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ABSTRACT 

 

Satellites monitor photosynthetic activity, green-up of vegetation in spring, and senescence of 

leaves in fall at a global scale. These data are used to estimate global and regional primary 

productivity of vegetation, and to assess the impact of climate change and climate extreme 

events on ecosystems. Indices of photosynthetic activity calculated from multispectral remote 

sensing data may, however, be systematically biased or affected by random errors that arise 

from cloud cover, effects of snow and water, landcover, and vegetation types. Additionally, 

the timing of satellite observed green-up and senescence is influenced by the method of 

calculating these dates. Here, I compare remotely sensed land surface phenology with ground 

phenology observations to evaluate which indices and remote sensing products provide the 

most accurate assessments of phenology, and to provide corrections for biased estimates. I 

rely on data from the Alberta PlantWatch citizen science network, which includes more than 

57,000 observations of bloom and leaf-out collected from 1987-2016, to ground-truth EVI 

and NDVI-based phenology estimates from the AVHRR and MODIS sensors. I evaluate a 

global product from NASA and a regional product specifically designed for forested 

landcover. Because the study area covers a wide variety of ecosystems and landcover classes, 

the analysis is stratified by Alberta’s ecoregions and main landcover types. The results 

indicate that green-up estimates are most accurate and unbiased for deciduous forests. 

Phenology estimates for mixed and coniferous forests are less accurate and have moderate 

bias (consistently too early or too late) depending on the sensor and remote sensing product. 

Cropland and grassland estimates have the most variable results among different ecosystems 

and remote sensing products. The NASA products tend to detect green-up before canopy leaf-

out, while a dataset developed for the forested region of Alberta is more accurate. All remote 

sensing products significantly underestimate the interannual variability of phenology, which 

carries the risk of underestimating the impact of climate change on ecosystems. However, 

both bias in the overall timing of phenology and bias in interannual variability can be 

corrected if ground phenology data are available. For the main ecoregions and landcover 

types of Alberta, this thesis provides the relevant statistics for bias correction to accurately 

track phenology changes in response to climate variability and long term climate trends. 
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1. INTRODUCTION 

1.1 Land surface phenology: a science for global change 

 

Remote sensing is a valuable tool to monitor photosynthetic activity, green-up of 

vegetation in spring, and senescence of leaves in fall at continental and global scales (Hanes 

et al. 2014; Helman 2018; Reed et al. 1994). Land surface phenology uses satellite sensors 

such as AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate 

Resolution Imaging Spectroradiometer) to monitor surface reflectance using multi-spectral 

imagery from the visible red and near-infrared portions of the electromagnetic spectrum 

(Reed et al. 1994). Leaves reflect very little energy in the visible portion of the spectrum due 

to absorption of photosynthetically active radiation, whereas most energy in the near-infrared 

is reflected (Huete et al. 2014). Surface reflectance values are transformed into vegetation 

indices that are related to these absorptive and reflective properties of photosynthesising 

leaves (Badeck et al. 2004; Delbart et al. 2015; Helman 2018; Huete et al. 2014; Reed et al. 

2003). The most commonly used vegetation indices are the Normalised Difference 

Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) (Helman 2018). NDVI 

is a simple unitless index between -1 and 1 that functions as a normalised ratio between 

reflectance in the near-infrared band, and reflectance in the visible red band (Huete et al. 

2002; Huete et al. 2014; Tucker 1979). EVI is a newer variation of NDVI created on the same 

premise, with added factors to minimise the influence of aerosol variations and bare soil, and 

to avoid saturation over dense vegetation (Huete et al. 2002). These indices are used as an 

indicator of leaf area, fraction of absorbed photosynthetically active radiation (fAPAR), 

chlorophyll content, and thus photosynthetic capacity (Huete et al. 2014). 
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Various data processing methods are used to fit annual curves onto discrete vegetation 

index values in order to fill gaps and smooth the data (Reed et al. 1994). Smoothed time-

series are used to identify the dates of important land surface phenology metrics, such as the 

start of the growing season in spring (SOS), and the end of the growing season or fall 

senescence (Helman 2018; Reed et al. 1994; White et al. 1997). Start of growth, also known 

as green-up, is typically identified by when the vegetation index begins increasing or reaches 

a certain percentage of full summer greenness (Delbart et al. 2015; Helman 2018; Reed et al. 

1994; White et al. 1997). Conversely, fall senescence is when the vegetation index falls 

below a certain percentage of full summer greenness, or reaches its lower thresholds during 

the transition from fall to winter (Helman 2018; Reed et al. 1994; White et al. 1997). Another 

important metric is growing season length, which is the number of days between the start and 

end of the growing season (Helman 2018; Reed et al. 1994; White et al. 1997).  

 

Recent interest in climate change has reinvigorated the scientific discipline of 

phenology (Donnelly and Yu 2017; Sparks et al. 2009). The timing of leaf-out and bloom in 

spring is closely linked to preceding temperatures, making changes in phenology an 

immediate and easily documented impact of climate change on ecosystems (Rosenzweig et 

al. 2007; Schwartz et al. 2006). Advances in remote sensing have made land surface 

phenology a valuable tool to monitor the effects of climate on vegetation activity and 

growing season length. Most studies have found trends towards earlier spring onset, delayed 

fall senescence, and a lengthened growing season. However, the rate and direction of change 

has been variable between studies and ecosystems. Spring has advanced across the 

circumpolar temperate and boreal forest regions, with one study reporting an average advance 

of 0.16 days/year from 1980-2014 (Park et al. 2016), and another study reporting a more 
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rapid advance of 0.26 days/year from 2000-2014 (Karkauskaite et al. 2017). Trends for fall 

senescence have been quite variable in North America. One study found a trend towards 

delayed senescence from 1982-1999, followed by an advance from 2000-2014 in the boreal 

and subarctic regions (Park et al. 2016). However, a different study found a steadier trend 

towards delayed senescence from 1982-2008 in the temperate and boreal forest regions 

(Jeong et al. 2011). The average growing season length in the northern hemisphere has 

lengthened at an average rate of roughly 0.25-0.40 days/year since 1980, with significant 

variability in the rate and direction of change between ecosystems (Jeong et al. 2011; Park et 

al. 2016). Several studies have reported that the trend for spring advance and autumn delay 

has slowed or become reversed since 2000 (Garonna et al. 2015; Jeong et al. 2011; Park et al. 

2016).  

 

Phenology is not only of interest as an ecosystem response to climate change, but also 

as a driver and feedback mechanism to global climate cycles. Phenology is an important 

driver of global cycles with influences on surface albedo, water and energy fluxes, primary 

production, and carbon cycles (Richardson et al. 2013). Growing season length and plant 

productivity is closely related to carbon sequestration, making phenology an important factor 

in the potential of ecosystems to mitigate climate change (Gu et al. 2003; Leinonen and 

Kramer 2002; White et al. 1999). Primary production, the rate at which plants capture and 

store carbon dioxide from the atmosphere (Xiangming et al. 2014), is related to absorbed 

solar energy (Running et al. 2004). Given that vegetation indices such as NDVI and EVI are 

proxies of absorbed solar energy, land surface phenology can be used to estimate plant 

productivity and study the feedbacks between plants, phenology, and the earth’s climate 

system (Running et al. 2004). The annual and seasonal changes in NDVI have been shown to 
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correspond with annual and seasonal changes in gross and net primary production from other 

data sources (Goward et al. 1985; Schloss et al. 2001). Matching the trend of warming, 

several studies have demonstrated that the peak and amplitude of NDVI curves increased 

from 1980-2000, suggesting a substantial increase in plant growth and photosynthetic activity 

(Myneni et al. 1997; Tucker et al. 2001; Zhou et al. 2001). Park et al. (2016) used NDVI-

based estimates to demonstrate that 42% of the circumpolar boreal region experienced a 

significant trend towards increased productivity from 1980-2014, which increased total gross 

primary productivity by 20%. Like trends for start and end of season, the rate of increase in 

primary production slowed in the latter period of this study (2000-2014) (Park et al. 2016).  

 

While land surface phenology is an effective tool to monitor vegetation and related 

processes at continental and global scales, there are several sources of error that affect the 

precision and accuracy of land surface phenology estimates. Monitoring green-up can be 

complicated when the satellite pixel contains a mosaic of landcover types, non-vegetated 

areas, anthropogenic landcover types such as cropland and urban areas, or waterbodies 

(Delbart et al. 2015). Cloud cover creates temporal and spatial gaps in data (White et al. 

