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1 Proof of Theorem 1

The �true�parameter � is de�ned by

0 =

Z
�

EY jx [ � (Y � f 0 (x)�)]f (x) dx: (B.1)

The estimate is de�ned by

�̂ = argmin
t

nX
i=1

�� (Yi � f 0 (xi) t) ; (B.2)

where �� (�) is the �check� function �� (r) = r (� � I (r < 0)), with derivative  � (r) =
� � I (r < 0). De�ne the target parameter � to be the asymptotic solution to (B.2), so
that

nX
i=1

�n;i � (Yi � f 0 (xi)�)f (xi)
pr! 0; (B.3)

in agreement with (B.1). We require the following conditions.

(A1) The distribution function G" de�ned on (�1;1) is twice continuously di¤eren-
tiable. The density g" is everywhere �nite, positive and Lipschitz continuous.

(A2) maxi=1;:::;n 1p
n
kf(xi)jj ! 0:
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(A3) There exists a vector �, and positive de�nite matrices �0 and �1, such that, with
��n(x) = �n(x)=�(x),

� = lim
n!1

1p
n

nX
i=1

(� �G"(���n(xi)))f(xi);

�0 = lim
n!1

1

n

nX
i=1

G"(���n(xi)) (1�G"(���n(xi)))f(xi)f 0(xi);

�1 = lim
n!1

1

n

nX
i=1

g"(���n(xi))
�(xi)

f(xi)f
0(xi):

Recall the de�nitions

�0 =

Z
�

�0(x)
1

�(x)
f(x)�1 (dx) ; (B.4a)

P 0 =

Z
�

f(x)f 0(x)�1 (dx) ; (B.4b)

P 1 =

Z
�

f(x)
1

�(x)
f 0(x)�1 (dx) : (B.4c)

Assume that the support of �1 is large enough that P 0 and P 1 are positive de�nite. We
have:

Theorem 1 Under conditions (A1) � (A3) the quantile regression estimate �̂n of the
parameter � de�ned by (B.3) is asymptotically normally distributed:

p
n
�
�̂n � �

�
L! N

�
P�1
1 �0;

� (1� �)

g2" (0)
P�1
1 P 0P

�1
1

�
: (B.5)

Proof Here we write an n-point design as fx1; :::;xng, with the xi 2 � not necessarily
distinct. We �rst show that

p
n(�̂n � �)

L! N(��1
1 �;�

�1
1 �0�

�1
1 ): (B.6)

For this, de�ne Zn(
) =
Pn

i=1 (�� (ui � f 0(xi)

0pn)��� (ui)), where ui = Yi � f 0(xi)�

and 
̂ =
p
n(�̂n � �). The function Zn(
) is convex and is minimized at 
̂. The main

idea of the proof follows Knight (1998). Using Knight�s identity

�� (u+ v)� �� (u) = �v � (u) +
Z v

0

(I(u � s)� I(u � 0)) ds;

we may write Zn(
) = Z1n(
) + Z2n(
), where

Z1n(
) = �
1p
n

nX
i=1

f 0(xi)
 � (ui);

Z2n(
) =
nX
i=1

Z vni

0

(I(ui � s)� I(ui � 0)) ds
def
=

nX
i=1

Z2ni(
);
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and vni = 
 0f(xi)
p
n. We note that

E[Z1n(
)] = �
 0
1p
n

nX
i=1

f(xi)E[ � (ui)] = �
 0
1p
n

nX
i=1

(� �G"(���n(xi)))f(xi)

and that

var[Z1n(
)] = 
 0
1

n

nX
i=1

f 0(xi)f(xi)var[ � (ui)]


= 
 0
1

n

nX
i=1

G"(���n(xi)) (1�G"(���n(xi)))f 0(xi)f(xi)
:

It follows from the Lindeberg-Feller Central Limit Theorem, using Condition (A3), that

Z1n(
)
L! �
 0w where w � N(�;�0). Now centre Z2n(
):

