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SUMMARY

We present a result according to which certain functions of covariance matrices are maximized
at scalar multiples of the identity matrix. This is used to show that experimental designs that are
optimal under an assumption of independent, homoscedastic responses can be minimax robust, in
broad classes of alternate covariance structures. In particular, it can justify the common practice of
disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.

Some key words: Correlation; Covariance; Induced matrix norm; Loewner ordering; Minimax design;
Robustness.

1. Introduction

Experimental designs are typically derived, or chosen, assuming that the responses will be inde-
pendent and homoscedastic. As well as being simple, this is almost necessary, unless an alternate
covariance structure is somehow known. This is frequently a complicating feature of design theory;
until a design is constructed and implemented, there are no data that can be used to estimate the
model. There is some consolation however if a proposed design, optimal under an assumption of
independence and homoscedasticity, is minimax against a broad class of alternate structures. By this
we mean that the maximum loss in such a class is minimized by this design, which is thus robust
against these alternatives. In this note we establish that any function of covariance matrices, pos-
sessing a natural monotonicity property, is maximized within such classes at a scalar multiple of the
identity matrix. This can be paraphrased by saying that the least favourable covariance structure is
that of independence and homoscedasticity. These are eventualities for which the proposed design is
optimal; hence, it is minimax.

2. Main result

Suppose that ‖ · ‖M is a matrix norm, induced by the vector norm ‖ · ‖V , i.e.,

‖C‖M = sup
‖x‖V =1

‖Cx‖V . (1)

We use the subscript M when referring to an arbitrary matrix norm, but adopt special notation in
the following cases.

(i) For the Euclidean norm ‖x‖V = (xTx)1/2, the matrix norm is denoted ‖C‖E and is the spectral
radius, i.e., the root of the maximum eigenvalue of CTC. This is the maximum eigenvalue of
C if C is a covariance matrix, i.e., is symmetric and positive semidefinite.
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(ii) For the sup norm ‖x‖V = maxi |xi|, the matrix norm ‖C‖∞ is maxi
∑

j |cij|, the maximum
absolute row sum.

(iii) For the 1-norm ‖x‖V = ∑
i |xi|, the matrix norm ‖C‖1 is maxj

∑
i |cij|, the maximum absolute

column sum. For symmetric matrices, ‖C‖1 = ‖C‖∞.

See Todd (1977, Ch. 3) for verifications of (i)–(iii).
We require the following properties of induced norms.

Property 1. It holds that ‖I‖M = 1.

Property 2. For covariance matrices C, ‖C‖M � ‖C‖E .

Property 1 is immediate from (1). For Property 2, suppose that ‖C‖M is induced by ‖ ·‖V , and that
λ0 is the maximum eigenvalue of C, with eigenvector x0 normalized so that ‖x0‖V = 1. Then

‖C‖E = λ0 = ‖λ0x0‖V = ‖Cx0‖V � sup
‖x‖V =1

‖Cx‖V = ‖C‖M .

Now suppose that the loss function in a statistical problem isL(C), where C is an N×N covariance
matrix and L(·) is nondecreasing in the Loewner ordering:

A � B =⇒ L(A) � L(B). (2)

Here A � B means that B − A � 0, i.e., is positive semidefinite.

LEMMA 1. For η2 > 0, covariance matrix C and induced norm ‖C‖M, define

CM = {C | C � 0 and ‖C‖M � η2}.
For the norm ‖ · ‖E, an equivalent definition is

CE = {C | 0 � C � η2IN}. (3)

Then

(i) in any such class CM, maxCM L(C) = L(η2IN),
(ii) if C ′ ⊆ CM and η2IN ∈ C ′, maxC′ L(C) = L(η2IN).

Proof. We first establish the equivalence of (3). If the condition there holds then, by Weyl’s mono-
tonicity theorem (Bhatia, 1997, p. 63), all eigenvalues of C are dominated by η2; hence, ‖C‖E � η2.
Conversely, if ‖C‖E � η2 then all eigenvalues of C are dominated by η2; hence, all those of η2IN − C
are nonnegative and so the condition in (3) holds.