2014; Zhang et al. 2006), and spring snowmelt exposes bare soil and understorey leaf litter 

which can increase the vegetation index, creating a false impression of greening-up (Fisher 

and Mustard 2007; Reed et al. 1994; White et al. 2009). Different vegetation indices, curve 

smoothing methods, and metric retrieval methods have been shown to produce SOS dates that 

vary by up to two months for the same pixels (Helman 2018; Misra et al. 2016; White et al. 

2009). These factors cause uncertainty on the accuracy of land surface phenology metrics, 

and associated estimates of growing season length and primary productivity.  
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1.2 Ground phenology: an opportunity to ground truth remote sensing 

 

An important aspect of land surface phenology research is to establish relationships 

between the annual changes in vegetation indices and the phenological events driving these 

changes (Badeck et al. 2004). Ecosystem carbon fluxes and productivity are closely linked to 

specific plant phenophases, such as the unfolding and maturation of leaves in spring, and the 

senescence of leaves in fall (D’Odorico et al. 2015; White et al. 1999). Determining how well 

land surface phenology predicts the timing of these phenophases is crucial to accurately 

assess these associated ecosystem processes. Thus, it is useful to compare and calibrate land 

surface phenology data with leafing and flowering data in order to derive bias correction for 

different landcover and vegetation types, and to select the vegetation index and SOS retrieval 

method that provides the most accurate assessment of phenology for a study region. 

Prior to the use of satellites, phenology was traditionally documented using in-situ 

observations of individual plants, with a focus on specific phenophases such as flowering and 

leafing (Badeck et al. 2004; Cleland et al. 2007). The scale and quantity of data required to 

adequately monitor ground phenology is beyond the capability of scientists alone (Feldman et 

al. 2018), which has led to the creation of phenology networks that rely on citizen scientists 

for data collection. These citizen science networks include the PlantWatch network in Canada 

(Beaubien and Hamann 2011a), the USA National Phenology Network (Betancourt et al. 

2007), and many in Europe such as Nature’s Calendar in the UK (Collinson and Sparks 

2008). Ground phenology data are limited by inconsistencies in observer protocols, temporal 

and spatial gaps in observations, and the limited spatial distribution of potential observers 

(Cleland et al. 2007; Kross et al. 2011; Misra et al. 2016).  
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Compared to ground phenology, land surface phenology is more effective at 

providing temporally and spatially contiguous records of phenology, and is particularly useful 

to provide records for areas where there are few or no potential observers (Badeck et al. 

2004; Cleland et al. 2007; Kross et al. 2011). However, it is important to ensure that land 

surface phenology metrics reflect the annual patterns of ground phenology, and studies 

comparing the two have had variable results. The method to extract land surface phenology 

metrics can have a considerable impact on the relationship between these metrics and ground 

phenology. Some methods have been shown to result in strong correlations with little bias or 

error, while other methods have weak correlations and significant bias (Schwartz et al. 2002; 

White et al. 2014; White et al. 2009). Other studies have found that leaf-out observations can 

closely match land surface phenology green-up dates when observations are from forested 

pixels, while observations from partially forested or unforested pixels do not correlate well 

(Delbart et al. 2015; Pouliot et al. 2011).  

 

Estimates on the rate of spring advance have also been more variable from remote 

sensing than from ground phenology data. Ground phenology studies have had relatively 

consistent findings, with most studies reporting that spring is advancing at a rate of 2-5 days 

per decade in temperate zones across the planet (Ahas et al. 2002; Badeck et al. 2004; 

Beaubien and Hamann 2011b; Menzel et al. 2006; Root et al. 2003; Schwartz et al. 2006; 

Schwartz and Reiter 2000). The variability in results from land surface phenology studies is 

likely due to the range of methods used. For example, different smoothing techniques and 

metric retrieval methods can result in opposite trends for spring start in the same study region 

(Buitenwerf et al. 2015; Misra et al. 2016). Additionally, different vegetation indices can 

result in differing rates and opposite directions of change for spring start in the same 
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ecosystems (Karkauskaite et al. 2017). Different land surface phenology methods are 

sensitive to the phenology of different species (Misra et al. 2016), and the rate of change in 

spring phenology is highly variable among species with some changing in the opposite 

direction of the warming pattern (Fitter and Fitter 2002; Menzel et al. 2006). Thus, distinct 

land surface phenology methods are sensitive to different ecosystem characteristics, which 

may have differing responses to climate change.  

 

Discrepancies between land surface phenology and ground phenology arise due to 

these two techniques monitoring related, albeit qualitatively different processes. While 

ground phenology has a plant and phenophase specific focus, land surface phenology 

captures the aggregated green-up of many species within moderate to coarse spatial scales 

depending on the pixel size (Badeck et al. 2004; Cleland et al. 2007; Helman 2018). Thus, 

land surface phenology metrics are not a direct indicator of any ground based phenophase, 

but are rather an indication of a shift in ecosystem dynamics (Reed et al. 1994). Combining 

both phenology approaches offers the opportunity to better understand how ground 

phenology influences satellite estimates of green-up. 

 

1.3 Study objectives 

 

This study evaluates the suitability of different land surface phenology products to 

detect spring start in northern ecosystems by comparing with ground phenology data 

collected by the Alberta PlantWatch citizen science network from 1987-2016. This is a more 

northerly region than other similar North American studies (Delbart et al. 2015; Pouliot et al. 

2011; White et al. 2014; White et al. 2009), which is important given that climate change is 
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expected to occur more rapidly in northern ecosystems (IPCC 2014). The Alberta PlantWatch 

network is among the most northerly phenology networks in North America, giving the 

unique opportunity to evaluate the relationship between land surface phenology and ground 

phenology for landscape types that other studies have not considered. Vegetation index, 

computational method to derive the land surface phenology metric, and landcover are all 

expected to influence the relationship between ground phenology and land surface phenology 

metrics. Thus, I stratify the study area into ecological zones based on the Alberta Natural 

Subregion classifications, and test different landcover types separately within each ecoregion. 

I calculate mean green-up dates from three land surface phenology datasets for selected 

landcover types in each ecoregion, using 50 selected grid cells of the chosen landcover type. 

These green-up dates are then compared against the average date of ground phenology events 

in the selected ecoregions, calculated using a best linear unbiased prediction model for 

common species in the Alberta PlantWatch database. I evaluate the accuracy and bias of the 

land surface phenology green-up estimates in order to assess whether they accurately reflect 

spring start from ground phenology data. I also provide the relevant statistics and equations 

necessary to correct biased estimates of phenology.  

 

 

2. METHODS 

2.1 Alberta PlantWatch data 

 

The ground phenology data used in this study were collected by the Alberta 

PlantWatch citizen science network, which was initiated in 1987 to track spring plant 

phenology in the province of Alberta (Canada). Citizen volunteers were recruited through 
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newspaper articles, government newsletters, public talks, radio interviews, and conference 

posters (Beaubien and Hamann 2011a). Volunteers observe and report the calendar date of 

the following phenophases for common and easily identifiable plant species across Alberta: 

first bloom (first three flowers open in three different places of a woody shrub/tree, or first 

flowers open in a patch of herbaceous plants), mid bloom (50% of flower buds open), full 

bloom (90% of flower buds open), leaf-out (first leaves unfurled in 3+ places on the 

tree/shrub). Observations protocols were adjusted in 2002 to better match those in Europe. 

Accordingly, leaf-out observations began, and full bloom ceased to be recorded (Beaubien 

and Hamann 2011a).  

 

2.2 Stratification of phenology data 

 

As of 2016, the Alberta PlantWatch database includes over 57,000 records for 30 

species taken by roughly 700 observers. Observations have also been taken in all of Alberta’s 

21 Natural Subregions (Figure 1a). In order to select ecoregions for this study, I performed an 

overlay analysis to identify the best sampled Natural Subregions within the PlantWatch data. 

Most records are clustered in the central portion of the province (Figure 1a), with the Central 

Parkland and Dry Mixedwood regions accounting for 60% of the total observations. Based on 

the number of sampling locations and total number of observations in each Natural 

Subregion, this study was stratified into six ecoregions: Central Parkland (726 locations; 

20,846 observations), Dry Mixedwood (478 locations; 13,962 observations), Foothills 

Parkland (144 locations; 5,134 observations), Grasslands (313 locations; 6,503 observations), 

Central Mixedwood (165 locations; 2,463 observations), and Montane (258 locations; 3,900 

observations). The Grasslands region is a combination of the Foothills Fescue, Dry 
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Mixedgrass, and Mixedgrass Natural Subregions, all three of which are within the Grasslands 

Natural Region (Natural Regions Committee 2006). These ecoregions have 52,808 total 

phenology observations, which is 91.5% of the PlantWatch database. 

