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Abstract This technical report contains unpublished material, relevant to the article
‘Model-Robust Designs for Quantile Regression’.

1 Proof of Theorem 1

The ‘true’ parameter 0 is defined by
0= / Eyia [+ (Y — ' (%) 0)) £ () da. (B.1)
X

The estimate is defined by

6 = argmin > pr (Yi— £/ () ), (B.2)
=1

where p; () is the ‘check’ function p, (r) = r (7 — I (r <0)), with derivative ¢, (r) =
7 — I (r <0). Define the target parameter 8 to be the asymptotic solution to (B.2), so
that

> it (Yi— f' (1) 0) f (1) 5 0, (B.3)
i=1
in agreement with (B.1). We require the following conditions.

(A1) The distribution function G. defined on (—o0,0) is twice continuously differen-
tiable. The density g. is everywhere finite, positive and Lipschitz continuous.
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(A3) There exists a vector p, and positive definite matrices 3y and 3, such that, with

0,(x) = on(x)/0 (),

’“":7}5&72 T —G(=0; () f (=),
o = lim ~ Z G (=05 (i) (1 — Ge(—0,(x:))) f (i) f ' (2:),
= i 1 3 ECE SR o (e

Recall the definitions

b= [ dufa) s f (@) (d2). (B.4a)
Po= [ f@)f (2)tn (de). (B.4b)
P, - f(w)%m) (@) (det) (B.4c)

Assume that the support of £, is large enough that Py and P, are positive definite. We
have:

Theorem 1 Under conditions (A1) — (A3) the quantile regression estimate 0, of the
parameter @ defined by (B.3) is asymptotically normally distributed:

vn (én - 0) LN (Plluo, %PQPOPQ) . (B.5)

Proof Here we write an n-point design as {1, ..., ,}, with the x; € y not necessarily
distinct. We first show that

Vi(6, —6) 5 N(3i ', B85 ), (B.6)
For this, define Z,(v) = >, (pr(u; — f'(x:)¥'v/n)—p-(u;)), where u; = Y; — f'(x;)0
and 4 = /n(0, — 0). The function Z,(y) is convex and is minimized at 4. The main
idea of the proof follows Knight (1998). Using Knight’s identity
prlu ) = pul) = —vbu(w) + [ (1<)~ T <0)) ds,
0
we may write Z,(v) = Z1,(7) + Zan(7), where

Zin() = —% > @),

Zonl) =Y. / < 9) ~ s £ 0)ds S Zoulo),
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and v,; = v'f (x;)y/n. We note that

Bl ()] = = = 3 (@) Bl =~ 3 (7 = Gl (w) £ (@)
and that
VAR[Z1n(Y)] = 7'~ Zf ;) f () VAR [¢)7 (us) |y

- —ZG —61(@) (1= Go(=03(@) £ (@)f ().

It follows from the Lindeberg-Feller Central Limit Theorem, using Condition (A3), that
Z1n () L —~'w where w ~ N(p, %0). Now centre Za,(7):

ZQn(’Y) = Z E[Z2m + Z Z2m ZQHZ(7)]) :

We have

Zgg Z)) ) () + (1)

1

—~'3 .
—>2’71’Y

As well, we have the bound
_ Vmi 2
VAR[Z2, ()] < ZE / (I(u; < s)—1I(u; <0)) ds}
LJo
<Y E / “as [ (s < 5) - I(us < 0)) ds}

=) E % (@) / " (1w < ) - T < 0)) ds]

< %m F (@) B[ Zon ().

Condition (A2) implies that VAR[Z5, ()] — 0. As a consequence, S (Zani (Y) — E[Zani(7)]) &
0 and Zy,(v) & %’y' 31v. Combining these observations, we have
L

1
Zn(v) = Zo(y) = —7'w + 57’217-
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The convexity of the limiting objective function Zy(7y) ensures the uniqueness of the
minimizer, which is v, = 37" w. Therefore, we have

Vn(8, — ) =4 = argmin Z,(v) L Yo = arg min Zy(7y). (B.7)

Similar arguments can be found in Pollard (1991) and Knight (1998). From (B.7) we
immediately obtain (B.6).

