Supplementary material for On the minimax robustness against correlation and heteroscedasticity of ordinary least squares among generalized least squares estimates of regression

BY DOUGLAS. P. WIENS

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
doug.wiens@ualberta.ca

1. Details related to Remark 1

We take $\Phi(\Sigma) = \det(\Sigma)$ and consider the ratio $r(X, C_0)$ of the maximum loss of the GLS estimate to that of the OLS estimate. This is

$$r(X, C_0) = \frac{\max_{\mathcal{C}_M} \mathcal{L}(C \mid P_0)}{\max_{\mathcal{C}_M} \mathcal{L}(C \mid I_n)} = \frac{\mathcal{L}(\eta^2 I_n \mid P_0)}{\mathcal{L}(\eta^2 I_n \mid I_n)} = \frac{|X^{\mathrm{T}} C_0^{-2} X| |X^{\mathrm{T}} X|}{|X^{\mathrm{T}} C_0^{-1} X|^2} = \frac{|Q^{\mathrm{T}} C_0^{-2} Q|}{|Q^{\mathrm{T}} C_0^{-1} Q|^2},$$

where the final term employs the QR-decomposition of X. Of course $r(X, C_0) \ge 1$; a direct proof follows from the observation that

$$Q^{\mathrm{T}}C_0^{-2}Q - (Q^{\mathrm{T}}C_0^{-1}Q)^2 = Q^{\mathrm{T}}C_0^{-1}\{I_n - QQ^{\mathrm{T}}\}C_0^{-1}Q \succeq 0.$$

For the equicorrelation model with $\rho > 0$ and $C_0 = (1 - \rho) (I_n + \alpha 1_n 1_n^T)$ for $\alpha = \rho/(1 - \rho) \in (0, \infty)$, we calculate that

$$C_0^{-1} = (1 - \rho)^{-1} (I_n - \beta 1_n 1_n^{\mathrm{T}}) \text{ for } \beta = \alpha / (1 + n\alpha) \in (0, n^{-1}),$$

$$C_0^{-2} = (1 - \rho)^{-2} (I_n - \gamma 1_n 1_n^{\mathrm{T}}) \text{ for } \gamma = 2\beta - n\beta^2 \in (0, n^{-1}),$$

and then
$$r(X, C_0) = 1 + \left(S\beta^2 (n - S) / (1 - S\beta)^2\right)$$
, for $S = 1_n^T Q Q^T 1_n \in [0, n]$.

For $0 < \varepsilon < n^{-1}$ suppose that ρ is sufficiently large that $\beta = n^{-1} - \varepsilon$, and that $S = n - \varepsilon$. Then

$$r\left(X, C_0\right) = 1 + \frac{\phi_n\left(\varepsilon\right)}{\varepsilon} \text{ for } \phi_n\left(\varepsilon\right) = \frac{\left(n - \varepsilon\right)\left(n^{-1} - \varepsilon\right)^2}{\left(n + n^{-1} - \varepsilon\right)^2} > 0 ,$$

and $r(X, C_0) \to \infty$ as $\varepsilon \to 0$ and $\phi_n(\varepsilon) \to 1/(1+n^2)$.

A simple example in which $S=n-\varepsilon$ is attained has $p=1, \ X=x_{n\times 1}$. Then $Q=x/\|x\|$ and, with $\sigma_X^2=\left(\sum x^2-n\overline{x}^2\right)/n$, we have $S=n\overline{x}^2/(\sigma_X^2+\overline{x}^2)$. Then $S=n-\varepsilon$ if the x_i are sufficiently concentrated that $\sigma_X^2=\varepsilon\overline{x}^2/(n-\varepsilon)$. This example extends easily to arbitrary p.

