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Proof of Theorem 1: The experimenter aims to minimize the loss function

LE(�) =
nX
i=1

�� [yi � F (x(i);�� )]:

An equivalent loss function is (Oberhofer and Haupt 2016, Asymptotic theory for nonlin-
ear quantile regression under weak dependence, Econometric Theory 32: 686-713)

LH() =
nX
i=1

f�� [ui � hi()]� �� [ui]g; (A.1)

where hi() = F (xi;�� +(=
p
n))�F (xi;�� ),  =

p
n(���� ), and ui = �(xi)+�(xi)"i.

We expand the function F (xi;�� + (=
p
n)) by applying Taylor�s expansion

F (xi;�� + (=
p
n)) = F (xi;�� ) + f

0(xi;�� )
p
n
+ o(1):

The loss function in (A.1) is equivalent to the following objective function (Yang et al.
2018, Quantile regression for robust inference on varying coe¢ cient partially linear models,
Journal of the Korean Statistical Society 47: 172-184):

LT () =
nX
i=1

f�� [ui � f 0(x(i);�� )=
p
n]� �� [ui]g: (A.2)

Note the identity of Knight (Knight [17]):

�� (r � s)� �� (r) = �s[� � I(r � 0)] +
Z s

0

[I(r � t)� I(r � 0)]dt:
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We apply Knight�s identity to (A.2). Thus, we have

LT () = �
nX
i=1

sni � (ui) +

nX
i=1

Z sni

0

[I(ui � t)� I(ui � 0)]dt

= Z1n() + Z2n(); where sni = f
0(x(i);�� )

p
n
;

where

Z1n() = �
nX
i=1

sni � (ui) and Z2n() =
nX
i=1

Z2ni() for

Z2ni() =

Z sni

0

[I(ui � t)� I(ui � 0)]dt:

Let us consider

E[Z1n()] = �  0p
n

nX
i=1

f(x(i);�� )E[ � (ui)]

= �  0p
n

nX
i=1

f� �G[���(x(i))]gf(x(i);�� )

= � 0
p
n

n

nX
i=1

fg"(0)��(x(i)) + o(1)gf(x(i);�� )

! � 0
(
1

n

nX
i=1

��(x(i))f(x(i);�� )

)
g"(0)

p
n

= � 0
(

NX
i=1

�i�
�(xi)f(xi;�� )

)
g"(0)

p
n

= � 0�g"(0)
p
n:

Also, we have

Var[Z1n()] =
nX
i=1

s2niVar[ � (ui)]

=  0
1

n

nX
i=1

G[���(x(i))]f1�G[���(x(i))]gf(x(i);�� )f
0
(x(i);�� )

=  0
1

n

nX
i=1

f� � g"(0)�
�(x(i)) + o(1)gf1� � + g"(0)�

�(x(i)) + o(1)gf(x(i);�� )f 0(x(i);�� )

!  0
1

n

nX
i=1

f� � g"(0)�
�(x(i))gf1� � + g"(�)�

�(x(i))gf(x(i);�� )f 0(x(i);�� )

=  0
1

n

nX
i=1

�
�(1� �)

+(2� � 1)g"(0)��(x(i))� g"(0)
2��(x(i))

2

�
f(x(i);�� )f

0(x(i);�� ): (A.3)
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Let us consider the second term in braces in (A.3),

 0
1

n

nX
i=1

f(2� � 1)g"(0)��(x(i))gf(x(i);�� )f 0(x(i);�� )

= (2� � 1)g"(0) 0
(
1

n

nX
i=1

��(x(i))f(x(i);�� )f
0(x(i);�� )

)


= (2� � 1)g"(0) 0
(

NX
i=1

�i�
�(xi)f(xi;�� )f

0(xi;�� )

)


= N(2� � 1)g"(0) 0
(
1

N

NX
i=1

�i�
�(xi)f(xi;�� )f

0(xi;�� )

)


� N 0[(2� � 1)g"(0)] max
1�i�N

fk f(xi;�� ) k �ig k  k
1

N

NX
i=1

��(xi)f(xi;�� )

! 0 [by (5)]:

Thus, we can conclude

 0
1

n

nX
i=1

f(2� � 1)g"(0)��(x(i))gf(x(i);�� )f 0(x(i);�� ) ! 0: (A.4)