Z2n(
) =
X

E[Z2ni(
)] +
X

(Z2ni(
)� E[Z2ni(
)]) :

We haveX
E[Z2ni(
)] =

XZ vni

0

�
G"

�
���n(xi) +

s

�(xi)

�
�G" (���n(xi))

�
ds

=
1

n

XZ f 0(xi)


0

g"(���n(xi))
t

�(xi)
dt+ o(1)

=
1

2n

X g"(���n(xi))
�(xi)


 0f(xi)f
0(xi)
 + o(1)

! 1

2

 0�1
:

As well, we have the bound

var[Z2n(
)] �
X

E

�Z vni

0

(I(ui � s)� I(ui � 0)) ds
�2

�
X

E

�Z vni

0

ds

Z vni

0

(I(ui � s)� I(ui � 0)) ds
�

=
X

E

�
1p
n
f 0(xi)


Z vni

0

(I(ui � s)� I(ui � 0)) ds
�

� 1p
n
max jf 0(xi)
jE[Z2n(
)]:

Condition (A2) implies that var[Z2n(
)]! 0. As a consequence,
P
(Z2ni(
)� E[Z2ni(
)])

pr!
0 and Z2n(
)

pr! 1
2

 0�1
. Combining these observations, we have

Zn(
)
L! Z0(
) = �
 0w +

1

2

 0�1
:
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The convexity of the limiting objective function Z0(
) ensures the uniqueness of the
minimizer, which is 
0 = �

�1
1 w. Therefore, we have

p
n(�̂n � �) = 
̂ = argminZn(
)

L! 
0 = argminZ0(
): (B.7)

Similar arguments can be found in Pollard (1991) and Knight (1998). From (B.7) we
immediately obtain (B.6).
To go from (B.6) to (B.5) requires passing from the limits in (A3) to (B.4). The

expansion

1p
n
(� �G"(���n(xi))) =

1

n

p
n (G"(0)�G"(���n(xi))) =

1

n
(g"(0)�

�
0(xi) + o(1))

yields � = g"(0)�0. Here we require lim
1
n

Pn
i=1 f(xi) to be bounded; this is implied by

the existence of P 0 = lim
R
�
f(x)f 0(x)�n (dx):

k 1
n

nX
i=1

f(xi)k2 �
1

n

nX
i=1

kf(xi)k2 =
1

n

nX
i=1

tr[f(xi)f
0(xi)] = tr[

1

n

nX
i=1

f(xi)f
0(xi)]! trP 0:

Similarly, the expansion G"(���n(xi)) = G"(0)�O(n�1=2) = � �O(n�1=2) gives that

�0 = lim

�
�(1� �)

Z
�

f(x)f 0(x)�n (dx) +O(n�1=2)

�
= �(1� �)P 0:

Finally, the expansion g"(���n(xi)) = g"(0) + o(n�1=2) gives

�1 = lim
1

n

nX
i=1

g"(���n(xi))f(xi)f 0(xi)=�(xi) = g"(0)P 1: �

2 Variance functions �2� (x) - additional examples

We consider classes �0 = f��(�jr)jr 2 (�1;1)g of variance functions given by

��(xijr) =
�
cr�

r=2
i ; �i > 0;
0; �i = 0;

with cr =
�P

�i>0
�ri

N

��1=2
; (B.8a)

��(xjr) =
�
crm

r=2 (x) ; m(x) > 0;
0; m(x) = 0;

with cr =
�Z

m(x)>0

mr (x) dx

��1=2
; (B.8b)

in discrete and continuous spaces respectively. When the experimenter seeks protection
against a �xed alternative to homoscedasticity, i.e. �xed r, some cases of (B.8) may be
treated in generality.
Under (B.8a) the maximized loss L� (�j�) = (1� �) tr (AT 0) + �chmax (AT 2) is

L� (�jr) = (1� �) c2rtr
�
AS�11 (r)S0S

�1
1 (r)

�
+ �chmax

�
AS�11 (r)S2 (r)S

�1
1 (r)

�
; (B.9)
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where

S0 =
X
�i>0

f(xi)f
0(xi)�i,

Sk = Sk (r) =
X
�i>0

f(xi)f
0(xi)�

k(1� r
2)

i for k = 1; 2:

Note that S0 = S1 (0) = S2 (1).