2. Theoretical complements for §4

PROOF OF THEOREM 1. Recall the constraints O and B:

$$\sum_{x \in \chi} f(x) \psi(x) = 0_{p \times 1}, \tag{S.1a}$$

$$\sum_{x \in Y} \psi^2(x) \le \tau^2. \tag{S.1b}$$

Using (S.1a), the IMSPE $\sum_{x \in \chi} E[f^{\mathrm{T}}\left(x\right)\hat{\theta} - E\{Y\left(x\right)\}]^2$ decomposes as

$$\mathcal{I}\left(\xi,P\mid\psi,C\right) = \sum_{x\in\chi}f^{\mathrm{T}}\left(x\right)\operatorname{cov}\left(\hat{\theta}\mid C,P\right)f\left(x\right) + \sum_{x\in\chi}f^{\mathrm{T}}\left(x\right)b_{\psi,P}b_{\psi,P}^{\mathrm{T}}f\left(x\right) + \sum_{x\in\chi}\psi^{2}\left(x\right).$$

Here $b_{\psi,P}=E(\hat{\theta})-\theta_0$ is the bias. Denote by ψ_X the $n\times 1$ vector consisting of the values of ψ corresponding to the rows of X, so that $b_{\psi,P}=(X^{\mathrm{T}}PX)^{-1}\,X^{\mathrm{T}}P\psi_X$. Recall that X=JF; note as well that $\psi_X=J\bar{\psi}$ for $\bar{\psi}=(\psi\left(x_1\right),...,\psi\left(x_N\right))^{\mathrm{T}}$. Then the above becomes

$$\mathcal{I}\left(\xi, P \mid \psi, C\right) = \operatorname{tr}\left\{F\operatorname{Cov}\left(\hat{\theta} \mid C, P\right) F^{\mathrm{T}}\right\}$$

$$+ \bar{\psi}^{\mathrm{T}} J^{\mathrm{T}} P J F \left(F^{\mathrm{T}} J^{\mathrm{T}} P J F\right)^{-1} F^{\mathrm{T}} F \left(F^{\mathrm{T}} J^{\mathrm{T}} P J F\right)^{-1} F^{\mathrm{T}} J^{\mathrm{T}} P J \bar{\psi} + \bar{\psi}^{\mathrm{T}} \bar{\psi}. \tag{S.2}$$

As in §3, and taking $K = F^T F$ in (iv) of that section, for $C \in \mathcal{C}_M$ the trace in (S.2) is maximized by $C = \eta^2 I_n$, with

$$\operatorname{tr}\left\{F\operatorname{COV}\left(\hat{\theta}\mid\eta^{2}I_{n},P\right)F^{\mathrm{T}}\right\} = \eta^{2}\operatorname{tr}\left\{F\left(F^{\mathrm{T}}J^{\mathrm{T}}PJF\right)^{-1}\left(F^{\mathrm{T}}J^{\mathrm{T}}P^{2}JF\right)\left(F^{\mathrm{T}}J^{\mathrm{T}}PJF\right)^{-1}F^{\mathrm{T}}\right\}.\tag{S.3}$$

Extend the orthogonal basis for col (F) – formed by the columns of Q – by appending to Q the matrix $Q_*: N \times (N-p)$, whose columns form an orthogonal basis for the orthogonal comple-

ment col $(F)^{\perp}$. Then $(Q:Q_*): N \times N$ is an orthogonal matrix and we have that F = QR for a non-singular R. If the construction is carried out by the Gram-Schmidt method, then R is upper triangular.