The third term in braces in (A.3) is

g"(0)
2 0

(
1

n

nX
i=1

��(x(i))
2f(x(i);�� )f

0(x(i);�� )

)


= Ng"(0)
2 0

(
1

N

NX
i=1

�i�
�(xi)

2f(xi;�� )f
0(xi;�� )

)


= Ng"(0)
2 0

1

N

NX
i=1

�i�
�(xi)

2f(xi;�� )f
0(xi;�� )

� Ng"(0)
2 0 max

1�i�N
f�i k f(xi;�� ) k j��(xi)jg k  k

1

N

NX
i=1

��(xi)f(xi;�� )

! 0 [by (5)]:

So, we have

g"(0)
2 1

n

nX
i=1

��(x(i))
2 0f(x(i);�� )f

0
(x(i);�� ) ! 0: (A.5)

3



By using (A.4) (A.5), and( A.3), we obtain

Var[Z1n()] !  0�(1� �)

(
1

n

nX
i=1

f(x(i);�� )f
0
(x(i);�� )

)


!  0�(1� �)E[f(x;�� )f
0
(x;�� )]

=  0�(1� �)P 0:

Therefore, we have

Z1n()
D�! � 0w where w � N(�g"(0)

p
n; �(1� �)P 0): (A.6)

Next, we consider the component Z2n():

Z2n() =
nX
i=1

E[Z2ni()] +
nX
i=1

fZ2ni()� E[Z2ni()]g:

We have

E[Z2n()] =
nX
i=1

E[Z2ni()]

=
nX
i=1

Z sni

0

�
G

�
���n(x(i)) +

t

�(x(i))

�
�G[���n(x(i))]

�
dt

=
nX
i=1

Z sni

0

g"[���n(x(i))]
t

�(x(i))
dt+ o(1)

=
1

2n

nX
i=1

g"[���n(x(i))]
�(x(i))

 0f(x(i);�� )f
0
(x(i);�� ) + o(1)

! 1

2
g"(0)

0

(
1

n

nX
i=1

1

�(x(i))
f(x(i);�� )f

0
(x(i);�� )

)


=
1

2
g"(0)

0

(
NX
i=1

�i
1

�(xi)
f(xi;�� )f

0
(xi;�� )

)


=
1

2
 0g"(0)P 1:
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Moreover, we have the bound

Var[Z2n()] �
nX
i=1

E

�Z sni

0

[I(ui � t)� I(ui � 0)]dt
�2

�
nX
i=1

E

�Z sni

0

dt

Z sni

0

[I(ui � t)� I(ui � 0)]dt
�

=

nX
i=1

E

�
f
0
(x(i);�� )

p
n

Z sni

0

[I(ui � t)� I(ui � 0)]dt
�

=
1p
n

nX
i=1

f 0(x(i);�� )E

�Z sni

0

[I(ui � t)� I(ui � 0)]dt
�

� 1p
n

nX
i=1

kf(x(i);�� )kkkE
�Z sni

0

[I(ui � t)� I(ui � 0)]dt
�

�
�
1p
n
max
1�i�n

kf(x(i);�� )k
�
kkE[Z2n()]:

We have Var[Z2n()]! 0. Using E[Z2n()]! 1
2
 0g(0)P 1 and Var[Z2n()]! 0, we can

obtain

E

�
Z2n()�

1

2
 0g"(0)P 1

�2
! 0:

Therefore, we have

Z2n()!
1

2
 0g"(0)P 1: (A.7)

Because of (A.6) and (A.7), we have

Zn()
D�! Z();

where Z() = � 0w + 1
2
 0g"(0)P 1 and w � N(�g"(0)

p
n; �(1 � �)P 0). The con-

vexity of the limiting objective function Z() ensures the uniqueness of the minimizer
̂ = 1

g"(0)
P�1
1 w. Therefore, we have

p
n(�̂n� � �� ) = ̂n = argminZn()

D�! ̂ = argminZ():

Thus, we have

p
n(�̂n� � �� � P�1

1 �)
D�! N

�
0;
�(1� �)

g"(0)2
P�1
1 P 0P

�1
1

�
;

as required. �
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