 

Rather than correlating individual phenology observations with remote sensing data 

from individual grid-cells, I calculated average dates of ground observed phenophases for 

each ecoregion. Instead of taking regional averages of PlantWatch data, a mixed effects 

model was used to minimize potential issues due to small sample size, observer bias, and 

outliers. The mixed effects model gives consideration to the collinearity between 

phenophases (first, mid, and full bloom, and leaf-out for aspen), and between observations of 

different species to improve the accuracy of the estimated average ground phenology date. A 

best linear unbiased prediction (BLUP) mixed model was created with the phase as the 

predictor, and the year, ecoregion, and species as random effects with the ASReml package in 

R version 3.4.0 (Butler 2009; R Core Team 2013). The model estimated the date of first 

bloom, mid-bloom, full bloom, and leaf-out (aspen only) for the nine best sampled species in 

the PlantWatch data for the six selected ecoregions (Table 1). With the removal of lesser 

sampled species, this subset included 35,117 individual records, 61% of the PlantWatch 

database. Each of the nine species has more than 70 records from each ecoregion, except for 

golden bean for which there are only 4 observations in the Central Mixedwood region 

(Appendix Table A1). 
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Table 1. Number of Alberta PlantWatch records from the six chosen ecoregions, by phenophase, 
for the nine common species used in this analysis.  

Species     Bloom-phase   
Leaf-
out 

    

Common name Scientific name   First Mid Full   Total 

Saskatoon Amelanchier alnifolia 2,044 1,818 1,577 5,439 

Early blue violet Viola adunca 1,608 1,420 1,291 4,319 

Prairie crocus Anemone patens 1,550 1,285 1,112 3,947 

Aspen poplar Populus tremuloides 1,320 1,126 819 601 3,866 

Chokecherry Prunus virginiana 1,419 1,226 1,009 3,654 

Northern bedstraw Galium boreale 1,344 1,219 1,025 3,588 

Golden bean Thermopsis rhombifolia 1,357 1,203 1,004 3,564 

Yarrow Achillea millefolium 1,370 1,171 948 3,489 

Star-flowered Solomon's seal Maianthemum stellatum   1,310 1,089 852     3,251 

 

 

Like the approach used for the ground phenology data, I calculated the average green-

up date for each of the selected ecoregion – landcover combinations. The location of 

PlantWatch observations are not necessarily in locations spatially representative of the larger 

landscape, as many are in agriculture land, built-up areas, or near waterbodies. Comparing 

individual point observations with the green-up date of the corresponding pixel would thus 

introduce unnecessary bias and error. Instead, I selected grid cells representative of select 

landcover to extract the green-up dates in each ecoregion, using 250m resolution MODIS 

landcover data (CEC 2013). Fifty points were created for each chosen landcover type in the 

six ecoregions (Figure 1b). The locations of the points were systematically chosen to provide 

an even spatial representation within the ecoregion, and to not be located near boundaries of 

other landcover types in order to avoid mosaic pixels. 
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Figure1. (a) PlantWatch sampling locations in Alberta by Natural Subregion (series length is the 
number of years from 1987-2016 for which phenology observations have been reported at each 
location); (b) random sampling points created for extracting the land surface phenology green-up 
dates by ecoregion and landcover type. The Grasslands region in this study is a combination of 
the Dry Mixedgrass, Mixedgrass, and Foothills Fescue Natural Subregions. 

 

2.3 Land surface phenology data 

 

The NASA MEaSUREs Vegetation Index and Phenology global NDVI (Normalized 

Difference Vegetation Index) and EVI (Enhanced Vegetation Index) products were used in 

this study. These data were developed from the NASA Daily Vegetation Index and 

Phenology product, and include start of season (SOS) estimates at a 5600m pixel size from 

AVHRR (Advanced Very High Resolution Radiometer; 1981-1991) and MODIS (Moderate 

Resolution Imaging Spectroradiometer; 2000-2014) sensors (Didan and Barreto 2016a, b; 
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Didan et al. 2018). These datasets use a modified half-maximum method to detect green-up, 

where SOS is the day that the vegetation index surpasses a 0.35 ratio between the minimum 

and maximum vegetation index values for that year (Didan et al. 2018). More detailed data 

processing information is available in Didan et al. (2018).  

 

A finer resolution (250m pixel size) Alberta-wide NDVI-based land surface 

phenology product was also used (hereafter referred to as “Pickell NDVI”). This dataset used 

the half-maximum method (0.5 ratio) to determine SOS from eight-day MODIS imagery 

composites (Pickell et al. 2017). More detailed data processing information is available in 

Pickell et al. (2017). The differences in vegetation index, SOS retrieval method, and pixel 

resolution between these land surface phenology products clearly results in different green-up 

dates for some locations across Alberta (Figure 2). 

 

 
 

Figure 2. Examples of land surface phenology green-up dates for the year 2014 (Pickell NDVI 
aggregated to 1km pixels for clarity).  
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The 550 random points shown in Figure 1b were used to extract the green-up dates of 

the corresponding pixels for the NASA EVI and NDVI datasets from 1987-2014. The Pickell 

NDVI green-up dates were extracted from 2000-2016 using these points, plus an additional 

125 points created to account for poor data coverage in a few years for certain ecoregions. 

Green-up dates earlier than day-of-year (doy) 60 were deemed to be erroneous, and were 

removed from analysis. Other studies have reported doy ~60 as the earliest satellite observed 

green-up in Alberta (Cui et al. 2017; Pickell et al. 2017). The individual green-up dates were 

aggregated by landcover type within each ecoregion to determine the mean green-up date for 

each ecoregion – landcover combination, annually, for each land surface phenology dataset. 

 

2.4 Statistical analysis 

 

The Pearson correlation coefficient (r) was calculated to test the strength of the linear 

relationship between the land surface phenology mean green-up dates and the estimated 

ground phenology dates for first bloom of all nine species and leaf-out for aspen. This was 

done separately for each land surface phenology dataset, in each of ecoregion – landcover 

combination. The NASA datasets were evaluated separately from 1987-1999 (AVHRR data) 

and 2000-2014 (MODIS data), and the Pickell NDVI dataset was evaluated from 2000-2016. 

Due to the large number of possible comparisons, I selected one phenophase to report for 

each ecoregion. In each case, the chosen phenophase was from a common species with 

relatively strong correlations with the land surface phenology data, and relatively similar first 

bloom or leaf-out dates to green-up. I report the correlation coefficient (r) and significance 

from a one-way positive correlation test for the selected phenophase. The root mean square 
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error (RMSE) was calculated as a measure of bias between the remote sensing green-up dates 

and ground observed phenology dates. RMSE is a description of the average difference 

between the green-up estimates and the ground phenology dates (Willmott 1982), and is 

calculated as follows: 

 

(1)  RMSE ൌ  ට∑ ሺୗିୋሻమొ
౟సభ

୒
 

 

where S is the satellite observed green-up date, G is the ground observed date for the 

chosen phenophase, and N is the number of years that the time-series covers. Datasets with 

green-up estimates similar to the ground phenology dates would have low RMSE, while 

biased green-up estimates would have high RMSE. 

 

Given that land surface phenology green-up estimates are intended to predict the start 

of growth and photosynthesis on the ground, I report the average difference in timing 

between green-up and two phenophases. I calculated the mean lag, which is the mean 

difference between the green-up date and the ground phenology date. This was calculated 

relative to aspen first bloom and aspen leaf-out. Aspen is a widespread species throughout 

Alberta, and is among the best recorded species in the PlantWatch database (Table 1). Aspen 

bloom is also among the earliest spring phenophases, making it useful as an indicator spring 

start, and aspen leafing is expected to be an important factor in satellite observed green-up.
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3. RESULTS 

3.1 Phenology sequence and model performance 

 

The estimated average first bloom date for the nine chosen species (and aspen leaf-

out) ranges from late March (doy ~85) to early July (doy 180+) in the Central Parkland 

region (Figure 3). The earliest spring phenophases are the synchronized bloom of aspen and 

prairie crocus, after which there is roughly a 20 day lag before aspen leaf-out. There is clearly 

a degree of correlation across the range of phenophases, though events that occur in a similar 

time period are more related. Aspen and prairie crocus bloom appear to have greater 

interannual variability than later phenophases. 