2.1 Discrete designs for variance functions (B.8) with r �xed

Example 2.1. If r = 2 then S1 = S2 = A� and

L� (�jr = 2) = (1� �)N

PN
i=1 �if

0(xi)A
�1
� AA

�1
� f(xi)PN

i=1 �
2
i

+ �chmax
�
AA�1

�

�
: (B.10)

Without some restriction on the class of designs so as to make it compact, there are
sequences f��g of designs for which L� (��) tends to the minimum value of (B.10) as
� ! 0, but �0 has one-point support, so that A�0 is singular. To see this, de�ne s0 =
min1�i�N

�
f 0(xi)A

�1f(xi)
	
. Since A�1

� � (NA)�1 and
PN

i=1 �
2
i � 1, we have that

L� (�jr = 2) � ((1� �) s0 + �) =N
def
= Lmin. If �� places mass 1 � � at an x� for which

s0 is attained, and mass �= (N � 1) at every other point xi, then A�� = NA and so
L� (��) = Lmin + O (�) as � ! 0. This degeneracy can be avoided by, for instance,
imposing a positive lower bound on the non-zero design weights.

2.2 Continuous designs for variance functions (B.8b) with r

�xed

Example 2.1 continued. If r = 2 then S1 = S2 = Am and

L� (�jr = 2) = (1� �)

R
�
f 0(x)A�1

m AA
�1
m f(x)m(x)dxR

�
m2(x)dx

+ �chmax
�
AA�1

m

�
:

As in the discrete version of this example, a degenerate solution can be avoided at the
cost of imposing super�uous restrictions on the designs.

Example 2.2 r = 1. The case r = 1 and c1 = 1 results in

L� (�jr = 1) = (1� �) tr
�
AS�11 (1)S0S

�1
1 (1)

�
+ �chmax

�
AS�11 (1)S0S

�1
1 (1)

�
:

The optimal design is uniform, with density m� (x) � 1=vol(�). To prove this we note
that it is su¢ cient to show that S�11 (1)S0S

�1
1 (1) � A�1. This is established by introduc-

ingAm =
R
m(x)>0

f(x)f 0(x)dx and then using Proposition 1 to obtainS�11 (1)S0S
�1
1 (1) �

A�1
m � A�1 = A�1

m�.
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3 Calculations for the construction of continuous min-
imax designs for quadratic regression and �xed vari-
ance functions

We consider symmetric designs and variance functions: m(x) = m(�x) and � (x) =
� (�x). In terms of

�i =

Z 1

�1
xim(x)dx; �i =

Z 1

�1
xi
m(x)

� (x)
dx; !i =

Z 1

�1
xi
�
m(x)

� (x)

�2
dx

we have that

T 0;0 =

0@ 1 0 �2
0 �2 0
�2 0 �4

1A ;T 0;1 =

0@ �0 0 �2
0 �2 0
�2 0 �4

1A ;T 0;2 =

0@ !0 0 !2
0 !2 0
!2 0 !4

1A ;

and

T�10;1 =
1

(�4�0 � �22)

0@ �4 0 ��2
0 ��12 0
��2 0 �0

1A ; A = 2

0@ 1 0 1
3

0 1
3
0

1
3
0 1

5

1A :