Constraint (S.1a) dictates that $\bar{\psi}$ lie in col (Q_*) . A maximizing ψ will satisfy the bound in constraint (S.1b) with equality, hence $\bar{\psi} = \tau Q_* \beta$ for some $\beta_{(N-p)\times 1}$ with unit norm. Combining these observations along with (S.2) and (S.3) yields that $\max_{\psi,C} \mathcal{I}(\xi, P \mid \psi, C)$ is given by

$$\eta^{2} \operatorname{tr} \left\{ Q \left(Q^{\mathsf{T}} U Q \right)^{-1} \left(Q^{\mathsf{T}} V Q \right) \left(Q^{\mathsf{T}} U Q \right)^{-1} Q^{\mathsf{T}} \right\} + \tau^{2} \max_{\|\beta\|=1} \left\{ \beta^{\mathsf{T}} Q_{*}^{\mathsf{T}} U Q \left(Q^{\mathsf{T}} U Q \right)^{-1} Q^{\mathsf{T}} Q \left(Q^{\mathsf{T}} U Q \right)^{-1} Q^{\mathsf{T}} U Q_{*} \beta + 1 \right\}. \tag{S.4}$$

Here and below we use that trAB = trBA, and that such products have the same non-zero eigenvalues. Then (S.4) becomes $(\tau^2 + \eta^2)$ times $\mathcal{I}_{\nu}(\xi, P)$, given by

$$\mathcal{I}_{\nu}(\xi, P) = (1 - \nu) \operatorname{tr} \left\{ (Q^{\mathrm{T}} U Q)^{-1} (Q^{\mathrm{T}} V Q) (Q^{\mathrm{T}} U Q)^{-1} \right\}
+ \nu \left\{ \operatorname{ch}_{\max} Q_{*}^{\mathrm{T}} U Q (Q^{\mathrm{T}} U Q)^{-1} \cdot (Q^{\mathrm{T}} U Q)^{-1} Q^{\mathrm{T}} U Q_{*} + 1 \right\}.$$
(S.5)

The maximum eigenvalue (denoted above by $ch_{\rm max}$) is also that of

$$(Q^{\mathrm{T}}UQ)^{-1} Q^{\mathrm{T}}UQ_{*} \cdot Q_{*}^{\mathrm{T}}UQ (Q^{\mathrm{T}}UQ)^{-1} = (Q^{\mathrm{T}}UQ)^{-1} Q^{\mathrm{T}}U (I_{N} - QQ^{\mathrm{T}}) UQ (Q^{\mathrm{T}}UQ)^{-1}$$
$$= (Q^{\mathrm{T}}UQ)^{-1} Q^{\mathrm{T}}U^{2}Q (Q^{\mathrm{T}}UQ)^{-1} - I_{n};$$

this in (S.5) gives (4) of Theorem 1.

Theorem 2 below is used show that the experimenter can often design in such a way that $P = I_n$ is a minimax precision matrix, so that OLS is a minimax procedure. In particular, this holds if the design is uniform on its support. This is Remark 3 of the main article.

Recall the class $\mathcal J$ of indicator matrices. For $J\in\mathcal J$ let $J_+:n\times q$ be the result of retaining only the non-zero columns of J, so that $JJ^{\mathrm T}=J_+J_+^{\mathrm T}$, and $D_+=J_+^{\mathrm T}J_+$ is the diagonal matrix containing the positive n_i . If the columns removed have labels $j_1,...,j_{N-q}$ then let $Q_+:q\times p$ be the result of removing these rows from Q, so that $JQ=J_+Q_+$ and $Q^{\mathrm T}DQ=Q_+^{\mathrm T}D_+Q_+$. Now define $\alpha=n/\mathrm{tr}\left(D_+^{-1}\right)$ and

$$P_0 = \alpha J_+ D_+^{-2} J_+^{\mathrm{T}},\tag{S.6}$$

with $trP_0 = n$. Note that

$$\operatorname{rk}(P_0) = \operatorname{rk}(J_+ D_+^{-1}) = \operatorname{rk}(D_+^{-1} J_+^{\mathrm{T}} J_+ D_+^{-1}) = \operatorname{rk}(D_+^{-1}) = q,$$

so that P_0 is positive definite iff q = n. This is relevant in part (ii) of Theorem 2, where we deal with the possible rank deficiency of P_0 by introducing

$$P_{\varepsilon} = (P_0 + \varepsilon I_n) / (1 + \varepsilon); \tag{S.7}$$

for $\varepsilon > 0$, P_{ε} is positive definite with $\operatorname{tr}(P_{\varepsilon}) = n$.

