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1 Introduction

Suppose that, given a standard regression model Y, ; = X,,»,0 + error, in
which the rows of the model matrix X are of the form {f'(x;)}’_, for p-
dimensional regressors f (x), we make the moment assumptions

E [Y|9,a2} = X80, cov [Y|a2,0] =o’1,,

with prior moments
2
E [8l0%] = s, cov [6]0*] = -Cy, B [0] = o,
0

Assume that Cy > 0.

In this framework Pukelsheim (1993, p. 268 ff.) derives the minimum
mean square error affine predictor of f'(x) 6. This predictor is of the form
o' (x)Y + f(x) and minimizes

use (a(x), 8(x)) 2 B (o (x) Y + B(x) — £ (x) 0)°].
The calculations — see Appendix — give the minimizers

ap(x) = X (neCy'+X'X) 7' f (%), (1a)
Bo(x) = £ (%) (neCqt +X'X) ™" noCy 60, (1b)

and the minimum MSE is

1

MSEo (ag(x), Bo(x)) = opf’ (x) (noCq " + X'X) £ (x). (2)

Now consider the alternative F [V (x)]0, 0%] = £’ (x) 8 + v (x). We suppose
that the experimenter will act as though ) = 0, hence predict using a and
By, but wishes protection, through the design, against increased losses arising
from model misspecification. The design space x = {x;}1, is finite.

1=

In order that the alternate models be well-defined we impose the condition
N

Zi:l f(xi) ¥ (%) = 0; (3)
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as well we assume that

S ) <7 n (4)

for a finite constant 7. We use the notation Fy, = (f (x1),- -, f (xy)) and
Wywr = (U (x1), -9 (xn))', so that (3) and (4) become, respectively,
(i) F'yp =0, (ii) 9]* <7°/n. (5)

N
For a design £ on Y, placing mass n;/n at x; (Z;l n; = n), we define

D (E) = dlag (fla o '75N) )
My = . &F(x)F (x) =FD(E)F.
bpa = 3 &£(x)9(x) =F'D (&), (6)

Note that X'X = nM.
The MSE becomes

usE (x50) = B () Y + o) — (£ (x) 0+ (x)))°]

After a calculation (detailed in the Appendix), we find that

f (x)—l—(f’ (x) (noCy' + nM)_l nb — 1) (X))2 :

MSE (x;¢) = ogf’ (x) (noCq ' + nM)_l

Our loss function is

IMSE (1)
N
= 3 s )
= otr (noCy +nM) " F'F +n2b' (ngCyt +nM) " F'F (noCq* +nM) ' b+ |||
It is convenient to work in a canonical form. Let Qux, be such that its
columns form an orthogonal basis for the column space of F — this is obtained

via the QR~decomposition F = QR for a nonsingular, triangular R. We will
require as well the N x N —p matrix Q. extending Q to a square, orthogonal

matrix (Q3Q+) : N x N (so that Q1 Q. =1, — QQ’). If we now define a
p X p matrix My by C;' = R’'MyR, and define as well

V() = QD(§)Q,
W() = QD*(§)Q,

then
noCy! +nM = R/ (n)My +nV (§))R,
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and we obtain

IMSE (1)) = o2tr (ngMgy +nV (€)™
+n*P'D (€) Q (noMo +nV (£)) 2 QD (&) + |||

By virtue of (5), 9 = Q4.c for some cn_,x1, where ||c|| = ||¢|| = 7/y/n. Thus

IMSE ()

2

- %tr <%Mo LV (5))

QD ©)Q (M, +V(6) QD (€) Quet e,

max IMSE (1)

= Do (UM +V(©) + S ohn@ DO Q (M +V(©) Q@D Qe+

n

2 -1
_ %0, (™
_ ntr(nM0+V(£))

2 2

e { (M4 V(@) QDO Q@D ©Q (UM V() T

n

2 —1
_ %0, (™
_ ntr(nM0+V(£))
2

(e vie) e - viel (s vie) )]

O'g+7'2
n

Thus max,IMSE(¢)) = times

L€ = (1—v)tr (%Mﬁwg))_l

-y (1 4 Chimas { (%Mo +V (£)>_1 [W (&) - V*(&)] (%MO v (£)> _1}) ’

where v = 72/ (03 + 72) € [0, 1].
Notes:

1. Maximize over a neighbourhood of My, i.e., as neighbourhood of the
prior covariance matrix of the regression parameters, as well?