De�ne � = � (m) = 2 (�4�0 � �22)
�2. Then

T 2 = T
�1
0;1T 0;2T

�1
0;1

=
�

2

0@ �4 0 ��2
0 ��12 0
��2 0 �0

1A0@ !0 0 !2
0 !2 0
!2 0 !4

1A0@ �4 0 ��2
0 ��12 0
��2 0 �0

1A
=
�

2

0@ �4!0 � �2!2 0 �4!2 � �2!4
0 ��12 !2 0

��2!0 + �0!2 0 ��2!2 + �0!4

1A0@ �4 0 ��2
0 ��12 0
��2 0 �0

1A

=
�

2

0BBBB@
�4 (�4!0 � �2!2)
��2 (�4!2 � �2!4)

0
��2 (�4!0 � �2!2)
+�0 (�4!2 � �2!4)

0 !2
�22

0

�4 (��2!0 + �0!2)
��2 (��2!2 + �0!4)

0
��2 (��2!0 + �0!2)
+�0 (��2!2 + �0!4)

1CCCCA

=
�

2

0BBBB@
�24!0 � 2�4�2!2 + �22!4 0

��4�2!0 � �2�0!4
+(�4�0 + �22)!2

0 !2
�22

0

��4�2!0 � �2�0!4
+(�4�0 + �22)!2

0 �22!0 � 2�2�0!2 + �20!4

1CCCCA ;
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hence (replacing !i by �i in the above)

T 0 = T
�1
0;1T 0;0T

�1
0;1 =

�

2

0BBBB@
�24 � 2�4�2�2 + �22�4 0

��4�2 � �2�0�4
+(�4�0 + �22)�2

0 �2
�22

0

��4�2 � �2�0�4
+(�4�0 + �22)�2

0 �22 � 2�2�0�2 + �20�4

1CCCCA :

Then

tr (AT 0) = �tr

0@ 1 0 1=3
0 1=3 0
1=3 0 1=5

1A
0BBBB@

�24 � 2�4�2�2 + �22�4 0
��4�2 � �2�0�4
+(�4�0 + �22)�2

0 �2
�22

0

��4�2 � �2�0�4
+(�4�0 + �22)�2

0 �22 � 2�2�0�2 + �20�4

1CCCCA
= �

8<:
[�24 � 2�4�2�2 + �22�4] +

1
3
[��4�2 � �2�0�4 + (�4�0 + �22)�2]
+1
3
�2
�22

1
3
[��4�2 � �2�0�4 + (�4�0 + �22)�2] +

1
5
[�22 � 2�2�0�2 + �20�4]

9=;
= �

�
[�24 � 2�4�2�2 + �22�4] +

2
3
[��4�2 � �2�0�4 + (�4�0 + �22)�2]

+1
3
�2
�22
+ 1

5
[�22 � 2�2�0�2 + �20�4]

�
= �

( �
�24 � 2

3
�4�2 +

1
5
�22
�
+
h
1
3�22
� 2�4�2 + 2

3
(�4�0 + �22)� 2

5
�2�0

i
�2

+
�
�22 � 2

3
�2�0 +

1
5
�20
�
�4

)
def
= �0 (m) :

We have that

AT 2 = �

0@ 1 0 1
3

0 1
3
0

1
3
0 1

5

1A
0BBBB@

�24!0 � 2�4�2!2 + �22!4 0
��4�2!0 � �2�0!4
+(�4�0 + �22)!2

0 !2
�22

0

��4�2!0 � �2�0!4
+(�4�0 + �22)!2

0 �22!0 � 2�2�0!2 + �20!4

1CCCCA

= �

0BBBB@
[�24!0 � 2�4�2!2 + �22!4]

+1
3
[��4�2!0 � �2�0!4 + (�4�0 + �22)!2]

0
[��4�2!0 � �2�0!4 + (�4�0 + �22)!2]

+1
3
[�22!0 � 2�2�0!2 + �20!4]

0 !2
3�22

0
1
3
[�24!0 � 2�4�2!2 + �22!4]

+1
5
[��4�2!0 � �2�0!4 + (�4�0 + �22)!2]

