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1 Introduction

Suppose that, given a standard regression model Yn�1 = Xn�p� + error, in
which the rows of the model matrix X are of the form ff 0 (xj)gnj=1 for p-
dimensional regressors f (x), we make the moment assumptions

E
�
Yj�; �2

�
= X�; cov

�
Yj�2;�

�
= �2In;

with prior moments

E
�
�j�2

�
= �0; cov

�
�j�2

�
=
�2

n0
C0; E

�
�2
�
= �20:

Assume that C0 > 0.
In this framework Pukelsheim (1993, p. 268 ¤.) derives the minimum

mean square error a¢ ne predictor of f 0 (x)�. This predictor is of the form
�0 (x)Y + �(x) and minimizes

mse (�(x); �(x))
def
= E

h
(�0 (x)Y + �(x)� f 0 (x)�)2

i
:

The calculations �see Appendix �give the minimizers

�0(x) = X
�
n0C

�1
0 +X0X

��1
f (x) ; (1a)

�0(x) = f 0 (x)
�
n0C

�1
0 +X0X

��1
n0C

�1
0 �0; (1b)

and the minimum mse is

mse0 (�0(x); �0(x)) = �20f
0 (x)

�
n0C

�1
0 +X0X

��1
f (x) : (2)

Now consider the alternative E [Y (x)j�; �2] = f 0 (x)�+ (x). We suppose
that the experimenter will act as though  � 0, hence predict using �0 and
�0, but wishes protection, through the design, against increased losses arising
from model misspeci�cation. The design space � = fxigNi=1 is �nite.
In order that the alternate models be well-de�ned we impose the conditionXN

i=1
f (xi) (xi) = 0; (3)
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as well we assume that XN

i=1
 2 (xi) � � 2=n; (4)

for a �nite constant � . We use the notation FN�p = (f (x1) ; � � �; f (xN))0 and
 N�1 = ( (x1) ; � � �;  (xN))

0, so that (3) and (4) become, respectively,

(i) F0 = 0, (ii) k k2 � � 2=n: (5)

For a design � on �, placing mass ni=n at xi (
XN

i=1
ni = n), we de�ne

D (�) = diag (�1; � � �; �N) ;

Mp�p =
XN

i=1
�if (xi) f

0 (xi) = F
0D (�)F;

bp�1 =
XN

i=1
�if (xi) (xi) = F

0D (�) : (6)

Note that X0X = nM.
The mse becomes

mse (x; ) = E
h
(�00(x)Y + �0(x)� (f 0 (x)� +  (x)))

2
i
:

After a calculation (detailed in the Appendix), we �nd that

mse (x; ) = �20f
0 (x)

�
n0C

�1
0 + nM

��1
f (x)+

�
f 0 (x)

�
n0C

�1
0 + nM

��1
nb�  (x)

�2
:

Our loss function is

imse ( )

=
XN

i=1
mse (xi; )

= �20tr
�
n0C

�1
0 + nM

��1
F0F+ n2b0

�
n0C

�1
0 + nM

��1
F0F

�
n0C

�1
0 + nM

��1
b+ k k2 :

It is convenient to work in a canonical form. Let QN�p be such that its
columns form an orthogonal basis for the column space of F �this is obtained
via the QR-decomposition F = QR for a nonsingular, triangular R. We will
require as well the N �N �p matrix Q+ extending Q to a square, orthogonal

matrix
�
Q
...Q+

�
: N � N (so that Q+Q

0
+ = In �QQ0). If we now de�ne a

p� p matrixM0 by C�1
0 = R0M0R, and de�ne as well

V (�) = Q0D (�)Q;

W (�) = Q0D2 (�)Q;

then
n0C

�1
0 + nM = R0 (n0M0 + nV (�))R;
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and we obtain

imse ( ) = �20tr (n0M0 + nV (�))�1

+n2 0D (�)Q (n0M0 + nV (�))�2Q0D (�) + k k2 :

By virtue of (5),  = Q+c for some cN�p�1, where kck = k k = �=
p
n. Thus

imse ( )

=
�20
n
tr
�n0
n
M0 +V (�)

��1
+ c0Q0

+D (�)Q
�n0
n
M0 +V (�)

��2
Q0D (�)Q+c+ kck2 ;

with

max
 
imse ( )

=
�20
n
tr
�n0
n
M0 +V (�)

��1
+
� 2

n
chmaxQ

0
+D (�)Q

�n0
n
M0 +V (�)

��2
Q0D (�)Q+ +

� 2

n

=
�20
n
tr
�n0
n
M0 +V (�)

��1
+
� 2

n
chmax

��n0
n
M0 +V (�)

��1
Q0D (�)Q+Q

0
+D (�)Q

�n0
n
M0 +V (�)

��1�
+
� 2

n

=
�20
n
tr
�n0
n
M0 +V (�)

��1
+
� 2

n

�
1 + chmax

��n0
n
M0 +V (�)

��1 �
W (�)�V2 (�)

� �n0
n
M0 +V (�)

��1��
:

Thus max imse( ) =
�20+�

2

n
times

L� (�) = (1� �) tr
�n0
n
M0 +V (�)

��1
+�

�
1 + chmax

��n0
n
M0 +V (�)

��1 �
W (�)�V2 (�)

� �n0
n
M0 +V (�)

��1��
;

where � = � 2= (�20 + � 2) 2 [0; 1].
Notes:

1. Maximize over a neighbourhood of M0, i.e., as neighbourhood of the
prior covariance matrix of the regression parameters, as well?