To go from (B.6) to (B.5) requires passing from the limits in (A3) to (B.4). The
expansion

o= (7= Gul=di(@) = =V (G.(0) = G(=0(2)) = 1 (:(0)di(:) + o(1)

yields g = g.(0)p,. Here we require lim % >, f (z;) to be bounded; this is implied by
the existence of Py = lim [ f (2)f'(z)¢, (dz):

=3 F@IP < ST I @I = - D wrlf () ()] = il S f @f ()] — Py,
Similarly, the expansion G.(—8*(z;)) = G.(0) — O(n™'/?) = 7 — O(n~/?) gives that

¥, = lim {7(1 —7) /Xf(m)f’(m)fn (dzx) + O(n_l/z)} =7(1 - 7)P,.

Finally, the expansion g.(—d%*(x;)) = g.(0) + o(n™'/?) gives

B0 = lim = S gu (=85 @)f (2 () /(1) = -(0)Ps O

2 Variance functions ag (z) - additional examples

We consider classes 3o = {o¢(:|r)|r € (—00,00)} of variance functions given by

V2o r\ —1/2
oe(z;i|r) = { C”% ’ ? z 8’ with ¢, = <¥> , (B.8a)
() = { ™ (@), m@) >0, (@) dz) . (B.8b)
o B 0, m(x) =0, v T m(x)>0 ’ ‘

in discrete and continuous spaces respectively. When the experimenter seeks protection
against a fized alternative to homoscedasticity, i.e. fixed 7, some cases of (B.8) may be
treated in generality.

Under (B.8a) the maximized loss £, ({|0) = (1 — v) tr (ATy) + vchmax (ATs) is

L, (&lr) = (1 —v)citr (AST (r) SoST" (1)) + vehmax (AST (1) S2 (r) ST (r)), (B.9)
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where

So =Y f(@)f ()&,

&>0

Sr=Sk(r Zf x;)f'(x;) (1 %)forkzl,Z.

£>0

Note that SO = Sl (0) = Sg (].)

2.1 Discrete designs for variance functions (B.8) with r fixed
Example 2.1. If r = 2 then §; = §; = A¢ and

Y GF (@) A AAL S () ey
Zi:lé?

Without some restriction on the class of designs so as to make it compact, there are
sequences {&g} of designs for which £, (£3) tends to the minimum value of (B.10) as
B — 0, but & has one-point support, so that A, is singular. To see this, define sy =
ming<;<y {f’(mi YA f (z } Since A_1 - (NA)_1 and Zf\il £ < 1, we have that
L,¢&r=2)>((1-v)sop+v)/N = Y L. I ¢z places mass 1 — 3 at an @, for which
so is attained, and mass 3/ (N — 1) at every other point z;, then A¢, = NA and so

L, (&) = Lmin + O(B) as § — 0. This degeneracy can be avoided by, for instance,
imposing a positive lower bound on the non-zero design weights.

L,@Elr=2)=00-v)N

Chmax (AALY) . (B.10)

2.2 Continuous designs for variance functions (B.8b) with r
fixed

Example 2.1 continued. If r =2 then S; =S, = A,, and

[ (@) Al AL (2)m(z)da
J,m?*(z)dz

L,¢&r=2)=01-v) + Vchmax (AA}))

As in the discrete version of this example, a degenerate solution can be avoided at the
cost of imposing superfluous restrictions on the designs.

Example 2.2 r = 1. The case r = 1 and ¢; = 1 results in
L,(Er=1)=1-v)tr (AST' (1) SoS7" (1)) + vchmax (AST" (1) SoST' (1)) .

The optimal design is uniform, with density m. () = 1/vOL(x). To prove this we note
that it is sufficient to show that S;* (1) S¢S ' (1) = A~'. This is established by introduc-
ing A,, = fm(w)>0f (2)f'(x)dx and then using Proposition 1 to obtain S7' (1) S¢S (1) =
Al -AT =A
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Calculations for the construction of continuous min-
imax designs for quadratic regression and fixed vari-

ance functions

We consider symmetric designs and variance functions: m(z)