 

 

Figure 3. Phenology sequence (doy: day of year) of the first bloom and aspen leaf-out mean 
date estimate in the Central Parkland region of Alberta. 
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The mixed effects model produced precise predictions for ground phenology dates, as 

supported by the low standard errors from the model predictions. Based on the correlation 

coefficients and the timing of the green-up estimates, aspen leaf-out was chosen as the 

phenophase to report in the Central Parkland, Dry Mixedwood, and Foothills Parkland 

regions. Saskatoon first bloom was chosen for the Grasslands region, and aspen first bloom 

was chosen for the Central Mixedwood and Montane regions. The average standard error for 

the aspen leaf-out estimate is 2.7 in the intensively sampled Central Parkland region (max: 

3.8), 2.8 in the Dry Mixedwood region (max: 3.8), and 3.3 in the Foothills Parkland region 

(max: 4.0). Saskatoon bloom in the Grasslands region has an average standard error of 1.7, 

with a maximum of 2.6. Aspen bloom has an average standard error of 2.5 in the Central 

Mixedwood region (max: 3.7), and 2.4 in the Montane region (max: 2.9). Aspen leaf-out has 

higher standard errors than first bloom of all species as these records have only been 

collected since 2002, and due to there being relatively few observations of leaf-out compared 

to first bloom of other species (Table 1).  

 

3.2 Correlation and RMSE 

 

The strength of the linear relationship between land surface phenology green-up dates 

and ground phenology varies between land surface phenology products, between ecoregions, 

and between landcover types within ecoregions (Table 2). Some combinations are strongly 

correlated with low RMSE, while others have weak or no correlation. Strong correlations are 

also found across a wide range of other phenophases than those reported, including some that 

occur much later than green-up (Appendix Table A2).  
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Table 2. Statistics for the accuracy and precision of the green-up estimate in each ecoregion-
landcover combination, for a selected phenophase. The root mean squared error (RMSE) is an 
alternative measure of bias, and the Pearson correlation coefficient (r) is reported as a measure 
of precision for the relationship between the remotely sensed sensing green-up and observed 
phenology (* denotes statistical significance to p<0.05, ** p<0.01). 

      
MODIS EVI 
(NASA)   

MODIS NDVI 
(NASA)   

MODIS NDVI 
(Pickell)   

AVHRR EVI 
(NASA)   

AVHRR NDVI 
(NASA) 

Ecoregion/landcover/species   RMSE r   RMSE r   RMSE r   RMSE r   RMSE r 

Central Parkland (aspen leaf-out)                               

  Deciduous    15.3 0.56*   30.9 0.30   5.8 0.75**   10.5 0.26   20.6 0.37 

  Cropland   6.2 0.42   21.1 0.32   16.9 0.46*   6.3 0.24   12.2 0.16 

  Grassland   16.7 0.11   33.2 0.18   13.7 0.37   10.7 0.22   23.0 0.40 

Dry Mixedwood (aspen leaf-out)                               

  Deciduous    10.6 0.64**   28.9 0.50*   4.0 0.86**   5.7 0.73**   15.2 0.29 

  Cropland   8.2 0.57*   23.1 0.52*   13.7 0.63**   4.2 0.64**   11.0 0.56* 

Foothills Parkland (aspen leaf-out)                               

  Cropland   14.0 0.71**   26.8 0.66**   12.1 0.47*   14.4 0.77**   21.2 0.75** 

  Grassland   12.3 0.69**   22.3 0.64**   12.5 0.33   12.3 0.81**   19.1 0.89** 

Grasslands (Saskatoon bloom)                               

  Cropland   11.1 0.14   24.1 -0.02   17.1 0.09   10.5 0.68**   20.0 0.66** 

  Grassland   36.6 0.00   45.4 -0.07   20.7 0.12   33.4 0.61*   39.3 0.64** 

Central Mixedwood (aspen bloom)                               

  Mixed forest   13.1 0.30   16.6 0.16   10.1 0.65**   16.2 0.34   7.1 0.40 

Montane (aspen bloom)                               

  Conifer forest   21.5 0.03   7.0 0.61**   8.5 0.58**   18.4 0.18   10.4 -0.15 

 

The Pickell NDVI green-up dates are strongly correlated with aspen leaf-out for 

deciduous forests in the Central Parkland and Dry Mixedwood regions, with low RMSE 

(Table 2). This dataset’s green-up dates from cropland landcover are strongly correlated with 

aspen leaf-out in the Dry Mixedwood region, and have weaker significant correlations for 

cropland landcover in the Central Parkland and Foothills Parkland regions. The Pickell NDVI 

green-up dates are also fairly strongly correlated with aspen bloom for mixed and coniferous 

forests in the Central Mixedwood and Montane regions respectively, with RMSE of 8-10 

days. 

 

The NASA MODIS NDVI green-up dates tend to have weaker correlations with 

ground phenology than Pickell NDVI for forested ecoregions (Table 2). However, the 

correlation strength is quite similar for these two MODIS NDVI datasets for the coniferous 

forest landcover type in the Montane region. The NASA MODIS NDVI data are also strongly 
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correlated with aspen leaf-out for the cropland and grassland landcover in the Foothills 

Parkland region, though with high RMSE. The NASA AVHRR data have moderate 

correlations for the cropland and grassland landcover types the Grasslands region, and strong 

correlations for these landcover types in the Foothills Parkland region, also with high RMSE. 

 

The NASA MODIS EVI green-up dates have moderate correlations with aspen leaf-

out for deciduous forests in the Central Parkland and Dry Mixedwood regions, with moderate 

RMSE. Correlations are strong for cropland and grassland landcover in the Foothills Parkland 

region, also with moderate RMSE. The NASA AVHRR EVI data have similar correlations to 

the AVHRR NDVI data for cropland and grassland landcover in the Foothills Parkland and 

Grasslands regions, with lower RMSE. The NASA AVHRR EVI data are also strongly 

correlated with aspen leaf-out for deciduous forest and cropland landcover in the Dry 

Mixedwood region, with low RMSE.  

 

3.3 Interannual variability 

 

Comparing time-series of the green-up dates against ground phenology reveals that 

the NASA land surface phenology products have far less interannual variation (Figure 4). 

This is even more pronounced for the AVHRR based estimates prior to 2000. Estimates from 

the Pickell NDVI product appear to better represent the interannual variability of ground 

phenology in the forested ecoregions. The NASA data follow the trends of the ground 

phenology in several regions, though early and late years are not nearly as distinct.  
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Figure 4. Time series showing the remote sensing green-up dates for the three different remote 
sensing datasets in each ecoregion by landcover type (colour coded). The black line is the 
estimated date for a selected phenophase in each ecoregion (as noted in the title of each graph). 
The vertical dashed line is the year when the NASA data switched from AVHRR to MODIS 
sensors (2000). 

 

When visualizing the accuracy of remote sensing products, it becomes apparent that 

all three datasets lack the interannual variability of ground phenology (Figure 5). The slope of 

the linear regression is always less than 1, and ranges from 0.22 to 0.65 for the relationships 

presented in Figure 5. The slopes for Pickell NDVI tend to be greater than those for either 

NASA dataset, affirming that this dataset better captures the interannual variability of 

phenology. Some of the relationships displayed for the NASA AVHRR and MODIS data 

have very shallow slopes, but very small residuals around the linear regression line (e.g. 

Figure 5c; d).  
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Figure 5. Scatter plots of the remote sensing green-up date in relation to the estimated ground 
phenology date for the strongest correlated land surface phenology data for each landcover type 
by ecoregion (black line is the 1:1 line, coloured lines are the linear regression, the linear 
regression equation and significance (* p<0.05; ** p<0.01) are also included). 

 

3.4 Green-up timing 

 

The remote sensing dataset and the landcover type have considerable effects on the 

timing of the green-up estimate (Figure 4; Table 3). Average green-up dates range from over 

two weeks prior to aspen bloom to roughly three weeks after aspen leaf-out (Table 3). The 

Pickell NDVI dataset has quite variable lags with green-up being as early as aspen bloom in 

the Montane region, to over 3 weeks after aspen leaf-out for cropland landcover in the 

Grasslands region. The NASA NDVI dataset has high negative lags relative to aspen leaf-out, 
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and moderately negative to slightly positive lags relative to aspen bloom. In almost all 

ecoregion – landcover combinations, the NASA EVI dataset has negative lags relative to 

aspen leaf-out, and positive lags relative to aspen bloom.  

 

Table 3. Average lag in days between the remotely sensed green-up date minus the observed 
date for aspen first bloom and leaf-out. A negative lag indicates that the green-up estimate 
precedes the ground observed date for that phenophase. 