THEOREM 2. (i) Suppose that $q \le N$ and the design is uniform on q points of χ , with $k \ge 1$ observations at each x_i . Then n = kq, $D_+ = kI_q$, and $P = I_n$ is a minimax precision matrix:

$$\mathcal{I}_{\nu}\left(\xi, I_{n}\right) = \min_{P \succ 0} \mathcal{I}_{\nu}\left(\xi, P\right); \tag{S.8}$$

thus OLS is minimax within the class of GLS methods. In particular this holds if $P_0 = I_n$, where P_0 is defined at (S.6).

(ii) Suppose that a design ξ places mass on $q \leq N$ points of χ , that $P_0 \neq I_n$, and that neither of the following holds:

$$\left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1} \left(Q_{+}^{\mathrm{T}}D_{+}^{-1}Q_{+}\right) \left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1} = \left(Q_{+}^{\mathrm{T}}D_{+}Q_{+}\right)^{-1},$$

$$ch_{\max} \left\{ \left(Q_{+}^{\mathrm{T}}D_{+}Q_{+}\right)^{-1} \left(Q_{+}^{\mathrm{T}}D_{+}^{2}Q_{+}\right) \left(Q_{+}^{\mathrm{T}}D_{+}Q_{+}\right)^{-1} \right\} = ch_{\max} \left\{ \left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1} \right\}.$$
(S.9a)

Then in particular D_+ is not a multiple of I_q and so the design is non-uniform. With P_{ε} as defined at (S.7), there is $\nu_0 \in (0,1)$ for which, for each $\nu \in (\nu_0,1]$, $\mathcal{I}_{\nu}(\xi,P_{\varepsilon}) < \mathcal{I}_{\nu}(\xi,I_n)$. Thus OLS is not minimax for such (ξ,ν) .

Remark 4. The requirement of Theorem 2(ii) that (S.9a) and (S.9b) fail excludes more designs than those which are uniform on their supports, and is a condition on Q as well as on the design. For instance if $Q_+ \left(Q_+^{\mathrm{T}} Q_+\right)^{-1/2} = A_{q \times p}$ is block-diagonal: $A = \bigoplus_{i=1}^m A_i$, where $A_i : q_i \times p_i$ ($\sum q_i = q, \sum p_i = p$) satisfies $A_i^{\mathrm{T}} A_i = I_{p_i}$, and if $D_+ = \bigoplus_{i=1}^m k_i I_{q_i}$, then

$$A^{\mathrm{T}}D_{+}^{-1}A = (A^{\mathrm{T}}D_{+}A)^{-1},$$
 (S.10)

$$(A^{\mathrm{T}}D_{+}A)^{-1}A^{\mathrm{T}}D_{+}^{2}A(A^{\mathrm{T}}D_{+}A)^{-1} = I_{p}.$$
(S.11)

Equation (S.10) gives (S.9a), and (S.11) asserts the equality of the two matrices in (S.9b), hence of their maximum eigenvalues. These equations are satisfied even though the design is non-uniform if the k_i are not all equal.

The proof of Theorem 2 follows that of the following preliminary result.

LEMMA 2. (i) For a fixed design ξ and any $P \succ 0$, $\mathcal{I}_0(\xi, P) \ge \mathcal{I}_0(\xi, I_n)$ and $\mathcal{I}_1(\xi, P) \ge ch_{\max}\left\{\left(Q_+^{\mathrm{T}}Q_+\right)^{-1}\right\}$.

