Notes on Robust Bayesian Design Douglas P. Wiens¹

1 Introduction

Suppose that, given a standard regression model $\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times p} \boldsymbol{\theta}$ + error, in which the rows of the model matrix \mathbf{X} are of the form $\{\mathbf{f}'(\mathbf{x}_j)\}_{j=1}^n$ for *p*-dimensional regressors $\mathbf{f}(\mathbf{x})$, we make the moment assumptions

$$E\left[\mathbf{Y}|\boldsymbol{\theta},\sigma^{2}\right] = \mathbf{X}\boldsymbol{\theta}, \text{ COV}\left[\mathbf{Y}|\sigma^{2},\boldsymbol{\theta}\right] = \sigma^{2}\mathbf{I}_{n},$$

with prior moments

$$E\left[\boldsymbol{\theta}|\sigma^{2}\right] = \boldsymbol{\theta}_{0}, \text{ COV}\left[\boldsymbol{\theta}|\sigma^{2}\right] = \frac{\sigma^{2}}{n_{0}}\mathbf{C}_{0}, E\left[\sigma^{2}\right] = \sigma_{0}^{2}.$$

Assume that $C_0 > 0$.

In this framework Pukelsheim (1993, p. 268 ff.) derives the minimum mean square error affine predictor of $\mathbf{f}'(\mathbf{x})\boldsymbol{\theta}$. This predictor is of the form $\boldsymbol{\alpha}'(\mathbf{x})\mathbf{Y} + \boldsymbol{\beta}(\mathbf{x})$ and minimizes

MSE
$$(\boldsymbol{\alpha}(\mathbf{x}), \beta(\mathbf{x})) \stackrel{def}{=} E \left[(\boldsymbol{\alpha}'(\mathbf{x}) \mathbf{Y} + \beta(\mathbf{x}) - \mathbf{f}'(\mathbf{x}) \boldsymbol{\theta})^2 \right].$$

The calculations – see Appendix – give the minimizers

$$\boldsymbol{\alpha}_{0}(\mathbf{x}) = \mathbf{X} \left(n_{0} \mathbf{C}_{0}^{-1} + \mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{x}), \qquad (1a)$$

$$\beta_0(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + \mathbf{X}' \mathbf{X} \right)^{-1} n_0 \mathbf{C}_0^{-1} \boldsymbol{\theta}_0, \tag{1b}$$

and the minimum MSE is

$$MSE_0\left(\boldsymbol{\alpha}_0(\mathbf{x}), \beta_0(\mathbf{x})\right) = \sigma_0^2 \mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + \mathbf{X}' \mathbf{X}\right)^{-1} \mathbf{f}(\mathbf{x}).$$
(2)

Now consider the alternative $E[Y(\mathbf{x})|\boldsymbol{\theta}, \sigma^2] = \mathbf{f}'(\mathbf{x}) \boldsymbol{\theta} + \psi(\mathbf{x})$. We suppose that the experimenter will act as though $\psi \equiv 0$, hence predict using $\boldsymbol{\alpha}_0$ and β_0 , but wishes protection, through the design, against increased losses arising from model misspecification. The design space $\chi = \{\mathbf{x}_i\}_{i=1}^N$ is finite.

In order that the alternate models be well-defined we impose the condition

$$\sum_{i=1}^{N} \mathbf{f}(\mathbf{x}_{i}) \psi(\mathbf{x}_{i}) = \mathbf{0};$$
(3)

¹Department of Mathematical and Statistical Sciences; University of Alberta, Edmonton, Alberta; Canada T6G 2G1. e-mail: doug.wiens@ualberta.ca

as well we assume that

$$\sum_{i=1}^{N} \psi^2(\mathbf{x}_i) \le \tau^2/n,\tag{4}$$

for a finite constant τ . We use the notation $\mathbf{F}_{N \times p} = (\mathbf{f}(\mathbf{x}_1), \dots, \mathbf{f}(\mathbf{x}_N))'$ and $\psi_{N \times 1} = (\psi(\mathbf{x}_1), \dots, \psi(\mathbf{x}_N))'$, so that (3) and (4) become, respectively,