      
MODIS EVI 
(NASA)   

MODIS NDVI 
(NASA)   

MODIS NDVI 
(Pickell)   

AVHRR EVI 
(NASA)   

AVHRR NDVI 
(NASA) 

Ecoregion/landcover   Bloom Leaf-out   Bloom Leaf-out   Bloom Leaf-out   Bloom Leaf-out   Bloom Leaf-out 

Central Parkland 

Deciduous  6.6 -14.2 -9.3 -30.2 18.5 -2.4 12.2 -9.4 1.5 -20.1 

Cropland 18.9 -1.9 0.9 -19.9 36.2 15.4 25.7 4.2 10.4 -11.2 

Grassland 6.1 -14.7 -11.5 -32.3 10.4 -10.4 12.1 -9.5 -1.0 -22.6 

Dry Mixedwood 

Deciduous  9.1 -9.2 -10.0 -28.3 18.8 0.3 15.1 -4.4 5.0 -14.5 

Cropland 12.3 -5.9 -4.0 -22.3 30.8 12.3 18.2 -1.3 9.3 -10.2 

Foothills Parkland 

Cropland 15.7 -12.8 2.3 -26.2 37.2 8.7 14.8 -13.6 7.8 -20.6 

Grassland 17.6 -10.8 6.9 -21.6 37.1 8.6 16.9 -11.5 9.8 -18.5 

Grasslands 

Cropland 17.6 -2.6 4.0 -16.3 42.5 22.3 18.3 -2.0 8.1 -12.3 

Grassland -8.6 -28.9 -17.7 -37.9 11.2 -9.0 -5.5 -25.9 -11.6 -31.9 

Central Mixedwood 

Mixed forest 11.2 -11.2 -15.4 -37.7 7.8 -14.5 15.0 -7.0 -3.5 -25.4 

Montane 

  Conifer forest   20.0 -3.1   -3.8 -26.9   -1.3 -24.3   16.5 -6.5   6.5 -16.5 

 

 

NASA’s NDVI based green-up estimates precede the EVI estimates in all ecoregions 

and landcover types (Figure 4). The Pickell NDVI estimates tend to be the latest, expect for 

the Central Mixedwood and Montane regions (Figure 4e; 4f). Satellite observed green-up is 

considerably later on cropland than grasslands or deciduous forests, except for the Foothills 

Parkland region where cropland and grasslands have similar green-up dates. This effect is 

also highlighted in Figure 2, as the later green-up for cropland in the southern half of the 

province can be distinguished from the earlier green-up on grasslands to the south-east and 

forests to the north and west.  
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Relative to the chosen phenophases, green-up estimates for forested ecosystems are 

largely unbiased as they centre near the 1:1 line (Figure 5a; b; e; f). Green-up on grassland 

landcover is estimated early by remote sensing products relative to these phenophases, as the 

estimates fall well below the 1:1 line (Figure 5a; c; d). Bias for cropland is far more variable, 

with green-up occurring earlier than the chosen phenophase in some regions (Figure 5a; b), 

and later than the chosen phenophase in others (Figure 5c; d). 

 

The change from AVHRR to MODIS sensors for the two NASA datasets causes a 

systematic shift in green-up in several ecoregions that does not correspond to a shift in 

ground phenology, confirming the need to assess these data separately. The NASA NDVI 

green-up dates shift earlier in several regions after 2000, which is most evident in the Dry and 

Central Mixedwood regions (Figure 4b, 4e). This results in the average lags changing by 10 

to 14 days (Table 3). Green-up shifts are less evident for the NASA EVI dataset, and the 

average lags only change by as much as 7 days (Table 3). 

 

4.0 DISCUSSION 

4.1 Land surface phenology: performance and implications for Alberta landscapes 

 

The three land surface phenology products have varying correlations with ground 

phenology, and the timing of green-up ranges drastically between datasets and landcover 

types. Vegetation indices change in response to anything that changes surface reflectance 

(Helman 2018; Liang et al. 2011), meaning that green-up can be related to the phenology of 

many species. Though flowering of most PlantWatch species is not expected to be captured 

by satellites, the cumulative leafing and blooming of many species is related to temperature 
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accumulation (Beaubien and Hamann 2011b; Menzel et al. 2006); thus, it’s unsurprising that 

green-up is correlated with a wide range of phenophases, including those that are not 

expected to influence surface reflectance (Appendix Table A2) (Delbart et al. 2015; Misra et 

al. 2016). Of the phenophases included in this study, aspen bloom and leaf-out are likely to 

have the greatest influence on satellite observed green-up. Female aspen trees grow long 

green catkins for several weeks after pollination (Delbart et al. 2015), meaning they could 

appear green to the satellite prior to leafing. The leafing of shrubs and other tree species 

would also influence satellite signals. However, there are insufficient leaf-out records in the 

PlantWatch data for species other than aspen to include these in this analysis. 

 

Assessing the timing of green-up relative to aspen bloom and leaf-out is useful, as 

aspen bloom is one of the earliest occurring phenophases in Alberta (Figure 3) (Beaubien and 

Hamann 2011b), and aspen leaf-out is a useful indicator of the onset of photosynthesis for 

deciduous trees. Land surface phenology estimates of primary productivity are calculated as a 

proxy of the summed NDVI through the growing season (Park et al. 2016), meaning that 

biased estimates of spring start would bias productivity estimates. Green-up estimates with 

high RMSE (i.e. significant bias) can be corrected if the correlation with relevant ground 

phenophases is strong, while weak correlations indicate that the green-up estimates do not 

reflect ground phenology in that ecosystem.  

 

4.1.1 Deciduous forests 

 

The strongest correlations between remote sensing green-up dates and ground 

phenology tend to occur on deciduous forest landscapes. In particular, the Pickell NDVI 



25 

 

green-up dates show very strong agreement with aspen leaf-out for deciduous forests, with 

almost no bias (Table 2; Table 3; Figure 5). These are stronger correlations and lower RMSE 

than the results of other studies (Delbart et al. 2015; Delbart et al. 2005; White et al. 2009), 

which may be due to aggregating by ecoregions rather than comparing ground observations 

with green-up dates of corresponding pixels. The half-maximum SOS retrieval method used 

by the Pickell NDVI data typically corresponds to the initial leafing of the canopy (Misra et 

al. 2016; White et al. 1997), as is demonstrated here. Given that aspen is the dominant 

deciduous tree species in much of Alberta (Natural Regions Committee 2006), it’s 

unsurprising that its leafing would strongly influence satellite observed green-up. The strong 

correlation and lack of bias between this dataset’s green-up dates and aspen leaf-out indicates 

that the half-maximum SOS retrieval method for NDVI is suitable to predict the onset of 

canopy photosynthesis for deciduous forests in Alberta. 

 

The NASA EVI and NDVI data have weaker correlations for deciduous forests, and 

the green-up dates for these datasets occur prior to aspen leaf-out (Table 2, Table 3). The 

NASA NDVI dataset has green-up dates prior to aspen bloom, suggesting that snowmelt is 

too strong an influence on green-up detection of this dataset. The weak correlations and high 

RMSE indicate that the NASA NDVI dataset is unsuitable to predict spring start for Alberta 

deciduous forests. The Enhanced Vegetation Index is less sensitive than NDVI to light snow 

cover and bare soil (Helman 2018), which explains why it has later green-up than the NASA 

NDVI dataset. The NASA MODIS EVI green-up dates for deciduous forests have reasonable 

correlations with aspen leaf-out, though with an early bias of 9-14 days (Table 2, Table 3). 

This suggests that this dataset’s green-up could be influenced by the progressive growth of 

catkins on female aspen trees following pollination, or by initial bud expansion and bud burst 
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of aspen leaves, which would occur prior to the recorded leaf-out date. Though this dataset 

estimates green-up 9-14 days earlier than aspen leaf-out, the strength of the correlation 

suggests that this bias could be corrected using linear regression to predict the onset of 

canopy photosynthesis with reasonable accuracy. 

 

4.1.2 Mixed and coniferous forests 

 

Correlations are more variable among the datasets for mixed and coniferous forests, 

where detecting spring start is more difficult due to the lower annual variability in vegetation 

index values (Delbart et al. 2005; Hmimina et al. 2013; Jönsson et al. 2010; Karkauskaite et 

al. 2017). For mixed forests in the Central Mixedwood region, the Pickell NDVI dataset has 

reasonably strong correlations with aspen bloom (Table 3), and the NASA EVI dataset has 

similarly strong correlations with aspen leaf-out for both the AVHRR (r: 0.69) and MODIS 

(r: 0.56) estimates (Appendix Table A2). Similar to deciduous forests, the NASA EVI dataset 

detects green-up 11 days prior to aspen leaf-out on average (Table 3). However, the Pickell 

NDVI dataset detects green-up 14 days prior to aspen leaf-out on average in mixed forests, 

whereas green-up was coincident with leaf-out for deciduous forests (Table 3). The timing of 

green-up for both datasets suggests that the estimate is related to the growth of green catkins 

following pollination of female aspen trees, or initial bud expansion and budburst of aspen 

trees prior to full leaf-out. While deciduous trees don’t begin photosynthesising until they 

have leafed-out, coniferous trees in mixed forests begin photosynthesising as soon as air 

temperatures permit, resulting in a longer photosynthetically active period (D’Odorico et al. 