If neither of the equations (S.9a), (S.9b) holds, then:

(ii) $\mathcal{I}_0(\xi, P_0) > \mathcal{I}_0(\xi, I_n)$ and $\mathcal{I}_1(\xi, I_n) > \mathcal{I}_1(\xi, P_0)$;

(iii) With P_{ε} as defined in Theorem 2(ii), and for sufficiently small $\varepsilon > 0$, $\Delta_0(\varepsilon) = \mathcal{I}_0(\xi, P_{\varepsilon}) - \mathcal{I}_0(\xi, I_n) > 0$ and $\Delta_1(\varepsilon) = \mathcal{I}_1(\xi, I_n) - \mathcal{I}_1(\xi, P_{\varepsilon}) > 0$.

PROOF OF LEMMA 2.

(i) From (4a), $\mathcal{I}_0(\xi, P) - \mathcal{I}_0(\xi, I_n)$ is the trace of

$$(Q^{\mathsf{T}}J^{\mathsf{T}}PJQ)^{-1} (Q^{\mathsf{T}}J^{\mathsf{T}}P^{2}JQ) (Q^{\mathsf{T}}J^{\mathsf{T}}PJQ)^{-1} - (Q^{\mathsf{T}}J^{\mathsf{T}}JQ)^{-1}$$

$$= (Q^{\mathsf{T}}J^{\mathsf{T}}PJQ)^{-1} Q^{\mathsf{T}}J^{\mathsf{T}}P \left\{ I_{n} - JQ (Q^{\mathsf{T}}J^{\mathsf{T}}JQ)^{-1} Q^{\mathsf{T}}J^{\mathsf{T}} \right\} PJQ (Q^{\mathsf{T}}J^{\mathsf{T}}PJQ)^{-1} ,$$

which is $\succeq 0$ with non-negative trace. For the second inequality first note that

$$\begin{split} & \left(Q^{\mathrm{T}}UQ\right)^{-1}Q^{\mathrm{T}}U^{2}Q\left(Q^{\mathrm{T}}UQ\right)^{-1} - \left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1} \\ & = \left(Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\right)^{-1}Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\left(Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\right)^{-1} - \left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1} \\ & = \left(Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\right)^{-1}Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}\left\{I_{n} - Q_{+}\left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1}Q_{+}^{\mathrm{T}}\right\}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\left(Q_{+}^{\mathrm{T}}J_{+}^{\mathrm{T}}PJ_{+}Q_{+}\right)^{-1} \end{split}$$

is p.s.d., so that by Weyl's Monotonicity Theorem (p. 63 of Bhatia (1997)),

$$\mathcal{I}_{1}\left(\xi,P\right)=\operatorname{ch}_{\max}\left\{\left(Q^{\mathrm{\scriptscriptstyle T}}UQ\right)^{-1}Q^{\mathrm{\scriptscriptstyle T}}U^{2}Q\left(Q^{\mathrm{\scriptscriptstyle T}}UQ\right)^{-1}\right\}\geq\operatorname{ch}_{\max}\left\{\left(Q_{+}^{\mathrm{\scriptscriptstyle T}}Q_{+}\right)^{-1}\right\}.$$

(ii) We use the following identities, which follow from (4a) and (4b):

$$\mathcal{I}_{0}\left(\xi, I_{n}\right) = \operatorname{tr}\left\{\left(Q_{+}^{\mathrm{T}}D_{+}Q_{+}\right)^{-1}\right\} \tag{S.12a}$$

$$\mathcal{I}_{1}(\xi, I_{n}) = \operatorname{ch}_{\max} \left\{ \left(Q_{+}^{\mathrm{T}} D_{+} Q_{+} \right)^{-1} \left(Q_{+}^{\mathrm{T}} D_{+}^{2} Q_{+} \right) \left(Q_{+}^{\mathrm{T}} D_{+} Q_{+} \right)^{-1} \right\}$$
 (S.12b)

$$\mathcal{I}_{0}\left(\xi,P_{0}\right) = \operatorname{tr}\left\{\left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1}\left(Q_{+}^{\mathrm{T}}D_{+}^{-1}Q_{+}\right)\left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1}\right\},\tag{S.12c}$$

$$\mathcal{I}_{1}\left(\xi, P_{0}\right) = \operatorname{ch}_{\max}\left\{\left(Q_{+}^{\mathrm{T}} Q_{+}\right)^{-1}\right\}. \tag{S.12d}$$