2. As in Wiens (2018), if V (&) is held fixed then the loss is convex in £ and
the parametric form of the minimizing design, subject to the constraints,
can be found analytically. A numerical minimization of the loss over these
parameters then yields the final, minimax design.
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Appendix: Derivations

Details for (1) and (2): We are to minimize
mse (a(x), 3(x)) = E [Z*(x)] ,for Z(x) =/ (x) Y + B(x) — ' (x) 6.
Conditional on 8, 02,
E[Z2*(x)|0,0%] = VAR [Z(x)]6,0%] + (E [Z(x)|0,5%])”
= o’/ (xa(x) + (7(x)0 + B(x))*, for v'(x) = & (x) X — ' (x).

Averaging over 0:

E(v8+5(x)[0%] = var [(v/(x)6 + B(x))[0*] + (E [(+ ()8 + B(x)) |o%])

2

0.2

= o7 () Cv () + (7 (980 + 5(x))”

and then averaging over o2 gives
2
mse (e(x), B(x)) = ot (X)ex(x) + 72" () Oy () + (7 (x)8o + 5(x))’

Minimizing over f(x) gives [,(x) = —v' (x)0 = (f’ (x) — &’ (x) X) 0y, and
2
Z0
0

mse (a(x). fo(x)) = afe’ (Kalx) + 2 (x) Cyy(x)

_ o) e ® <In+n—1OXCOX’) a(x) - Za/ (x) XC,f (x)
’ + L/ (x) Cof (x)

( (a(x) - (In + niOXCOX'> T Xyt (x))/ \
= 2 - (In + nloXCOX’> -
(a(x) . (In n n—loXCOX’) B LXCof (x)>

, niof’ (x) Cof (x)

+o ! -1 .
0y - (niOXCOf (x)) (In + niOXCOX’> (n—loXCOf <x))

A useful identity is

-1

1 _
<In + —XCOX’) =1I,—-X (nngl + X’X) ! X', (A.1)
No

implying

1 1 -
(In+ n—XCoX') —XCo =X (nCy' +X'X) . (A2)
0 0
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Thus, with

1 ! _
ao(X) = (In + TL_OXCOX,) —XCOf (X) =X (nocal + X/X) !

~ f(x).

for which
Bo(x) = £ (%) (noCy™ + X'X) ™" ngCy 'y,

we have that
1
mse (), Aox)) = o (@)~ aux)) (1 + - XCoX') (o) ~ au(x)
0
1 1
+og {—f’ (x) Cof (x) — ap(x) (In + —XCOX'> ao(x)} :
o no
Thus the minimizers are a(x) and S,(x), and the minimum MSE is

mse (a(x) o)) = {8 () Cuf () — ah(x) (L, + - XCoX ) aalo) |

-1

= oof’ (x) (noCy' + X'X) ™ £ (x).

Derivation of MSE(x;1)): We have MSE(x;¢)) = E [Z? (x)], for

Z (x) = ap(x) Y + By (x) = (' (x) 0 + ¢ (x)).

Define ¥ = (¢ (x1),...,% (x,))" (here we use all n, not necessarily distinct,
points at which observations are made). Conditional on 6, 0%, and using the
fact that 5,(x) = (f' (x) — a(x) X) 8y, we obtain

E[7*(x)|0,0%] = VAR [Z(x)|0,0%] + {E [2(x)|0,07]}"
= Paf(x)a0 (x) + {af(x) (X0 +B) + Ao(x) — (' (x)0+ v (x) }

2

— oPag(x)as (x) + { (@h(x) X ~ £ (x)) (0 = 60) + (ap(x)% — v () } -

Upon averaging over 0, E [Z2(x)|0?] becomes o?ay(x) oy (x) +

B | {(@400% 1) 6 00) + (a0~ 0:0) } 1o
= van [(@ () X~ £/(x)) (6 0) + (h(x)b (x))! ?
+{B[(ah0 X~ (x)) (0~ 00) + (0% — v (x)) 0] }

0_2

= T (ah(x) X — £ (x)) Co (X'axo (x) — £ (x)) + (ao<> )

U]
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and then averaging over o2 gives

MSE (xit) = ofap(x)as (x)
+ 22 (el (x) X — £ (x)) Co (Xexg (x) — £ (x)) + (b ()8 — ¥ (x))

o

= opf’ (x) (neCy' + X'X) ™
As a check we note that
MSE (x:1/) = MEp (ex0(x). () + (ep(x)ab — w0 (x0))

FInally, we note that X’X = nM and that

1 1

ol (x)h = @Ab,ag(x) —P'X (noCy ' +nM) £ (x) = nb (ngCy"' +nM) £ (x).
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