2015). Though unsuitable to detect photosynthetic activity of coniferous trees, the strength of 

these correlations suggests that the NASA EVI and Pickell NDVI datasets are suitable to 
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predict ground phenology and the beginning of photosynthesis for deciduous trees in boreal 

mixed forests. Linear regression between green-up dates and aspen leaf-out could be used to 

solve the early bias, to better reflect the onset of photosynthesis for deciduous trees. 

 

Both MODIS NDVI datasets have moderately strong correlations with aspen bloom 

with little bias for coniferous forests in the Montane region (Table 2, Table 3). The similarity 

in green-up timing for these datasets is surprising, given that the Pickell NDVI green-up dates 

tend to be three or more weeks later than the NASA NDVI estimates in other ecoregions. The 

NASA EVI green-up dates are not correlated well with any phenophase in this region 

(Appendix Table A2), confirming that EVI is unsuitable for coniferous forests (Liu et al. 

2016; Shen et al. 2014; Wu et al. 2014). The results for the MODIS NDVI datasets appear to 

be an improvement on other studies that found weak or no relationship between NDVI green-

up estimates and ground phenology or photosynthesis data for coniferous forests (Jönsson et 

al. 2010; Liu et al. 2016; Wu et al. 2014). Evergreen trees begin photosynthesising in spring 

without any change in greenness (D’Odorico et al. 2015; Jönsson et al. 2010; Reed et al. 

1994), which makes NDVI and EVI unsuitable to detect photosynthesis in coniferous forests. 

Other vegetation indices such as the Plant Phenology Index (PPI) (Jin and Eklundh 2014) and 

Chlorophyll/Carotenoid Index (CCI) (Gamon et al. 2016) are superior for detecting 

photosynthesis in coniferous forests. While aspen bloom is not expected to influence satellite 

observed green-up of coniferous forests, the strength of these correlations and lack of bias 

suggests that NDVI is suitable for predicting the earliest phenophases in this landcover type. 

This may be influenced by the greening of the understorey, though may also be due to 

snowmelt.  
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4.1.3 Cropland 

 

Green-up for cropland is generally later than surrounding forests and grasslands, 

which other North American studies also found (Zhang et al. 2006; Zhang et al. 2017). There 

are surprisingly strong correlations between cropland green-up and ground phenology in 

several ecoregions (Table 2), despite satellite observed green-up of croplands being more 

related to crop type and management than natural vegetation (Zhang et al. 2006). The Pickell 

NDVI and NASA EVI datasets have fairly strong correlations with aspen leaf-out for 

cropland in the Dry Mixedwood region, and both NASA datasets have strong correlations 

with aspen leaf-out for cropland in the Foothills Parkland region. The NASA AVHRR data 

also have fairly strong correlations with Saskatoon bloom for cropland in the Grasslands 

region. The strength of these correlations may be due to aggregating by ecoregions, as 

another study found little to no relationship between PlantWatch data from cropland 

landscapes and green-up dates of the associated pixels (Delbart et al. 2015). Given that 

croplands cover a substantial portion of the earth’s surface, monitoring phenology in these 

regions is crucial to accurately assess changes in phenology. Individual pixels in a cropland 

matrix have high interannual variability and noise, as different crop types have different 

green-up timing (Zhang et al. 2017). These results suggest that taking regional averages of 

cropland green-up can reduce this noise so that green-up predicts regional averages of ground 

phenology with reasonable accuracy. This could be a useful strategy for researchers wishing 

to include regions dominated by cropland in land surface phenology studies. 
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4.1.4 Grasslands 

 

Correlations are most variable among datasets for grassland landcover, which may be 

due to the PlantWatch species responding differently to climatic drivers than the vegetation 

that drives satellite observed green-up of Alberta grasslands. Start of growth in the 

Grasslands region is heavily dependent on preceding water balance, with precipitation events 

advancing growth, and drought delaying growth (Cui et al. 2017). Li and Guo (2012) 

demonstrated that NDVI is more strongly correlated with accumulated precipitation than 

accumulated temperature in Canadian prairie grasslands. Conversely, PlantWatch species’ 

first bloom dates correlate very strongly with accumulated temperature models, with no 

consideration of precipitation (Beaubien and Hamann 2011b).  

 

To be suitable for citizen science, species included in the PlantWatch dataset must be 

easily identifiable and have distinct and relatively short phenophases (Beaubien and Hamann 

2011a). The grass species that would drive satellite observed green-up in Alberta grasslands 

lack these criteria, and thus no grass species were chosen for PlantWatch. Shrubland and 

forests where satellite observed green-up would be more reflective of PlantWatch data, are 

restricted to moist areas and river valleys in the Grasslands region (Natural Regions 

Committee 2006). No dataset has strong correlations with ground phenology for grasslands in 

the Central Parkland region, which may be due to similar factors. The Foothills Parkland has 

more spread-out aspen forest and shrubland in low-lying areas and north facing slopes 

(Natural Regions Committee 2006), which may explain why there are stronger correlations 

with ground phenology for grassland landcover in that ecoregion. It’s unclear why there are 

considerably better correlations with AVHRR than MODIS data for grassland landcover in 
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the Grasslands region (Table 2), though the RMSE of over 30 days brings the validity of 

these findings into question. The Alberta PlantWatch data are not appropriate to evaluate the 

suitability of these datasets to track phenology in the grasslands of Alberta, and other sources 

of ground phenology data should be used to test this. 

 

4.2 Importance of using region specific land surface phenology methods 

 

Helman (2018) recommends that the greenness proxy and method used to extract the 

phenological metrics should be biome specific, based on knowledge of the dominant plant 

species, and should be guided by ground observations and comparison of different methods. 

Land surface phenology studies are routinely carried out at continental or global scales using 

a single combination of vegetation index, data smoothing technique, and metric retrieval 

method (Garonna et al. 2015; Jeong et al. 2011; Park et al. 2016; Running et al. 2004; Stöckli 

and Vidale 2004). However, there is no consensus on a superior method for deriving land 

surface phenology metrics in global applications (Atkinson et al. 2012; Buitenwerf et al. 

2015), and alternative methods perform differently in different vegetation types (Buitenwerf 

et al. 2015; White et al. 2009). Using a global dataset without considering its suitability for a 

study region could create false conclusions regarding the timing of phenological metrics and 

associated measures of productivity. Conversely, applying region specific thresholds to a 

global study may result in misinterpretations for regions that are not well reflected by the 

chosen method. Comparison against ground phenology data is necessary to validate the 

suitability of land surface phenology methods for different regions and vegetation types, in 

order to avoid these issues. 
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The two NASA global datasets used in this study do not correlate well with ground 

phenology in several regions, suggesting that they are not ideal for a northern study region. 

This is particularly evident for the NASA NDVI dataset, which had weak correlations and 

green-up dates earlier than aspen bloom in most ecoregions. The beginning of NDVI increase 

in northern forests is due to snowmelt exposing bare soil and leaf litter, which causes the 

index to increase (Moulin et al. 1997; Reed et al. 1994; White et al. 2005). It’s likely that 

snowmelt was too strong an influence on green-up detection of this dataset, demonstrating 

that a 35% retrieval threshold for NDVI is low for most northern ecosystems. Though the 

NASA EVI dataset has stronger correlations with ground phenology, green-up dates are prior 

to aspen leaf-out. This suggests that a higher threshold for EVI SOS retrieval would be 

superior to accurately predict the beginning of photosynthesis in northern ecosystems.  

 

The half-maximum method (50% threshold) used by the Pickell NDVI dataset better 

predicts the onset of photosynthesis in deciduous forest ecosystems. The original application 

of the Pickell NDVI dataset was to evaluate the potential of land surface phenology to 

provide an early warning system for spring fire risk in the forested region of Alberta (Pickell 

et al. 2017). Though this dataset was not developed with an emphasis on a specific 

phenophase, it has a strong and unbiased relationship with aspen leaf-out for deciduous 

forests in Alberta. This dataset also has strong correlations with ground phenology in mixed 

and coniferous forests, verifying that this green-up threshold accurately predicts spring start 

in the ecosystems the dataset was designed for. This demonstrates that data processing and 

metric retrieval methods specific to the region or vegetation type of interest can result in 
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more accurate phenology predictions than those derived from a pre-processed global dataset. 

Lowering the threshold to derive phenological metrics, such as the 35% threshold used by the 

NASA datasets, results in earlier SOS dates and later end of season dates (White et al. 1997). 

Using these lower thresholds for green-up in northern landscapes would thus overestimate 

growing season length and primary productivity. Researchers should exercise caution when 

using global datasets and should test against ground data whenever possible in order to avoid 

mismatches between land surface phenology metrics and relevant phenophases. 