By (2) and (3), maxCE L(C) = L(η2IN). Then, by Property 1 followed by Property 2, η2IN ∈ CM

⊆ CE, and so the maximizer in the larger class is a member of the smaller class; hence, a fortiori the
maximizer there. This proves (i). The proof of (ii) uses the same idea; the maximizer in the larger
class CM is a member of the smaller class C ′. �

Remark 1. An interpretation of Lemma 1 is as follows. Suppose that one has derived a technique
under an assumption of uncorrelated, homoscedastic errors, i.e., a covariance matrix σ 2IN , which is
optimal in the sense of minimizing L, for any σ 2 > 0. Now suppose that one is concerned that the
covariance matrix might instead be a member C of CM , and thatL is monotonic in the sense described
above. Then the technique minimizes maxCM L(C) = L(η2IN), i.e., is minimax in CM .

Remark 2. In Remark 1 we implicitly assume that η2 � σ 2; otherwise, CM does not contain σ 2IN .
An argument for taking η2 > σ 2 arises if one assumes homoscedasticity and writes C = σ 2P, where
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P is a correlation matrix. Then in C1, η2 � ‖C‖1 = σ 2‖P‖1 � σ 2, with the final inequality being an
equality if and only if P = IN . Thus, take η2 > σ 2. Then an intuitive explanation of the lemma is
that, in determining a least favourable covariance structure, one can alter the correlations in some
manner that increases ‖C‖M , or one can merely increase the variances. In fact, one should always
just increase the variances.

Remark 3. A version of Lemma 1 was used by Wiens & Zhou (2008) in a maximization problem
related to the planning of field experiments. It was rediscovered by Welsh & Wiens (2013) in a study
of model-based sampling procedures. This note seems to be the first systematic study of the design
implications of the lemma.

3. Applications

3.1. Experimental design in the linear model

Consider the linear model y = Xθ + ε. Suppose that the random errors ε have covariance matrix
C ∈ CM . If C is known then the best linear unbiased estimate is θ̂blue = (X TC−1X)−1X TC−1y and there
is an extensive design literature; see Dette et al. (2015) for a review. In the more common case that the
covariances are only vaguely known, or perhaps only suspected, it is more usual to use the ordinary
least-squares estimate θ̂ols, design as though the errors are uncorrelated and hope for the best. An
implication of the results of this section is that, in a minimax sense, that approach can be sensible.

In the classical alphabetic design problems, one seeks to minimize a function � of the covariance
matrix of the regression estimates. Let ξ0 be the minimizing design, under the possibly erroneous
assumption of uncorrelated, homoscedastic errors. Assume that, under ξ0, the moment matrix X TX
is nonsingular. Then the covariance matrix of θ̂ols is

cov(θ̂ols | C) = (X TX)−1X TCX(X TX)−1. (4)

Suppose that 0 � C1 � C2, so that C2 − C1 = ATA for some A. Then

cov(θ̂ols | C2) − cov(θ̂ols | C1) = BTB � 0

for B = AX(X TX)−1; hence, cov(θ̂ols | C1) � cov(θ̂ols | C2). It follows that if � is nondecreasing in
the Loewner ordering then L(C) = �{cov(θ̂ols | C)} is also nondecreasing and the conclusions of
the lemma hold. Then, as in Remark 1, ξ0 is a minimax design; it minimizes the maximum loss as the
covariance structure varies over CM .

Again by Weyl’s monotonicity theorem, if 0 � 	1 � 	2 then the ith largest eigenvalue λi of 	2

dominates that of 	1 for all i. It follows that � is nondecreasing in the Loewner ordering if

(i) �(	) = tr(	) = ∑
i λi(	), corresponding to A-optimality;

(ii) �(	) = det(	) = ∏
i λi(	), corresponding to D-optimality;

(iii) �(	) = maxi λi(	), corresponding to E-optimality;
(iv) �(	) = tr(L	) for L � 0, corresponding to L-optimality and including I-optimality, mini-

mizing the integrated variance of the predictions. Thus, the designs optimal under any of these
criteria are minimax.

Example 1 (moving-average-of-order-1 errors). As a particular case, assume first that the random
errors are homoscedastic, but are possibly serially correlated, following a moving-average-of-order-1,
ma(1), model with corr(εi, εj) = ρI(|i − j| = 1) and with |ρ| � ρmax. Then, under this structure, C
varies over the subclass C ′ of C∞ defined by cij = 0 if |i − j| > 1 and ‖C‖∞ � σ 2(1 + 2ρmax), which
we define to be η2. Since η2IN ∈ C ′, Lemma 1(ii) applies and it follows that ξ0 is a minimax design in
C ′ and with respect to any of the alphabetic criteria above. If the errors are instead heteroscedastic
then σ 2 is replaced by the maximum of the variances.
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Example 2 (autoregressive-of-order-1 errors). It is known that the eigenvalues of an autoregressive-
of-order-1, ar(1), autocorrelation matrix with autocorrelation parameter ρ are bounded, and that the
maximum eigenvalue λ(ρ) has λ∗ = maxρ λ(ρ) > λ(0) = 1. See, for instance, Trench (1999, p. 182).
Then, again under homoscedasticity, the covariance matrix C has ‖C‖E � σ 2λ∗, and a design optimal
when ρ = 0 is minimax in the subclass of CE defined by the autocorrelation structure and η2 = σ 2λ∗.