To prove (ii) we show that if either inequality fails then one of (S.9a), (S.9b) holds – a contradiction. First note that

$$\mathcal{I}_{0}(\xi, P_{0}) - \mathcal{I}_{0}(\xi, I_{n})
= \operatorname{tr} \left\{ \left(Q_{+}^{\mathrm{T}} Q_{+} \right)^{-1} \left(Q_{+}^{\mathrm{T}} D_{+}^{-1} Q_{+} \right) \left(Q_{+}^{\mathrm{T}} Q_{+} \right)^{-1} - \left(Q_{+}^{\mathrm{T}} D_{+} Q_{+} \right)^{-1} \right\}
= \operatorname{tr} \left\{ \left(Q_{+}^{\mathrm{T}} Q_{+} \right)^{-1} Q_{+}^{\mathrm{T}} D_{+}^{-1/2} \left[I_{q} - D_{+}^{1/2} Q_{+} \left(Q_{+}^{\mathrm{T}} D_{+} Q_{+} \right)^{-1} Q_{+}^{\mathrm{T}} D_{+}^{1/2} \right] D_{+}^{-1/2} Q_{+} \left(Q_{+}^{\mathrm{T}} Q_{+} \right)^{-1} \right\},$$
(S.13)

which is non-negative. If the first inequality fails, so that $\mathcal{I}_0(\xi, P_0) = \mathcal{I}_0(\xi, I_n)$, then the trace of the p.s.d. matrix at (S.13) is zero, hence all eigenvalues are zero and the matrix is the zero matrix. This is (S.9a).

That $\mathcal{I}_1(\xi, I_n) - \mathcal{I}_1(\xi, P_0) \ge 0$ is the first inequality in (i). If the second inequality of (ii) fails, then $\mathcal{I}_1(\xi, I_n) = \mathcal{I}_1(\xi, P_0)$ and their evaluations at (S.12b) and (S.12d) give (S.9b).

For (iii), that $\Delta_0(\varepsilon) > 0$ and $\Delta_1(\varepsilon) > 0$ for sufficiently small ε follow from the continuity of $\mathcal{I}_0(\xi, P_{\varepsilon})$ and $\mathcal{I}_1(\xi, P_{\varepsilon})$ as functions of ε : $\Delta_0(\varepsilon) \to \mathcal{I}_0(\xi, P_0) - \mathcal{I}_0(\xi, I_n) > 0$ and $\Delta_1(\varepsilon) = \mathcal{I}_1(\xi, I_n) - \mathcal{I}_1(\xi, P_0) > 0$ as $\varepsilon \to 0$.

PROOF OF THEOREM 2.

(i) From the first inequality in Lemma 2 (i),

$$\mathcal{I}_{0}\left(\xi,I_{n}\right)=\min_{P\succ0}\mathcal{I}_{0}\left(\xi,P\right).$$

If $P = I_n$ then $U = J^T P J = J^T J = D_+ = kI_q$, so that from (S.12b), and the second inequality in Lemma 2(i),

$$\mathcal{I}_{1}\left(\xi,I_{n}\right)=\operatorname{ch_{max}}\left\{ \left(Q_{+}^{\mathrm{T}}Q_{+}\right)^{-1}\right\} =\min_{P\succ0}\mathcal{I}_{1}\left(\xi,P\right).$$

Now (S.8) is immediate. If $P_0 = I_n$ then $q = \operatorname{rk}(P_0) = n$, so that all n observations are made at distinct points, hence $D_+ = I_n$ and the design is uniform on its support.