 

4.3 Interannual variability: implications for climate monitoring 

 

The land surface phenology datasets in this study consistently underestimate the 

interannual variability of phenology, which has also been found in other studies (Fisher and 

Mustard 2007; Peng et al. 2018; White et al. 2009). Interannual variability of green-up seems 

to depend primarily on the dataset used, and the landcover type. Linear regression slopes are 

steeper for forested landcover than grassland or cropland, independent of the correlation 

strength (Figure 5). For example, the relationships displayed for the Foothills Parkland region 

all have strong correlations with aspen leaf-out (r > 0.69), although with quite shallow slopes 

(<0.31) (Figure 5c). The linear regression slopes are also steeper for the Pickell NDVI dataset 

than either NASA dataset, and the slopes for the NASA datasets are steeper for MODIS data 

than AVHRR (Figure 5). Failing to reproduce the interannual variability of phenology from 

remote sensing risks underestimating the impact of climate change on ecosystems, as the rate 

of change for spring start, fall senescence, and growing season length would all be 

underestimated. By comparing with ground phenology data, linear regression equations could 

be used to convert green-up dates into predicted dates for a ground based phenophase. The 
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equations in Figure 5 for the strongly correlated combinations are a suitable conversion of 

green-up to predicted dates for the chosen phenophases, which could be used for these 

datasets in these landscape types. Doing so would increase the interannual variability of 

remotely sensed time-series, in order to better estimate trends in phenology. Several other 

factors that influence the variability from remote sensing could also be considered in order to 

better estimate the variability of phenology. 

 

Landscape heterogeneity, pixel size, and sensor type contribute to the differences in 

interannual variability between datasets and ecoregions. The extraction points were placed in 

locations with several clustered pixels of the same landcover type, which results in stronger 

agreement with ground phenology compared to non-buffered pixels (Doktor et al. 2009). 

Given that the landcover data are at the same spatial resolution as the Pickell NDVI data 

(250m), it’s fair to expect that this dataset’s green-up are from relatively contiguous pixels of 

the target landcover type. However, the pixel size of the NASA data is roughly 500 times the 

size of the landcover pixels, and thus it’s likely that these pixels include unintended 

landcover types. Large pixels fail to reveal the fine scale variabilities in climate and 

vegetation that influence land surface phenology (Fisher and Mustard 2007), which is evident 

when comparing the Pickell NDVI dataset to the NASA datasets in Figure 2. Additionally, 

vegetation indices experience a less distinct increase to full summer greenness for 

heterogeneous pixels (Doktor et al. 2009), which explains why the NASA datasets are less 

variable than the Pickell NDVI dataset. The NASA data collected by AVHRR sensors have 

less interannual variability than from MODIS (Figure 4; Figure 5), which may be explained 

by the better ability of MODIS to diminish the effects of cloud contamination, atmospheric 

variability, and sensor view angle (Zhang et al. 2003; Zhang et al. 2001). MODIS data are 
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also available at finer resolutions (250m) than AVHRR data (1km) (Helman 2018), furthering 

this sensors capacity to better capture interannual variability. Using finer resolution imagery 

and data from newer sensors such as MODIS are appropriate strategies to better estimate the 

interannual variability of phenology, and better delineate spatial heterogeneity in mixed 

landscapes. 

 

While reduced interannual variability would underestimate the rate of change for 

spring start, land surface phenology may also not be sensitive to phenophases that are shifting 

the most rapidly in northern ecosystems. Significant trends of spring advance in Alberta have 

only been found for the two earliest phenophases in the Alberta PlantWatch database: aspen 

and prairie crocus first bloom (Beaubien and Hamann 2011b; Beaubien and Freeland 2000). 

Thus, green-up estimates that accurately capture these earliest phenophases would be 

preferable to monitor the impact of climate change on spring start. While green-up dates have 

acceptable correlations with these phenophases in several ecoregions, correlations tend to be 

stronger for aspen leaf-out (Appendix Table A2). Snowmelt plays too strong an influence on 

green-up estimates from lower NDVI thresholds in Alberta, and thus this vegetation index is 

unsuitable to detect these phenophases. Though EVI is less sensitive to snowmelt, the NASA 

EVI dataset tends to have weaker correlations with aspen and prairie crocus first bloom than 

the NDVI datasets (Appendix Table A2). Thus, alternative vegetation indices with reduced 

sensitivity to snowmelt such as the Normalised Difference Water Index (NDWI) (Delbart et 

al. 2005), and the Plant Phenology Index (PPI) (Jin and Eklundh 2014) should be evaluated 

for their potential to detect the early phenophases that are most sensitive to climate change.  
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5. CONCLUSION 

This study confirms previous findings that different remote sensing techniques have 

variable agreement with ground phenology data. In order to accurately predict the onset of 

photosynthesis, linear regression can be used for datasets that consistently estimate an early 

or late green-up relative to canopy leaf-out. This could be used to correct the early bias of 

green-up estimates for the NASA EVI dataset in deciduous and mixed forests of Alberta, and 

for the Pickell dataset in mixed forests. The lags in Table 3 and linear regression equations in 

Figure 5 could form the basis to correct these biases. The strong correlations between green-

up and ground phenology for cropland landcover suggest that aggregating data by ecoregions 

is a suitable method to reduce the noise and heterogeneity in green-up that cause mismatches 

on this landcover type. Comparing against ground phenology data is essential to ensure land 

surface phenology accurately predicts the timing of relevant phenophases for a region and 

vegetation type of interest. Maintaining and expanding ground phenology networks such as 

PlantWatch is crucial to ensure the continuity of this secondary data source that can 

complement and validate land surface phenology. 

 

Different vegetation types and ecosystems demonstrate different characteristics of 

green-up; thus, developing global land surface phenology methods and products is 

problematic. Using global datasets without considering the suitability for any study region 

could result in false conclusions regarding the timing and trends of green-up and senescence, 

and could bias estimates of primary productivity. The two NASA datasets in this study 

estimate an early green-up relative to canopy leaf-out in Alberta forests, and the NDVI 

dataset seems more related to snowmelt that green-up in most ecoregions. This suggests that 

global thresholds for green-up may underestimate spring start in northern ecosystems, which 
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would lead to overestimations of growing season length and primary productivity. The 

stronger correlations with ground phenology for the Pickell NDVI dataset in forested regions 

demonstrates that developing a dataset specific to a vegetation type of interest can result in 

better green-up estimations than those from pre-processed global datasets. Comparisons 

against ground phenology data should be used when possible to set region specific land 

surface phenology methods, and to ensure data accurately reflect the vegetation type of any 

study region. 

 

Land surface phenology universally underestimates the interannual variability of 

phenology, which risks underestimating the impact of climate change on ecosystems. 

Interannual variation is better represented for forested landscapes, and fine resolution data 

substantially increase the variability compared to coarser resolutions. By comparing green-up 

estimates with ground phenology data, linear regression equations can be developed to 

convert green-up estimates into predicted dates for a phenophase. This would increase the 

variability of remotely sensed time-series, in order to better estimate trends in phenology. 

There should also be a focus on developing remote sensing techniques that accurately detect 

the earliest phenophases in northern ecosystems, given that these are shifting the most 

rapidly.  
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APPENDIX 

Appendix Table A1. Number of Alberta PlantWatch observations by species for the six 
ecoregions in this study. 

    Ecoregion 

Species   Central Parkland Dry Mixedwood Foothills Parkland Grasslands Central Mixedwood Montane 

Saskatoon 2,140 1,634 447 650 282 286 

Early blue violet 1,647 1,237 416 474 201 344 

Prairie crocus 1,532 433 692 836 72 382 

Aspen poplar 1,824 1,250 247 250 158 137 

Chokecherry 1,639 1,056 176 494 152 137 

Northern bedstraw 1,291 1,194 315 313 222 253 

Golden bean 1,707 209 605 877 4 162 

Yarrow 1,159 1,039 309 442 264 276 

Star-flowered Solomon's seal   1,353 714 382 446 89 267 
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Appendix Table A2. Correlation coefficients (r) between the remote sensing green-up dates and 
the first bloom of all species, as well as leaf-out for aspen. Stronger correlations are highlighted 
in red. Species are sorted from the earliest to latest (PC: prairie crocus; AP1: aspen bloom; AP2: 
aspen leaf-out; EV: early blue violet; GB: golden bean; SK: Saskatoon; SS: Star-flowered 
Solomon’s seal; NB: northern bedstraw; Y: yarrow). 