3.2. Designs robust against model misspecifications

Working in finite design spaces χ and with p-dimensional regressors f (x), Wiens (2018) derived
minimax designs for possibly misspecified regression models

Y(x) = f T(x)θ + ψ(x) + ε, (5)

with the unknown contaminant ψ ranging over a class 
 and satisfying, for identifiability of θ , the
orthogonality condition

∑

x∈χ

f (x)ψ(x) = 0p×1. (6)

For designs ξ placing mass ξi on xi ∈ χ , he took θ̂ = θ̂ols,

I(ψ , ξ) =
∑

x∈χ

E[ f T(x)θ̂ − E{Y(x)}]2, (7)

D(ψ , ξ) = [det E{(θ̂ − θ)(θ̂ − θ)T}]1/p, (8)

and found designs minimizing the maximum, over ψ , of these loss functions. The random errors
εi were assumed to be independent and identically distributed; now suppose that they instead have
covariance matrix C ∈ CM .

Consider first (7). Using (6), and with dψ = {E(θ̂) − θ}, which does not depend on the covariance
structure, this decomposes as

I(ψ , ξ , C) =
∑

x∈χ

f T(x)cov(θ̂ | C)f (x) +
∑

x∈χ

{ f T(x)dψdT
ψ f (x) + ψ2(x)}. (9)

The first sum above does not depend on ψ ; the second depends on ψ , but not on the covariance
structure. Then an extended minimax problem is to find designs ξ minimizing

max
ψ ,C

I(ψ , ξ , C) = max
C∈CM

∑

x∈χ

f T(x)cov(θ̂ | C)f (x) + max
ψ∈


∑

x∈χ

{ f T(x)dψdT
ψ f (x) + ψ2(x)}.

As in § 3.1, and taking L = ∑
x∈χ f (x)f T(x) in (iv) of that section, for C ∈ CM , the first sum is maxi-

mized by a multiple η2 of the identity matrix, and then the remainder of the minimax problem is that
which was solved by Wiens (2018). The minimax designs, termed I-robust designs, obtained there do
not depend on the value of η2, and so enjoy the extended property of minimizing maxψ ,C I(ψ , ξ , C)

for C ∈ CM .
Now consider (8). The analogue of (9) is

D(ψ , ξ , C) = [det{cov(θ̂ | C) + dψdT
ψ}]1/p.

Since cov(θ̂ | C)+dψdT
ψ , hence its determinant, is nondecreasing in the Loewner ordering, D(ψ , ξ , C)

is maximized for C ∈ CM by a multiple of the identity matrix. The rest of the argument is identical to
that in the preceding paragraph, and so the D-robust designs obtained by Wiens (2018) also minimize
maxψ ,C D(ψ , ξ , C) for C ∈ CM .
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Remark 4. Results in the same vein as those above have been obtained in cases that do not seem
to be covered by Lemma 1. For instance, Wiens & Zhou (1996) sought minimax designs for the mis-
specification model (5), under conditions on the spectral density of the error process. They stated that
‘… a design which is asymptotically (minimax) optimal for uncorrelated errors retains its optimality
under autocorrelation if the design points are a random sample, or a random permutation, of points
…’, with details in their Theorems 2.4 and 2.5.

3.3. Designs for nonlinear regression models

In the nonlinear regression model y = f (x; θ)+ε, the goal of a design is typically the minimization
of some function of the covariance matrix of θ̂ , after a linearization of the model. When the errors
have covariance C, the target of this minimization continues to be given by the right-hand side of
(4), but with matrix X replaced by the gradient F(θ) = {∂f (xi; θ)/∂θj}i,j, and with F(θ) evaluated
at an initial parameter estimate, or at a previous estimate in an iterative estimation scheme. Then
the results of § 3.1 continue to hold, and a design optimal for the loss functions given there, under
independence and homoscedasticity, is minimax. A caveat, however, is that optimal design theory for
nonlinear models is much less well developed, and more model specific, than that for linear models.
See Bates & Watts (1988) and Hamilton & Watts (1985) for discussions.
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