note - Pengfei and I just
took the sample variances of the responses. Now I think we need to estimate
the regression parameters and use the mse of the residuals to estimate the
variances.] We will not repeat it here. In addition, we have

�̂i:n
Pr! �i; for all i = 1; � � � ; p; as N !1: (A.9)

(ii) To show this, we need verify the following three claims. As N !1,

(C1) minm2M L (m; �̂n)
Pr! minm2M L(m;�),

(C2) L̂N (m̂N ; �̂n)�minm2M L (m; �̂n)
Pr! 0, and

(C3) L̂N (m̂N ; �̂N)� L̂N (m̂N ; �̂n)
Pr! 0.

We start with claim (C1). Letm�
n = argminm2M L(m; �̂n) andm� = argminm2M L(m;�).

From the de�nition of m�
n, we have L(m

�
n; �̂n) � L(m�; �̂n). Due to (A.9) and the conti-

nuity of L(m;�) with respect to �, the following holds

L(m�
n; �̂n) � L(m�; �̂n)

Pr! L(m�;�) = min
m2M

L(m;�): (A.10)
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The lower limit of L(m�
n; �̂n) can be found by the following argument. The continuity of

L(m�
n;�) ensures that L(m

�
n; �̂n) = L(m�

n;�) + o(k�̂n � �k). From the de�nition of m�,
we have L(m�

n;�) � L(m�;�). Therefore, thanks to (A.9),

L(m�
n; �̂n) = L(m�

n;�)+o(k�̂n��k) � L(m�;�)+o(k�̂n��k)
Pr! L(m�;�) = min

m2M
L(m;�):

(A.11)

Combining (A.10) and (A.11), we have L(m�
n; �̂n)

Pr! L(m�;�) , that is claim (C1) holds.
Now we turn to claim (C2). To follow the proof of proof of Theorem 3 in Wiens

and Li (2014), we need to verify two statements: (a) L(m�;�) is a convex function of �,
where m� = (1� �)m0 + �m1, m0 = argminm2M L(m;�) and m1 2M for � 2 [0; 1]; (b)
L̂N+1 (m̂N+1;�) =

N+1
N

�
L̂N (m̂N ;�) + op(1)

�
. Note here � could be the true standard

deviation or any consistent estimate. The trace of inverse matrix is convex implies that
convexity of the �rst term in (24). The second term is convex due to the fact that both
the largest eigenvalue and matrix inverse operators are convex. This veri�es statement
(a). Now as

M t(N+1) (m̂N+1;�) =
N

N + 1
M tN (m̂N ;�) +

wi
N + 1

ri (xN+1) r
0
i (xN+1) ;

its inverse can be written as, according to Binomial inverse theorem,

M�1
t(N+1) (m̂N+1;�) =

�
N

N + 1
M tN (m̂N ;�) +

wi
N + 1

ri (xN+1) r
0
i (xN+1)

��1
=
N + 1

N
M�1

tN (m̂N ;�)�
wi(N + 1)

N2

M�1
tN (m̂N ;�) ri (xN+1) r

0
i (xN+1)M

�1
tN (m̂N ;�)

1 + wi
N
r0i (xN+1)M

�1
tN (m̂N ;�) ri (xN+1)

=
N + 1

N
M�1

tN (m̂N ;�) +
1

N
�M�1

tN (m̂N ;�) :

The eigenvalues ofMt are bounded away from 0 and1, so doM�1
tN (m̂N ;�) andM�2

tN (m̂N ;�).
As a consequence, �M�1

tN (m̂N ;�) has bounded eigenvalues and its trace is bounded.
Therefore, we have

tr
�
M�1

t(N+1) (m̂N+1;�)
�
=
N + 1

N
tr
�
M�1

tN (m̂N ;�)
�
+Op(

1

N
): (A.12)

Meanwhile

M�2
t(N+1) (m̂N+1;�) =

(N + 1)2

N2
M�2

tN (m̂N ;�) +
1

N
�M�2

tN (m̂N ;�) ; (A.13)

where

�M�2
tN (m̂N ;�) =

N + 1

N
M�1

tN (m̂N ;�)�M
�1
tN (m̂N ;�)

+
N + 1

N
�M�1

tN (m̂N ;�)M
�1
tN (m̂N ;�) +

1

N

�
�M�1

tN (m̂N ;�)
�2
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and it has all eigenvalues bounded.

Kt(N+1) (m̂N+1;�) =
N

N + 1
KtN (m̂N ;�) +

w2i
N + 1

ri (xN+1) r
0
i (xN+1) ;

=
N

N + 1
KtN (m̂N ;�) +

1

N + 1
�KtN (m̂N ;�) ; (A.14)

where the eigenvalues of KtN (m̂N ;�) are bounded. Combining (A.13) and (A.14), it is
obtained

M�2
t(N+1) (m̂N+1;�)Kt(N+1) (m̂N+1;�) =

N + 1

N
M�2

tN (m̂N ;�)KtN (m̂N ;�)+
1

N
�N (m̂N ;�) ;

(A.15)
where

�N (m̂N ;�) =
N + 1

N
M�2

tN (m̂N ;�)�KtN (m̂N ;�) +
N

N + 1
�M�2

tN (m̂N ;�)KtN (m̂N ;�)

+
1

N + 1
�M�2

tN (m̂N ;�)�KtN (m̂N ;�) :

Similarly, all eigenvalues of �N (m̂N ;�) are bounded. From the Weyl inequalities, we
have

chmax

�
N + 1

N
M�2

tN (m̂N ;�)KtN (m̂N ;�) +
1

N
�N (m̂N ;�)

�
� N + 1

N
chmax

�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+
1

N
chmax (�N (m̂N ;�))

=
N + 1

N
chmax

�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+Op

�
1

N

�
: (A.16)

The Weyl inequalities also implies

chmax

�
N + 1

N
M�2

tN (m̂N ;�)KtN (m̂N ;�) +
1

N
�N (m̂N ;�)

�
� max

�
N + 1

N
chk
�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+
1

N
chl (�N (m̂N ;�))

�
=
N + 1

N
chmax

�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+Op

�
1

N

�
; (A.17)

where chk denotes the k-th largest eigenvalue and k + l = p + pq1 + q2 + 1. The last
equality holds due to that 1

N
chl (�N (m̂N ;�)) ! 0 as N ! 1. Putting (A.16) and

(A.17) together, we have

chmax

�
N + 1

N
M�2

tN (m̂N ;�)KtN (m̂N ;�) +
1

N
�N (m̂N ;�)

�
=
N + 1

N
chmax

�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+Op

�
1

N

�
:
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Therefore,

chmax

�
M�1

t(N+1) (m̂N+1;�)Kt(N+1) (m̂N+1;�)M
�1
t(N+1) (m̂N+1;�)

�
= chmax

�
M�2

t(N+1) (m̂N+1;�)Kt(N+1) (m̂N+1;�)
�

=
N + 1

N
chmax

�
M�2

tN (m̂N ;�)KtN (m̂N ;�)
�
+Op

�
1

N

�
=
N + 1

N
chmax

�
M�1

tN (m̂N ;�)KtN (m̂N ;�)M
�1
tN (m̂N ;�)

�
+Op

�
1

N

�
: (A.18)

Combining (A.12) and (A.18), we obtain

L̂N+1 (m̂N+1;�) =
N + 1

N
L̂N (m̂N ;�) +Op

�
1

N

�
;

which is statement (b).
The claim (C3) follows from the continuity of L̂N (m̂N ;�) with respect to � and the

consistency of �̂n and �̂N . �
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