o (—z). In terms of

1

1 1 2
[ = / r'm(z)dx, k; = / xim(x)dx,wi = / z! <m(x)) dx
—1 1 o (2) -1 o ()
we have that
1 0 2 Ko 0 Ko wo 0 wo
Too=| 0 w2 0 |, Top=| 0 Ko 0 |, Topo=| 0 ws O
e 0 gy ke 0 Ky w2 0wy
and
1 K4 0 — K2 1 0 %
T,; = 0 k' 0 |, A=2{0 3 0
(Kakio — 3) —ky 0 Ko 3 0 %
Define 7 = 7 (m) = 2 (kako — 2) °. Then
_ 1 —1
T Ry 0 — K9 Wo 0 (o)) Ky 0 — K9
=5 0 Kyt 0 0 wy O 0 k! O
—HR2 0 Ko Wo 0 W4q —Kg 0 Ko
T RaWy — RoWs 0 RqaWg — RoWy Rg 0 —R9
=3 0 Ky LWy 0 0 ! 0
—KaoWq + KoWwa 0 —KoWa + KoWwy —KR9 0 Ko
Rg (/*64@0 - Fézwz) 0 —R2 (/@Mo - /<J2w2)
—Kg (Kawg — Kowy) +ro (Kawa — Kowy)
Tr w:
= B 0 K—% 0
2
R4 (—/ﬁg&]o + Howg) 0 — K9 (—/120.10 + Howg)
—K9 (—KJQWQ + /10&14) +Ko (—HQOJQ + H0w4)
2, 2 —R4RaWo — RaRoW4
Kiwo — 2K4kowa + Kowy 0 + (Karo + Kg) W
_r 0 ws 0 :
= 2 ,?2 )
—fafizlio — Rkl 0 m%wo — 2KoKowa + /{8@04

+ (Kako + K3) wo
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hence (replacing w; by p; in the above)

—KRaK2 — RaKoll4

K2 — 2k4k + K2 0
4 afizfty 2H4 + (Kako + K3) o

T, = QE}T&OT(I} = g 0 ‘;—‘g’ 0
—HRy4K2 — RoRol4 2 2
0 -2
¥ (Kako + K2) i Ky — 2KaRop2 + Kol
Then
2_9 + K2 0 —RqK2 — RaKoll4
10 1/3)\ [ AT kTR + (Kakio + K3) 2
tr(ATy)==tr [ 0 1/3 0 0 e 0
1/3 0 1/5 —R4Ko — KoRoll4

K2 — 2Kok + K2
+ (Kako + K3) o 2 2foft2 0f4

(K3 — 2Kakapis + K3pua] + 3 [—Kaka — Kakops + (Kako + K3) fia]
g [—Hakiz — Kokopta + (Kako + K3) o] + 5 [K3 — 262kt + KipLa]
. K5 — 2kakapia + K3jua] + 5 [—Kaka — Kakofia + (Kako + K3) o]
—l—%’;—g + % (K3 — 2Kakopie + K§pa)

- { (k3 — 2Kako + 2R3 + {ﬁ — 24k + 3 (Kako + K3) — %@mo} 7 }

) 1,2
+ |k — §Ka2Ko + 550] m

| po (m).
We have that
—R4koWy — KokoWy
+ (Kako + K3) wo
0 “2 0
—Ry4RoWo — RoRoWy
+ (Kako + K3) wo

[K3wo — 2K4kows + K3wy]

Kiwg — 2Kgkows + Kawyg 0

AT2:7T

W= O =
O wim O
Uil= O Wl
3
N

0 m%wo — 2K9kowa + K%W4

[—Kakowo — Kakows + (Kako + K3) wa)

0
‘% [—Kakawo — Kakows + (Kako + K3) wo) —l—% [K3wo — 2kakows + KAws]
=T 0 ;ng 0
3 [Kiwo — 2Kakows + k3w 0 3 [ Rarawo — Rakows + (Kako + K3) wo]
‘1”% [_"f4'f2wo — Kakows + (F&4/€o + H%) wz] —i—% [n%wo — 2Kgkowsy + n§w4]
[I@zl — %Ii4l€2] Wo [%ﬁ% — li4l€2} wo
+ [% (H4H0 + '%g) - 2'%4'%2} %) 0 + [5450 + /ﬁ?% — %/‘ig/’io} woy
+ [Ii% - %HQKO} Wyq + [élﬁg - Iigl‘io} W4y
=7 0 L2 0
- 3!{% 9
[%/@21 - é/ﬁ4/€2] Wo [%l{% — %m/@} wo
1 2y _ 2 1 2y 2
+ [5 </€4K,0 + KZQ) 3/€4K}2] [0%)) 0 + [3 (/14/10 + /ﬁg) 5/‘62%0} Wo