2. As in Wiens (2018), if V (�) is held �xed then the loss is convex in � and
the parametric form of the minimizing design, subject to the constraints,
can be found analytically. A numerical minimization of the loss over these
parameters then yields the �nal, minimax design.
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Appendix: Derivations

Details for (1) and (2): We are to minimize

mse (�(x); �(x)) = E
�
Z2(x)

�
; for Z(x) = �0 (x)Y + �(x)� f 0 (x)�:

Conditional on �; �2,

E
�
Z2(x)j�; �2

�
= var

�
Z(x)j�; �2

�
+
�
E
�
Z(x)j�; �2

��2
= �2�0 (x)�(x) + ( 0(x)� + �(x))

2
; for  0(x) = �0 (x)X� f 0 (x) :

Averaging over �:

E
h
( 0� + �(x))

2 j�2
i
= var

�
( 0(x)� + �(x)) j�2

�
+
�
E
�
( 0 (x)� + �(x)) j�2

��2
=

�2

n0
 0 (x)C0(x) + (

0 (x)�0 + �(x))
2
;

and then averaging over �2 gives

mse (�(x); �(x)) = �20�
0 (x)�(x) +

�20
n0
 0 (x)C0(x) + (

0 (x)�0 + �(x))
2
:

Minimizing over �(x) gives �0(x) = � 0 (x)� = (f 0 (x)��0 (x)X)�0, and

mse (�(x); �0(x)) = �20�
0 (x)�(x) +

�20
n0
 0 (x)C0(x)

= �20

(
�0 (x)

�
In +

1
n0
XC0X

0
�
�(x)� 2

n0
�0 (x)XC0f (x)

+ 1
n0
f 0 (x)C0f (x)

)

= �20

8>>>>><>>>>>:

�
�(x)�

�
In +

1
n0
XC0X

0
��1

1
n0
XC0f (x)

�0
�
�
In +

1
n0
XC0X

0
�
��

�(x)�
�
In +

1
n0
XC0X

0
��1

1
n0
XC0f (x)

�
9>>>>>=>>>>>;

+�20

( 1
n0
f 0 (x)C0f (x)

�
�
1
n0
XC0f (x)

�0 �
In +

1
n0
XC0X

0
��1 �

1
n0
XC0f (x)

� ) :
A useful identity is�

In +
1

n0
XC0X

0
��1

= In �X
�
n0C

�1
0 +X0X

��1
X0; (A.1)

implying �
In +

1

n0
XC0X

0
��1

1

n0
XC0 = X

�
n0C

�1
0 +X0X

��1
: (A.2)
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Thus, with

�0(x) =

�
In +

1

n0
XC0X

0
��1

1

n0
XC0f (x) = X

�
n0C

�1
0 +X0X

��1
f (x) ;

for which
�0(x) = f

0 (x)
�
n0C

�1
0 +X0X

��1
n0C

�1
0 �0;

we have that

mse (�(x); �0(x)) = �20 (�(x)��0(x))
0
�
In +

1

n0
XC0X

0
�
(�(x)��0(x))

+�20

�
1

n0
f 0 (x)C0f (x)��00(x)

�
In +

1

n0
XC0X

0
�
�0(x)

�
:

Thus the minimizers are �0(x) and �0(x), and the minimum mse is

mse (�0(x); �0(x)) = �20

�
1

n0
f 0 (x)C0f (x)��00(x)

�
In +

1

n0
XC0X

0
�
�0(x)

�
= �20f

0 (x)
�
n0C

�1
0 +X0X

��1
f (x) :

�
Derivation of mse(x; ): We have mse(x; ) = E [Z2 (x)], for

Z (x) = �00(x)Y + �0(x)� (f 0 (x)� +  (x)) :

De�ne  ̂ = ( (x1) ; :::;  (xn))
0 (here we use all n, not necessarily distinct,

points at which observations are made). Conditional on �; �2, and using the
fact that �0(x) = (f

0 (x)��00(x)X)�0, we obtain

E
�
Z2(x)j�; �2

�
= var

�
Z(x)j�; �2

�
+
�
E
�
Z(x)j�; �2

�	2
= �2�00(x)�0 (x) +

n
�00(x)

�
X� +  ̂

�
+ �0(x)� (f 0 (x)� +  (x))

o2
= �2�00(x)�0 (x) +

n
(�00(x)X� f 0 (x)) (� � �0) +

�
�00(x) ̂ �  (x)

�o2
:

Upon averaging over �, E [Z2(x)j�2] becomes �2�00(x)�0 (x)+

E

�n
(�00(x)X� f 0 (x)) (� � �0) +

�
�00(x) ̂ �  (x)

�o2
j�2
�

= var
h
(�00(x)X� f 0 (x)) (� � �0) +

�
�00(x) ̂ �  (x)

�
j�2
i

+
n
E
h
(�00(x)X� f 0 (x)) (� � �0) +

�
�00(x) ̂ �  (x)

�
j�2
io2

=
�2

n0
(�00(x)X� f 0 (x))C0 (X

0�0 (x)� f (x)) +
�
�00(x) ̂ �  (x)

�2
;
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and then averaging over �2 gives

mse (x; ) = �20�
0
0(x)�0 (x)

+
�20
n0
(�00(x)X� f 0 (x))C0 (X

0�0 (x)� f (x)) +
�
�00(x) ̂ �  (x)

�2
= �20f

0 (x)
�
n0C

�1
0 +X0X

��1
f (x) +

�
�00(x) ̂ �  (x)

�2
:

As a check we note that

mse (x; ) = mse0 (�0(x); �0(x)) +
�
�00(x) ̂ �  (x)

�2
:

FInally, we note that X0X = nM and that

�00(x) ̂ =  ̂
0
�0(x) =  ̂

0
X
�
n0C

�1
0 + nM

��1
f (x) = nb0

�
n0C

�1
0 + nM

��1
f (x) :

�
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