(i)
$$\mathbf{F}' \boldsymbol{\psi} = \mathbf{0}$$
, (ii) $\| \boldsymbol{\psi} \|^2 \le \tau^2 / n$. (5)

For a design $\boldsymbol{\xi}$ on χ , placing mass n_i/n at \mathbf{x}_i $(\sum_{i=1}^N n_i = n)$, we define

$$\mathbf{D}(\boldsymbol{\xi}) = diag(\xi_1, \dots, \xi_N),$$

$$\mathbf{M}_{p \times p} = \sum_{i=1}^{N} \xi_i \mathbf{f}(\mathbf{x}_i) \mathbf{f}'(\mathbf{x}_i) = \mathbf{F}' \mathbf{D}(\boldsymbol{\xi}) \mathbf{F},$$

$$\mathbf{b}_{p \times 1} = \sum_{i=1}^{N} \xi_i \mathbf{f}(\mathbf{x}_i) \psi(\mathbf{x}_i) = \mathbf{F}' \mathbf{D}(\boldsymbol{\xi}) \boldsymbol{\psi}.$$
(6)

Note that $\mathbf{X}'\mathbf{X} = n\mathbf{M}$.

The MSE becomes

MSE
$$(\mathbf{x}; \psi) = E \left[(\boldsymbol{\alpha}_0'(\mathbf{x}) \mathbf{Y} + \beta_0(\mathbf{x}) - (\mathbf{f}'(\mathbf{x}) \boldsymbol{\theta} + \psi(\mathbf{x})))^2 \right]$$

After a calculation (detailed in the Appendix), we find that

$$MSE(\mathbf{x};\psi) = \sigma_0^2 \mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + n\mathbf{M} \right)^{-1} \mathbf{f}(\mathbf{x}) + \left(\mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + n\mathbf{M} \right)^{-1} n\mathbf{b} - \psi(\mathbf{x}) \right)^2$$

Our loss function is

$$\begin{aligned} & \text{IMSE}\left(\psi\right) \\ &= \sum_{i=1}^{N} \text{MSE}\left(\mathbf{x}_{i};\psi\right) \\ &= \sigma_{0}^{2} tr\left(n_{0} \mathbf{C}_{0}^{-1} + n \mathbf{M}\right)^{-1} \mathbf{F}' \mathbf{F} + n^{2} \mathbf{b}' \left(n_{0} \mathbf{C}_{0}^{-1} + n \mathbf{M}\right)^{-1} \mathbf{F}' \mathbf{F} \left(n_{0} \mathbf{C}_{0}^{-1} + n \mathbf{M}\right)^{-1} \mathbf{b} + \left\|\psi\right\|^{2}. \end{aligned}$$

It is convenient to work in a canonical form. Let $\mathbf{Q}_{N \times p}$ be such that its columns form an orthogonal basis for the column space of \mathbf{F} – this is obtained via the QR-decomposition $\mathbf{F} = \mathbf{QR}$ for a nonsingular, triangular \mathbf{R} . We will require as well the $N \times N - p$ matrix \mathbf{Q}_+ extending \mathbf{Q} to a square, orthogonal matrix $\left(\mathbf{Q}:\mathbf{Q}_+\right): N \times N$ (so that $\mathbf{Q}_+\mathbf{Q}'_+ = \mathbf{I}_n - \mathbf{Q}\mathbf{Q}'$). If we now define a $p \times p$ matrix \mathbf{M}_0 by $\mathbf{C}_0^{-1} = \mathbf{R}'\mathbf{M}_0\mathbf{R}$, and define as well

$$\begin{aligned} \mathbf{V}\left(\boldsymbol{\xi}\right) &= & \mathbf{Q'}\mathbf{D}\left(\boldsymbol{\xi}\right)\mathbf{Q}, \\ \mathbf{W}\left(\boldsymbol{\xi}\right) &= & \mathbf{Q'}\mathbf{D}^{2}\left(\boldsymbol{\xi}\right)\mathbf{Q}, \end{aligned}$$

then

$$n_0 \mathbf{C}_0^{-1} + n \mathbf{M} = \mathbf{R}' \left(n_0 \mathbf{M}_0 + n \mathbf{V} \left(\boldsymbol{\xi} \right) \right) \mathbf{R},$$