+ [3K3 — $hako] wa + 55 — gtzkio] wa



8 Linglong Kong, Douglas P. Wiens

which we represent as

D110Wo + P112wW2 + P114Wy 0 D120Wo + P122w2 + Pr24Wy
A.T2 = 0 ¢002w2 0 N
P210Wo + P212wW2 + P14y 0 D220Wo + P22owa + Paaty

where ¢gg2 = 7/ (3k3) and

1 1

1
G110 =T Hi - gffwz] Q112 =T {— (H4/€0 + Fé%) - 2f€4/€2} yPr1a =T {Hg - g@ffo] )

w

1 2 1
G120 =T gl‘ig - fi4/<&2] Q10 = T [/@'4/@0 + Hg - 5/12'@0] Q124 =T [gﬁg - Fé%o} )

1 1 1 2 1 1
P10 =T _5/@21 - EHMQ] Q212 =T {5 (/f4/€o + Iig) - gliwz] s Q214 =T [glig - 3%2%} )
[1 1 1 2 1 1
Gazo =T g“% - §/f4/€2] 202 =T {5 (%4%0 + fi%) - gﬁzﬁo] P04 =T {5%3 - g@%}
Note that in this notation
pom)=4 ™ (K3 — 2kaka + £R3] + 7 [ﬁ — 2K4ky + 2 (Kako + K3) — %5250} 1o
+7 [K3 — 2koko + K] 11

= [p110 + P220] + [Do02 + P112 + P202] f12 + [P114 + Pa24] pla.

The characteristic roots of ATy are p1(m) = ¢ooews and the two characteristic roots of

¢110w0 + ¢112w2 + ¢114w4 D120Wo + P122w2 + Pr24Wa dif Y1 ¢12
D210Wo + Pa12wWa + G214 Paoowo + P22 + Pagaws o1 P2 )

Of these two roots, one is uniformly greater than the other, and is

) 1/2
pa(m) = @011;%2 n {(%1 ; %2) +¢12¢21} ‘

Thus the loss is the greater of

Ly (m) = (1 —v)po(m) + vpi(m),
Lo (m) = (1 —v)po(m) +vpz(m).

We apply Theorem 1 of Daemi and Wiens (2013), by which we may proceed as follows.
We first find a density m; minimizing £4 (m) in the class of densities for which £; (m) =
max (L1 (m), La(m)), and a density ms minimizing £, (m) in the class of densities for
which £y (m) = max (£; (m), L2 (m)). Then the optimal design £, has density

m. — { my, if £1 (ml) S [,2 (mg),
* ma, if EQ (mg) S ,Cl (ml) .
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The two minimizations are first carried out with ps, 4, Ko, k2, k4 held fixed, thus fixing
all ¢;;, and po(m). Under these constraints £ (mq1) < Lo (mg) iff p1(my) < pa2(msg). We
first illustrate the calculations for ms.

We seek

me = arg min po(m), subject to

1 1 1
/ m (z)dr = 1,/ *m (x) do = ,ug,/ otm (z) dv = 4,
-1 -1 -1

1 1 1
m(z) dr = /€0,/ x2m<x>d;v = /@2,/ x4m<x)dx = Ky,
_ ~1

—10(2) 1 o (@) 7 (z)
p2(m) — pi(m) — B* =0,
where (3 is a slack variable. For densities m (x), and with

me () = (1 —t) my (x) +tm (x),

it is sufficient to find m; for which the Lagrangian

=i [ 2] o oo

— A7 (P2(m(t)) ! (m(t)))
is minimized at t = 0 for every m (-) and satisfies the side conditions. The first order
condition is

d d
0= 2 (052) = (1= 20) oz (ma), _, + Argon (o),

- 2/_11 { [)\1 + UA(‘;)} + 22 [A2 + 0?‘;)] + 2t [Ag + %1 } (m (z) — ma (z)) d.
(B.11)