(ii) By Lemma 2(iii) there is $\varepsilon_0 > 0$ for which $\Delta_0(\varepsilon) > 0$ and $\Delta_1(\varepsilon) > 0$ when $0 < \varepsilon \le \varepsilon_0$. For ε in this range,

$$\mathcal{I}_{\nu}\left(\xi, I_{n}\right) - \mathcal{I}_{\nu}\left(\xi, P_{\varepsilon}\right) = \nu\left(\Delta_{0}\left(\varepsilon\right) + \Delta_{1}\left(\varepsilon\right)\right) - \Delta_{0}\left(\varepsilon\right) > 0,$$

for
$$\nu \in (\nu_0, 1]$$
 and $\nu_0 \equiv \Delta_0(\varepsilon) / (\Delta_0(\varepsilon) + \Delta_1(\varepsilon))$.

3. TABLES OF SIMULATION RESULTS

Table 1. Minimax precision matrices; multinomial designs: means of performance measures \pm 1 standard error.

			r						
Response	N	ν	$\%I_n$	$\mathcal{I}_{ u}\left(\xi,I_{n} ight)$	$\mathcal{I}_{\nu}\left(\xi,P^{\nu}\right)$	$T_1\left(\%\right)$	$T_2\left(\%\right)$	$T_3\left(\%\right)$	
	11	.5	1	$3.34 \pm .11$	$3.19 \pm .11$	$4.16 \pm .15$	$3.23 \pm .12$	$12.29 \pm .46$	
linear	11	1	1	$3.72 \pm .16$	$3.27 \pm .14$	$11.81 \pm .35$	$9.18 \pm .31$	$14.40 \pm .52$	
n = 10	51	.5	27	$11.19\pm.21$	$11.05 \pm .21$	$1.24 \pm .07$	$.85 \pm .05$	$4.10 \pm .22$	
	51	1	27	$9.80 \pm .23$	$9.35 \pm .22$	$4.34\pm.22$	$2.96\pm.16$	$4.82\pm.26$	
	11	.5	0	5.99 ± 1.25	5.57 ± 1.06	$4.62 \pm .15$	$3.15 \pm .11$	$14.16 \pm .50$	
quadratic	11	1	0	7.30 ± 1.82	6.07 ± 1.27	$13.04 \pm .38$	$8.57 \pm .38$	$16.22 \pm .57$	
n = 15	51	.5	4	$12.61 \pm .46$	$12.40 \pm .45$	$1.58 \pm .07$	$.99 \pm .05$	$5.75 \pm .27$	
	51	1	4	$10.69 \pm .54$	$10.03 \pm .51$	$5.95 \pm .24$	$3.54\pm.17$	$6.72\pm.31$	
	11	.5	0	9.71 ± 1.63	9.15 ± 1.52	$4.87 \pm .15$	$3.25 \pm .11$	$14.90 \pm .51$	
cubic	11	1	0	12.98 ± 2.53	11.41 ± 2.22	$13.54\pm.38$	$8.86 \pm .29$	$16.92 \pm .58$	
n = 20	51	.5	0	21.67 ± 2.43	21.21 ± 2.38	$1.87 \pm .08$	$1.14\pm.05$	$7.24\pm.30$	
	51	1	0	20.76 ± 2.9	19.29 ± 2.81	$7.39\pm.26$	$3.75\pm.16$	$8.45\pm.35$	