Bayes

and we obtain

IMSE
$$(\psi) = \sigma_0^2 tr \left(n_0 \mathbf{M}_0 + n \mathbf{V}(\boldsymbol{\xi}) \right)^{-1}$$

 $+ n^2 \boldsymbol{\psi}' \mathbf{D}(\boldsymbol{\xi}) \mathbf{Q} \left(n_0 \mathbf{M}_0 + n \mathbf{V}(\boldsymbol{\xi}) \right)^{-2} \mathbf{Q}' \mathbf{D}(\boldsymbol{\xi}) \boldsymbol{\psi} + \| \boldsymbol{\psi} \|^2.$

By virtue of (5), $\boldsymbol{\psi} = \mathbf{Q}_{+}\mathbf{c}$ for some $\mathbf{c}_{N-p\times 1}$, where $\|\mathbf{c}\| = \|\boldsymbol{\psi}\| = \tau/\sqrt{n}$. Thus

$$= \frac{\sigma_0^2}{n} tr\left(\frac{n_0}{n} \mathbf{M}_0 + \mathbf{V}(\boldsymbol{\xi})\right)^{-1} + \mathbf{c}' \mathbf{Q}'_{+} \mathbf{D}(\boldsymbol{\xi}) \mathbf{Q}\left(\frac{n_0}{n} \mathbf{M}_0 + \mathbf{V}(\boldsymbol{\xi})\right)^{-2} \mathbf{Q}' \mathbf{D}(\boldsymbol{\xi}) \mathbf{Q}_{+} \mathbf{c} + \|\mathbf{c}\|^2,$$

with

$$\begin{aligned} \max_{\boldsymbol{\psi}} \text{IMSE}\left(\boldsymbol{\psi}\right) \\ &= \frac{\sigma_{0}^{2}}{n} tr\left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} + \frac{\tau^{2}}{n} ch_{\max} \mathbf{Q}_{+}^{\prime} \mathbf{D}\left(\boldsymbol{\xi}\right) \mathbf{Q}\left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-2} \mathbf{Q}^{\prime} \mathbf{D}\left(\boldsymbol{\xi}\right) \mathbf{Q}_{+} + \frac{\tau^{2}}{n} \\ &= \frac{\sigma_{0}^{2}}{n} tr\left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \\ &+ \frac{\tau^{2}}{n} ch_{\max} \left\{ \left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \mathbf{Q}^{\prime} \mathbf{D}\left(\boldsymbol{\xi}\right) \mathbf{Q}_{+} \mathbf{Q}_{+}^{\prime} \mathbf{D}\left(\boldsymbol{\xi}\right) \mathbf{Q}\left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \right\} + \frac{\tau^{2}}{n} \\ &= \frac{\sigma_{0}^{2}}{n} tr\left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \\ &+ \frac{\tau^{2}}{n} \left[1 + ch_{\max} \left\{ \left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \left[\mathbf{W}\left(\boldsymbol{\xi}\right) - \mathbf{V}^{2}\left(\boldsymbol{\xi}\right)\right] \left(\frac{n_{0}}{n} \mathbf{M}_{0} + \mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} \right\} \right]. \end{aligned}$$