We have that

d L (ma(z)
Pl (m(t )|t o 2¢002 /_1 (W) (m (z) —ma (z)) dz,
and, with py(m) represented in an obvious manner as pa(m) = g (m) + /11 (M),

d
auh? (m(t))h 0

d

:Ewo (m )It 0 2\/rdt ( )|t 0
%% {/—1 {{$110 + Ga20] + [D112 + P222] 2° + [d114 + do2a] 2"} <m(t()g)) dx}

L1 {[2%]-2&@11( >—¢2z<m<t>>}} |
lt=0

Y1 (m2) +%¢12 (m(t)) Vo1 (m2) + 12 (M2) %%1 (m(t)>
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which continues as

d
apg (m(t))\t:(,

~—

= /1 {[@110 + B220] + [P112 + P222] T* + [P114 + Po2a] 2} (7:225)) (m (z) — my () dz

( ) (110 — P220]
[h11 (M) = thag (ma)] [2; 9 +[¢112 — Paze] @
1 + (P14 — P2ou] @

2
) 4
+ R
21/ (my) +1bg1 (m f {d120 + P1220% + P1242} Emf((f)); (m () —my (v)) dx
}

+112 (Mo f {¢a10 + P2122% + Po1ax?

_ /_ 11 (Ko + Kyt + Kya) (ZZQ((;’D (m (z) — my () da,
for

(11 (M2) — a2 (M2)] [P110 — Pa20] + Y21 (M2) P120 + Y12 (M2) ¢210

24/11 (ma)
(V11 (M2) — a2 (M2)] [P112 — Paz2] + V21 (M2) P12 + P12 (M2) ¢212

2¢/11 (ma)
(V11 (M2) — oz (M2)] [P114 — Pa24] + Va1 (M2) Pr24 + Y12 (M2) ¢214.

24/t (m2)

Ko = ¢110 + ¢220 +

Ky = @112 + @222 +

Ky = @114 + G224 +

Substituting into (B.11) gives

&' (0;A) = (1 — \y) /_ 1 (Ko + Koa® + Kya) (ZZQ((;)) (m () — mq (z)) dz

32w [ (229 (o) = s )

af o ] P - meor

o (
_ {g“M) SK(’”?;'?ZTK”) ”;"WH ()} } o
/1{2 Dt 2] 42 Do+ 28] 0t o+ 2]} ma (@) de,

entailing

ma(z) = (%[Aﬁm} 22 % + 2] +at [A3+a(@]})+'

[(1 - r) (Hatigp2etuet ) | Drtun)

o(z)
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The derivation of m; is very similar. We seek

my = arg min p;(m), subject to

1 1 1
/ m(z)dx = 1,/ *m (x) dx = ug,/ z*m () do = jua,
—1 -1 -1

[ TG [ #5525 i
m—(m) — p2(m) — 62_: 0, )

where (3 is a slack variable. For densities m (x), and with
mey (@) = (1= ) my () + tm (2)
it is sufficient to find msy for which the Lagrangian

D (t;X) = pi(m)) — 2/1 {{/\1 + i} +a° [A2 + i} + {A3+ ﬁ)}}m(t)d:ﬂ

1 o (x) o (z) o(x
= A7 (p1(mpy) — p2(m))

is minimized at ¢t = 0 for every m () and satisfies the side conditions. This leads to the
same first order condition as (B.11), except that A7 is replaced by 1 — A;; this in turn
leads to

o(z) o(z)

|:)\7 <K0+K2x2+K4x4) + 2(1*)\7)¢>002]

o?(x) o(zx)

2 {[a+ 25] +22 Pt 2]+ ot P+ 2] 1\

my(z) =

In either case, the minimizing design density is of the form

m(x;a):<m) , (B.12)

_ap0 g3(z)
o(zx) + o2(x)

for polynomials q; (z) = agj + ag;z* + aqjx?, j = 1,2,3. The constants a;; forming a are
determined by the constraints in terms of the py, ki and 3%, which are then optimally
chosen to minimize the loss. It is simpler however to choose a directly, to minimize
L, (¢|o) over all densities of the form (B.12), subject to f_ll m(z;a)dr = 1.
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