0
1
3
[��4�2!0 � �2�0!4 + (�4�0 + �22)!2]

+1
5
[�22!0 � 2�2�0!2 + �20!4]

1CCCCA

= �

0BBBBBBBB@

�
�24 � 1

3
�4�2

�
!0

+
�
1
3
(�4�0 + �22)� 2�4�2

�
!2

+
�
�22 � 1

3
�2�0

�
!4

0

�
1
3
�22 � �4�2

�
!0

+
�
�4�0 + �22 � 2

3
�2�0

�
!2

+
�
1
3
�20 � �2�0

�
!4

0 !2
3�22

0�
1
3
�24 � 1

5
�4�2

�
!0

+
�
1
5
(�4�0 + �22)� 2

3
�4�2

�
!2

+
�
1
3
�22 � 1

5
�2�0

�
!4

0

�
1
5
�22 � 1

3
�4�2

�
!0

+
�
1
3
(�4�0 + �22)� 2

5
�2�0

�
!2

+
�
1
5
�20 � 1

3
�2�0

�
!4

1CCCCCCCCA
;
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which we represent as

AT 2 =

0@ �110!0 + �112!2 + �114!4 0 �120!0 + �122!2 + �124!4
0 �002!2 0

�210!0 + �212!2 + �214!4 0 �220!0 + �222!2 + �224!4

1A ;

where �002 = �= (3�22) and

�110 = �

�
�24 �

1

3
�4�2

�
; �112 = �

�
1

3

�
�4�0 + �22

�
� 2�4�2

�
; �114 = �

�
�22 �

1

3
�2�0

�
;

�120 = �

�
1

3
�22 � �4�2

�
; �122 = �

�
�4�0 + �22 �

2

3
�2�0

�
; �124 = �

�
1

3
�20 � �2�0

�
;

�210 = �

�
1

3
�24 �

1

5
�4�2

�
; �212 = �

�
1

5

�
�4�0 + �22

�
� 2
3
�4�2

�
; �214 = �

�
1

3
�22 �

1

5
�2�0

�
;

�220 = �

�
1

5
�22 �

1

3
�4�2

�
; �222 = �

�
1

3

�
�4�0 + �22

�
� 2
5
�2�0

�
; �224 = �

�
1

5
�20 �

1

3
�2�0

�
:

Note that in this notation

�0 (m) =

(
�
�
�24 � 2

3
�4�2 +

1
5
�22
�
+ �

h
1
3�22
� 2�4�2 + 2

3
(�4�0 + �22)� 2

5
�2�0

i
�2

+�
�
�22 � 2

3
�2�0 +

1
5
�20
�
�4

)
= [�110 + �220] + [�002 + �112 + �222]�2 + [�114 + �224]�4:

The characteristic roots of AT 2 are �1(m) = �002!2 and the two characteristic roots of�
�110!0 + �112!2 + �114!4 �120!0 + �122!2 + �124!4
�210!0 + �212!2 + �214!4 �220!0 + �222!2 + �224!4

�
def
=

�
 11  12
 21  22

�
:

Of these two roots, one is uniformly greater than the other, and is

�2(m) =
 11 +  22

2
+

(�
 11 �  22

2

�2
+  12 21

)1=2
:

Thus the loss is the greater of

L1 (m) = (1� �) �0(m) + ��1(m);

L2 (m) = (1� �) �0(m) + ��2(m):

We apply Theorem 1 of Daemi and Wiens (2013), by which we may proceed as follows.
We �rst �nd a density m1 minimizing L1 (m) in the class of densities for which L1 (m) =
max (L1 (m) ;L2 (m)), and a density m2 minimizing L2 (m) in the class of densities for
which L2 (m) = max (L1 (m) ;L2 (m)). Then the optimal design �� has density

m� =

�
m1; if L1 (m1) � L2 (m2) ;
m2; if L2 (m2) � L1 (m1) :
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The two minimizations are �rst carried out with �2; �4; �0; �2; �4 held �xed, thus �xing
all �ijk and �0(m). Under these constraints L1 (m1) � L2 (m2) i¤ �1(m1) � �2(m2). We
�rst illustrate the calculations for m2.
We seek

m2 = argmin �2(m); subject toZ 1

�1
m (x) dx = 1;