Thus $\max_{\psi} \text{IMSE}(\psi) = \frac{\sigma_0^2 + \tau^2}{n}$ times

$$\mathcal{L}_{\nu}\left(\xi\right) = \left(1-\nu\right) tr\left(\frac{n_{0}}{n}\mathbf{M}_{0}+\mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1} + \nu\left(1+ch_{\max}\left\{\left(\frac{n_{0}}{n}\mathbf{M}_{0}+\mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1}\left[\mathbf{W}\left(\boldsymbol{\xi}\right)-\mathbf{V}^{2}\left(\boldsymbol{\xi}\right)\right]\left(\frac{n_{0}}{n}\mathbf{M}_{0}+\mathbf{V}\left(\boldsymbol{\xi}\right)\right)^{-1}\right\}\right),$$

where $\nu = \tau^2 / (\sigma_0^2 + \tau^2) \in [0, 1].$ Notes:

- 1. Maximize over a neighbourhood of \mathbf{M}_0 , i.e., as neighbourhood of the prior covariance matrix of the regression parameters, as well?
- 2. As in Wiens (2018), if $\mathbf{V}(\boldsymbol{\xi})$ is held fixed then the loss is convex in $\boldsymbol{\xi}$ and the parametric form of the minimizing design, subject to the constraints, can be found analytically. A numerical minimization of the loss over these parameters then yields the final, minimax design.

Appendix: Derivations

Details for (1) and (2): We are to minimize

$$mse(\boldsymbol{\alpha}(\mathbf{x}),\beta(\mathbf{x})) = E[Z^{2}(\mathbf{x})], \text{ for } Z(\mathbf{x}) = \boldsymbol{\alpha}'(\mathbf{x})\mathbf{Y} + \beta(\mathbf{x}) - \mathbf{f}'(\mathbf{x})\boldsymbol{\theta}.$$

Conditional on $\boldsymbol{\theta}, \sigma^2,$

$$E\left[Z^{2}(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right] = \operatorname{VAR}\left[Z(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right] + \left(E\left[Z(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right]\right)^{2}$$
$$= \sigma^{2}\boldsymbol{\alpha}'(\mathbf{x})\boldsymbol{\alpha}(\mathbf{x}) + \left(\boldsymbol{\gamma}'(\mathbf{x})\boldsymbol{\theta} + \boldsymbol{\beta}(\mathbf{x})\right)^{2}, \text{ for } \boldsymbol{\gamma}'(\mathbf{x}) = \boldsymbol{\alpha}'(\mathbf{x})\mathbf{X} - \mathbf{f}'(\mathbf{x}).$$

Averaging over $\boldsymbol{\theta}$:

$$E\left[\left(\boldsymbol{\gamma}'\boldsymbol{\theta} + \boldsymbol{\beta}(\mathbf{x})\right)^{2} | \sigma^{2}\right] = \operatorname{VAR}\left[\left(\boldsymbol{\gamma}'(\mathbf{x})\boldsymbol{\theta} + \boldsymbol{\beta}(\mathbf{x})\right) | \sigma^{2}\right] + \left(E\left[\left(\boldsymbol{\gamma}'(\mathbf{x})\boldsymbol{\theta} + \boldsymbol{\beta}(\mathbf{x})\right) | \sigma^{2}\right]\right)^{2} \\ = \frac{\sigma^{2}}{n_{0}}\boldsymbol{\gamma}'(\mathbf{x}) \mathbf{C}_{0}\boldsymbol{\gamma}(\mathbf{x}) + \left(\boldsymbol{\gamma}'(\mathbf{x})\boldsymbol{\theta}_{0} + \boldsymbol{\beta}(\mathbf{x})\right)^{2},$$

and then averaging over σ^2 gives

$$mse\left(\boldsymbol{\alpha}(\mathbf{x}),\beta(\mathbf{x})\right) = \sigma_{0}^{2}\boldsymbol{\alpha}'\left(\mathbf{x}\right)\boldsymbol{\alpha}(\mathbf{x}) + \frac{\sigma_{0}^{2}}{n_{0}}\boldsymbol{\gamma}'\left(\mathbf{x}\right)\mathbf{C}_{0}\boldsymbol{\gamma}(\mathbf{x}) + \left(\boldsymbol{\gamma}'\left(\mathbf{x}\right)\boldsymbol{\theta}_{0} + \beta(\mathbf{x})\right)^{2}.$$