        Species                   

Ecoregion Sensor type Data and VI Landcover PC AP1 AP2 EV GB SK CC SS NB Y 

Central Parkland MODIS NASA EVI Deciduous forest 0.49 0.52 0.56 0.54 0.38 0.56 0.46 0.58 0.59 0.74 

Central Parkland MODIS NASA EVI Cropland  0.33 0.30 0.42 0.46 0.35 0.54 0.45 0.61 0.77 0.78 

Central Parkland MODIS NASA EVI Grassland 0.10 0.18 0.11 0.10 -0.09 0.11 0.09 0.19 0.48 0.32 

Central Parkland MODIS NASA NDVI Deciduous forest 0.25 0.31 0.30 0.21 0.04 0.24 0.21 0.29 0.35 0.37 

Central Parkland MODIS NASA NDVI Cropland  0.23 0.32 0.32 0.24 0.07 0.29 0.27 0.35 0.51 0.51 

Central Parkland MODIS NASA NDVI Grassland 0.15 0.21 0.18 0.16 0.01 0.13 0.14 0.17 0.37 0.16

Central Parkland MODIS Pickell NDVI Deciduous forest 0.68 0.72 0.75 0.73 0.62 0.74 0.71 0.76 0.72 0.82 

Central Parkland MODIS Pickell NDVI Cropland  0.47 0.50 0.46 0.47 0.32 0.46 0.39 0.47 0.53 0.69 

Central Parkland MODIS Pickell NDVI Grassland 0.42 0.50 0.37 0.38 0.20 0.31 0.25 0.30 0.35 0.37 

Central Parkland AVHRR NASA EVI Deciduous forest 0.08 0.12 0.26 0.21 0.30 0.38 0.36 0.26 0.26 0.01 

Central Parkland AVHRR NASA EVI Cropland 0.11 -0.03 0.24 0.21 0.26 0.31 0.36 0.29 0.32 0.06

Central Parkland AVHRR NASA EVI Grassland 0.10 0.14 0.22 0.17 0.24 0.34 0.28 0.23 0.16 -0.04 

Central Parkland AVHRR NASA NDVI Deciduous forest 0.20 0.11 0.37 0.29 0.38 0.47 0.40 0.38 0.37 0.25 

Central Parkland AVHRR NASA NDVI Cropland  0.08 0.09 0.16 0.08 0.14 0.25 0.24 0.19 0.15 -0.05 

Central Parkland AVHRR NASA NDVI Grassland 0.40 0.38 0.40 0.40 0.35 0.46 0.38 0.34 0.27 0.18 

Dry Mixedwood MODIS NASA EVI Deciduous forest 0.43 0.45 0.64 0.67 0.67 0.62 0.50 0.56 0.58 0.61 

Dry Mixedwood MODIS NASA EVI Cropland  0.45 0.44 0.57 0.57 0.53 0.53 0.46 0.53 0.70 0.84 

Dry Mixedwood MODIS NASA NDVI Deciduous forest 0.42 0.31 0.52 0.43 0.48 0.42 0.34 0.40 0.62 0.67 

Dry Mixedwood MODIS NASA NDVI Cropland  0.43 0.35 0.50 0.45 0.45 0.42 0.36 0.44 0.67 0.80 

Dry Mixedwood MODIS Pickell NDVI Deciduous forest 0.71 0.75 0.86 0.80 0.81 0.83 0.79 0.70 0.70 0.62 

Dry Mixedwood MODIS Pickell NDVI Cropland  0.52 0.58 0.63 0.60 0.59 0.58 0.53 0.51 0.68 0.75 

Dry Mixedwood AVHRR NASA EVI Deciduous forest 0.54 0.61 0.73 0.69 0.67 0.79 0.66 0.57 0.67 0.63 

Dry Mixedwood AVHRR NASA EVI Cropland  0.35 0.50 0.64 0.56 0.65 0.77 0.59 0.57 0.57 0.53 

Dry Mixedwood AVHRR NASA NDVI Deciduous forest 0.19 0.32 0.29 0.28 0.21 0.31 0.24 0.19 0.31 0.24 

Dry Mixedwood AVHRR NASA NDVI Cropland  0.37 0.51 0.56 0.47 0.51 0.68 0.48 0.44 0.50 0.45 

Foothills Parkland MODIS NASA EVI Cropland  0.68 0.65 0.71 0.81 0.75 0.76 0.62 0.73 0.62 0.73 

Foothills Parkland MODIS NASA EVI Grassland 0.65 0.60 0.69 0.79 0.73 0.78 0.65 0.77 0.69 0.76 

Foothills Parkland MODIS NASA NDVI Cropland  0.70 0.66 0.66 0.73 0.66 0.58 0.53 0.58 0.43 0.66 

Foothills Parkland MODIS NASA NDVI Grassland 0.69 0.64 0.64 0.71 0.67 0.56 0.49 0.56 0.41 0.62

Foothills Parkland MODIS Pickell NDVI Cropland  0.40 0.40 0.47 0.44 0.44 0.47 0.45 0.44 0.41 0.63 

Foothills Parkland MODIS Pickell NDVI Grassland 0.30 0.25 0.33 0.37 0.29 0.43 0.40 0.45 0.51 0.65 

Foothills Parkland AVHRR NASA EVI Cropland  0.42 0.46 0.77 0.75 0.78 0.79 0.74 0.76 0.76 0.77 

Foothills Parkland AVHRR NASA EVI Grassland 0.47 0.51 0.81 0.79 0.81 0.82 0.78 0.77 0.80 0.74 

Foothills Parkland AVHRR NASA NDVI Cropland  0.43 0.45 0.75 0.78 0.77 0.76 0.71 0.70 0.71 0.75 

Foothills Parkland AVHRR NASA NDVI Grassland 0.66 0.67 0.89 0.89 0.86 0.87 0.87 0.79 0.77 0.73 

Grasslands MODIS NASA EVI Cropland  0.26 0.26 0.11 0.19 0.18 0.14 -0.06 0.23 0.23 0.24 

Grasslands MODIS NASA EVI Grassland 0.21 0.20 0.01 -0.03 0.09 0.00 -0.15 0.01 -0.06 0.14 

Grasslands MODIS NASA NDVI Cropland  0.22 0.13 0.02 0.02 0.04 -0.02 -0.26 0.01 -0.31 -0.03 

Grasslands MODIS NASA NDVI Grassland 0.15 0.10 -0.05 -0.12 0.00 -0.07 -0.20 -0.09 -0.12 0.10 

Grasslands MODIS Pickell NDVI Cropland  0.02 0.09 0.06 0.07 0.01 0.09 0.09 0.20 0.43 0.41 

Grasslands MODIS Pickell NDVI Grassland 0.21 0.27 0.17 0.09 0.13 0.12 0.14 0.21 0.27 0.40 

Grasslands AVHRR NASA EVI Cropland  0.21 0.14 0.58 0.41 0.58 0.68 0.64 0.70 0.64 0.78 

Grasslands AVHRR NASA EVI Grassland 0.40 0.35 0.55 0.38 0.53 0.61 0.57 0.54 0.34 0.65 

Grasslands AVHRR NASA NDVI Cropland  0.20 0.07 0.55 0.40 0.55 0.66 0.61 0.68 0.58 0.78 

Grasslands AVHRR NASA NDVI Grassland 0.39 0.34 0.56 0.41 0.57 0.64 0.60 0.56 0.38 0.60 

Central Mixedwood MODIS NASA EVI Mixed forest 0.42 0.30 0.56 0.65 0.61 0.58 0.51 0.56 0.60 0.69 

Central Mixedwood MODIS NASA NDVI Mixed forest 0.29 0.16 0.30 0.29 0.29 0.19 0.08 0.12 0.09 0.27

Central Mixedwood MODIS Pickell NDVI Mixed forest 0.66 0.65 0.63 0.55 0.57 0.59 0.52 0.56 0.50 0.55 

Central Mixedwood AVHRR NASA EVI Mixed forest 0.42 0.34 0.69 0.68 0.76 0.78 0.67 0.68 0.62 0.52 

Central Mixedwood AVHRR NASA NDVI Mixed forest 0.35 0.40 0.29 0.29 0.27 0.27 0.20 0.20 0.20 -0.01 

Montane MODIS NASA EVI Conifer forest 0.07 0.03 0.15 0.15 0.14 0.24 0.23 0.17 0.15 0.15 

Montane MODIS NASA NDVI Conifer forest 0.74 0.61 0.62 0.65 0.61 0.59 0.39 0.54 0.41 0.57 

Montane MODIS Pickell NDVI Conifer forest 0.54 0.58 0.52 0.58 0.38 0.53 0.54 0.59 0.62 0.73 

Montane AVHRR NASA EVI Conifer forest 0.21 0.18 0.35 0.40 0.36 0.44 0.38 0.38 0.30 0.28 

Montane AVHRR NASA NDVI Conifer forest -0.07 -0.15 0.08 0.15 0.17 0.16 0.09 0.14 0.11 0.05 

 