Z 1

�1
x2m (x) dx = �2;

Z 1

�1
x4m (x) dx = �4;Z 1

�1

m(x)

� (x)
dx = �0;

Z 1

�1
x2
m(x)

� (x)
dx = �2;

Z 1

�1
x4
m(x)

� (x)
dx = �4;

�2(m)� �1(m)� �2 = 0;

where � is a slack variable. For densities m (x), and with

m(t) (x) = (1� t)m1 (x) + tm (x) ;

it is su¢ cient to �nd m1 for which the Lagrangian

� (t;�) = �2(m(t))� 2
Z 1

�1

��
�1 +

�4
� (x)

�
+ x2

�
�2 +

�5
� (x)

�
+ x4

�
�3 +

�6
� (x)

��
m(t)dx

� �7
�
�2(m(t))� �1(m(t))

�
is minimized at t = 0 for every m (�) and satis�es the side conditions. The �rst order
condition is

0 � �0 (0;�) = (1� �7)
d

dt
�2
�
m(t)

�
jt=0

+ �7
d

dt
�1
�
m(t)

�
jt=0

� 2
Z 1

�1

��
�1 +

�4
� (x)

�
+ x2

�
�2 +

�5
� (x)

�
+ x4

�
�3 +

�6
� (x)

��
(m (x)�m2 (x)) dx:

(B.11)

We have that

d

dt
�1
�
m(t)

�
jt=0

= 2�002

Z 1

�1

�
m2(x)

� (x)

�
(m (x)�m2 (x)) dx;

and, with �2(m) represented in an obvious manner as �2(m) =  0 (m) +
p
 1 (m),

d

dt
�2
�
m(t)

�
jt=0

=
d

dt
 0
�
m(t)

�
jt=0

+
1

2
p
 1 (m2)

d

dt
 1
�
m(t)

�
jt=0

=
1

2

d

dt

(Z 1

�1

�
[�110 + �220] + [�112 + �222]x

2 + [�114 + �224]x
4
	�m(t)(x)

� (x)

�2
dx

)
jt=0

+
1

2
p
 1 (m2)

( h
2 11(m2)� 22(m2)

2

i
� 1
2
d
dt

�
 11
�
m(t)

�
�  22

�
m(t)

��
+ d
dt
 12
�
m(t)

�
 21 (m2) +  12 (m2)

d
dt
 21
�
m(t)

� )
jt=0

;
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which continues as

d

dt
�2
�
m(t)

�
jt=0

=

Z 1

�1

�
[�110 + �220] + [�112 + �222]x

2 + [�114 + �224]x
4
	�m2(x)

�2 (x)

�
(m (x)�m2 (x)) dx

+
1

2
p
 1 (m2)

8>>>>>><>>>>>>:
[ 11 (m2)�  22 (m2)]

R 1
�1

8<:
[�110 � �220]

+ [�112 � �222]x
2

+ [�114 � �224]x
4

9=;�m2(x)
�2(x)

�
(m (x)�m2 (x)) dx

+ 21 (m2)
R 1
�1 f�120 + �122x

2 + �124x
4g
�
m2(x)
�2(x)

�
(m (x)�m2 (x)) dx

+ 12 (m2)
R 1
�1 f�210 + �212x

2 + �214x
4g
�
m2(x)
�2(x)

�
(m (x)�m2 (x)) dx

9>>>>>>=>>>>>>;
=

Z 1

�1

�
K0 +K2x

2 +K4x
4
��m2(x)

�2 (x)