Minimizing over $\beta(\mathbf{x})$ gives $\beta_0(\mathbf{x}) = -\gamma'(\mathbf{x})\boldsymbol{\theta} = (\mathbf{f}'(\mathbf{x}) - \boldsymbol{\alpha}'(\mathbf{x})\mathbf{X})\boldsymbol{\theta}_0$, and

$$\begin{split} mse\left(\boldsymbol{\alpha}(\mathbf{x}),\beta_{0}(\mathbf{x})\right) &= \sigma_{0}^{2}\boldsymbol{\alpha}'\left(\mathbf{x}\right)\boldsymbol{\alpha}(\mathbf{x}) + \frac{\sigma_{0}^{2}}{n_{0}}\boldsymbol{\gamma}'\left(\mathbf{x}\right)\mathbf{C}_{0}\boldsymbol{\gamma}(\mathbf{x}) \\ &= \sigma_{0}^{2} \left\{ \begin{array}{c} \boldsymbol{\alpha}'\left(\mathbf{x}\right)\left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)\boldsymbol{\alpha}(\mathbf{x}) - \frac{2}{n_{0}}\boldsymbol{\alpha}'\left(\mathbf{x}\right)\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right) \\ &+ \frac{1}{n_{0}}\mathbf{f}'\left(\mathbf{x}\right)\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right) \end{array} \right\} \\ &= \sigma_{0}^{2} \left\{ \begin{array}{c} \left(\boldsymbol{\alpha}(\mathbf{x}) - \left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1} \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)\right)' \\ &\cdot \left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right) \cdot \\ &\left(\boldsymbol{\alpha}(\mathbf{x}) - \left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1} \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)\right) \end{array} \right\} \\ &+ \sigma_{0}^{2} \left\{ \begin{array}{c} \left(\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)\right)' \\ &- \left(\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)\right)' \left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1} \left(\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)\right) \end{array} \right\} \end{split}$$

A useful identity is

$$\left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1} = \mathbf{I}_{n} - \mathbf{X}\left(n_{0}\mathbf{C}_{0}^{-1} + \mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}', \quad (A.1)$$

implying

$$\left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1}\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0} = \mathbf{X}\left(n_{0}\mathbf{C}_{0}^{-1} + \mathbf{X}'\mathbf{X}\right)^{-1}.$$
 (A.2)

Bayes

Thus, with

$$\boldsymbol{\alpha}_{0}(\mathbf{x}) = \left(\mathbf{I}_{n} + \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)^{-1} \frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{f}(\mathbf{x}) = \mathbf{X}\left(n_{0}\mathbf{C}_{0}^{-1} + \mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{f}(\mathbf{x}),$$

for which

$$\beta_0(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + \mathbf{X}' \mathbf{X} \right)^{-1} n_0 \mathbf{C}_0^{-1} \boldsymbol{\theta}_0,$$

we have that

$$mse\left(\boldsymbol{\alpha}(\mathbf{x}),\beta_{0}(\mathbf{x})\right) = \sigma_{0}^{2}\left(\boldsymbol{\alpha}(\mathbf{x})-\boldsymbol{\alpha}_{0}(\mathbf{x})\right)'\left(\mathbf{I}_{n}+\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)\left(\boldsymbol{\alpha}(\mathbf{x})-\boldsymbol{\alpha}_{0}(\mathbf{x})\right) \\ +\sigma_{0}^{2}\left\{\frac{1}{n_{0}}\mathbf{f}'\left(\mathbf{x}\right)\mathbf{C}_{0}\mathbf{f}\left(\mathbf{x}\right)-\boldsymbol{\alpha}_{0}'(\mathbf{x})\left(\mathbf{I}_{n}+\frac{1}{n_{0}}\mathbf{X}\mathbf{C}_{0}\mathbf{X}'\right)\boldsymbol{\alpha}_{0}(\mathbf{x})\right\}.$$