means of performance measures ± 1 standard error.								
Response	N	ν	$\%I_n$	$\mathcal{I}_{ u}\left(\xi,I_{n} ight)$	$\mathcal{I}_{\nu}\left(\xi,P^{\nu}\right)$	$T_1\left(\%\right)$	$T_2\left(\%\right)$	$T_3\left(\%\right)$
	11	.5	20	$2.10 \pm .03$	$2.05 \pm .03$	$2.45 \pm .11$	$1.64 \pm .07$	$8.46 \pm .41$
linear	11	1	20	$1.83 \pm .04$	$1.66 \pm .04$	$8.51\pm.31$	$4.99 \pm .21$	$10.06 \pm .46$
n = 10	51	.5	80	$10.01 \pm .29$	$9.97 \pm .29$	$.40 \pm .05$	$.23 \pm .03$	$1.45\pm.18$
	51	1	80	$7.77\pm.29$	$7.67 \pm .29$	$1.48 \pm .16$	$.67 \pm .07$	$1.66 \pm .20$
	11	.5	0	$2.35 \pm .08$	$2.26 \pm .07$	$3.49 \pm .07$	$2.17 \pm .07$	$14.10 \pm .50$
quadratic	11	1	0	$2.01 \pm .09$	$1.74 \pm .08$	$14.40 \pm .37$	$8.57\pm.22$	$18.05 \pm .58$
n = 15	51	.5	85	$10.58 \pm .70$	$10.53 \pm .68$	$.25 \pm .04$	$.15 \pm .02$	$1.02\pm.16$
	51	1	85	$7.54 \pm .80$	$7.39 \pm .74$	$1.03 \pm .15$	$.49 \pm .07$	$1.19 \pm .19$
	11	.5	3	$2.64 \pm .19$	$2.55 \pm .19$	$3.56 \pm .12$	$1.99 \pm .07$	$15.18 \pm .56$
cubic	11	1	3	$2.39 \pm .27$	$2.11\pm.26$	$15.19 \pm .44$	$9.09 \pm .28$	$19.69 \pm .70$
n = 20	51	.5	58	11.97 ± 1.91	11.80 ± 1.80	$.45 \pm .04$	$.24 \pm .02$	$2.11 \pm .19$
	51	1	58	8.44 ± 9.14	7.04 ± 1.80	2.23 ± 18	86 ± 07	$9.47 \pm .91$

Table 2. Minimax precision matrices; symmetrized designs: means of performance measures \pm 1 standard error.

In Tables 1 and 2, uniform designs account for 100% and 95%, respectively, of the cases in which $P^{\nu} = I_n$ is optimal. Common exceptions in Table 2 are designs which are uniform apart from having points added or removed at x=0 to maintain symmetry. Those designs for which I_n is not optimal all meet the conditions of Theorem 2 (ii). This was checked numerically: since (S.9a) implies that $\mathcal{I}_0(\xi, P_0) - \mathcal{I}_0(\xi, I_n) = 0$, and (S.9b) implies that $\mathcal{I}_1(\xi, I_n) - \mathcal{I}_1(\xi, P_0) = 0$, their failure is verified by checking that each of these differences is positive.

Table 3. Minimax designs and precision matrices: performance measures ($T_1 = T_2 = T_3 = 0$ if $P^{\nu} = I_n$).

Response	N	ν	$\mathcal{I}_{ u}\left(\xi,I_{n} ight)$	$\mathcal{I}_{\nu}\left(\xi,P^{\nu}\right)$	$T_1(\%)$	$T_2(\%)$	$T_3(\%)$
	11	.5	1.60	1.60	0	0	0
linear	11	1	1.10	1.10	0	0	0
n = 10	51	.5	6.14	6.14	0	0	0
	51	1	5.10	5.10	0	0	0
	11	.5	1.61	1.53	4.67	2.81	16.06
quadratic	11	1	1.12	1.00	10.84	10.78	10.84
n = 15	51	.5	5.80	5.80	0	0	0
	51	1	3.40	3.40	0	0	0
	11	.5	1.55	1.53	1.46	1.13	6.04
cubic	11	1	1.12	1.00	11.03	4.84	11.03
n = 20	51	.5	5.56	5.56	0	0	0
	51	1	2.55	2.55	0	0	0

REFERENCES

BHATIA, R. (1997). Matrix Analysis. Berlin: Springer.