�
(m (x)�m2 (x)) dx;

for

K0 = �110 + �220 +
[ 11 (m2)�  22 (m2)] [�110 � �220] +  21 (m2)�120 +  12 (m2)�210

2
p
 1 (m2)

;

K2 = �112 + �222 +
[ 11 (m2)�  22 (m2)] [�112 � �222] +  21 (m2)�122 +  12 (m2)�212

2
p
 1 (m2)

;

K4 = �114 + �224 +
[ 11 (m2)�  22 (m2)] [�114 � �224] +  21 (m2)�124 +  12 (m2)�214

2
p
 1 (m2)

:

Substituting into (B.11) gives

�0 (0;�) = (1� �7)

Z 1

�1

�
K0 +K2x

2 +K4x
4
��m2(x)

�2 (x)

�
(m (x)�m2 (x)) dx

+ �7 � 2�002
Z 1

�1

�
m2(x)

� (x)

�
(m (x)�m2 (x)) dx

� 2
Z 1

�1

��
�1 +

�4
� (x)

�
+ x2

�
�2 +

�5
� (x)

�
+ x4

�
�3 +

�6
� (x)

��
(m (x)�m2 (x)) dx

=

Z 1

�1

8<:
nh
(1� �7)

�
K0+K2x2+K4x4

�2(x)

�
+ 2�7�002

�(x)

i
m2(x)

o
�2
nh
�1 +

�4
�(x)

i
+ x2

h
�2 +

�5
�(x)

i
+ x4

h
�3 +

�6
�(x)

io 9=; (m (x)�m2 (x)) dx;

entailing

m2(x) =

0@2
nh
�1 +

�4
�(x)

i
+ x2

h
�2 +

�5
�(x)

i
+ x4

h
�3 +

�6
�(x)

io
h
(1� �7)

�
K0+K2x2+K4x4

�2(x)

�
+ 2�7�002

�(x)

i
1A+

:
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The derivation of m1 is very similar. We seek

m1 = argmin �1(m); subject toZ 1

�1
m (x) dx = 1;

Z 1

�1
x2m (x) dx = �2;

Z 1

�1
x4m (x) dx = �4;Z 1

�1

m(x)

� (x)
dx = �0;

Z 1

�1
x2
m(x)

� (x)
dx = �2;

Z 1

�1
x4
m(x)

� (x)
dx = �4;

�1(m)� �2(m)� �2 = 0;

where � is a slack variable. For densities m (x), and with

m(t) (x) = (1� t)m2 (x) + tm (x) ;

it is su¢ cient to �nd m2 for which the Lagrangian

� (t;�) = �1(m(t))� 2
Z 1

�1

��
�1 +

�4
� (x)

�
+ x2

�
�2 +

�5
� (x)

�
+ x4

�
�3 +

�6
� (x)

��
m(t)dx

� �7
�
�1(m(t))� �2(m(t))

�
is minimized at t = 0 for every m (�) and satis�es the side conditions. This leads to the
same �rst order condition as (B.11), except that �7 is replaced by 1 � �7; this in turn
leads to

m1(x) =

0@2
nh
�1 +

�4
�(x)

i
+ x2

h
�2 +

�5
�(x)

i
+ x4

h
�3 +

�6
�(x)

io
h
�7

�
K0+K2x2+K4x4

�2(x)

�
+ 2(1��7)�002

�(x)

i
1A+

:

In either case, the minimizing design density is of the form

m(x; a) =

 
q1 (x) +

q2(x)
�(x)

a00
�(x)

+ q3(x)
�2(x)

!+
; (B.12)

for polynomials qj (x) = a0j + a2jx
2 + a4jx

4, j = 1; 2; 3. The constants aij forming a are
determined by the constraints in terms of the �k, �k and �2, which are then optimally
chosen to minimize the loss. It is simpler however to choose a directly, to minimize
L� (�j�) over all densities of the form (B.12), subject to

R 1
�1m(x; a)dx = 1.
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