Thus the minimizers are $\alpha_0(\mathbf{x})$ and $\beta_0(\mathbf{x})$, and the minimum MSE is

$$mse\left(\boldsymbol{\alpha}_{0}(\mathbf{x}),\beta_{0}(\mathbf{x})\right) = \sigma_{0}^{2} \left\{ \frac{1}{n_{0}} \mathbf{f}'\left(\mathbf{x}\right) \mathbf{C}_{0} \mathbf{f}\left(\mathbf{x}\right) - \boldsymbol{\alpha}_{0}'(\mathbf{x}) \left(\mathbf{I}_{n} + \frac{1}{n_{0}} \mathbf{X} \mathbf{C}_{0} \mathbf{X}'\right) \boldsymbol{\alpha}_{0}(\mathbf{x}) \right\}$$
$$= \sigma_{0}^{2} \mathbf{f}'\left(\mathbf{x}\right) \left(n_{0} \mathbf{C}_{0}^{-1} + \mathbf{X}' \mathbf{X}\right)^{-1} \mathbf{f}\left(\mathbf{x}\right).$$

Derivation of MSE($\mathbf{x}; \psi$): We have MSE($\mathbf{x}; \psi$) = $E[Z^2(\mathbf{x})]$, for

$$Z(\mathbf{x}) = \boldsymbol{\alpha}_{0}'(\mathbf{x}) \mathbf{Y} + \beta_{0}(\mathbf{x}) - (\mathbf{f}'(\mathbf{x}) \boldsymbol{\theta} + \psi(\mathbf{x})).$$

Define $\hat{\boldsymbol{\psi}} = (\psi(\mathbf{x}_1), ..., \psi(\mathbf{x}_n))'$ (here we use all *n*, not necessarily distinct, points at which observations are made). Conditional on $\boldsymbol{\theta}, \sigma^2$, and using the fact that $\beta_0(\mathbf{x}) = (\mathbf{f}'(\mathbf{x}) - \boldsymbol{\alpha}'_0(\mathbf{x}) \mathbf{X}) \boldsymbol{\theta}_0$, we obtain

$$E\left[Z^{2}(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right] = \operatorname{VAR}\left[Z(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right] + \left\{E\left[Z(\mathbf{x})|\boldsymbol{\theta},\sigma^{2}\right]\right\}^{2}$$

$$= \sigma^{2}\boldsymbol{\alpha}_{0}'(\mathbf{x})\boldsymbol{\alpha}_{0}\left(\mathbf{x}\right) + \left\{\boldsymbol{\alpha}_{0}'(\mathbf{x})\left(\mathbf{X}\boldsymbol{\theta}+\hat{\boldsymbol{\psi}}\right) + \beta_{0}(\mathbf{x}) - \left(\mathbf{f}'\left(\mathbf{x}\right)\boldsymbol{\theta}+\psi\left(\mathbf{x}\right)\right)\right\}^{2}$$

$$= \sigma^{2}\boldsymbol{\alpha}_{0}'(\mathbf{x})\boldsymbol{\alpha}_{0}\left(\mathbf{x}\right) + \left\{\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\mathbf{X}-\mathbf{f}'\left(\mathbf{x}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) + \left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\hat{\boldsymbol{\psi}}-\psi\left(\mathbf{x}\right)\right)\right\}^{2}$$

Upon averaging over $\boldsymbol{\theta}$, $E[Z^2(\mathbf{x})|\sigma^2]$ becomes $\sigma^2 \boldsymbol{\alpha}'_0(\mathbf{x}) \boldsymbol{\alpha}_0(\mathbf{x}) +$

$$E\left[\left\{\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\,\mathbf{X}-\mathbf{f}'\left(\mathbf{x}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\hat{\boldsymbol{\psi}}-\boldsymbol{\psi}\left(\mathbf{x}\right)\right)\right\}^{2}|\sigma^{2}\right]\right]$$

$$=\operatorname{VAR}\left[\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\,\mathbf{X}-\mathbf{f}'\left(\mathbf{x}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\hat{\boldsymbol{\psi}}-\boldsymbol{\psi}\left(\mathbf{x}\right)\right)|\sigma^{2}\right]\right]$$

$$+\left\{E\left[\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\,\mathbf{X}-\mathbf{f}'\left(\mathbf{x}\right)\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\hat{\boldsymbol{\psi}}-\boldsymbol{\psi}\left(\mathbf{x}\right)\right)|\sigma^{2}\right]\right\}^{2}$$

$$=\frac{\sigma^{2}}{n_{0}}\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\,\mathbf{X}-\mathbf{f}'\left(\mathbf{x}\right)\right)\mathbf{C}_{0}\left(\mathbf{X}'\boldsymbol{\alpha}_{0}\left(\mathbf{x}\right)-\mathbf{f}\left(\mathbf{x}\right)\right)+\left(\boldsymbol{\alpha}_{0}'(\mathbf{x})\hat{\boldsymbol{\psi}}-\boldsymbol{\psi}\left(\mathbf{x}\right)\right)^{2},$$

and then averaging over σ^2 gives

$$MSE(\mathbf{x};\psi) = \sigma_0^2 \boldsymbol{\alpha}_0'(\mathbf{x}) \boldsymbol{\alpha}_0(\mathbf{x}) \\ + \frac{\sigma_0^2}{n_0} \left(\boldsymbol{\alpha}_0'(\mathbf{x}) \mathbf{X} - \mathbf{f}'(\mathbf{x}) \right) \mathbf{C}_0 \left(\mathbf{X}' \boldsymbol{\alpha}_0(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right) + \left(\boldsymbol{\alpha}_0'(\mathbf{x}) \hat{\boldsymbol{\psi}} - \boldsymbol{\psi}(\mathbf{x}) \right)^2 \\ = \sigma_0^2 \mathbf{f}'(\mathbf{x}) \left(n_0 \mathbf{C}_0^{-1} + \mathbf{X}' \mathbf{X} \right)^{-1} \mathbf{f}(\mathbf{x}) + \left(\boldsymbol{\alpha}_0'(\mathbf{x}) \hat{\boldsymbol{\psi}} - \boldsymbol{\psi}(\mathbf{x}) \right)^2.$$

As a check we note that

MSE
$$(\mathbf{x}; \psi)$$
 = MSE₀ $(\boldsymbol{\alpha}_0(\mathbf{x}), \beta_0(\mathbf{x})) + \left(\boldsymbol{\alpha}'_0(\mathbf{x})\hat{\boldsymbol{\psi}} - \psi(\mathbf{x})\right)^2$.

Finally, we note that $\mathbf{X}'\mathbf{X} = n\mathbf{M}$ and that

$$\boldsymbol{\alpha}_{0}^{\prime}(\mathbf{x})\hat{\boldsymbol{\psi}} = \hat{\boldsymbol{\psi}}^{\prime}\boldsymbol{\alpha}_{0}(\mathbf{x}) = \hat{\boldsymbol{\psi}}^{\prime}\mathbf{X}\left(n_{0}\mathbf{C}_{0}^{-1} + n\mathbf{M}\right)^{-1}\mathbf{f}\left(\mathbf{x}\right) = n\mathbf{b}^{\prime}\left(n_{0}\mathbf{C}_{0}^{-1} + n\mathbf{M}\right)^{-1}\mathbf{f}\left(\mathbf{x}\right).$$

Acknowledgements

This work was carried out with the support of the Natural Sciences and Engineering Council of Canada.

References

Pukelsheim, F. (1993), Optimal Design of Experiments, Wiley.

Wiens, D. P. (2018), I-Robust and D-Robust Designs on a Finite Design Space, *Statistics and Computing*, 28, 241-258.